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Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy.
Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed.
Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time-information uncertainty rela-
tion—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that
elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we estab-
lish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on
the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally
bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam-Tamm version
of the time-energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to
transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics

or their function.

any problems in science and engineering involve under-
standing how quickly a physical system transitions
between distinguishable states and the energetic costs of
advancing at a given speed. While theories such as thermodynamics
and quantum mechanics put fundamental bounds on the dynamical
evolution of physical systems, the form and function of the bounds
differ. Clausius’s version of the second law of thermodynamics',
for example, is an upper bound on the heat exchange in traversing
equilibrium thermodynamics states—an inequality that limits the
efficiency of heat engines without an explicit notion of time or fluc-
tuations. By contrast, Mandelstam and Tamm’s version of the time-
energy uncertainty relation in quantum mechanics>’ is a limit on
the speed at which quantum systems can evolve between two distin-
guishable quantum states. Given this important, and long-standing,
contrast between these two pillars of physics, we explore thermo-
dynamic bounds that are analogous to those in quantum mechan-
ics, bounds that are independent of the system dynamics*® and set
limits on the speed of energy and entropy exchange.
Thermodynamic uncertainty relations”'* have been found where
fluctuations in dynamical currents are bounded by the entropy
production rate>'~". These relations apply to small systems and
are part of stochastic thermodynamics'*'%, a framework in which
heat, work and entropy can be treated at the level of individual,
fluctuating trajectories. Recent work has begun to suggest con-
nections to the physics of information, information theory and
information geometry®*'>?’. In parallel to these discoveries, there
have been advances in quantum-mechanical uncertainty relations
or speed limits that constrain the speed at which dynamical vari-
ables evolve. They employ the mean’, variance’ or higher-order
moments of the energy?>*2. These quantum speed limits, which also
have information-theoretic forms, have recently been generalized
to open quantum systems embedded in an environment*-*, paving
the way for their application in the classical domain. The existence

of speed limits, regardless of the classical or quantum nature of the
system, was first pointed out by Margolus*. Only recently have
analogous bounds been established in classical systems and applied
to Liouville dynamics in phase space*”* (also see related work®>*).
While there has been rapid progress on thermodynamic uncer-
tainty relations”, it remains to be seen whether there are speed
limits in thermodynamics whose generality rivals those in quantum
mechanics.

What governs the speed at which heat, work and entropy are
exchanged between a system and its surroundings? Is there a univer-
sal quantity that bounds the speed at which thermodynamic observ-
ables evolve away from equilibrium? Motivated by these questions,
we derive a family of limits to the speed with which a system can
pass between distinguishable non-equilibrium states and the heat,
work and entropy exchanged in the process.

Equation of motion for thermodynamic observables
Consider a generic classical, physical system operating irreversibly,
out of thermodynamic equilibrium. The stimulus for the time evo-
lution of the physical system can be the removal of a constraint or
the manipulation of an experimental control parameter 4, such as
temperature or volume. As is common in stochastic thermodynam-
ics", we adopt a mesoscopic description and take the system to have
a finite number of configurations x=1, 2, ..., N with initial prob-
ability p.(t,). As currents in energy and matter cause the system to
evolve, the probability distribution will generally differ from that of
a Gibbsian ensemble. Our working assumption is that the dynamical
evolution smoothly transforms the probability, p,[A(H)] =p.(t) =p.,
of each state x at time ¢ with a rate p, = dp, /dt. All quantities here
are time dependent unless explicitly stated otherwise.

During the non-equilibrium process, experimental mea-
surements of an observable A for a classical system correspond
to time-dependent statistical moments (A”") = " p a” of the
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configuration observables a,(f)=a,. The Shannon entropy*, for
example, is the expectation value of the surprisal I,.:=—Inp,, which
measures the information gained by observing the system in state
x. With these minimal specifications, our first main result is that
the ensemble average of any time-dependent observable A obeys an
equation of motion,

% = —cov(A, 1) + <%> (1)

The covariance measures the linear correlation between A and the
surprisal rate I, = dI,./dt,

A= cov(l, A) = (A — ()1 — (D). )
This evolution law makes no additional physical or modelling
assumptions and holds for general processes away from thermody-
namic equilibrium (see proof in Methods).

One form of the evolution equation is well known. For a sys-
tem with a finite number of energy states, a,—¢€,, it becomes the
stochastic first law of thermodynamics, U = d(¢)/dt = Q + W
(ref. '°). Energy exchanges between the system and external res-
ervoirs are driven by mechanical forces, 1V, and non-mechanical
forces, @ =Q + Wehem + ..., including fluxes of heat QO and
chemical work Wehem (ref. ). In what follows, we consider
Q = Q and describe processes with non-zero chemical work in
Methods. Comparing the first law with our result gives a statisti-
cal representatlon for the flux of work, (de/dt), and the flux of
heat, Q = Z p, 0ex = —cov(l,€), where we have shifted the
energy scale by the internal energy: de,:=e,— U. Thus, we find a
new definition of energy exchanged between a system and its sur-
roundings as heat: heat flux is a measure of the linear correlation
between energy and information rates. While the covariance mea-
sures the linear relationship between random variables, it applies
even when I, and €, are nonlinearly related. Any quantity of the
form of A = SN p.ay, such as the entropy rate S, can be expressed
as this covariance.

There is a striking similarity between the mathematical form
of equation (1) and Ehrenfest’s (Liouville’s) theorem in quantum
(classical) mechanics. Particularly important here is that the cova-
riance fulfils the role of the mean commutator (Poisson bracket)
of a quantum (classical) mechanical observable and the quantum
(classical) Hamiltonian®'. For this broad class of classical stochastic
systems, the surprisal rate, not the Hamiltonian, is the observable
with which all others are compared. If the probability distribution
is canonical, P(x,t) =e#"®9/Z(t), however, they are proportional,
I(x,t) o< —BH(x,t). Given this analogy, we explore whether other
relationships in quantum mechanics extend to classical, stochastic
observables built on fluctuations and uncertainty.

Observable fluctuations and evolution speed

As the non-equilibrium dynamics of the system unfold, observables
will evolve in time (Fig. 1). From the equation of motion, a change
in the state function (A) is the result of two path functions. For the
path function, 4, we define the instantaneous speed of evolution,

1 14| _ Jeov(1,A)] )

4 AA AA

in terms of the covariance in the equation of motion and the s.d.
AA. This timescale is the time required for A to evolve to a statisti-
cally distinguishable value. It has a form that is analogous to that
for quantum-mechanical observables in the Mandelstam-Tamm
time-energy uncertainty relation>*. For any quantum-mechanical
observable A evolving under a Hamiltonian H with s.d.
AH, the Mandelstam-Tamm speed limit> bounds the timescale

Fig. 1| Speed limit from the statistical distinguishability of
thermodynamic observables. a, Away from thermodynamic equilibrium,
stochastic dynamics will evolve a probability distribution over
configurations, for example p(t) = (p;, p,, p3), from t, to t. The distribution
evolves with a characteristic speed set by v/Ir = 7', which measures the
distinguishability of the distribution at two infinitesimally close times.

b, Observables A of a system also evolve in time away from thermodynamic
equilibrium. The distributions of A at two times are distinguishable in the
sense used by Wootters®” when the statistical distance between them is
greater than their combined uncertainty: dist(A,A’) > AA+ AA’ and A#A’,
that is, when their s.d.s, AA and AA’, do not overlap. Here, the time 74 to
reach a distinguishable state is when the path function [.A] = d(A)/dt — (A)
has the magnitude of AA. The speed limitis 77! > 7'

7, over which the expectation value of the observable changes:
TAZTQM = h/(ZAH)

To understand the physical meaning of the timescale that we
define, 7 4, suppose there is a constant flux .A. Then, given two prob-
ability distributions p(t) and p(t,), 7.4 is the amount of time for the
magnitude of the path function to have the value of one s.d.:

totty | .
Al = ’/ Adt‘ — A 74 = AA. (4)
to

Despite the similarities so far, classical thermodynamic observables
such as A do not yet have an analogous limit on the speed of their
evolution. Because the general non-equilibrium distributions we
consider may not have a direct connection to a Hamiltonian, it is
natural to seek a characteristic time associated with the distinguish-
ability of evolving probability distributions.

Information fluctuations and intrinsic speed

The speed of each observable A measures its sensitivity to changes
in the distribution over configurations (Fig. 1). To bound this speed
for generic observables, one can consider the time required for
the probability distribution to evolve to a distinguishable state’*.
There is evidence in both quantum**"** and classical®*~*' settings
that the square root of the Fisher information®, /Ty, defines such
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Fig. 2 | lllustration of time-information uncertainty relation and speed limit for a model of driven assembly of monomeric units. a, Probability of
misassembled and optimally assembled states as a function of time for a three-state system of assembling particles in contact with a heat reservoir a at
temperature T. b, Model. The system has three possible states: dissociated monomeric units, misbound aggregates and an optimally bound configuration.
An initial collection of monomers evolves, subject to a master equation dynamics and a periodic temperature protocol, and aggregates into a set of
misbound structures and a single, optimally bound structure. ¢, Periodic temperature protocol over the same time span. d, At all times, equation (9),
tAlAe =t Ae/7 (dashed line), upper and lower bounds the heat flux, Q (blue line). e, Total absolute heat (blue) bounded by the integrated uncertainty
bound equation (10) (dashed). f, The speed of heat exchange as a function of time (blue) is tightly bounded by the speed limit set by the Fisher
information (dashed). In all plots, energy has the same units as kT units and time has the same units as those used in elements of the rate matrix.

a speed” for neighbouring, time-varying probability distributions
that are a distance ds = /Iy dt apart. The Fisher information* is
also a measure of ﬂuctuatlons in the surprisal rate:

N [dlnp.\* 2 1
= § ) A= = 5
I : pr( 5 ) Al et (5)

The surprisal rate only fluctuates for temporally varying distribu-
tions, that is, only in systems out of thermodynamic equilibrium.
By the dimensional analysis above, fluctuations in the information
content, 1/AI = 1//T, set an intrinsic timescale for the evolu-
tion of the probability distribution in systems out of equilibrium,
7:=1//Tg (refs. ©*"**). However, does this timescale provide a
general bound on the speed at which non-equilibrium observables
evolve?

Time-information uncertainty relation and speed limit
With the results above, we can place bounds on the uncertainty in
thermodynamic observables, regardless of the dynamical variable
or the stochastic dynamical law governing the probability distribu-
tion over configurations. The fluctuations in A and I upper bound
their covariance through the inequality

|A| = |cov(l, A)| <AL AA. (6)

This time-information uncertainty relation for A depends on the
fluctuations in the surprisal rate, AI = /T, and holds for a variety
of thermodynamic fluxes: heat 0, dissipated work W diss, chemical
work W hem and entropy S.

As an immediate consequence of this uncertainty relation, fluc-
tuations in the surprisal rate AI = 1/7 are an upper bound on the
instantaneous speed of any dynamical variable that is a covariance
with the surprisal rate:

Al>1/74. (7)

NATURE PHYSICS | www.nature.com/naturephysics

The Fisher information is a property of the distribution over config-
urations that evolves with stochastic dynamics. Moreover, this clas-
sical uncertainty relation, 74 AI > 1, sets the intrinsic timescale that
bounds the timescale of all other dynamical quantities: a system out
of thermodynamic equilibrium with a spread AI = /T in surprisal
rate takes a time of at least 7 4>1/+/Ir for the path function |.A] to
change by AA. A small (large) spread in surprisal rates sets a lower
(higher) speed limit on A through A.

Again, there are parallels with quantum mechanics. The

Mandelstam-Tamm bound 73 >#/ (2AT) can also be expressed in

terms of the quantum Fisher information Z. For pure states evolv-
ing under a unitary dynamics, the quantum Fisher Information is

Ty = 4NH? /1? (vefs. **), and the quantum version of the bound,
T321/V Ty, is formally identical to this classical speed limit.

While it is analogous to the quantum speed limit, the time-infor-
mation speed limit applies immediately to the fluxes of thermo-
dynamic quantities. The time-information speed limit assumes a
differentiable distribution but it makes no model assumptions about
the stochastic dynamics, the proximity to equilibrium, the size of
the system or the protocol driving the system out of equilibrium. As
we show in Methods, a sufficient condition to saturate the.bound,
and achieve the speed limit, is a linear relationship between { and A.
The nature of the non-equilibrium drive, physical constraints on the
system, and exchanges of energy and entropy between the system
and its environment control the speed limit.

At one extreme, thermodynamic fluxes converge to constant val-
ues, sustained by an external drive and a constant current through
the system. When the system is at equilibrium or in non-equilibrium
steady states with a finite AA, the uncertainty in the surprisal rate
vanishes, Al = 0. No matter what A is being considered, |A| = 0
and the timescale 74 diverges. At steady state, the covariance
A = —cov(I, A) vanishes. By analogy, stationary states in classical
mechanics correspond to a vanishing Poisson bracket and a station-
ary phase space density.

At the other extreme, the system is driven strongly, transiently
and perhaps with large fluctuations that prevent macroscopic
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observables from establishing steady values. If observables exhibit
a rapid variation with time, then the underlying distribution over
configurations must have large fluctuations in the surprisal rates
and a large Fisher information. When the system is driven quickly
through non-equilibrium states such that |A| — oo, the times-
cale 74 — 0. Accomplishing such an extreme change in the mean
requires a corresponding change in the distribution and Al — oo.

Between these limits, integrating the uncertainty relation yields
connections between measurable thermodynamic quantities. A
given non-equilibrium process, regardless of the driving protocol
or specific dynamics, evolves the probability distribution over the
system configurations. The system traverses a probability manifold
(Fig. 1a), which is not a manifold of equilibrium states because the
distribution at each point on the manifold need not correspond to a
Gibbsian distribution. Over a time interval ¢,— t, with the arbitrary
initial and final probability distributions p(t,) and p(t), it follows
from the time-information uncertainty relation that

tr o p(te)
/ Adt g/ AIAAdt:/ AA ds. (8)
to to

p(to)
The integrated path function |.A| is bounded by the cumulative fluc-
tuations in A over the path taken by the system across the prob-
ability manifold.

Al =

Cramér-Rao inequality in estimation theory

The time-information uncertainty relation is a bound on the speed
at which time-dependent macroscopic quantities A can evolve
between distinguishable states. A related, but distinct, question
from estimation theory is how to efficiently estimate a parameter
0 of a distribution. There, the Fisher information provides a lower
bound on the efficiency of all estimators, 6, through the Cramér-
Rao inequality 95(6), <A@/T¢. Like other uncertainty relations®",
there are connections between equation (6) and the Cramer—
Rao bound.

There is a direct connection when one considers a thermody-
namic observable, a,(t), as an estimator for time, 0=t (ref. *°). Then,
if the estimator a,(t)=a, is time independent, the Cramér-Rao
inequality follows from the uncertainty relation in equation (6).
Physically, this case corresponds to the second path function in
equation (1), (dA/dt)=0, being zero; if the observable of interest
is the energy, for example, then the Cramér-Rao bound applies
to processes in which there is no work done on or by the system.
Mathematically, this case requires the estimator to be sufficient.
Sufficient estimators are usually assumed in deriving the Cramér-
Rao bound”** due to their superior point estimates of an unknown
parameter. The uncertainty relation in equation (6) does not have
these requirements and holds regardless of whether the protocol,
observables, path functions or probability distribution are time
dependent.

The uncertainty relation and the stochastic speed limit have par-
ticular physical meaning within thermodynamics. We establish a
family of time-information uncertainty relations including incar-
nations for the flux of chemical and dissipated work (Methods).
Thermodynamics has specific representations depending upon the
experimental conditions, which set the natural variables and appro-
priate thermodynamic potential'. Here, we focus on representations
for energy and entropy.

Thermodynamic observables

When there are only energy exchanges within the system, or
between the system and its surroundings, the uncertainty relation
for the rate of heat exchange,

Q| = |cov(l, €)| <A Ae, ©)

is upper bounded by the s.d.s in the surprisal rate Al and energy Ae.
At stationary states, where Q = 0 and p, = 0V x, the heat flux into
the system balances the heat flux out and the bound is trivially satu-
rated. Away from stationary states, the product of the information
rate and energy fluctuations limits the rate at which energy can be
absorbed or dissipated as heat. The speed limit, 7! >|Q|/Ae, deter-
mines the maximum relative heat flux. Moreover, integrating the
heat exchanged along a particular path on the probability manifold,
the total heat Q exchanged is bounded by the cumulative energy

fluctuations:
p(tr)
Q< / Aeds,
p(to)

(10)

with no restrictions on the initial, final or intervening distributions
visited during the non-equilibrium process. When heat and work
are non-zero, the first law can be used to recast these results in terms
of the rates of internal energy and work. For example, equation (9)
is |U W\ <AI Ae, which simplifies if internal energy is conserved,
[W| <Al Ae, or if no work is done, |U| <Al Ae.

There is a complementary uncertainty relation for entropy
exchange. As the ensemble average of the surprisal, the Shannon
entropy S/kp = Z p, Inp, also satisfies the equation of motion,
equation (1). The entropy is a case where only the covariance term
survives in the equation of motion (as we show in Methods) and
the rate of change of the entropy measures the linear correlation
between the surprisal and its speed. Thus, the entropy rate,

18]/ks = |cov(I,1)| <AL AL (11)
is bounded by the spread in information-theoretic quantities, the
surprisal and its rate of change. The timescale 75 = kg AI/|S|<1/Al
measures the time needed for the Shannon entropy to change by
one s.d. in the surprisal fluctuations.

A common approach in non-equilibrium thermodynamics’
is to divide the rate of entropy change for the system into the rate
of entropy production internal to the system §; (the irreversible
entropy production rate) and the rate of entropy exchanged with
the surroundings S. (the entropy flow rate): S = §; + S.. In the spe-
cial case where S; = 0 (for example a reversible process), it follows
that |S.|/kp <AI Al Likewise, when S, = 0 (for example symmetric
Markovian dynamics), the entropy production rate is bounded by
fluctuations in the surprisal and surprisal rate S; /ks <AI AL

To illustrate our results, we analytically solved a two-state model
(Supplementary Section I). We also numerically solved a model for
non-equilibrium self-assembly under periodic driving of the tem-
perature, thermal relaxation and thermal annealing (Supplementary
Sections IT and III). The time-information uncertainty relation and
associated speed limit for flows of heat (Fig. 2) and entropy hold
regardless of the dynamics or driving protocol.

19

Conclusions

According to thermodynamics, every natural process faces the phys-
ical principle that structure formation or useful work production,
at a particular speed, comes at a cost: entropy production, energy
dissipated as heat, and wasted free energy. Here, we have shown
that these thermodynamic costs are restricted by fluctuations and
satisfy a time-information uncertainty relation. The mathematical
form of this relation is similar to the Mandelstam-Tamm version
of the time-energy uncertainty relation, an important milestone
in quantum mechanics. Because our formalism similarly requires
few details about the model system or the experimental conditions,
we expect it to be applicable to a broad range of physical and (bio)
chemical systems. With no assumption about the underlying model
dynamics or external driving protocol, it can also be applied to
any non-equilibrium process with a differentiable probability
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distribution. The uncertainty relations we derived for the flux of
heat, entropy and work (both dissipated and resulting from mate-
rial transport or chemical reactions) demonstrate that the times-
cales of their dynamical fluctuations away from equilibrium are all
bounded by the fluctuations in information rates. Therefore, while
away from equilibrium, natural processes must trade speed for ther-
modynamic costs.
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Methods .
Equation of motion. The surprisal rate is defined as I, = —dInp,/dt. Its mean
is zero,
: N dlnp ~Ndp d —n~
) = X — == = 12
<I> Zx Py dt x dt dtz;c by 0 ( )

as a consequence of the conservation of probability, ZXN p, = L. Using these two
facts, the equation of motion for the expectation value of an observable is:

(4 = {14+ (%)
= —(IA) + (I)(A) + <%> (13)
= —cov( I A) <

The final expression is equation (1) in the main text. A covariance of zero indicates
that two variables are uncorrelated. It does not necessarily mean that they are
statistically independent, since random variables that are nonlinearly related can
also be uncorrelated.

Entropy rate as a covariance. The Shannon entropy is the ensemble average
N
S/ks ==Y p.Inp, = (~Inp) = (I) (14)
of the surprisal I, =—In p,. Using (I) = 0, its rate of change,

h= S belnp, - Y 0
—(I1y + (I)(D) (15)
= —cov(I,I),

can be expressed as the (negative) covariance of the surprisal and the surprisal rate.

Geometric interpretation of the Fisher information. The Fisher information
parameterized by time is a measure of distance ds between neighbouring
distributions,

di Ay
2 _ — 16
ds Eudtg,)dtdt = Iy di?, (16)
where the Fisher metric is
__/olnp dlnp,
g17*< o > (17)

This statistical distance can be interpreted as a measure of the distinguishability
between p,(f) and p,(t+df) (refs. ). Looking at the physical dimensions, /T is a
‘speed’ relating the dimensionless ds and infinitesimal increment of time dt.

Saturation of the uncertainty relation and speed limit. The uncertainty in
equation (6), | A| <AIAA, is independent of the form of the distribution. A
sufficient condition to saturate the bound, and achieve the speed limit, is a linear
relationship between I and A. A linear relationship between these variables implies
that the probability distribution is of the form

p.(t) = Cexp [7 /t: Ca Bay dt’] (18)

with ¢, = AI/AA = — A/AA?. The normalization factor C enforces the initial
condition p,(t,) and the conservation of probability 3" p. (¢) = 1. Exponential
probability distributions that are linear in the argument a, saturate the uncertainty
relation, even when they are time dependent.

To prove these statements, we derive the covariance inequality for [ and A and
show that this bound saturates when these random variables are linearly related.
Consider the standardized variables

i = Ifx ,_ax— (4)
* Al * AA
The expectation and s.d. of both standardized variables is (I} = (A’) = 0and

AI' = AA’ = 1. Defining the correlation as p(X, Y) =cov(X, Y)/AX AY and using
the identity A(X —Y)*=A(X)*+ A(Y)?—2cov(X, Y), we have

Al =AY = A" + AA" — 2 cov(I", A')
=2[1 — p(I', A")] (19)
=2[1 — p(I,A))].

The last line is a result of the fact that standardizing random variables does not
change the correlat_ion p(Xz’ ,Y)=p(X,Y). Thus, the condition p(I',A") =1
is equivalent to A(I' — A’)” = 0. A zero variance means I’ = a’ with unit

probability. Taking the expectation of i; — d, we see that (I’
I'=d Vx,or

— A’) = 0. Asaresult,

VN Al
L=3a% "

o (4) = ¢, ba,. (20)

We can now find the distribution that saturates the time-information uncertainty
bound for A. From equation (20) we have the equation of motion

Po(t) = —caBaxp (1) (21)
with the solution in equation (18). In the integrand, ¢, = AI/AA. By construction
this distribution saturates the bound, so that A = —Al AAand ¢, = —A/ AA%.
Using the definitions of 74 and 7, saturating the bounds implies that the timescales
of the system and observable are equal, that is, 7 = 74 and |A] = Al AA.

Bounds for a time-dependent Boltzmann distribution. Exponential distributions
characteristic of Gibbsian ensembles are a subset of the distributions that saturate
the uncertainty relation. Consider a system in thermal contact with a reservoir

at a temperature ' that is varied over time and evolves the distribution over

fixed energy states. If the Boltzmann form of the distribution is preserved

during this process, the probability of a configuration x with fixed energy e, is
p.(t) = e P /Z(¢). In this case, the bound is saturated in both energy and
entropy representations. The pertinent quantities are:

px:_</}€x+%>px I, = pe,+1InZ
I = pes +2 S =pU+InZ, (22)
Z =—pSNeete Z = _pu
From these relations, the heat flux is:
Q=>"pbc, = —pac. (23)

As stated in the main text, the negative covariance of Tande,

== pdiBe = —pac, (24)

—cov( I €)

is equal to Q. We can arrive at the same result using equation (20). Starting with
ca = AI/AA = /T / AA, the Fisher information is

22
=Y =i e (25)

which makes the surprisal rate I, = ﬁex -z /Z. The covariance with e follows as
above to give Q.
Next, the entropy rate for this exponential distribution

S/ks =3 pe8l=pQ, (26)

recovers the equilibrium relationship between entropy and heat. Using equatlon
(23) we also find that the change in entropy can be written as § = —f Ae?. The
covariance between I and I,

= BB A (27)

covII

pr (Iy — )

confirms that § = —cov(1, I). Finally, looking at the right-hand side of the entropic
uncertainty relation, we have the fluctuations in the surprisal and its rate:

=Y p -9 = A (8)

22 N 2 a2
AT =" p = A (29)
The uncertainty relations in the energy and entropy representations,
Q
S/kg =

—Al Ae = B Aé?
—AI Al = Bj Aé?

(30)

together then give $/ks = fQ, the well known definition of the thermodynamic
entropy and the lower bound of the Clausius inequality for reversible processes'.

When the bound saturates, the evolution of the system is operating at the
speed limit. The evolution time for the observable is equal to the timescale set
by the Fisher information, that is, 7 = 7 4. For the time-dependent Boltzmann
distribution considered here,

1 1 Ae

T=B=M=@=TQ. (31)
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The time for the heat to evolve by one energy fluctuation is exactly the time it
takes the distribution to evolve to a distinguishable state. These timescales are
also equal to the speed of the entropy 75 = kg AI/|S| = 7 = 7q. A quasistatic
process is then one whose thermodynamic timescales are equivalent to the
statistical timescale 7. For this special driving protocol, the rate of change in
the inverse temperature is precisely the heat flow relative to the energy
fluctuations: || = |Q|/Ae>.

Uncertainty relations for work. Chemical work. The formalism also applies to
open systems in which non-mechanical forces drive the flux of matter. Consider
an open, thermally conducting system with a single chemically independent
constituent that is exchanged with the environment. The non-mechanical energy
flux will have contributions that account for the heat and matter exchange in the
chemical work with an external reservoir,

Q = Q + Wchem = Zprxex~ (32)

The stochastic chemical work, Wehem = Zx’k,uk nyp,., is mediated by the chemical
potential of the kth reservoir, x*, and the number of molecules in state x, #, (ref. ).
Because the chemical work has the form of 4, it has a covariance representation
Wehem = —cov(l, g), where g = yi*n, is the contribution to the Gibbs free

energy of state x. The time-information uncertainty relation follows immediately,

| W ehem| = |cov(I, g)| <AI Ag. The heat flux for such an open system,

Q= —cov(l,e — g) = cov(l,g) — cov(i,e), (33)
leads to the uncertainty relation:
QI = [cov(l, e — g)| <ATA(e — g). (34)

Fluctuations in energy and matter are not necessarily independent and
the timescale for the heat flux is more complicated than in closed systems,
o = |Ql/Ale ~ g).
If the energy fluctuations are fixed and of order k,T, then the speed
75 = |Q|/ks T is bounded by the fluctuations in surprisal rate, |Q| <Al In other
words, fluctuations in the surprisal rate constrain non-equilibrium heat flow.

Dissipated work. The tendency of physical systems to increase entropy can be
harnessed to do useful work. However, unless the process is thermodynamically
reversible, some energy will be dissipated. For a system in contact with a heat bath
at fixed T'=1/kyp, the non-equilibrium free energy is F=U— 'S (ref. °). The
rate of dissipated work or dissipated power, Wais = W — F, also satisfies a time—
information uncertainty relation.

Using our results for the fluxes of heat and entropy, the dissipated power,

PWaiss = peov(l,e) — cov(i, 1), (35)

is the difference in the linear correlation of the information and the energy with I.
The time-information uncertainty relation is found using the triangle inequality
and the Clausius inequality |S|/kg >|Q|:

BlWaiss| <|9]/ks + p|Q|<2 AT AL (36)

Again, the rate of change in the information content of the distribution is the
reference for a thermodynamic observable.

Model systems and dynamics. The self-assembly model we chose™ allows us
to analyse the energy exchanged as heat during an assembly process under
arbitrary protocols. The system can be found in three possible states x: dissociated
monomeric units, misbound aggregates and an optimally bound configuration,
which we denote by x,, x, and x;, respectively. Initially the system consists purely of
monomers. As the system evolves, the temperature is changed according to a given
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protocol and monomers transition into the assembled states. Despite the simplicity
of the model, the dynamics captures the competition between kinetic trapping and
binding strength, a phenomenon also exhibited in more complicated models, such
as those for chaperonin proteins™.

While not necessary for the theory, we take the dynamics to be governed by the
master equation, p(t) = £(t)p(t). The rate matrix £ has non-negative off-diagonal
elements and satisfies 2,.() =—) .. (), which guarantees conservation of
probability. Its elements,

—c(M+1) a o
Q=M —a 0 , (37)

c 0 —a

include a concentration-like variable c=0.02, the number of possible misbound
states M =5 and a =exp(—e¢,/27T), a function of the binding strength €,=0.1 and

T with ky=1. Consider a periodic variation of the temperature over time (Fig. 2a),
with T(t) =y, cos(t) + 7,, and y,=0.25 and y,=0.32 to keep the temperature in
the range used in ref. *’. As a result of this driving protocol, the probabilities of
occupying the misbound state and optimally bound states also oscillate in time
(Fig. 2b). The probability of observing the monomer state also oscillates after a
brief decay for the initial value of one.
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