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ABSTRACT: The dearomatization of indoles represents the most efficient approach for accessing 

highly valued indolines. The inherent nucleophilic reactivity of indoles has dictated indole 

dearomatization development in both 1e¯ and 2e¯ processes. However, it has been challenging for 

the dearomatization of electron deficient indoles. Herein we introduce a conceptually distinct 

photoredox mediated Giese-type transformation strategy, which is generally used for the conjugate 

addition of radicals to simple α, β-unsaturated systems, for chemoselectively breaking C=C bonds 

embedded in the aromatic structure. Moreover, highly diastereoselective addition of challenging 

neutral radicals has been achieved by Oppolzer camphorsultam chiral auxiliary. Structurally 

diverse amine functionalized chiral indolines carrying distinct functional and stereochemical 

diversity are produced from a wide array of amines as radical precursors. Furthermore, the mild, 
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powerful manifold is capable of the late-stage modification of complex natural products and 

pharmaceuticals. DFT studies are performed to elucidate the observed stereochemical outcomes.  
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INTRODUCTION 

Chiral indoline is a privileged core featured in numerous natural products and biologically active 

compounds.1 The fascinating molecular architecture and intriguing biological properties have 

triggered long-standing interest in developing synthetic methods for enantioselective construction 

of the chiral scaffold for decades. In this context, asymmetric dearomatization of indoles has been 

recognized as one of the most efficient strategies by directly transforming readily accessible 

indoles to chiral indolines.2 Indole is an electron rich aromatic system containing enamine 

embedded C2–C3 π bond and strong nucleophilic C3 carbon. The reactivity has dictated indole 

dearomatization methodology development. A number of elegant enantioselective 

dearomatization methods, promoted by chiral transition-metal complexes3 and organocatalysts,4 

have been reported. Mechanistically, these synthetic tactics are largely carried out by ionic 2e- 

transformative pathways (Scheme 1a). The exploration of open shell radical-engaged asymmetric 

indole dearomatization could offer the complementary capacity, but remains largely uncharted.5,6 

It has long been recognized that controlling enantioselectivity in reactions of the highly reactive 

radical intermediates presents challenges.7 This is reflected by only a handful of examples of 

asymmetric dearomatization of indoles reported so far. Knowles reported the first enantioselective 

dearomatization of indole derivative tryptamines with TEMPO by photo- and chiral phosphoric 

acid (CPA) co-catalysis (Scheme 1b).8 The chirality is governed by the hydrogen bond interaction 

between the radical cation species with a chiral phosphate anion. The same process was also 

attained without a photocatalyst by Xia and co-workers.9 You and colleagues developed an 

alternative photo- and CPA co-promoted asymmetric dearomatization of indole alcohols with N-

hydroxycarbamates (Scheme 1b).10 A cation intermediate produced by two consecutive single 

electron transfer (SET) oxidation of indole creates the tight ionic interaction with a chiral 
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phosphate anion to induce chirality. While these techniques provide powerful approaches for 

asymmetric indole dearomatization through radical engaged processes, they rely on charged 

interactions for controlling enantioselectivity and with that, carry inherent limitations. 

Nucleophilic indoles are employed for easy photocatalytic oxidation to give the radical cation or 

cation species, which play essential roles in the control of enantioselectivity. Leveraging 

asymmetric dearomatization strategy with indoles beyond the oxidative umpolung chemistry 

could offer new methods for the synthesis of chiral indolines carrying distinct functional and 

stereochemical diversity. 

Scheme 1. Asymmetric Dearomatization of Indoles 
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Inducing chirality for neutral radical involved processes is particularly difficult. In this realm, to 

the best of our knowledge, no such asymmetric indole dearomatization studies have been 

reported.11 We envisioned that reversing the nucleophilic reactivity of indoles in photoredox 

catalysis might provide an opportunity for developing a distinct asymmetric dearomatization 

reaction with neutral radicals.12 However, it has been challenging for the dearomatization of 
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electron poor indoles, as evidenced by only a handful of examples,13 which generally rely on ionic 

2eˉ activation mode. We conceived that implementing a neutral radical engaged Giese-type 

reaction14,15 with the electrophilic indoles could create an unprecedented process for indole 

dearomatization (Scheme 1c,d). However, implementing a Giese type reaction for indole 

dearomatization faces  significant roadblocks. Unlike a conjugated C=C bond in a typical Giese 

reaction (Scheme 1c), breaking the unconventional C=C bond in stable indole aromatic systems 

overcomes a higher energy barrier. The precedent studies of direct addition of a radical to electron 

rich C2=C3 bond of indoles in electrophilic aromatic substitution processes provide encouraging 

possibility.16 Nonetheless, the reversed reactivity of addition of a radical to an electron poor C2=C3 

bond of indoles is unknown. Moreover, even though incorporation of EWGs into the C2 or C3 

positions of indoles could reverse the polarity from the innate nucleophilic to electrophilic system 

and serve as a potential radical acceptor, the weakly electron deficient indoles render the Giese 

reaction more difficult because more electron deficient, less hindered α, β-unsaturated systems14,15 

are generally used for effective nucleophilic radical addition (Scheme 1c). Furthermore, in the 

photoredox process, possible oxidation of the weakly electron deficient indole systems could 

complicate the process. Controlling chemoselectivity is another challenge to be faced. 

Herein we wish to report the first asymmetric neutral radical engaged dearomatization reaction 

of indoles 1 with amines 217 (Scheme 1d). A conceptually distinct photoredox mediated 

asymmetric Giese-type transformation is exploited for chemoselectively breaking C=C bonds 

embedded in the aromatic structure. Highly diastereoselective control addition of the neutral 

radicals have been achieved by Oppolzer camphorsultam chiral auxiliary. Structurally diverse 

amine functionalized chiral indolines are produced from a readily accessible array of amines as 

radical precursors. Furthermore, the mild, powerful manifold enables the late-stage modification 
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of complex natural products and pharmaceuticals. The asymmetric C-C bond forming process is 

complementary to the above C-N/C-O bond connection strategies and delivers thermodynamically 

controlled trans-indolines carrying distinct functional and stereochemical diversity. 

RESULTS AND DISCUSSION 

Reaction Design 

Our rational for the newly proposed dearomatization strategy by reversing indole reactivity for 

a Giese-type reaction is justified by harnessing reactivity of reactants and photocatalyst (PC) to 

achieve the chemoselectivity via controllable reactivity. In the studies by Knowles, Xia and You,8-

10 the oxidation of electron rich indoles by an excited PC* can facilely generate the critical radical 

cation intermediates because they have relatively low oxidation potentials. For instance, Eox of 

N,3-dimethyl indole is +0.4 V vs SCE.18 When indoles 1 carries EWGs at N, C2 or C3 positions 

augments the Eox values. For example, N-methyl 3-acetyl indole is ca. + 1.0 V vs SCE18 while 

methyl N-Boc-3-indole carboxylate (Eox +1.94 vs SCE, Figure S1 in SI) is even larger. The change 

may reverse the reactivity of indoles and thus make them as an oxidant (eˉ acceptor) rather than a 

reductant to accept a nucleophilic radical for the proposed Giese-type reaction. In light of radical 

precursors, they should have lower Eox than that of indoles. Therefore, they can be selectively 

oxidized by excited PC* form radicals but without affecting the indoles. Tertiary amines, which 

have been used as radical donors in photoredox reactions,17 can meet the demand because they 

have lower oxidation potential than those of N-methyl 3-acetyl indole and methyl N-Boc-3-indole 

carboxylate, exemplified by N,N-dimethylaniline with Eox + 0.74 V (vs SCE).19 Moreover, 

nitrogen is the most widespread heteroatom found in FDA approved drugs. Therefore, the amine 

functionalized chiral indolines are highly valuable in drug discovery. Finally, the Eox of excited 

PC* should be higher than the amines while lower than the indoles. Therefore, it can oxidize the 
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amine selectively. The widely used organic PC 4CzIPN can be a good candidate because the Ered 

of excited 4CzIPN* is + 1.35 V (vs SCE).20 

Exploration and Optimization 

At the beginning of our investigation, a model reaction between indole-3-carboxylic acid methyl 

ester (1a, 0.1 mmol) as a radical acceptor and N,N-dimethylaniline (2a, 0.12 mmol)) as a radical 

precursor in the presence of photoredox catalyst 4CzIPN (2.5 mol%) was explored for the proposed 

dearomatization process (Table 1). The mixture was irradiated by a 5W blue LED strip under N2 

atmosphere at 20 oC. Disappointedly, no reaction occurred (entry 1). We believed that the 

electrophilic reactivity of substrate 1a was not active enough for the nucleophilic radical attack. 

Therefore, Boc group was introduced on the nitrogen to  decrease the electron density of C=C 

bond in 1b. Gladly, the desired indoline product 3a was obtained albeit low yield (13%, entry 2). 

The poor yield was presumably attributed to the slow conversion of 1b. As deprotonation is crucial 

in the formation of α-amino radical from the corresponding amine precursor, addition of base could 

be beneficial. Excitingly, after screening of several bases (Table S2.1 in SI), the use of 0.5 equiv 

of Na2CO3 could dramatically improve the reaction efficiency (94%, entry 3). Next, we sought to 

realize the asymmetric nature of this process. Evans chiral auxiliary became our first choice as this 

type of chiral auxiliary has been widely used in ionic asymmetric synthesis.21 However, poor 

diastereoselectivity was observed (dr = 60:40, entry 4). Then, we turned our attention to other 

chiral auxiliaries. When Oppolzer camphorsultam22,23 was employed, dr value was elevated to 

92:8. (entry 5). After the extensive optimization of reaction conditions (see Table S2.1 in SI), both 

high dr (96:4) and excellent yield were achieved by using NaOAc (1.0 equiv) as base (entry 6). 

Probing the reaction parameters revealed that decreased amount of either photoredox catalyst or 

base and increased reaction concentration gave inferior results (entries 7-9). Interestingly, a 
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noticeable amount of cis isomer was observed with a shortened reaction time (8 h) (entry 10). No 

reaction occurred in the absence of either light or photoredox catalyst supporting the role of visible 

light in this catalytic reaction (entry 11). 

Table 1. Optimization of Conditions for Asymmetric Dearomatization of Electrophilic Indole 

derivativesa 

 

Entry Substrate Base (equiv) Yield (%)b trans/cisc drc 

1 1a - - - - 

2 1b - 13d >20:1 - 

3 1b Na2CO3 (0.5) 99 (94d) >20:1 - 

4 1c Na2CO3 (0.5) 91 >20:1 1.5:1 

5 1d Na2CO3 (0.5) 95 (91d) >20:1 92:8 

6 1d NaOAc (1.0) 99 (95d) >20:1 96:4 

7 1d NaOAc (0.5) 93 >20:1 94:6 

8e 1d NaOAc (1.0) 91 >20:1 89:11 

9f 1d NaOAc (1.0) 95 >20:1 92:8 

10g 1d NaOAc (1.0) 86 90:10 98:2 

11h 1d NaOAc (1.0) - - - 
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aThe reaction of indole (0.10 mmol) with N,N-dimethylaniline (0.12 mmol) were performed in the 

presence of 4CzIPN (2.5 mol%) and base in solvent (1.0 mL) at 20 oC for 16 h under the irradiation 

by a 5W blue LED strip in N2. 
bYield determined by 1H NMR with 1,3,5-trimethoxybenzene as 

internal standard. cDetermined by HPLC analysis on a chiral stationary phase. dIsolated yield. e1 

mol% 4CzIPN was used. fConcentration was 0.2M. gReaction time was 8 h. hNo light or no 

4CzIPN. 

Reaction scope 

With the optimal reaction conditions in hand, we probed the generality of this methodology with 

a range of tertiary amines and indole substrates (Scheme 2). Significant structurally diversified 

N,N-dimethylaniline derivatives can react with 1c to give the trans-2,3-disubstituted indolines 3c-

3m in good yields (up to 99%) and with high diastereoselectivities (up to > 20:1). Notably, the 

reaction proceeds highly regioselectively at the N-methyl site. Equally impressively, this mild 

dearomatization process tolerates various commonly used functional groups on the phenyl ring 

including acyl (3d), cyano (3r), ester (3f), formyl (3g), carboxylic acid (3h), hydroxyl (3j) and 

halogens (3k-3m). Moreover, the reaction proceeds highly regioselectively at the methyl group, 

as observed in 3n. In addition to dominant methylated product, α-regioisomer is also formed for 

cyclic amine 3r. Furthermore, other heteroaromatics such as pyridine (3p) and purine (3q) also 

work smoothly in this process. 

Scheme 2. Asymmetric Dearomatization of Electrophilic Indole Derivatives by Various Tertiary 

Aminesa 
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aReaction conditions: indole derivative (0.10 mmol), tertiary amine (0.12 mmol), NaOAc (0.10 

mmol), 4CzIPN (2.5 mol%), DMF (1.0 mL), N2, rt, 5W blue LED strips. The dr and rr values were 

determined by 1H NMR, dr: diastereomer ratio, rr: regioisomer ratio. bCombined yield of two 

regioisomers (alternative connectivity indicated by a pink circle). See SI for detail. 

With the great success for aniline derivatives as effective radical donors, we next surveyed alkyl 

tertiary amines under the optimal reaction conditions (Scheme 2). Again, this strategy provides a 
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preparative power for the facile synthesis of various enantioenriched amine functionalized trans-

selective 2,3-disubstituted indolines (3s-3aa) with both good yield and high diastereoselectivity. 

The process proceeds highly regioselectively at the methyl site in acyclic tertiary amines 3t-3y as 

well. It is noteworthy that no regioisomer is formed at the benzylic position (3t). However, 

regioisomers are observed with cyclic tertiary amines (3r, 3z and 3aa). Amino acid derived amines 

can also effectively participate in this reaction highly stereo- and regio-selectively (3x and 3y). 

The observed high regioselectivity may be attributed to the steric and electronic effects. The 

electron-withdrawing substitutent decreases the nucleophilicity of the resulting radical, which 

reduces its reactivity. The absolute configuration with trans-geometry is unambiguously 

determined by signal X-ray analysis of compound 3ad (Scheme 2).24 

We next investigated this synthetic strategy with a range of indole derivatives (Scheme 2). 

Various functional groups on indole rings can be tolerated including halogens (3ab-3ad), 

methyoxy (3ae), benzyloxy (3af) and cyano (3ag). In addition to N-Boc group, other protecting 

groups (PGs), such as Cbz (3ah), Bz (3ai), and Tos (3aj), are also amenable to give the 

corresponding products with high yields and good diasteroselectivies under the mild reaction 

conditions. However, when Me and Bn groups are used, no reaction occurred, suggesting that the 

N-EWGs are necessary for the activation of the C=C bond in this dearomative process (see Table 

S11.2 in SI). 

To further demonstrate the synthetic utility of this mild dearomatization manifold, we performed 

late stage modifications on an array of natural products and pharmaceuticals. As shown in Scheme 

3, the standard protocol was successfully applied to the modification of amino acid derivatives 

(phenylamine) and natural product (+)-menthol to give indoline-based analogues 3ak, 3al and 3am 

with good yields and high diastereoselectivities. Additionally, pentose and hexose derived tertiary 
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amines dearomatize indoles efficiently to provide the desired products 3ao and 3an. Finally, more 

structurally complex drugs including, imipramine (3ap), venlafaxine (3aq), dextromethorphan 

(3ar), rivastigmine (3as), citalopram (3at) and diltiazem (3au), were natively and selectively 

modified by this mild dearomatization method. It is noted that in these cases, the single regioisomer 

was formed. It is believed that the steric effect plays a dominent role in governing the 

regioselectivity. 

Scheme 3. Late Stage Asymmetric Dearomatization of Indole Derivatives with Natural Products 

and Pharmaceuticalsa 

 

aReaction conditions: indole substrate (0.10 mmol), tertiary amine (0.12 mmol), NaOAc (0.10 

mmol), 4CzIPN (2.5 mol%), DMF (1.0 mL), N2, rt, 16h, 5W blue LED strips. dr: diastereomer 

ratio. The dr values were determined by 1H NMR.  dr = diastereomer ratio. See SI for detail. 

Finally, this synthetic protocol can be scaled up in gram scale without the loss of yield and 

diastereoselectivity (Scheme 4a). Moreover, the reaction can be adapted by a flow method, an 
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emerging technology in organic synthesis.25 In this case, the reaction time was dramatically 

reduced to 5 h without compromising yield and diastereoselectivity (Scheme 4a). Additionally, the 

chiral auxiliary can be conveniently removed by esterification or reduction to give high 

enantioenriched indolines 3a and 4a, respectively (Scheme 4b). 

Scheme 4. Preparative Scale Synthesis and Synthetic Elaborationa 

 

a dr: diastereomer ratio. ee: enantiomeric excess. The dr values were determined by 1H NMR. ee 

value was determined by HPLC analysis on a chiral stationary phase. 

 

Mechanistic and diastereoselectivity aspects 
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The radical addition to indole C2=C3 double bond has been reported.16 Mechanistically, the 

processes undergo a Friedel-Crafts type pathway, involving an electrophilic radical addition to the 

nucleophilic indole C2=C3 bond. Therefore, electron rich indoles are used and aromatic products 

are formed. In contrast, our photocatalytic dearomatization method proceeds through a radical 

involved Giese-type process. In the process, a nucleophilic radical is conjugatively added to an 

electrophilic indole C2=C3 bond, and new dearomative indolines are produced instead. 

Specifically, a SET (single electron transfer) oxidation of tertiary amine 2 by excited 4CzIPN* 

gives radical cation I and concurrent formation of 4CzIPN•− (Scheme 5). In a similar manner to a 

typical Giese reaction, the nucleophilic radical II, generated by deprotonation of I with NaOAc, 

attacks chiral Oppolzer camphorsultam indole 1 from Re face to afford (2S)-radical III. The 

resulting radical III is then reduced by 4CzIPN•− from Si face due to the Re face blocked by the 

amine moiety to give a cis anion IV, regenerate 4CzIPN and complete the redox cycle. Protonation 

of IV delivers a cis-product 3. However, the obtained products 3 have trans-geometry. In the 

exploratory studies, we observed that when the reaction proceeded in a shorter period of time, a 

noticeable amount of cis product formed (Table 1, entry 10). These observations led to us believe 

that the process may go with a kinetic to thermodynamic process. Under the reaction conditions in 

the presence of base NaOAc for 16 h, the initially formed cis-product 3 undergoes epimerization 

to give thermodynamically stable trans-3 (Scheme 5). This is further validated the studies of the 

employment of 2,6-lutidine as base mainly gave cis product (cis : trans > 20:1, Scheme 6a). The 

treatment of the cis isomer with sodium acetate delivered trans indoline quantitatively within 5h 

(see SI). The more stable trans-product is also supported by calculation of the Gibbs free energy 

using the Gaussian 09 program (Figure S1 and Table S14).26 

Scheme 5. Plausible Reaction Mechanism  
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The radical engaged process is further validated by a radical scavenger TEMPO interception 

experiment (Scheme 6b). Moreover, deuterium labelling studies imply the anion IV is involved in 

the catalytic cycle (Scheme 6c, d). C-3 deuterated indoline 4c-d was obtained in the presence of 

5.0 equiv D2O (Scheme 6c). Almost no deuteration of C-3 was observed in the indoline product 

when N-methyl-N-phenylaniline-d3 was used (Scheme 6d). 

 

 

 

Scheme 6. Experiments Designed for Elucidating Diastereoselectivity and Reaction Mechanism  
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Oppolzer camphorsultam chiral auxiliary has been widely used in asymmetric 2eˉ involved 

organic transformations.22 In this dearomatization study, we demonstrated it was a diastereo-

controller for radical addition.23 The radical II is highly regio- and stereoselectively added into the 

indole C2=C3 bond in a conjugate manner. We believe that the high diasterolectivity is achieved 

by the chiral Oppolzer camphorsultam because of its high rigidity, which can signficantly 

differentiate the two faces of the indole substrates. In contrast, it is difficult for the less rigid chiral 

Evans oxazolidinone. To understand the observation, we also performed the computational 

investigation by calculating the Gibbs free energy of different conformation of 1d using the 

Gaussian 09 program.26 Among the four conformations resulting from the rotation of single bonds 

3a (C3‒C(O)) and 3b (N(S)‒C(O)) (Figure 1 and S2), TS1 (BocE3bE-90) is most favorable 
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conformer while others are unlikely to be dominated due to the unfavorable C=O and S=O dipole-

dipole interactions in TS4 and TS5 and/or steric destablilization in TS3 and TS5. An X-ray single 

crystal structure of substrate 1ah shows TS1 is indeed the favored conformer in the solid state 

(section 7 in SI).24 The calculated Gibbs free energies of TS3-5 support the speculation (Figure 1 

and S1 and Table S14). Besides TS1, conformation TS2 is also possible when the sulfonyl group 

is rotated by + 90° degree. However, TS1 is favored over TS2 by 2.68 kcal/mol (Table S15). In 

TS1, sulfonyl group, located closely to C2 is believed to play the major role in the inducement of 

asymmetric selectivity. Radical II attacking C2 from the Re (bottom) face is favored, due to steric 

interaction with the axial α oxygen of the sulfonyl group, which blocks the Si (top) face. The 

absolute configuration of dearomatization product coming from this model is consistent with the 

X-ray crystal structure of product 3ad (Scheme 2 and SI). 

 

Figure 1. Optimized geometries and relative free energies. The relative Gibbs free energies are 

presented in kcal/mol. 
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CONCLUSION 

In conclusion, we have developed a conceptually different approach for the asymmetric 

dearomatization of indoles. Instead of widely used inherent nucleophilic indoles in 

dearomatization, the electrophilic heteroaromatics have been used in asymmetric dearomatization. 

An unprecedented Giese-type reaction has been implemented to break the aromatic structure. 

Moreover, highly diastereoselective control addition of the challenging carbon centered neutral 

radicals derived from amines have been achieved by Oppolzer camphorsultam chiral auxiliary. 

Structurally diverse amine functionalized chiral indolines carrying distinct functional and 

stereochemical diversity are produced from a readily accessible widely array of amines as radical 

precursors. Furthermore, the mild, powerful manifold enables the late-stage modification of 

complex natural products and pharmaceuticals. It is expected that simplicity and efficiency of this 

procedure will be appreciated by organic chemists and medicinal chemists to rapidly access to a 

library of biologically valued chiral indolines. 
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