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ABSTRACT

Carbonate carbon isotope (8'*Cearb) chemostratigraphy is a valuable tool in Precambrian
stratigraphic correlation. The effectiveness of this tool rests on the assumption that 8'3Cecart data
record global seawater signals. However, in some cases 8'*Ccarb data may exhibit rapid and noisy
stratigraphic variations that appear to have been influenced by authigenic or diagenetic carbonate
minerals. To assess the contribution of non-primary minerals towards bulk carbonate carbon
isotope values, we acquired SIMS (secondary ion mass spectrometry) 8'*Ccarb data, electron
microscopic data, and CL (cathodoluminescence) microscopic data from two Ediacaran
successions—the lower Member II of the Doushantuo Formation in South China and the
Mooifontein Member in southern Namibia. The Doushantuo samples came from a stratigraphic
interval with noisy meter-scale 8'3Cecarb variations up to 10%o, whereas the Mooifontein Member
is characterized by consistent 8'*Cearb values with limited meter-scale variations less than ~4%o.
Our data show that the meter-scale stratigraphic variations in 8'3Cecarb are also mirrored in the
SIMS data at pm-mm scales in both Doushantuo and Mooifontein samples. In the Doushantuo
samples, SIMS 8'3Cecarb values of authigenic calcite vary by up to 10%o over um-mm scales and
can be higher or lower than those of co-existing dolomite matrix, which also appears to be
affected by authigenic carbonate on the basis of petrographic observation. Bulk-sample 8'*Ccarb
values measured on powders microdrilled from the same SIMS specimens are within the SIMS
813Ccarb ranges. Thus, we infer that bulk-sample 8'*Ccary values of Doushantuo samples represent
mixtures of different carbonate components. The Doushantuo and Mooifontein SIMS 83 Ccarb
data validate the traditional method of using chemostratigraphic consistency to evaluate
authigenic/diagenetic alteration, but also caution against the conventional practice of taking the

maximum values to approximate primary chemostratigraphic trends.
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1. Introduction

Carbonate carbon isotopes (8'*Cearb) have been applied widely in paleoclimatology,
paleoceanography, and chemostratigraphic correlation. This is particularly true in the study of

Precambrian stratigraphic correlation (Kaufman and Knoll, 1995), because few Precambrian

fossils can be considered as robust index fossils for biostratigraphic correlation. In the past four
decades, available Precambrian §'*Ccarb data have grown enormously and are often the basis of

Ediacaran stratigraphic correlation and subdivision (Xiao et al., 2016). These data also revealed

two unusual and enigmatic features of Ediacaran 8'*Cearb chemostratigraphy. First, exceptionally
large 8'3Ccarb excursions, such as the Shuram negative excursion reaching —10%o. VPDB

(Grotzinger et al., 2011) and the Hiittenberg positive excursion reaching +10%o, VPDB (Cui et

al., 2018), have been reported from Ediacaran carbonate successions. These large excursions are

difficult to explain using simple steady-state models, which limit §'3Ccar variations between ca.
—5%o (when carbon burial is 100% carbonate) and ca. 20%o (when carbon burial is 100% organic
carbon). As a result, various non-steady-state models have been proposed to explain these

exceptionally high-magnitude excursions (Rothman et al., 2003; Shields et al., 2019). Second,

irregular point-to-point variations in 8'3*Cecarb, sometimes with values between —40%o and 6%o at
decimeter—meter scales, are observed in some Ediacaran successions such as the lower

Doushantuo Formation (Jiang et al., 2003; McFadden et al., 2008; Wang et al., 2008; Zhou et al.,

2016). These variations are also difficult to explain using traditional carbon cycle models, and
localized anaerobic oxidation of methane during early or late diagenesis has been invoked as a

major driver of such irregular and noisy stratigraphic variations in 8'3Ccart values (Jiang et al.,
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2003; Wang et al., 2008; Zhou et al., 2016; Cui et al., 2017; Wang et al., 2017; Cui et al., 2019).

These interpretations echo hypotheses stating that extremely anomalous §'*Ccar values and noisy
stratigraphic variations may be related to the precipitation of authigenic carbonate minerals

(Schrag et al., 2013; Sun and Turchyn, 2014), meteoric and burial diagenesis (Knauth and

Kennedy, 2009; Derry, 2010), mixing of sediments derived from different environments with

different isotopic signatures (Swart, 2008), and rock-fluid interactions (Higgins et al., 2018;

Hoffiman and Lamothe, 2019). Such secondary or authigenic/diagenetic processes challenge the
basic premise of 3'*Ccars chemostratigraphy, which assumes that bulk §'3Ccar records primary
dissolved inorganic carbon isotopic signatures of the global ocean. Addressing this challenge
requires in-situ, micrometer-scale 8'3C data coupled with diligent petrographic analysis in order
to tease apart 8'3C signatures between sedimentary and diagenetic components. Secondary ion
mass spectrometry (SIMS) offers a powerful tool to address this issue because it can achieve the
necessary spatial resolution and it has recently been calibrated and tested for '*C and 6'30

analysis of carbonate minerals (Valley and Kita, 2009; Sliwinski et al., 2016b; Denny et al..

2020; Turnier et al., 2020).

In this study, we used SIMS to analyze 8'3Ccar of four Ediacaran samples, three from the
lower Doushantuo Formation in South China and one from the Mooifontein Member in southern
Namibia. The Doushantuo samples were chosen because they came from a stratigraphic interval
with noisy 8'3Ccarb variations and they contain authigenic carbonate components that can be
independently identified via petrography and cathodoluminescence (CL) microscopy. The
Mooifontein sample, on the other hand, came from a stratigraphic interval with more consistent
8!3Cearb values and a limited range of variations, thus offering a comparison with the Doushantuo

samples. The main goals of this study are to test (1) whether the meter-scale stratigraphic
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variations in 8'3Ccarb, which are up to 10%o in the lower Doushantuo Formation and ~4%o in the
Mooifontein Member, are also captured in the SIMS data at pm-mm scale; (2) whether 8'3Cecarb
values of authigenic/diagenetic carbonate are distinct from, higher than, or lower than bulk-
sample 8'3Cearb values measured from microdrilled powders; and (3) whether 8'3Ccarb analysis of
microdrilled powders represent a mixture of sedimentary and authigenic signatures. By
answering these questions, we hope to demonstrate that SIMS is a useful tool to evaluate the

influence of authigenic/diagenetic carbonate minerals on 8'3Ccarb values of microdrilled powders.

2. Geological and stratigraphic background

The three Doushantuo samples were collected from lower Member II of the Doushantuo
Formation at the well-studied Jiulongwan section in the Yangtze Gorges area of South China. At
Jiulongwan, the Doushantuo Formation is about 154 m thick and can be divided into four
members (Fig. 1; see published and new 8'*Ccars data in Supplementary Data 1). Member 1 is ca.
4 m thick and represents the cap dolostone directly overlying terminal Cryogenian glaciogenic
diamictite of the Nantuo Formation. It is characterized by negative 8'3Cecab values around —3.5%o,
representing the negative excursion labeled “EN1” in Fig. 1. However, localized occurrences of
extremely negative 8'*Cearb values as low as —48%o have been reported from void-filling calcite

cement (Jiang et al., 2003; Wang et al., 2008; Zhou et al., 2010; Bristow et al., 2011; Zhou et al.,

2016; Wang et al., 2017; Cui et al., 2019). The origin of these extremely negative 8'3Cecarb

signatures is a matter of debate, with interpretations ranging from early diagenetic or authigenic
calcite cement related to methane gas hydrate release that led to the termination of the terminal

Ediacaran snowball Earth glaciation (Jiang et al., 2003; Wang et al., 2008), to late diagenetic

calcite cement related to the oxidation of thermogenic methane (Bristow et al., 2011; Cui et al.,
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2019). Member II is ca. 71 m thick (meterage ca. 4—75 m in Fig. 1) and consists of argillaceous
dolostone interbedded with mudstone. Microdrilled powders (hereafter bulk samples) generally
have positive 8'3Cearb values, representing the positive excursion labeled “EP1” in Fig. 1,
although the lower part of Member II is characterized by noisy stratigraphic variations between —
5%o and 7%.. Fossiliferous chert nodules, as well as calcite nodules, are present in this member

and they preserve a diverse assemblage of acanthomorphic acritarchs (Zhang et al., 1998; Xiao,

2004; McFadden et al., 2009; Liu and Moczydtowska, 2019). These chert nodules typically

consist of a silica core surrounded by a pyrite and calcite rim. Petrographic and SIMS 83*Spyrite

data indicate that these chert nodules were lithified during early diagenesis (Xiao et al., 2010).

Member III is ca. 65 m thick (meterage ca. 75—-141 in Fig. 1), with thick-bedded dolostone in the
lower interval and ribbon rocks (i.e., thin-bedded limestone with thin argillaceous dolostone
intercalations) in the upper interval. Acanthomorphic acritarchs and other microfossils have been

reported from chert nodules and bands in Member III (Zhang et al., 1998; Liu et al., 2014; Liu

and Moczydtowska, 2019). Bulk-sample 8'3Cearb values register a negative excursion (labeled

“EN2” in Fig. 1) at the Member II-1II transition, followed by a positive excursion (“EP2” in Fig.
1) in the lower Member III and then a pronounced negative excursion (—10%o; “EN3” in Fig. 1)
in the upper portion of Member III. The negative excursion EN3 continues into Member IV
(meterage 141-154.1 m in Fig. 1), where negative 8'3Ccarb values are measured from dolomite
concretions hosted in black shales. The negative excursion EN3 is thought to be equivalent to

the Shuram negative excursion recorded in Oman (Grotzinger et al., 2011; Zhou et al., 2017a).

The three Doushantuo samples analyzed in this study—JLW15.1, JLW23.5, JLW35.2—
were collected from lower Member II, at stratigraphic horizons 15.1 m, 23.5 m, and 35.2 m,

respectively, above the base of the Doushantuo Formation (Fig. 1). Radiometric dates from ash
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beds in the Doushantuo Formation in the Yangtze Gorges area constrain the depositional age of

these three samples between 632.5 + 0.5 Ma and 551.1 = 0.7 Ma (Condon et al., 2005). We note

that 551.1 = 0.7 Ma age came from an ash bed at the uppermost Miaohe Member at a nearby
section in the Yangtze Gorges area and the correlation between the Miaohe Member and

Member IV has yet to be confirmed (An et al., 2015; Xiao et al., 2017; Zhou et al., 2017a).

Regardless of whether the Miaohe Member is partially equivalent to or younger than Member
IV, the 551.1 +£ 0.7 Ma age remains a minimum constraint on the depositional age of the three
analyzed samples. Via lithostratigraphic correlation, additional radiometric dates from the

Doushantuo Formation at the Jiuqunao section in the Yangtze Gorges area (Condon et al., 2005)

and in the Zhangcunping area to the north of the Yangtze Gorges (Liu et al., 2009; Zhou et al.,

2017b) indicate that JLW15.1 and JLW23.5 are likely between 632.5 + 0.5 Ma and 614.0 = 7.6
Ma, and JLW35.2 between 614.0 + 7.6 Ma and 609 + 5 Ma (Fig. 1). These age constraints are
consistent with an astronomical time scale for the lower Doushantuo Formation, which places the

first 22 m of the Doushantuo Formation between 636.8 = 0.7 Ma and 625.6 + 0.7 Ma (Sui et al.

2018).

The Mooifontein sample, 2016AarFarm, was collected from the Mooifontein Member,
Zaris Formation, Kuibis Subgroup, Nama Group at an outcrop (26.75036°S, 16.49832°E) about

4.5 km southeast of Farm Aar in the Witpus sub-basin of southern Namibia (Vickers-Rich et al.,

2016). The Mooifontein Member near Farm Aar is more than 40 m thick (Fig. 2; see published
and new 3'3Cecarb data in Supplementary Data 2), with its upper boundary truncated by modern
erosion. It was deposited in oxic to manganous suboxic environments on a carbonate ramp in the

terminal Ediacaran Period (Saylor et al., 1998; Wood et al., 2015; Tostevin et al., 2016). It

consists of thin- to medium-bedded limestone and contains abundant calcareous tubular fossils of
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Cloudina riemkeae (Fig. 3d—f) (Grant, 1990). Bulk-sample 8'*Ccarb values of the Mooifontein

Member are mostly in the range of 0—4%o (Saylor et al., 1998; Wood et al., 2015; Vickers-Rich

et al., 2016), much narrower than the ~10%o range documented in the lower Doushantuo

Formation at Jiulongwan. The depositional age of the Mooifontein Member is constrained by a

radiometric date of 548.8 + 1 Ma (Grotzinger et al., 1995), subsequently recalculated as 547.32 +

0.31 Ma (Schmitz, 2012), from the Zaris Formation in the Zaris sub-basin of southern Namibia.

3. Methods

3.1. Sample preparation

Three Doushantuo samples (JLW15.1, JLW23.5, JLW35.2) that contain chert nodules
and one Mooifontein sample (2016AarFarm) that contains internal molds of Cloudina riemkeae
were chosen for this study. The hand samples were trimmed to remove weathered surfaces and
cut in half to prepare mirrored thin and thick sections for petrographic and SIMS analyses,
respectively. Thin sections were examined on a standard transmitted light petrographic
microscope. For SIMS sample preparation, a one-inch diameter billet was extracted from the
thick section. Five one-millimeter drill holes were made on the one-inch round thick section, and
anthracite, quartz, dolomite, calcite, and pyrite standards were placed in these drill holes and
secured with epoxy. Only the calcite standard UWC-3 and the dolomite standard UW6220 were
used in this study, and the other standards will be used in future SIM analyses of organic C, silica
O, and pyrite S isotopic compositions. The round thick section with the standards was then

polished to microprobe grade for analyses using reflected light microscopy, SEM (scanning



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

electron microscopy), SIMS, EPMA (electron probe microanalysis), and cathodoluminescence

(CL) microscopy.

3.2. Pre-SIMS light microscopic and SEM imaging

Reflected light microscopic and SEM images of polished thick sections were produced to
guide the selection of SIMS analytical spots. SEM (scanning electron microscopy) was
performed in the Ray and Mary Wilcox Scanning Electron Microscopy Laboratory, Department
of Geoscience, University of Wisconsin—Madison. BSE (back scattered electron) SEM images
were acquired with a Hitachi S3400 VP SEM with EDS (energy dispersive spectrometry) using a
Thermo Fisher thin window detector. SEM images were acquired using an accelerating voltage
of 15 keV. Areas (domains) selected for SIMS analysis were imaged at various magnifications

and these images were used to help navigate during SIMS sessions.

3.3. SIMS

SIMS analyses were conducted on a CAMECA IMS 1280 at the WiscSIMS (Wisconsin
Secondary lon Mass Spectrometry) Lab, Department of Geoscience, University of Wisconsin—
Madison. The analyses include three SIMS sessions. During the sessions (Mar. 15-17, 2017),
carbon two—isotopes (12C, 13C) were measured with a 7-um-diameter beam size. Measurements
of 813C were made using one Faraday cup and two electron multiplier detectors measuring '2C-,
BC-, and BC'H, respectively. The UWC-3 calcite standard and the UW6220 dolomite standard

were used to calibrate analyses of carbon isotopes (Valley and Kita, 2009; Sliwinski et al.,

2016b). Carbon isotope ratios are reported in standard per mil (%o) notation relative to VPDB,
calculated as 6'3Cunknown = [(**C/"2C)unknown/ ('*C/"?C)veps — 1] x1000. Measured ratios of

3C/12C were calculated as “raw” 8—values (8'*Craw) before converting to the VPDB scale (see
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below) based on eight analyses of a running standard (UWC-3) that bracket each group of 10-15

sample analyses. The entire dataset can be found in Supplementary Data 3—4.

Measurements of 1*C/!2C were made using a '3Cs* primary ion beam with an intensity of
~600 pA. The secondary ion intensity of '2C was ~7x10° cps. 3CH was analyzed to evaluate the
effect of hydrogen, which might be in the form of organic matter or water, on the SIMS results.
An electron flood gun in combination with a gold coating (~40 nm) was used for charge
compensation. The total analytical time per spot was about 4 minutes including pre-sputtering
(20 s), automatic centering of the secondary ion beam in the field aperture (60 s), and analysis
(160 s). Applied high-voltage on EM for *C was automatically adjusted after every analysis. The

baseline noise level of the Faraday cup was measured at the beginning of each analysis day.

The raw isotope ratios obtained by SIMS are biased by an instrumental mass
fractionation (IMF or bias) that can vary in magnitude depending on instrumental conditions,

mineralogy, and sample composition (Sliwinski et al., 2016b). To address the effect of Fe/Mg on

IMF, a suite of standards along the dolomite-ankerite series were analyzed at the beginning of
the session and used to generate a calibration curve relative to the running standard UW6220

(Valley and Kita, 2009; Sliwinski et al., 2016b; Sliwinski et al., 2016a; Denny et al., 2020). After

SIMS analysis, this calibration curve was used to determine the composition-specific IMF based
on the Fe concentration (Fe# = molar Fe/[Fe+Mg]; determined using an electron microprobe, see
EPMA procedures below) of each SIMS pit. We also applied matrix correction regarding Mg, Fe

and Mn in calcite. Details can be found in Turnier et al. (2020). The spot-to-spot precision of

8!3C values based on all bracketing analyses on standard UWC-3 is +0.6%o (2SD; see

Supplementary Data 3).
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3.4. Post-SIMS SEM, EPMA, and CL microscopic analyses

After SIMS analysis, the gold coating was removed before further SEM, EPMA, and CL
microscopic analyses. SEM imaging was performed in the Ray and Mary Wilcox Scanning
Electron Microscopy Laboratory, Department of Geoscience, University of Wisconsin—Madison.
BSE images of carbon—coated samples were acquired with a Hitachi S3400 VP SEM with EDS
using a Thermo Fisher thin window detector. Each SIMS pit was examined by SEM for possible
irregularities. SEM images were acquired using an accelerating voltage of 15 keV or 20 keV at a
working distance of 10 mm. All the SIMS pits were imaged by SEM and are shown with

corresponding 8'°C values in Supplementary Data 4.

Electron probe microanalysis (EPMA) was conducted in the Eugene Cameron Electron
Microbeam Lab, Department of Geoscience, University of Wisconsin—Madison. EPMA was
performed with the CAMECA SXFive field emission electron probe, operated at 20 kV and 50
nA, and either a focused beam or a 3—4 pm defocused beam, using wavelength dispersive crystal
spectrometers (Supplementary Data 3). Counting times were 10 seconds on peak and 10 seconds
on background, for all elements except those noted in the following listing. Al Ka (20 sec) and Si
Ka (20 sec) were acquired on a large TAP crystal; As Ka (20 sec) and Se Ka (20 sec) on LIF; S
Ko and Ca Ka (27 sec) on large PET; Fe Ka, Mn Ka and Co Ka on LIF; and Ni Ka, Cu Ka and
Zn Ka on large LIF. Standards used were Balmat pyrite (Fe, S), NBS glass K412 (Si, Al, Ca),
arsenopyrite (As), and freshly polished metals for the balance. PHA modes used were integral,
except for Al and Si which were differential mode. Software used was Probe for EPMA

(Donovan et al., 2018). Off peak backgrounds were acquired, and matrix correction was

conducted using the Armstrong/Love Scott algorithm (Armstrong, 1988). EPMA data are

presented in Supplementary Data 3.
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Cathodoluminescence (CL) microscopy was carried out at University of Mons, Belgium.
Cathodoluminescence excitation was achieved with a cold cathode CITL CL system (Cambridge
Image Technology - model Mk5, UK). The unit was operated at 15 kV and 500 pA acceleration
voltage and beam current, respectively. With these settings, the unfocused beam had a current
density of about 8 pA/mm?. Cathodoluminescence microscopic images were captured with a
Peltier-cooled digital color camera (Lumenera model Infinity 4, Canada), set from 0.1 s to a few
seconds exposure time depending on CL intensity and microscope magnification. Multiple frame
averaging was used to reduce noise. Color calibration of the camera (white balance) was
performed using the blue-filtered, tungsten-halogen light source of the microscope, which may
result in CL colors that are slightly different from other equipment (especially around the yellow

band, which is narrow) but ensures more or less standardized observation conditions.

4. Results

4.1. Petrographic observations

Petrographic observations were made using petrographic microscopy (Fig. 3),
backscattered SEM (Figs, 4, 6, 8, 10, and 12), secondary electron SEM (Supplementary Data 4),
and CL microscopy (Figs. 5, 7,9, 11, and 13), to independently identify different carbonate
phases, including authigenic or early diagenetic carbonate; the term authigenesis is used here as a
synonym of early diagenesis or pre-compaction diagenesis. Key petrographic observations
support that the chert nodules in JLW15.1, JLW23.5, and JLW35.2 were silicified during early
diagenesis. These observations include: (1) sedimentary microlaminae in the dolostone matrix

warp around the chert nodules (Fig. 3b—c), indicating that the chert nodules were lithified before

12
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compaction; (2) sedimentary microlaminae are also preserved within the chert nodules, but they
are more widely spaced than those outside the chert nodules (Fig. 3b—c), consistent with the pre-
compaction lithification of the chert nodules; and (3) some chert nodules contain exceptionally

preserved microfossils (Xiao et al., 2004; Xiao et al., 2010), often in three dimensions, again

suggesting silicification occurred prior to compaction.

The chert nodules typically consist of a silica core surrounded by a pyrite rim and a
calcite rim (Figs. 3a—c, 4a, 6a, 8a). The relative portions of the silica core, pyrite rim, and calcite
rim can vary. For example, some chert nodules in JLW35.2 are dominated by a proportionally
large calcite rim, with a reduced silica core and sometimes lacking a well-defined pyrite rim. In
any case, most chert nodules are sharply defined by a pyrite/calcite rim that is petrographically
distinct from the dolomite matrix (Fig. 3a—c). Thus, like the silica core, the pyrite and calcite
rims are also likely early diagenetic in origin, although the calcite rim may post-date the silica

core (Xiao et al., 2010). McFadden et al. (2008) and Xiao et al. (2010) analyzed two of the three

Doushantuo samples for bulk-sample 3**Spyrite using the chromium reduction method and
8**Spyrite of individual pyrite crystals in the matrix and in the pyrite rims using SIMS: JLW23.5
(bulk-sample matrix pyrite 5**S = 16.4%0 CDT; SIMS rim pyrite 6**S = 15.2-20.3%0 CDT,
average + 1 s.d. = 18.1 £ 1.2%o CDT, n =28; SIMS matrix pyrite 5**S = 24.4-39.8%0 CDT,
average + 1 s.d. = 30.6 +4.7%0 CDT, n = 8) and JLW15.1 (bulk-sample matrix pyrite °*S =
7.9%0 CDT; SIMS rim pyrite §°*S = 19.2-27.3%0 CDT, average + 1 s.d. = 24.6 £+ 1.6%0 CDT, n
=34). The positive and highly variable **Spyrite values indicate continuous sulfate reduction and
pyrite precipitation in pore waters with limited supply of seawater sulfate, suggesting that

localized microbial processes (e.g., microbial sulfate reduction) may have played a critical role in

the formation of the pyrite rim during early diagenesis (Xiao et al., 2010).
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In addition to the calcite rim surrounding chert nodules, there are other carbonate phases
in the Doushantuo samples that can be targeted for SIMS &'3Cecarb analysis. Some Doushantuo
nodules have a relatively small silica core surrounded by a thick calcite rim (e.g., Domain 3 in
Fig. 8a; Fig. 10a) and thus would be more appropriately called calcite nodules, which can easily
be analyzed using SIMS. In addition, there are small patches of calcite cements in the nodule
interior and within the dolomite matrix. These patches are sometimes elongate in shape and
conform to bedding (e.g., Fig. 8b upper right; 8d lower right; 8¢). They do not seem to be post-
compaction dissolution vugs that were subsequently filled with cements. Instead, they are
interpreted as authigenic calcite cement that formed prior to sediment compaction, because
porosity needed for the precipitation of such cement patches would have been greatly reduced
after compaction. In a sense, these patches of cement can be regarded as smaller versions of
calcite nodules shown in Figure 10a. Thus, there are multiple phases of calcite cements, possibly
representing one or more generations of cementation, that can be targeted for SIMS analysis.
Finally, the dolomite matrix can also be targeted for SIMS analysis, as long as the effect of

diffuse organic matter in the matrix is carefully evaluated by monitoring the '*CH peak.

The Mooifontein sample (16AarFarm) consists of homogeneous and coarsely
recrystallized limestone. The tubular fossil Cloudina riemkeae is abundant. Most Cloudina
specimens are preserved as internal molds, with the test lost and the interior of the tube filled
with calcite (Fig. 3d). Bulk-sample 8'*Ccarb values of the Mooifontein Member are consistently in

the range of 1-4%o, as measured in multiple sections in the Witpus sub-basin (Saylor et al., 1998;

Wood et al., 2015; Vickers-Rich et al., 2016). Because of the homogeneous nature of this

sample, SIMS analysis is targeted on the calcite crystals in a mold of Cloudina (i.e., within

Cloudina tube; Fig. 12a) and in the matrix (i.e., outside Cloudina tube; Fig. 12b).
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4.2. SIMS 6"3Cearp, bulk-sample 6'3Cears, and EPMA data

SIMS 8"3Ccars and EPMA elemental measurements are provided in Supplementary Data
3. All SIMS 8"3Ccarb data are mapped on post-SIMS secondary electron SEM images showing
SIMS pits (Supplementary Data 4). SIMS 8'3Ccarb values are also mapped on back-scattered
electron SEM images and CL images of analytical domains (Figs. 4—13). SIMS 8'3Ccar are
summarized in Fig. 14. The relationships between SIMS 8'3Ccarb, carbonate components, and

elemental concentrations are shown in Fig. 15.

In the three Doushantuo samples, SIMS 8'*Cecarb shows large spatial variations at pm-mm
scales within the calcite rim, generally over 5%o and in some cases greater than 10%o (e.g., Figs.
6d, 10b). In contrast, the Mooifontein sample shows much lower-magnitude spatial variability,
with an overall range of 4.4%o but typically <1%o at the um-scale. The difference in variability
between the Doushantuo and Mooifontein samples is illustrated in Fig. 14, with the former

showing much greater ranges and standard deviation values than the latter.

Spatial variations in SIMS §'*Cecarb at pm-mm scales (histograms and box-and-whisker
plots in Fig. 14) roughly match the stratigraphic 6'3Cearb variations at meter scales measured by
acid dissolution and gas source mass spectrometry (red double-arrowed lines in Fig. 14). For the
Doushantuo samples, the stratigraphic variations shown in Fig. 14 represent the range of bulk-
sample 8'*Cearb values in strata one meter above and below the SIMS sample, which
approximately represent variations over ~1 Myr according to an astronomically tuned time scale

for the lower Doushantuo Formation at the Jiulongwan section (Sui et al., 2018). For the

Mooifontein samples, the stratigraphic variation shown in Fig. 14 represents the range of bulk-
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sample 8'3Cearb values in the 40 m strata of the Mooifontein Member (Wood et al., 2015;

Vickers-Rich et al., 2016).

Bulk-sample 8'3Ccarb values measured on powders drilled from the matrix of the same
samples used for SIMS analysis are denoted by green arrows in Fig. 14. In all cases, the bulk-
sample 8'*Cearb values are within the ranges of SIMS 8'3Ccarb values and for the Doushantuo
samples, the bulk-sample measurements are in the central 50% percentile of SIMS measurements

(Figs. 14, 15a).

In Fig. 15b, SIMS 8'*Ccarb data are categorized according to different carbonate phases.
Not only do the various authigenic calcite components (e.g., calcite rims, calcite nodules, and
calcite cements) show spatial variability in §'3C, the dolomite matrix is also characterized by
variable 8'3C data (symbols filled in gray in Fig. 15b—c; data only available for JLW23.5). The
variation in matrix 6'3C is probably caused by the occurrence of authigenic carbonate in the
matrix, as evidence from the CL images revealing carbonate minerals with multiple CL colors
(e.g., Figs. 9e, 11¢, 11g). It is important to note that individual 3'*C measurements of authigenic

calcite can be either higher or lower than those of dolomite matrix.

When SIMS 8'3Cearb data are plotted against Mg, Mn, and Fe contents as determined by
EPMA, no systematic correlations are observed (Fig. 15¢—f). Thus, it is unlikely that the yum-mm
scale variations in §!3C are related to the calibration of SIMS data, which uses the elemental

concentration of Mg, Mn, and Fe (Sliwinski et al., 2016b; Sliwinski et al., 2016a; Denny et al.,

2020; Turnier et al., 2020).

16



359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

5. Discussion

The noisy 6'3C profile in the lower Doushantuo Formation is an enigmatic feature that
complicates chemostratigraphic correlation. Some authors considered such noisy variations
chemostratigraphically significant and attempted to identify regionally correlatable negative §!*C

excursions in the lower Member II of the Doushantuo Formation (Tahata et al., 2013; Zhu et al.,

2013; Gao et al., 2018). For example, the negative §!3C excursion WANCE from the lower

Member II has been proposed as a chemostratigraphic marker in South China (Zhu et al., 2013).

However, the chemostratigraphic value of such excursions has been questioned because they
occur in a stratigraphic interval with highly variable §'*C values and are not regionally consistent

(Zhou and Xiao, 2007; Xiao et al., 2012). The SIMS data presented here help us to understand

the potential origin of these excursions and to dissect the noisy chemostratigraphic trend in the

lower Member 11 of the Doushantuo Formation.

Given the spatial variation in SIMS §'3C data at um-mm scales, we propose that the noisy
813C profiles in the lower Member I likely represent variable mixing of different carbonate
phases, including sedimentary dolomite, authigenic calcite cement, and even late diagenetic
carbonate components. Because the dolomite matrix can also contain authigenic carbonate
minerals (e.g., Figs. 9e, 11c, 11g) with highly variable 6'3C at um-mm scales, as shown in
sample JLW23.5 (Figs. 8-9), sampling via microdrilling in an attempt to avoid calcite cements
and veins is unlikely to mitigate this problem. Thus, we caution against the use of noisy 8'*C

excursions in the lower Member II for regional or global chemostratigraphic correlation.

The origin of wm-mm scale §'C variations in the lower Member II remains uncertain.
However, given that this stratigraphic unit in South China is widely influenced by

methanogenesis and methane oxidation (Jiang et al., 2003; Wang et al., 2008; Zhou et al., 2016),
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it is possible that the um-mm scale §'°C variations may be related to pore-water microbial and
diagenetic processes that control methane oxidation. Together, methanogenesis and methane

oxidation can result in highly variable 8'3C signatures in authigenic carbonate (Meister et al.

2018), depending on whether methane is oxidized in situ or escapes from sediments, and whether

it is oxidized aerobically or anaerobically.

This study has several broader implications for 8'*C chemostratigraphy. First, integrated
SIMS and petrographic analyses offer a powerful tool to individually interrogate different

generations of carbonate cement (Denny et al., 2020), to evaluate the influence of

authigenic/diagenetic carbonate minerals on §'3C chemostratigraphy, and to dissect the origin of
noisy chemostratigraphic trends. The data presented here show that chemostratigraphic
variations at meter scales can be captured at the pm-mm scales, the latter reflecting the influence
of authigenic/diagenetic carbonate minerals. Thus, our study verifies the traditional view that
noisy chemostratigraphic trends are suggestive of diagenetic alteration, and indicates that
chemostratigraphic consistency is a useful tool to evaluate diagenetic alteration. In our case
study, for example, the lower Member II of the Doushantuo Formation was probably influenced

by authigenic/diagenetic alteration to a greater degree than the Mooifontein Member.

Our study also casts doubt on the traditional practice of taking the maximum &!3C values
to approximate primary chemostratigraphic trends. As shown in the Doushantuo samples, §'3C
values of authigenic calcite can be greater or lower than those of the dolomitic matrix, making it
difficult to infer primary chemostratigraphic trends from noisy data using either the maximum
values or moving averages. In such cases, coupled SIMS and petrographic analysis is an

indispensable tool to disentangle the paragenetic sequence and isotopic signals from noisy data.
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6. Conclusions

By contrasting the Doushantuo and Mooifontein data, we show that meter-scale
chemostratigraphic variations in '3Ccarb (up to 10%o in the lower Member II of the Doushantuo
Formation and ~4%o in the Mooifontein Member) are also captured in SIMS 8!3Ccarb variations at
um-mm scale. In the Doushantuo samples, petrographically identified authigenic calcite—which
may have been influenced by localized pore-water processes such as methanogenesis and
methane oxidation—has a wider range of SIMS &'3Cecarb values and can be isotopically heavier or
lighter than co-existing dolomite matrix. In both the Doushantuo and Mooifontein samples, the
range of SIMS §"*Ccary values encompasses bulk-sample §'3Cecart values measured on
microdrilled powders, suggesting that, in some cases, even micro-sampling may incorporate a
quantitatively significant proportion of authigenic/diagenetic components, such as cements,
which may be isotopically distinct from sedimentary signatures. With its capability to obtain
accurate um-mm scale 8'3Cearb data and when integrated with detailed petrographic and
microscopic data, SIMS is a powerful technique to understand the origin of noisy
chemostratigraphic patterns. The data presented here confirm that, not surprisingly, only
stratigraphically consistent 3'3Cecarb data are useful in chemostratigraphic correlation, and indicate
that the traditional practice of taking the maximum &'*Cecarb values to approximate primary

chemostratigraphic trends can be misleading.
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Figure Captions

Figure 1. Bulk-sample 8'*Cecarn profile of the Ediacaran Doushantuo Formation at the Jiulongwan
section (30°48'12.72"N, 111°03'20.70"E) in the Yangtze Gorges area of South China, illustrating
noisy stratigraphic variation in lower member II of the formation (ca. 4-35 meters in
stratigraphic height). Inset maps show major tectonic units in China and the location of the
Jiulongwan section (red dot) in the Yangtze Craton. §'3C data are compiled from Jiang et al.

(2007), McFadden et al. (2008), Tahata et al. (2013), and new data generated in this study. The

McFadden et al. (2008) dataset includes measurements made at University of Maryland and

Chinese Academy of Sciences, which are plotted separately. Data from Tahata et al. (2013) were

from a drill core about 3 km from Jiulongwan and are rescaled according to lithostratigraphic

correlation (see Supplementary Data 1). Three samples from McFadden et al. (2008), JLW15.1,

JLW23.5, and JLW35.2 (red arrows) were selected for SIMS §'3C analysis. Radiometric ages are

from the Yangtze Gorges area published by Condon et al. (2005) unless otherwise noted.

Radiometric ages marked by solid dots can be placed in the Jiulongwan section with confidence.
The 614+7.6 Ma and 609+5 Ma ages are from the Zhangcunping area about 70 km to the

northeast of the Jiulongwan section (Liu et al., 2009; Zhou et al., 2017b). Note that the 551.1+0.7

Ma age was from the uppermost Miaohe Member that has been variously correlated with

Member IV of the Doushantuo Formation (Xiao et al., 2017; Zhou et al., 2017a) or the Shibantan

Member of the Dengying Formation (An et al., 2015). The new data show a weaker and shorter
EN2 (—3.2%o at 68.5 m) than previously published data. The origin of this discrepancy is
uncertain but may be related to the fact that the different studies sampled the Jiulongwan section
independently, the Jiulongwan section consists of two sub-sections that were spliced near the

Member II-III boundary (i.e., part of EN2 may not be sampled in our study), and stratigraphic
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scaling of the different studies may not be accurate (which may have also resulted in the

discrepancy at 110—115 m).

Fig. 2. Bulk-sample 8'3Ccarb profile of the Ediacaran Mooifontein Member (highlighted) of the
Zaris Formation at the Arasab section near Farm Aar and ~20 km south of Aus in southern

Namibia. Map of Namibia modified from Hall et al. (2013). Stratocolumn and 8'*Cecarb data are

from Wood et al. (2015). See Supplementary Data 2.

Figure 3. Field and thin-section petrographic photographs. (a) Field photograph of chert nodules
in the lower Member II of the Doushantuo Formation at the Huajipo section about 5 km
southwest of the Jiulongwan section. (b—c) Petrographic thin sections of chert nodules from
samples XF141 and JLW15.1, respectively. Note that XF141 is not one of the samples analyzed
in this study; it is from Member II of the Doushantuo Formation at the Xiaofenghe section, about
22 km northeast of the Jiulongwan section. Silica core, pyrite rim, calcite rim, warping laminae,
and dolomite matrix are marked in (a—c). (d) Field photograph of the Mooifontein Member near
Farm Aar, showing the abundance of Cloudina fossils preserved as internal molds. (e—f) Plane
light and differential interference contrast (DIC) microscopic images, respectively, of Cloudina
specimens in a petrographic thin section of the Mooifontein sample 2016AarFarm analyzed in
this study. The two images illustrate approximately the same area, with slightly different
orientations and magnifications. White circle and paired arrows mark three Cloudina specimens
in transverse and longitudinal cross sections, respectively. Note the coarse-grained recrystallized

calcite minerals and the moldic preservation of Cloudina.
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Figure 4. SIMS 8'3C data of JLW15.1A, a subsample of JLW15.1. (a) Reflected light
microscopic photo montage of the sample, with labeled rectangles denoting areas or domains for
SIMS and EPMA analyses. Calcite (Cal), dolomite (Dol), pyrite (Py), Quartz (Qz), and
anthracite (An) standards were mounted on the sample and polished for SIMS and EPMA
analyses. (b—d) Backscattered electron microscopic images of domains 1-3, respectively, which
are marked in (a). Major minerals (dolomite, calcite, pyrite, and silica), SIMS spots, and
corresponding 8'*C measurements (yellow: calcite measurements) are marked on the figure. The
spot-to-spot precision of 3'3C values based on all bracketing analyses on standard UWC-3 is

+0.6%o0 (2SD; see Supplementary Data 3).

Figure 5. SIMS 8'*C data of JLW15.1A mapped on cathodoluminescence (CL) images. (a—c) CL

images corresponding to Fig. 4b—d. (d) Magnified view of central part of (c).

Fig. 6. SIMS 3'3C data of sample JLW15.1B, a subsample of JLW15.1. (a) Reflected light
microscopic photo montage of the sample, with labeled rectangles denoting areas or domains for
SIMS and EPMA analyses. Calcite (Cal), dolomite (Dol), pyrite (Py), Quartz (Qz), and
anthracite (An) standards were mounted on the sample and polished for SIMS and EPMA
analyses. (b—d) Backscattered electron microscopic images of domains 1-3, respectively, which
are marked in (a). Major minerals (dolomite, calcite, pyrite, and silica), SIMS spots, and

corresponding 6'*C measurements (yellow: calcite measurements) are marked on the figure. The
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spot-to-spot precision of 3'3C values based on all bracketing analyses on standard UWC-3 is

+0.6%o0 (2SD; see Supplementary Data 3).

Figure 7. SIMS §'3C data of JLW15.1B mapped on cathodoluminescence (CL) images. (a), (b—

¢), and (d) are CL images corresponding to Fig. 6b—d, respectively.

Figure 8. SIMS §'3C data of sample JLW23.5. (a) Reflected light microscopic photo montage of
the sample, with labeled rectangles denoting areas or domains for SIMS and EPMA analyses.
Calcite (Cal), dolomite (Dol), pyrite (Py), Quartz (Qz), and anthracite (An) standards were
mounted on the sample and polished for SIMS and EPMA analyses. (b—f) Backscattered electron
microscopic images of domains 1-4 marked in (a). (c) is a magnified view of rectangle in (b).
Major minerals (dolomite, calcite, pyrite, and silica), SIMS spots, and corresponding &'*C
measurements (yellow: calcite measurements; blue: dolomite measurements) are marked on the
figure. The spot-to-spot precision of §'3C values based on all bracketing analyses on standard

UWC-3 is £0.6%o (2SD; see Supplementary Data 3).

Figure 9. SIMS §'3C data of JLW23.5 mapped on cathodoluminescence (CL) images. (a) CL
image corresponding to Fig. 8b (upper), (b) to Fig. 8c (lower right), (c) to Fig. 8c (central left),
(d) to Fig. 8d, (f) to Fig. 8e (left), (g) to Fig. 8e (right, and (h) to Fig. 8f. (e) is magnified view of
lower right of (d), showing calcite cement (central right) in dolomitic matrix. Note the presence
of multiple CL colors in dolomitic matrix, indicating the presence of multiple phases of
carbonate minerals including authigenic carbonate.
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Figure 10. SIMS 8'3C data of sample JLW35.2. (a) Reflected light microscopic photo montage of
the sample, with labeled rectangles denoting areas or domains for SIMS and EPMA analyses.
Calcite (Cal), dolomite (Dol), pyrite (Py), Quartz (Qz), and anthracite (An) standards were
mounted on the sample and polished for SIMS and EPMA analyses. (b—f) Backscattered electron
microscopic images of domains 1-5 marked in (a). (g) is a magnified view of rectangle in (f).
Major minerals (dolomite, calcite, pyrite, and silica), SIMS spots, and corresponding &'*C
measurements (yellow: calcite measurements) are marked on the figure. OM, organic matter.

The spot-to-spot precision of §'3C values based on all bracketing analyses on standard UWC-3 is

+0.6%o0 (2SD; see Supplementary Data 3).

Figure 11. SIMS 8'3C data of JLW35.2 mapped on cathodoluminescence (CL) images. (a) CL
image corresponding to Fig. 10b, (b) to Fig. 10c, (d) to Fig. 10d, (e) to Fig. 10e, and (f) to Fig.
10f—g. (c) is magnified view of lower right of (b), showing calcite cement (central) in dolomitic
matrix. (g) CL image of dolomitic matrix near area shown in (c). Note the presence of multiple
CL colors in calcite/chert nodule (a, d, f), calcite cement (c, central), and dolomitic matrix (c,

peripheral; g), indicating the presence of multiple phases of authigenic carbonate minerals.

Figure 12. SIMS 8'3C data of sample 16AarFarm. (a—b) Backscattered electron microscopic
images with SIMS spots and corresponding 3'3C measurements (yellow: calcite measurements).
Calcite is the dominant mineral in this sample. Light brown shading was added to mark the

internal molds of two Cloudina tests in longitudinal and transverse cross-sections, respectively.
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Calcite (Cal), dolomite (Dol), pyrite (Py), Quartz (Qz), and anthracite (An) standards were
mounted on the sample and polished for SIMS and EPMA analyses. The spot-to-spot precision
of 8'3C values based on all bracketing analyses on standard UWC-3 is £0.6%o (2SD; see

Supplementary Data 3).

Figure 13. SIMS 8'3C data of 16AarFarm mapped on cathodoluminescence (CL) images. (a-€)

CL image corresponding to Fig. 12a (from left to right), and (f) to Fig. 12b.

Figure 14. Histograms and box-and-whisker diagrams of SIMS §'*C measurements of the four
analyzed samples. Each box-and-whisker plot shows the median, 1% and 3" quartiles, range, and

outliers (=3 quartile + 1.5 * interquartile range, or < 1% quartile — 1.5 * interquartile range;

denoted by circular dots). For comparison, bulk-sample 3'3C values of the same samples are
denoted by green arrows, with values marked above; note that duplicate measurements were
attempted for JLW15.1 and JLW23.5, and the green arrows point to the average of the
duplicates. Additionally, stratigraphic variations in 8'*C at meter scales are marked by red

double-arrowed lines, with ranges of 8'3C values annotated above.

Figure 15. SIMS §'3C measurements plotted against sample numbers (a), fabrics (b), and EPMA
elemental geochemical data (c—f). '*C measurements of calcite are represented by open circles,
and four analyses of dolomite by circles filled with gray. Arrows in (a) mark bulk-sample

measurements.
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Supplementary Data 1. Bulk sample 8'3Ccart data of the Doushantuo Formation at the Jiulongwan

section from Jiang et al. (2007), McFadden et al. (2008), Tahata et al. (2013), as well as new data

generated in this study. Data are plotted in Fig. 1.

Supplementary Data 2. Bulk sample 8'3Cecarb data of the Mooifontein Member at the Arasab

section near Farm Aar in the Witpus sub-basin of southern Namibia (Wood et al., 2015), as well

as a new analysis of sample 2016AarFarm from the Mooifontein Member at Farm Aar. Data are

plotted in Fig. 2.

Supplementary Data 3. SIMS 8'3Ccab data and EPMA data of three Doushantuo samples (JLW-
15.1, JLW-23.5, and JLW-35.2) and one Mooifontein sample (2016AarFarm). Data are plotted in

Figs. 4-15.

Supplementary Data 4. Post-SIMS secondary electron SEM images of three Doushantuo samples
(JLW-15.1, JLW-23.5, and JLW-35.2) and one Mooifontein sample (2016AarFarm). SIMS pits
are circled and labeled with analysis numbers (corresponding to analysis numbers in
Supplementary Data 3, sheet “SIMS Data”) and §'3C values (in %0 VPDB). If a SIMS pit is not
circled or labeled, the analysis was not good (marked by strike-through text in Supplementary

Data 3). Data are also mapped on BSE and CL images in Figs. 4—13.
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