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Abstract—Deep learning has revolutionized many machine
learning tasks in recent years, ranging from image classification
and video processing to speech recognition and natural language
understanding. The data in these tasks are typically represented
in the Euclidean space. However, there is an increasing number
of applications, where data are generated from non-Euclidean
domains and are represented as graphs with complex relation-
ships and interdependency between objects. The complexity of
graph data has imposed significant challenges on the existing
machine learning algorithms. Recently, many studies on extend-
ing deep learning approaches for graph data have emerged.
In this article, we provide a comprehensive overview of graph
neural networks (GNNs) in data mining and machine learning
fields. We propose a new taxonomy to divide the state-of-the-art
GNNs into four categories, namely, recurrent GNNs, convolu-
tional GNNs, graph autoencoders, and spatial-temporal GNNs.
We further discuss the applications of GNNs across various
domains and summarize the open-source codes, benchmark data
sets, and model evaluation of GNNs. Finally, we propose potential
research directions in this rapidly growing field.

Index Terms— Deep learning, graph autoencoder (GAE), graph
convolutional networks (GCNs), graph neural networks (GNNs),
graph representation learning, network embedding.

I. INTRODUCTION

HE recent success of neural networks has boosted

research on pattern recognition and data mining. Many
machine learning tasks, such as object detection [1], [2],
machine translation [3], [4], and speech recognition [5], which
once heavily relied on handcrafted feature engineering to
extract informative feature sets, have recently been revolu-
tionized by various end-to-end deep learning paradigms, e.g.,
convolutional neural networks (CNNs) [6], recurrent neural
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networks (RNNs) [7], and autoencoders [8]. The success
of deep learning in many domains is partially attributed to
the rapidly developing computational resources (e.g., GPU),
the availability of big training data, and the effectiveness
of deep learning to extract latent representations from the
Euclidean data (e.g., images, text, and videos). Taking image
data as an example, we can represent an image as a regular
grid in the Euclidean space. CNN is able to exploit the shift-
invariance, local connectivity, and compositionality of image
data [9]. As a result, CNNs can extract local meaningful
features that are shared with the entire data sets for various
image analyses.

While deep learning effectively captures hidden patterns of
Euclidean data, there are an increasing number of applica-
tions, where data are represented in the form of graphs. For
example, in e-commerce, a graph-based learning system can
exploit the interactions between users and products to make
highly accurate recommendations. In chemistry, molecules
are modeled as graphs, and their bioactivity needs to be
identified for drug discovery. In a citation network, articles
are linked to each other via citationships, and they need to be
categorized into different groups. The complexity of graph data
has imposed significant challenges on the existing machine
learning algorithms. As graphs can be irregular, a graph may
have a variable size of unordered nodes, and nodes from a
graph may have a different number of neighbors, resulting in
some important operations (e.g., convolutions) being easy to
compute in the image domain but difficult to apply to the graph
domain. Furthermore, a core assumption of existing machine
learning algorithms is that instances are independent of each
other. This assumption no longer holds for graph data because
each instance (node) is related to others by links of various
types, such as citations, friendships, and interactions.

Recently, there is increasing interest in extending deep
learning approaches for graph data. Motivated by CNNs,
RNNSs, and autoencoders from deep learning, new generaliza-
tions and definitions of important operations have been rapidly
developed over the past few years to handle the complexity
of graph data. For example, a graph convolution can be
generalized from a 2-D convolution. As illustrated in Fig. 1,
an image can be considered as a special case of graphs,
where pixels are connected by adjacent pixels. Similar to 2-D
convolution, one may perform graph convolutions by taking
the weighted average of a node’s neighborhood information.

There are a limited number of existing reviews on the
topic of graph neural networks (GNNs). Using the term
geometric deep learning, Bronstein et al. [9] give an overview
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Fig. 1.  2-D convolution versus graph convolution. (a) 2-D convolution:
analogous to a graph, each pixel in an image is taken as a node where
neighbors are determined by the filter size. The 2-D convolution takes the
weighted average of pixel values of the red node along with its neighbors. The
neighbors of a node are ordered and have a fixed size. (b) Graph convolution:
to get a hidden representation of the red node, one simple solution of the graph
convolutional operation is to take the average value of the node features of the
red node along with its neighbors. Different from the image data, the neighbors
of a node are unordered and variable in size.

of deep learning methods in the non-Euclidean domain, includ-
ing graphs and manifolds. Although it is the first review
on GNNgs, this article mainly reviews convolutional GNNSs.
Hamilton et al. [10] cover a limited number of GNNs with
a focus on addressing the problem of network embedding.
Battaglia ef al. [11] position graph networks as the building
blocks for learning from relational data, reviewing part of
GNNs under a unified framework. Lee er al. [12] conduct
a partial survey of GNNs that apply different attention mech-
anisms. In summary, existing surveys only include some of
the GNNs and examine a limited number of works, thereby
missing the most recent development of GNNs. This article
provides a comprehensive overview of GNNs, for both inter-
ested researchers who want to enter this rapidly developing
field and experts who would like to compare GNN models.
To cover a broader range of methods, this article considers
GNNs as all deep learning approaches for graph data.

A. Our Contributions

This article makes notable contributions summarized as

follows.

1) New Taxonomy: We propose a new taxonomy of
GNNs. GNNs are categorized into four groups: recurrent
GNNs (RecGNN), convolutional GNNs (ConvGNNSs),
graph autoencoders (GAESs), and spatial-temporal GNNs
(STGNNG).

2) Comprehensive Review: We provide the most compre-
hensive overview of modern deep learning techniques
for graph data. For each type of GNNs, we provide
detailed descriptions of representative models, make the
necessary comparison, and summarize the corresponding
algorithms.

3) Abundant Resources: We collect abundant resources
on GNNs, including state-of-the-art models, benchmark
data sets, open-source codes, and practical applications.
This article can be used as a hands-on guide for under-
standing, using, and developing different deep learning
approaches for various real-life applications.

4) Future Directions: We discuss theoretical aspects of
GNNs, analyze the limitations of existing methods, and
suggest four possible future research directions in terms

of model depth, scalability tradeoff, heterogeneity, and
dynamicity.

B. Organization of This Article

The rest of this article is organized as follows. Section II
outlines the background of GNNs, lists commonly used nota-
tions, and defines graph-related concepts. Section III clarifies
the categorization of GNNs. Sections IV-VII provides an
overview of GNN models. Section VIII presents a collection of
applications across various domains. Section IX discusses the
current challenges and suggests future directions. Section X
summarizes this article.

II. BACKGROUND AND DEFINITION

In this section, we outline the background of GNNs, list
commonly used notations, and define graph-related concepts.

A. Background

1) Brief History of Graph Neural Networks: Sperduti and
Starita [13] first applied neural networks to directed acyclic
graphs, which motivated early studies on GNNs. The notion
of GNNs was initially outlined in [14] and further elaborated
in [15] and [16]. These early studies fall into the category
of RecGNNs. They learn a target node’s representation by
propagating neighbor information in an iterative manner until
a stable fixed point is reached. This process is computationally
expensive, and recently, there have been increasing efforts to
overcome these challenges [17], [18].

Encouraged by the success of CNNs in the computer
vision domain, a large number of methods that redefine
the notion of convolution for graph data are developed in
parallel. These approaches are under the umbrella of Con-
VGNNSs. ConvGNNs are divided into two main streams: the
spectral-based approaches and the spatial-based approaches.
The first prominent research on spectral-based ConvGNNs
was presented by Bruna et al. [19], which developed a graph
convolution based on the spectral graph theory. Since then,
there have been increasing improvements, extensions, and
approximations on spectral-based ConvGNNs [20]-[23]. The
research about spatial-based ConvGNNs started much earlier
than spectral-based ConvGNNs. In 2009, Micheli [24] first
addressed graph mutual dependence by architecturally com-
posite nonrecursive layers while inheriting ideas of message
passing from RecGNNs. However, the importance of this
article was overlooked. Until recently, many spatial-based
ConvGNNs (e.g., [25]-[27]) emerged. Apart from RecGNNs
and ConvGNNs, many alternative GNNs have been devel-
oped in the past few years, including GAEs and STGNNSs.
These learning frameworks can be built on RecGNNs, Con-
vGNNSs, or other neural architectures for graph modeling.
Details on the categorization of these methods are given
in Section III.

2) Graph Neural Networks Versus Network Embedding:
The research on GNNss is closely related to graph embedding
or network embedding, another topic which attracts increasing
attention from both the data mining and machine learning
communities [10], [28]-[32]. Network embedding aims at rep-
resenting network nodes as low-dimensional vector represen-
tations, preserving both network topology structure and node
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content information, so that any subsequent graph analytics
task, such as classification, clustering, and recommendation,
can be easily performed using simple off-the-shelf machine
learning algorithms (e.g., support vector machines for classifi-
cation). Meanwhile, GNNs are deep learning models aiming at
addressing graph-related tasks in an end-to-end manner. Many
GNNs explicitly extract high-level representations. The main
distinction between GNNs and network embedding is that
GNNss are a group of neural network models that are designed
for various tasks, while network embedding covers various
kinds of methods targeting the same task. Therefore, GNNs
can address the network embedding problem through a GAE
framework. On the other hand, network embedding contains
other nondeep learning methods, such as matrix factorization
[33], [34] and random walks [35].

3) Graph Neural Networks Versus Graph Kernel Methods:
Graph kernels are historically dominant techniques to solve
the problem of graph classification [36]-[38]. These methods
employ a kernel function to measure the similarity between
pairs of graphs so that kernel-based algorithms, such as support
vector machines, can be used for supervised learning on
graphs. Similar to GNNs, graph kernels can embed graphs or
nodes into vector spaces by a mapping function. The difference
is that this mapping function is deterministic rather than learn-
able. Due to a pairwise similarity calculation, graph kernel
methods suffer significantly from computational bottlenecks.
GNNs, on the one hand, directly perform graph classification
based on the extracted graph representations and, therefore, are
much more efficient than graph kernel methods. For a further
review of graph kernel methods, we refer the readers to [39].

B. Definition

Throughout this article, we use bold uppercase characters
to denote matrices and bold lowercase characters to denote
vectors. Unless particularly specified, the notations used in this
article are illustrated in Table I. Now, we define the minimal
set of definitions required to understand this article.

Definition 1 (Graph): A graph is represented as G =
(V, E), where V is the set of vertices or nodes (we will use
nodes throughout this article), and E is the set of edges. Let
v; € V to denote a node and e;; = (v;,v;) € E to denote
an edge pointing from v; to v;. The neighborhood of a node
v is defined as N(v) = {u € V|(v,u) € E}. The adjacency
matrix A is a n x n matrix with A;; = 1 if ¢;; € E and
Ajj = 0 if ¢;; ¢ E. A graph may have node attributes X,'
where X € R"™? is a node feature matrix with x, € R?
representing the feature vector of a node v. Meanwhile, a graph
may have edge attributes X, where X¢ € R”*¢ is an edge
feature matrix with xj , € R representing the feature vector
of an edge (v, u).

Definition 2 (Directed Graph): A directed graph is a graph
with all edges directed from one node to another. An undi-
rected graph is considered as a special case of directed graphs
where there is a pair of edges with inverse directions if two
nodes are connected. A graph is undirected if and only if the
adjacency matrix is symmetric.

'Such graph is referred to an attributed graph in the literature.

TABLE I
COMMONLY USED NOTATIONS

Notations Descriptions

|- The length of a set.

® Element-wise product.

G A graph.

\4 The set of nodes in a graph.

v Anodev e V.

E The set of edges in a graph.

eij An edge e;; € E.

N (v) The neighbors of a node v.

A The graph adjacency matrix.

AT The transpose of the matrix A.

A" neZ The n%* power of A.

[A,B] The concatenation of A and B.

D The degree matrix of A. D;; = Z?:l Aj.
n The number of nodes, n = [V].

m The number of edges, m = [E].

d The dimension of a node feature vector.

b The dimension of a hidden node feature vector.
c The dimension of an edge feature vector.

X € R*¥4 The feature matrix of a graph.

x € R” The feature vector of a graph in the case of d = 1.
Xy € R? The feature vector of the node v.

Xe¢ € R™*¢ The edge feature matrix of a graph.

vayu) € R¢ The edge feature vector of the edge (v, u).
X € R"*9 " The node feature matrix of a graph at the time step ¢.
Hc R The node hidden feature matrix.

h, € R? The hidden feature vector of node v.

k The layer index

t The time step/iteration index

() The sigmoid activation function.

on(-) The tangent hyperbolic activation function.
W,0,w,0 Learnable model parameters.

Definition 3 (Spatial-Temporal Graph): A  spatial-temp-
oral graph is an attributed graph where the node attributes
change dynamically over time. The spatial-temporal graph is
defined as G = (V,E, X®) with X € R"*?,

ITI. CATEGORIZATION AND FRAMEWORKS

In this section, we present our taxonomy of GNNs, as shown
in Table II. We categorize GNNs into RecGNNs, ConvGNNSs,
GAEs, and STGNNSs. Fig. 2 shows the examples of various
model architectures. In the following, we give a brief intro-
duction to each category.

A. Taxonomy of Graph Neural Networks

1) Recurrent Graph Neural Networks: These are mostly
pioneer works of GNNs. RecGNNs aim to learn node represen-
tations with recurrent neural architectures. They assume a node
in a graph constantly exchanges information/message with its
neighbors until a stable equilibrium is reached. RecGNNs
are conceptually important and inspired later research on
ConvGNNs. In particular, the idea of message passing is
inherited by spatial-based ConvGNNSs.

2) Convolutional Graph Neural Networks: These generalize
the operation of convolution from grid data to graph data.
The main idea is to generate a node v»’s representation by
aggregating its own features x, and neighbors’ features x,,
where u € N(v). Different from RecGNNs, ConvGNNs stack
multiple graph convolutional layers to extract high-level node
representations. ConvGNNs play a central role in building
up many other complex GNN models. Fig. 2(a) shows a
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TABLE II
TAXONOMY AND REPRESENTATIVE PUBLICATIONS OF GNNs

Category

Publications

Recurrent Graph Neural Networks (RecGNNs)

[15], [16], [17], [18

Spectral methods

Convolutional Graph Neural Networks (ConvGNNs)

Spatial methods

1, 1
[19], [20], [21], [22], [23], [40], [41]
[24], [25], [26], [27], [42], [43], [44]
[45], [46], [47], [48], [49], [50], [51]
[52], [53], [54], [55], [56], [57], [58]

Graph Autoencoders (GAEs)

Network Embedding

[59], [60], [61], [62], [63], [64]

Graph Generation

[65], [66], [67], [68], [69], [70]

Spatial-temporal Graph Neural Networks (STGNNs)

[711, [72], [73], [74], [75], [76], [77]

ConvGNN for node classification. Fig. 2(b) demonstrates a
ConvGNN for graph classification.

3) Graph Autoencoders: These are unsupervised learning
frameworks that encode nodes/graphs into a latent vector space
and reconstruct graph data from the encoded information.
GAE:s are used to learn network embeddings and graph gener-
ative distributions. For network embedding, GAEs learn latent
node representations through reconstructing graph structural
information, such as the graph adjacency matrix. For graph
generation, some methods generate nodes and edges of a graph
step by step, while other methods output a graph all at once.
Fig. 2(c) presents a GAE for network embedding.

4) Spatial-Temporal Graph Neural Networks: These aim
to learn hidden patterns from spatial-temporal graphs, which
becomes increasingly important in a variety of applications,
such as traffic speed forecasting [72], driver maneuver antici-
pation [73], and human action recognition [75]. The key idea
of STGNNSs is to consider spatial dependence and temporal
dependence at the same time. Many current approaches inte-
grate graph convolutions to capture spatial dependence with
RNNs or CNNs to model temporal dependence. Fig. 2(d)
illustrates an STGNN for spatial-temporal graph forecasting.

B. Frameworks

With the graph structure and node content information as
inputs, the outputs of GNNs can focus on different graph
analytics tasks with one of the following mechanisms.

1) Node Level: Outputs relate to node regression and
node classification tasks. RecGNNs and ConvGNNs can
extract high-level node representations by information
propagation/graph convolution. With a multiperceptron
or a softmax layer as the output layer, GNNs are able
to perform node-level tasks in an end-to-end manner.

2) Edge Level: Outputs relate to the edge classification and
link prediction tasks. With two nodes’ hidden repre-
sentations from GNNs as inputs, a similarity function
or a neural network can be utilized to predict the
label/connection strength of an edge.

3) Graph Level: Outputs relate to the graph classification
task. To obtain a compact representation on the graph
level, GNNs are often combined with pooling and read-
out operations. Detailed information about pooling and
readouts will be reviewed in Section V-C.

Training Frameworks: Many GNNs (e.g., ConvGNNs) can
be trained in a (semi)supervised or purely unsupervised way

within an end-to-end learning framework, depending on the
learning tasks and label information available at hand.

1) Semisupervised Learning for Node-Level Classification:
Given a single network with partial nodes being labeled
and others remaining unlabeled, ConvGNNs can learn a
robust model that effectively identifies the class labels
for the unlabeled nodes [22]. To this end, an end-to-
end framework can be built by stacking a couple of
graph convolutional layers followed by a softmax layer
for multiclass classification.

2) Supervised Learning for Graph-Level Classification:
Graph-level classification aims to predict the class
label(s) for an entire graph [52], [54], [78], [79]. The
end-to-end learning for this task can be realized with
a combination of graph convolutional layers, graph
pooling layers, and/or readout layers. While graph con-
volutional layers are responsible for exacting high-level
node representations, graph pooling layers play the role
of downsampling, which coarsens each graph into a
substructure each time. A readout layer collapses node
representations of each graph into a graph representa-
tion. By applying a multilayer perceptron and a softmax
layer to graph representations, we can build an end-to-
end framework for graph classification. An example is
given in Fig. 2(b).

3) Unsupervised Learning for Graph Embedding: When no
class labels are available in graphs, we can learn the
graph embedding in a purely unsupervised way in an
end-to-end framework. These algorithms exploit edge-
level information in two ways. One simple way is to
adopt an autoencoder framework, where the encoder
employs graph convolutional layers to embed the graph
into the latent representation upon which a decoder
is used to reconstruct the graph structure [61], [62].
Another popular way is to utilize the negative sampling
approach that samples a portion of node pairs as negative
pairs, while existing node pairs with links in the graphs
are positive pairs. Then, a logistic regression layer is
applied to distinguish between the positive and negative
pairs [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models. In more detail, we only compare the
time complexity of the message-passing/graph convolutional
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Fig. 2. Different GNN models built with graph convolutional layers. The
term Gconv denotes a graph convolutional layer. The term MLP denotes a
multilayer perceptron. The term CNN denotes a standard convolutional layer.
(a) ConvGNN with multiple graph convolutional layers. A graph convolu-
tional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a nonlinear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood. (b) ConvGNN with pooling and readout layers for graph
classification [21]. A graph convolutional layer is followed by a pooling
layer to coarsen a graph into subgraphs so that node representations on
coarsened graphs represent higher graph-level representations. A readout
layer summarizes the final graph representation by taking the sum/mean of
hidden representations of subgraphs. (¢) GAE for network embedding [61].
The encoder uses graph convolutional layers to get a network embedding
for each node. The decoder computes the pairwise distance given network
embeddings. After applying a nonlinear activation function, the decoder
reconstructs the graph adjacency matrix. The network is trained by minimizing
the discrepancy between the real adjacency matrix and the reconstructed
adjacency matrix. (d) STGNN for spatial-temporal graph forecasting [74].
A graph convolutional layer is followed by a 1-D-CNN layer. The graph
convolutional layer operates on A and X to capture the spatial dependence,
while the 1-D-CNN layer slides over X along the time axis to capture the
temporal dependence. The output layer is a linear transformation, generating
a prediction for each node, such as its future value at the next time step.

operation in each model. As methods in [19] and [20] require
eigenvalue decomposition, the time complexity is O(n?).
The time complexity of [46] is also O(n?) due to the
node pairwise shortest-path computation. Other methods incur
equivalent time complexity, which is O(m) if the graph
adjacency matrix is sparse and is O(n?) otherwise. This is
because, in these methods, the computation of each node

v;’s representation involves its d; neighbors, and the sum of
d; over all nodes exactly equals the number of edges. The
time complexity of several methods is missing in Table III.
These methods either lack a time complexity analysis in their
articles or report the time complexity of their overall models
or algorithms.

IV. RECURRENT GRAPH NEURAL NETWORKS

RecGNNs are mostly pioneer works of GNNs. They apply
the same set of parameters recurrently over nodes in a graph
to extract high-level node representations. Constrained by
computational power, earlier research is mainly focused on
directed acyclic graphs [13], [80].

GNN#*? proposed by Scarselli et al. extends prior recurrent
models to handle general types of graphs, e.g., acyclic, cyclic,
directed, and undirected graphs [15]. Based on an informa-
tion diffusion mechanism, GNN* updates nodes’ states by
exchanging neighborhood information recurrently until a sta-
ble equilibrium is reached. A node’s hidden state is recurrently
updated by

b = > fx.x{, 0%, h{™) (1)

ueN (v)

where f(-) is a parametric function and hl()o) is initialized
randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and
no neighborhood ordering is known. To ensure convergence,
the recurrent function f(-) must be a contraction mapping,
which shrinks the distance between two points after projecting
them into a latent space. In the case of f(-) being a neural net-
work, a penalty term has to be imposed on the Jacobian matrix
of parameters. When a convergence criterion is satisfied, the
last step node hidden states are forwarded to a readout layer.
GNN* alternates the stage of node state propagation and the
stage of parameter gradient computation to minimize a train-
ing objective. This strategy enables GNN* to handle cyclic
graphs. In the follow-up works, the graph echo state network
(GraphESN) [16] extends echo state networks to improve the
training efficiency of GNN*. GraphESN consists of an encoder
and an output layer. The encoder is randomly initialized and
requires no training. It implements a contractive state transition
function to recurrently update node states until the global
graph state reaches convergence. Afterward, the output layer
is trained by taking the fixed node states as inputs.

Gated GNN (GGNN) [17] employs a gated recurrent unit
(GRU) [81] as a recurrent function, reducing the recurrence
to a fixed number of steps. The advantage is that it no longer
needs to constrain parameters to ensure convergence. A node
hidden state is updated by its previous hidden states and its
neighboring hidden states, defined as

h{’ = GRU[h{™", > Wh{™" 2)
ueN @)
where h{” = x,. Different from GNN* and GraphESN,

GGNN uses the backpropagation through time (BPTT) algo-
rithm to learn the model parameters. This can be problematic

2As GNN is used to represent broad graph neural networks in this article,
we name this particular method GNN* to avoid ambiguity.
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TABLE III

SUMMARY OF RecGNNs AND ConvGNNs. MISSING VALUES (““-””) IN POOLING AND READOUT LAYERS INDICATE THAT
THE METHOD ONLY EXPERIMENTS ON NODE-/EDGE-LEVEL TASKS

Approach Category Inputs Pooling Readout Time Complexity
GNN* (2009) [15] RecGNN A X, Xe - a dummy super node  O(m)
GraphESN (2010) [16] RecGNN A X - mean Oo(m)
GGNN (2015) [17] RecGNN A X - attention sum O(m)
SSE (2018) [18] RecGNN A X - - -
Spectral CNN (2014) [19] Spectral-based ConvGNN A, X spectral clustering+max pooling  max O(n?)
Henaff et al. (2015) [20] Spectral-based ConvGNN A, X spectral clustering+max pooling O(n?)
ChebNet (2016) [21] Spectral-based ConvGNN A X efficient pooling sum O(m)
GCN (2017) [22] Spectral-based ConvGNN A X - - O(m)
CayleyNet (2017) [23] Spectral-based ConvGNN A, X mean/graclus pooling - O(m)
AGCN (2018) [40] Spectral-based ConvGNN A, X max pooling sum O(n?)
DualGCN (2018) [41] Spectral-based ConvGNN A X - - O(m)
NN4G (2009) [24] Spatial-based ConvGNN A X - sum/mean O(m)
DCNN (2016) [25] Spatial-based ConvGNN A X - mean O(n?)
PATCHY-SAN (2016) [26]  Spatial-based ConvGNN A X, X¢ - sum -
MPNN (2017) [27] Spatial-based ConvGNN A X, Xe - attention sum/set2set  O(m)
GraphSage (2017) [42] Spatial-based ConvGNN A X - - -

GAT (2017) [43] Spatial-based ConvGNN A X - - O(m)
MoNet (2017) [44] Spatial-based ConvGNN A X - - O(m)
LGCN (2018) [45] Spatial-based ConvGNN A X - - -
PGC-DGCNN (2018) [46]  Spatial-based ConvGNN A X sort pooling attention sum O(n?)
CGMM (2018) [47] Spatial-based ConvGNN A X, Xe - sum -
GAAN (2018) [48] Spatial-based ConvGNN A X - - O(m)
FastGCN (2018) [49] Spatial-based ConvGNN A X - - -
StoGCN (2018) [50] Spatial-based ConvGNN A X - - -
Huang et al. (2018) [51] Spatial-based ConvGNN A X - - -
DGCNN (2018) [52] Spatial-based ConvGNN A X sort pooling - O(m)
DiffPool (2018) [54] Spatial-based ConvGNN A X differential pooling mean O(n?)
GeniePath (2019) [55] Spatial-based ConvGNN A X - - O(m)
DGI (2019) [56] Spatial-based ConvGNN A X - - O(m)
GIN (2019) [57] Spatial-based ConvGNN A X - sum O(m)
ClusterGCN (2019) [58] Spatial-based CoovGNN A, X X : §

for large graphs, as GGNN needs to run the recurrent function
multiple times over all nodes, requiring the intermediate states
of all nodes to be stored in memory.

Stochastic steady-state embedding (SSE) proposes a learn-
ing algorithm that is more scalable to large graphs [18]. SSE
updates node hidden states recurrently in a stochastic and
asynchronous fashion. It alternatively samples a batch of nodes
for state update and a batch of nodes for gradient computation.
To maintain stability, the recurrent function of SSE is defined
as a weighted average of the historical states and new states,
which takes the form

hl()l) =(- a)hl(f_l) + aWio | W2 x,, Z [hl(,l_l), Xy ]
ueN (v)

3)

where « is a hyperparameter and h(") is initialized randomly.
While conceptually important, SSE does not theoretically
prove that the node states will gradually converge to fixed
points by applying (3) repeatedly.

V. CONVOLUTIONAL GRAPH NEURAL NETWORKS

ConvGNNs are closely related to recurrent graph neural
networks. Instead of iterating node states with contractive con-
straints, ConvGNNs address the cyclic mutual dependencies
architecturally using a fixed number of layers with differ-
ent weights in each layer. This key distinction is illustrated
in Fig. 3. As graph convolutions are more efficient and conve-
nient to composite with other neural networks, the popularity
of ConvGNNs has been rapidly growing in recent years.
ConvGNNs fall into two categories: spectral-based and spatial-
based. Spectral-based approaches define graph convolutions
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(a)
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—*| Gconvi ]—*[ Gconv: ]—' s —'{@—*
(b)
Fig. 3. RecGNNs versus ConvGNNs (a) RecGNNs use the same graph

recurrent layer (Grec) in updating node representations. (b) ConvGNNs use a
different graph convolutional layer (Geonv) in updating node representations.

by introducing filters from the perspective of graph signal
processing [82], where the graph convolutional operation is
interpreted as removing noises from graph signals. Spatial-
based approaches inherit ideas from RecGNNs to define
graph convolutions by information propagation. Since GCN
[22] bridged the gap between spectral-based approaches and
spatial-based approaches, spatial-based methods have devel-
oped rapidly recently due to its attractive efficiency, flexibility,
and generality.

A. Spectral-Based ConvGNNs

Background: Spectral-based methods have a solid mathe-
matical foundation in graph signal processing [82]—[84]. They
assume graphs to be undirected. The normalized graph Lapla-
cian matrix is a mathematical representation of an undirected
graph, defined as L = I, — D W/DAD- /D where D is
a diagonal matrix of node degrees, D;; = > j(Ai, j). The
normalized graph Laplacian matrix possesses the property of
being real symmetric positive semidefinite. With this property,
the normalized Laplacian matrix can be factored as L =
UAUT, where U = [ug,uy, ..., uy_1] € R™" is the matrix
of eigenvectors ordered by eigenvalues and A is the diagonal

matrix of eigenvalues (spectrum), A;; = 4;. The eigenvectors
of the normalized Laplacian matrix form an orthonormal
space, in mathematical words U'U = I. In graph signal

processing, a graph signal x € R” is a feature vector of all
nodes of a graph, where x; is the value of the ith node. The
graph Fourier transform to a signal x is defined as .Z (x) =
UTx, and the inverse graph Fourier transform is defined as
Z~1(X) = U%, where % represents the resulted signal from
the graph Fourier transform. The graph Fourier transform
projects the input graph signal to the orthonormal space,
where the basis is formed by eigenvectors of the normalized
graph Laplacian. Elements of the transformed signal X are
the coordinates of the graph signal in the new space so that
the input signal can be represented as x = > . £;u;, which is
exactly the inverse graph Fourier transform. Now, the graph
convolution of the input signal x with a filter g € R” is defined
as

xxcg=F (F(X)0Z(g)
=UU'xo U g) 4)

where © denotes the elementwise product. If we denote a
filter as gy = diag(U”g), then the spectral graph convolution

is simplified as
x *g g9 = UgpUx. ®)

Spectral-based ConvGNNs all follow this definition. The key
difference lies in the choice of the filter gy.

Spectral CNN [19] assumes that the filter gy = ®,(kj) is a
set of learnable parameters and considers graph signals with
multiple channels. The graph convolutional layer of Spectral
CNN is defined as

-1
H55?=0(ZU®§,?UTH$“’) G=1L2....f (6
i=1

where k is the layer index, H =) e R"*fi1 is the input
graph signal, H® = X, f;_; is the number of input channels,
fx is the number of output channels, and @,(kj) is a diagonal
matrix filled with learnable parameters. Due to the eigen-
decomposition of the Laplacian matrix, spectral CNN faces
three limitations. First, any perturbation to a graph results in
a change of eigenbasis. Second, the learned filters are domain
dependent, which means that they cannot be applied to a
graph with a different structure. Third, eigendecomposition
requires O(n*) computational complexity. In the follow-up
works, ChebNet [21] and GCN [22] reduce the computational
complexity to O(m) by making several approximations and
simplifications.

Chebyshev spectral CNN (ChebNet) [21] approximates
the filter gy by the Chebyshev polynomials of the diagonal
matrix of eigenvalues, i.e., gy = ZlK:o <9iTi(1~\), where A =
2A/imax — Iy, and the values of A lie in [—1,1]. The
Chebyshev polynomials are defined recursively by T;(x) =
2xT;_1(x) — T;_»(x) with Tp(x) = 1 and T7(X) = x. As a
result, the convolution of a graph signal x with the defined
filter gy is

K
X %G g9 = U(Z eiTi(A))UTx ™
i=0
where L = 2L/Amax — In. As T;(L) = UT;(A)U7, which can
be proven by induction on i, ChebNet takes the form

K
X g = » 6T (L)x. (®)
i=0

As an improvement over Spectral CNN, the filters defined
by ChebNet are localized in space, which means that filters
can extract local features independently of the graph size. The
spectrum of ChebNet is mapped to [—1, 1] linearly. CayleyNet
[23] further applies the Cayley polynomials that are parametric
rational complex functions to capture narrow frequency bands.
The spectral graph convolution of CayleyNet is defined as

X %G 89 = CoX + 2Re{ D ¢;(hL —iD)/(hL +iD) /x (9)
j=1

where Re(+) returns the real part of a complex number, ¢ is a
real coefficent, ¢; is a complex coefficent, i is the imaginary
number, and & is a parameter that controls the spectrum of
a Cayley filter. While preserving spatial locality, CayleyNet
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shows that ChebNet can be considered as a special case of
CayleyNet.

Graph convolutional network (GCN) [22] introduces a first-
order approximation of ChebNet. Assuming that K = 1 and
Amax = 2, (8) is simplified as

X %G g :60x—91D’%AD’%X. (10)

To restrain the number of parameters and avoid overfitting,
GCN further assume that § = 6y = —6,, leading to the
following definition of a graph convolution:

X %G g = 0(In + D 2AD ?)x. (11)

To allow multichannels of inputs and outputs, GCN modifies
(11) into a compositional layer, defined as

H = X go = f(AXO) (12)

where A = I, + D"WPAD" /2 and f() is an
activation function. Using I, + D~(/2AD~(/2 empirically
causes numerical instability to GCN. To address this
problem, GCN applies a normalization trick to replace
A =1, +D UPAD /2 py A = D W/DAD1/2 with
A =A+1I, and D; = Zj [\,-j. Being a spectral-based
method, GCN can be also interpreted as a spatial-based
method. From a spatial-based perspective, GCN can be
considered as aggregating feature information from a node’s
neighborhood. Equation (12) can be expressed as

2 Av,uxu

ue{N (v)Uo}

er Yo e V.

h, =f 13)

Several recent works made incremental improvements over
GCN [22] by exploring alternative symmetric matrices. Adap-
tive GCN (AGCN) [40] learns hidden structural relations
unspecified by the graph adjacency matrix. It constructs a
so-called residual graph adjacency matrix through a learnable
distance function that takes two nodes’ features as inputs. Dual
GCN (DGCN) [41] introduces a dual-graph convolutional
architecture with two graph convolutional layers in parallel.
While these two layers share parameters, they use the normal-
ized adjacency matrix A and the positive pointwise mutual
information (PPMI) matrix that captures nodes co-occurrence
information through random walks sampled from a graph. The
PPMI matrix is defined as

count(vy, v2) - | D|
PPMI,, ,, = max{ log ,0 (14)
’ count(v;)count(v;)

where 01,02 € V, |[D| =3, count(v;, v2) and the count(-)
function returns the frequency that node » and/or node u co-
occur/occur in sampled random walks. By ensembling outputs
from dual-graph convolutional layers, DGCN encodes both
local and global structural information without the need to
stack multiple graph convolutional layers.

B. Spatial-Based ConvGNNs

Analogous to the convolutional operation of a conventional
CNN on an image, spatial-based methods define graph
convolutions based on a node’s spatial relations. Images
can be considered as a special form of a graph with each
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pixel representing a node. Each pixel is directly connected
to its nearby pixels, as shown in Fig. 1(a). A filter is applied
to a 3 x 3 patch by taking the weighted average of pixel
values of the central node and its neighbors across each
channel. Similarly, the spatial-based graph convolutions
convolve the central node’s representation with its neighbors’
representations to derive the updated representation for the
central node, as shown in Fig. 1(b). From another perspective,
spatial-based ConvGNNs share the same idea of information
propagation/message passing with RecGNNs. The spatial
graph convolutional operation essentially propagates node
information along edges.

The neural network for graphs (NN4G) [24], proposed in
parallel with GNN¥*, is the first work toward spatial-based
ConvGNNs. Distinctively different from RecGNNs, NN4G
learns graph mutual dependence through a compositional
neural architecture with independent parameters at each layer.
The neighborhood of a node can be extended through the
incremental construction of the architecture. NN4G performs
graph convolutions by summing up a node’s neighborhood
information directly. It also applies residual connections and
skip connections to memorize information over each layer.
As a result, NN4G derives its next-layer node states by

k—1
h = (W%, +>° > @®'hf

(15)
i=1 ueN(@)
where f(-) is an activation function and h” = 0. Equa-
tion (15) can also be written in a matrix form
k-1
H® = f(XW(") + ZAH("")G(")) (16)
i=I

which resembles the form of GCN [22]. One difference is
that NN4G uses the unnormalized adjacency matrix, which
may potentially cause hidden node states to have extremely
different scales. Contextual graph Markov model (CGMM)
[47] proposes a probabilistic model inspired by NN4G. While
maintaining spatial locality, CGMM has the benefit of proba-
bilistic interpretability.

Diffusion CNN (DCNN) [25] regards graph convolutions as
a diffusion process. It assumes that information is transferred
from one node to one of its neighboring nodes with a certain
transition probability so that information distribution can reach
equilibrium after several rounds. DCNN defines the diffusion
graph convolution (DGC) as

H® = f(W® o PFX) (17)

where f(-) is an activation function and the probability tran-
sition matrix P € R"*" is computed by P = D~'A. Note that
in DCNN, the hidden representation matrix H® remains the
same dimension as the input feature matrix X and is not a
function of its previous hidden representation matrix H*=D.
DCNN concatenates HD, H® | ... H%) together as the final
model outputs. As the stationary distribution of a diffusion
process is a summation of power series of probability tran-
sition matrices, DGC [72] sums up outputs at each diffusion
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step instead of concatenation. It defines the DGC by

K
H=>" fPXW®) (18)

k=0

where W® e RP*F and f(.) is an activation function.
Using the power of a transition probability matrix implies
that distant neighbors contribute very little information to a
central node. PGC-DGCNN [46] increases the contributions
of distant neighbors based on the shortest paths. It defines a
shortest-path adjacency matrix SU). If the shortest path from a
node v to a node u is of length j, then Sf,’f, =1, otherwise 0.
With a hyperparameter r to control the receptive field size,
PGC-DGCNN introduces a graph convolutional operation as
follows:

H® — ||ljzof((D(J))*lS(J)H(kfl)w(bk)) (19)
where LN)I(IJ ) = > Sl-(jjl), H® = X, and | represents the
concatenation of vectors. The calculation of the shortest-path
adjacency matrix can be expensive with O (n®) at maximum.
Partition graph convolution (PGC) [75] partitions a node’s
neighbors into Q groups based on certain criteria not lim-
ited to shortest paths. PGC constructs Q adjacency matrices
according to the defined neighborhood by each group. Then,
PGC applies GCN [22] with a different parameter matrix to
each neighbor group and sums the results

0
HO = 3T AOHA-DWUD
j=1

where HO = X, AW = (DU)~/2XDDD)~1/2 and
A = AD 4 1.

The message-passing neural network (MPNN) [27] outlines
a general framework of spatial-based ConvGNNs. It treats
graph convolutions as a message-passing process in which
information can be passed from one node to another along
edges directly. MPNN runs K-step message-passing iterations
to let information propagate further. The message-passing
function (namely, the spatial graph convolution) is defined as

(20)

b = U (¥, > M (D D x) ) @D
ueN(v)
where h” = x,, and Ui(-) and M;(-) are functions with

learnable parameters. After deriving the hidden representations
of each node, hlEK ) can be passed to an output layer to perform
node-level prediction tasks or to a readout function to perform
graph-level prediction tasks. The readout function generates
a representation of the entire graph based on node hidden
representations. It is generally defined as

hg = R(h{¥]v € G) (22)

where R(-) represents the readout function with learnable
parameters. MPNN can cover many existing GNNs by assum-
ing different forms of Uj(-), Mi(:), and R(-), such as [22]
and [85]-[87]. However, graph isomorphism network (GIN)
[57] finds that previous MPNN-based methods are incapable
of distinguishing different graph structures based on the graph

QOh,,

hy v
Vallzlz_k(-}) +$1"£14, al,z)!+(5+ 1a14A
O h, R O

V4 V2 o

(@) (b)

Fig. 4. Differences between GCN [22] and GAT [43]. (a) GCN [22] explicitly
assigns a nonparametric weight a;; = (1/(deg(v;)deg(v_,-))‘/2) to the neighbor
v; of v; during the aggregation process. (b) GAT [43] implicitly captures
the weight g;; via an end-to-end neural network architecture so that more
important nodes receive larger weights.

embedding they produced. To amend this drawback, GIN
adjusts the weight of the central node by a learnable parameter
€® . It performs graph convolutions by

h) = MLP[ (1 +e®)h*=D 4+ > h¢-D
ueN (v)

(23)

where MLP(-) represents a multilayer perceptron.

As the number of neighbors of a node can vary from one to
a thousand or even more, it is inefficient to take the full size
of a node’s neighborhood. GraphSage [42] adopts sampling to
obtain a fixed number of neighbors for each node. It performs
graph convolutions by

h® =0 (W - (%D (0% Dvu e Sy})) (24

where hl()o) = X,, fi(-) is an aggregation function, and Sxr(,) is
a random sample of the node v’s neighbors. The aggregation
function should be invariant to the permutations of node
orderings, such as a mean, sum, or max function.

Graph attention network (GAT) [43] assumes that contri-
butions of neighboring nodes to the central node are neither
identical like GraphSage [42], nor predetermined like GCN
[22] (this difference is illustrated in Fig. 4). GAT adopts
attention mechanisms to learn the relative weights between two
connected nodes. The graph convolutional operation according
to GAT is defined as

(25)

k 1w k) (k—1
hl() — Z algu)W( )hfl )

ueN (v)Uo

where h® = x,. The attention weight o) measures the
connective strength between the node v and its neighbor u

a(k) _ SOftmaX(g(aT [W(k)hl()kfl) ‘ ’W(k)hl(lkfl))) (26)

ou

where g(-) is a LeakyReLU activation function and a is a
vector of learnable parameters. The softmax function ensures
that the attention weights sum up to one over all neigh-
bors of the node v. GAT further performs the multihead
attention to increase the model’s expressive capability. This
shows an impressive improvement over GraphSage on node
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classification tasks. While GAT assumes the contributions of
attention heads are equal, gated attention network (GAAN)
[48] introduces a self-attention mechanism that computes an
additional attention score for each attention head. Apart from
applying graph attention spatially, GeniePath [55] further pro-
poses an LSTM-like gating mechanism to control information
flow across graph convolutional layers. There are other graph
attention models that might be of interest [88], [§9]. However,
they do not belong to the ConvGNN framework.

Mixture model network (MoNet) [44] adopts a different
approach to assign different weights to a node’s neighbors.
It introduces node pseudocoordinates to determine the relative
position between a node and its neighbor. Once the relative
position between two nodes is known, a weight function
maps the relative position to the relative weight between these
two nodes. In such a way, the parameters of a graph filter
can be shared across different locations. Under the MoNet
framework, several existing approaches for manifolds, such
as geodesic CNN (GCNN) [90], anisotropic CNN (ACNN)
[91], and spline CNN [92], and for graphs, such as GCN
[22] and DCNN [25], can be generalized as special instances
of MoNet by constructing nonparametric weight functions.
MoNet additionally proposes a Gaussian kernel with learnable
parameters to learn the weight function adaptively.

Another distinct line of works achieves weight sharing
across different locations by ranking a node’s neighbors
based on certain criteria and associating each ranking with a
learnable weight. PATCHY-SAN [26] orders neighbors of each
node according to their graph labelings and selects the top ¢
neighbors. Graph labelings are essentially node scores, which
can be derived by node degree, centrality, and the Weisfeiler—
Lehman (WL) color [93], [94]. As each node now has a fixed
number of ordered neighbors, graph-structured data can be
converted into the grid-structured data. PATCHY-SAN applies
a standard 1-D convolutional filter to aggregate neighborhood
feature information, where the order of the filter’s weights
corresponds to the order of a node’s neighbors. The ranking
criterion of PATCHY-SAN only considers graph structures,
which requires heavy computation for data processing. Large-
scale GCN (LGCN) [45] ranks a node’s neighbors based on
node feature information. For each node, LGCN assembles
a feature matrix that consists of its neighborhood and sorts
this feature matrix along each column. The first ¢ rows of
the sorted feature matrix are taken as the input data for the
central node.

1) Improvement in Terms of Training Efficiency: Train-
ing ConvGNNs, such as GCN [22], is usually required to
save the whole graph data and intermediate states of all
nodes into memory. The full-batch training algorithm for
ConvGNNs suffers significantly from the memory overflow
problem, especially when a graph contains millions of nodes.
To save memory, GraphSage [42] proposes a batch-training
algorithm for ConvGNNs. It samples a tree rooted at each
node by recursively expanding the root node’s neighborhood
by K steps with fixed sample size. For each sampled tree,
GraphSage computes the root node’s hidden representation by
hierarchically aggregating hidden node representations from
bottom to top.
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Fast learning with GCN (FastGCN) [49] samples a fixed
number of nodes for each graph convolutional layer instead
of sampling a fixed number of neighbors for each node
like GraphSage [42]. It interprets graph convolutions as
integral transforms of embedding functions of nodes under
probability measures. The Monte Carlo approximation and
variance reduction techniques are employed to facilitate the
training process. As FastGCN samples nodes independently
for each layer, between-layer connections are potentially
sparse. Huang et al. [51] propose an adaptive layerwise
sampling approach, where node sampling for the lower layer
is conditioned on the top one. This method achieves higher
accuracy compared with FastGCN at the cost of employing a
much more complicated sampling scheme.

In another work, stochastic training of GCNs (StoGCN) [50]
reduces the receptive field size of a graph convolution to an
arbitrarily small scale using historical node representations as
a control variate. StoGCN achieves comparable performance
even with two neighbors per node. However, StoGCN still
has to save intermediate states of all nodes, which is memory
consuming for large graphs.

Cluster-GCN [58] samples a subgraph using a graph cluster-
ing algorithm and performs graph convolutions to nodes within
the sampled subgraph. As the neighborhood search is also
restricted within the sampled subgraph, Cluster-GCN is capa-
ble of handling larger graphs and using deeper architectures
at the same time, in less time and with less memory. Cluster-
GCN notably provides a straightforward comparison of time
complexity and memory complexity for existing ConvGNN
training algorithms. We analyze its results based on Table IV.

In Table IV, GCN [22] is the baseline method that conducts
the full-batch training. GraphSage saves memory at the cost
of sacrificing time efficiency. Meanwhile, the time and mem-
ory complexities of GraphSage grow exponentially with an
increase of K and r. The time complexity of Sto-GCN is the
highest, and the bottleneck of the memory remains unsolved.
However, Sto-GCN can achieve satisfactory performance with
a very small r. The time complexity of Cluster-GCN remains
the same as the baseline method since it does not introduce
redundant computations. Of all the methods, Cluster-GCN
realizes the lowest memory complexity.

2) Comparison Between Spectral and Spatial Models: Spe-
ctral models have a theoretical foundation in graph signal
processing. By designing new graph signal filters (e.g., Cay-
leynets [23]), one can build new ConvGNNs. However, spatial
models are preferred over spectral models due to efficiency,
generality, and flexibility issues. First, spectral models are less
efficient than spatial models. Spectral models either need to
perform eigenvector computation or handle the whole graph at
the same time. Spatial models are more scalable to large graphs
as they directly perform convolutions in the graph domain via
information propagation. The computation can be performed in
a batch of nodes instead of the whole graph. Second, spectral
models that rely on a graph Fourier basis generalize poorly to
new graphs. They assume a fixed graph. Any perturbations to
a graph would result in a change of eigenbasis. Spatial-based
models, on the other hand, perform graph convolutions locally
on each node, where weights can be easily shared across
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TABLE IV

TIME AND MEMORY COMPLEXITY COMPARISON FOR CONVGNN TRAINING ALGORITHMS (SUMMARIZED BY [58]). n IS THE TOTAL NUMBER OF
NODES. m IS THE TOTAL NUMBER OF EDGES. K IS THE NUMBER OF LAYERS. s IS THE BATCH SI1ZE. r IS THE NUMBER OF NEIGHBORS BEING
SAMPLED FOR EACH NODE. FOR SIMPLICITY, THE DIMENSIONS OF THE NODE HIDDEN FEATURES REMAIN CONSTANT, DENOTED BY d

Complexity  GCN [22] GraphSage [42] FastGCN [49] StoGCN [50] Cluster-GCN [58]
Time O(Kmd+ Knd?) O(r¥nd?) O(Krnd?) O(Kmd + Knd? +rKnd?) O(Kmd+ Knd?)
Memory O(Knd + Kd?) O(srKd+ Kd?) O(Ksrd+ Kd?) O(Knd+ Kd?) O(Ksd + Kd?)

different locations and structures. Third, spectral-based models
are limited to operate on undirected graphs. Spatial-based
models are more flexible to handle multisource graph inputs,
such as edge inputs [15], [27], [86], [95], [96], directed graphs
[25], [72], signed graphs [97], and heterogeneous graphs [98],
[99], because these graph inputs can be incorporated into the
aggregation function easily.

C. Graph Pooling Modules

After a GNN generates node features, we can use them for
the final task. However, using all these features directly can be
computationally challenging; thus, a downsampling strategy is
needed. Depending on the objective and the role it plays in
the network, different names are given to this strategy.

1) The pooling operation aims to reduce the size of para-
meters by downsampling the nodes to generate smaller
representations and, thus, avoid overfitting, permutation
invariance, and computational complexity issues.

2) The readout operation is mainly used to generate graph-
level representation based on node representations. Their
mechanism is very similar.

In this section, we use pooling to refer to all kinds of
downsampling strategies applied to GNNSs.

In some earlier works, the graph coarsening algorithms use
eigendecomposition to coarsen graphs based on their topolog-
ical structure. However, these methods suffer from the time
complexity issue. The Graclus algorithm [100] is an alternative
of eigendecomposition to calculate a clustering version of
the original graph. Some recent works [23] employed it as
a pooling operation to coarsen graphs.

Nowadays, mean/max/sum pooling is the most primitive and
effective way to implement downsampling since calculating
the mean/max/sum value in the pooling window is fast

hs = mean/ max /sum(hﬁk), h;K), cee h,(ZK)) (27)

where K is the index of the last graph convolutional layer.

Henaff et al. [20] show that performing a simple max/mean
pooling at the beginning of the network is especially important
to reduce the dimensionality in the graph domain and mitigate
the cost of the expensive graph Fourier transform operation.
Furthermore, some works [17], [27], [46] also use attention
mechanisms to enhance the mean/sum pooling.

Even with attention mechanisms, the reduction operation
(such as sum pooling) is not satisfactory since it makes the
embedding inefficient; a fixed-size embedding is generated
regardless of the graph size. Vinyals et al. [101] propose the
Set2Set method to generate a memory that increases with the
size of the input. It then implements an LSTM that intends

to integrate order-dependent information into the memory
embedding before a reduction is applied that would, otherwise,
destroy that information.

Defferrard et al. [21] address this issue in another way
by rearranging nodes of a graph in a meaningful way. They
devise an efficient pooling strategy in their approach ChebNet.
Input graphs are first coarsened into multiple levels by the
Graclus algorithm [100]. After coarsening, the nodes of the
input graph and its coarsened version are rearranged into a
balanced binary tree. Arbitrarily aggregating the balanced
binary tree from bottom to top will arrange similar nodes
together. Pooling such a rearranged signal is much more
efficient than pooling the original.

Zhang et al. [52] propose the DGCNN with a similar
pooling strategy named SortPooling that performs pooling by
rearranging nodes to a meaningful order. Different from Cheb-
Net [21], DGCNN sorts nodes according to their structural
roles within the graph. The graph’s unordered node features
from spatial graph convolutions are treated as continuous WL
colors [93], and they are then used to sort nodes. In addition
to sorting the node features, it unifies the graph size to g by
truncating/extending the node feature matrix. The last n — ¢
rows are deleted if n > g¢; otherwise, ¢ — n zero rows are
added.

The aforementioned pooling methods mainly consider graph
features and ignore the structural information of graphs.
Recently, a differentiable pooling (DiffPool) [54] is proposed,
which can generate hierarchical representations of graphs.
Compared with all previous coarsening methods, DiffPool
does not simply cluster the nodes in a graph but learns a
cluster assignment matrix S at layer k referred to as S® e
R™>™m+1 - where ny is the number of nodes at the kth layer. The
probability values in matrix S® are being generated based on
node features and topological structure using

S® = softmax(ConvGNN; (A®, H®)Y). (28)

The core idea of this is to learn comprehensive node assign-
ments that consider both topological and feature information
of a graph, so (28) can be implemented with any standard Con-
vGNNs. However, the drawback of DiffPool is that it generates
dense graphs after pooling, and thereafter, the computational
complexity becomes O (n?).

Most recently, the SAGPool [102] approach is proposed,
which considers both node features and graph topology and
learns the pooling in a self-attention manner.

Overall, pooling is an essential operation to reduce
graph size. How to improve the effectiveness and com-
putational complexity of pooling is an open question for
investigation.
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D. Discussion of Theoretical Aspects

We discuss the theoretical foundation of GNNs from differ-
ent perspectives.

1) Shape of Receptive Field: The receptive field of a node
is the set of nodes that contribute to the determination of its
final node representation. When compositing multiple spatial
graph convolutional layers, the receptive field of a node grows
one step ahead toward its distant neighbors each time. Micheli
[24] prove that a finite number of spatial graph convolutional
layers exists such that for each node v € V, the receptive
field of node v covers all nodes in the graph. As a result,
a ConvGNN is able to extract global information by stacking
local graph convolutional layers.

2) VC Dimension: The VC dimension is a measure of
model complexity defined as the largest number of points that
can be shattered by a model. There are few works on analyzing
the VC dimension of GNNs. Given the number of model
parameter p and the number of nodes n, Scarselli et al. [103]
derive that the VC dimension of a GNN* [15] is O(p*n?)
if it uses the sigmoid or tangent hyperbolic activation and is
O(p*n) if it uses the piecewise polynomial activation function.
This result suggests that the model complexity of a GNN*
[15] increases rapidly with p and n if the sigmoid or tangent
hyperbolic activation is used.

3) Graph Isomorphism: Two graphs are isomorphic if they
are topologically identical. Given two nonisomorphic graphs
G| and G,, Xu et al. [57] prove that if a GNN maps G| and
G, to different embeddings, these two graphs can be identified
as nonisomorphic by the WL test of isomorphism [93]. They
show that common GNNs, such as GCN [22] and GraphSage
[42], are incapable of distinguishing different graph structures.
Xu et al. [57] further prove if the aggregation functions and
the readout functions of a GNN are injective, the GNN is at
most as powerful as the WL test in distinguishing different
graphs.

4) Equivariance and Invariance: A GNN must be an
equivariant function when performing node-level tasks and
must be an invariant function when performing graph-level
tasks. For node-level tasks, let f(A,X) € R"™ be a GNN
and Q be any permutation matrix that changes the order of
nodes. A GNN is equivariant if it satisfies f(QAQ”, QX) =
Qf (A, X). For graph-level tasks, let f(A,X) € RY. A GNN
is invariant if it satisfies f(QAQT, QX) = f(A, X). In order
to achieve equivariance or invariance, components of a GNN
must be invariant to node orderings. Maron et al. [104]
theoretically study the characteristics of permutation invariant
and equivariant linear layers for graph data.

5) Universal Approximation: It is well known that mul-
tiperceptron feedforward neural networks with one hidden
layer can approximate any Borel measurable function [105].
The universal approximation capability of GNNs has seldom
been studied. Hammer et al. [106] prove that cascade cor-
relation can approximate functions with structured outputs.
Scarselli et al. [107] prove that a RecGNN [15] can approxi-
mate any function that preserves unfolding equivalence up to
any degree of precision. Two nodes are unfolding equivalent
if their unfolding trees are identical, where the unfolding tree
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of a node is constructed by iteratively extending a node’s
neighborhood at a certain depth. Xu et al. [57] show that
ConvGNNSs under the framework of message passing [27] are
not universal approximators of continuous functions defined
on multisets. Maron er al. [104] prove that an invariant
graph network can approximate an arbitrary invariant function
defined on graphs.

VI. GRAPH AUTOENCODERS

GAEs are deep neural architectures that map nodes into
a latent feature space and decode graph information from
latent representations. GAEs can be used to learn network
embeddings or generate new graphs. The main characteristics
of selected GAEs are summarized in Table V. In the following,
we provide a brief review of GAEs from two perspectives:
network embedding and graph generation.

A. Network Embedding

A network embedding is a low-dimensional vector repre-
sentation of a node that preserves a node’s topological infor-
mation. GAEs learn network embeddings using an encoder to
extract network embeddings and using a decoder to enforce
network embeddings to preserve the graph topological infor-
mation, such as the PPMI matrix and the adjacency matrix.

Earlier approaches mainly employ multilayer perceptrons to
build GAEs for network embedding learning. Deep neural net-
works for graph representations (DNGRs) [59] use a stacked
denoising autoencoder [108] to encode and decode the PPMI
matrix via multilayer perceptrons. Concurrently, structural
deep network embedding (SDNE) [60] uses a stacked autoen-
coder to preserve the node first-order proximity and second-
order proximity jointly. SDNE proposes two loss functions
on the outputs of the encoder and the outputs of the decoder
separately. The first loss function enables the learned network
embeddings to preserve the node first-order proximity by
minimizing the distance between a node’s network embedding
and its neighbors’ network embeddings. The first loss function
L is defined as

Lia= D Ayullenc(x,) —enc(x,)|I’
(v,u)eE

(29)

where x, = A, . and enc(-) is an encoder that consists of a
multilayer perceptron. The second loss function enables the
learned network embeddings to preserve the node second-
order proximity by minimizing the distance between a node’s
inputs and its reconstructed inputs. Concretely, the second loss
function L,,q is defined as

Lo = D, |I(dec(enc(x,)) —x,) © b, ||’
veV

where b,, = 1if A,, =0,b,, =p > 1if A,, = 1, and

dec(-) is a decoder that consists of a multilayer perceptron.
DNGR [59] and SDNE [60] only consider node structural
information that is about the connectivity between pairs of
nodes. They ignore the nodes that may contain feature infor-
mation that depicts the attributes of nodes themselves. GAE*3
[61] leverages GCN [22] to encode node structural information

(30)

3We name it GAE* to avoid ambiguity in this article.
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TABLE V

MAIN CHARACTERISTICS OF THE SELECTED GAES

Approaches Inputs Encoder Decoder Objective

DNGR (2016) [59] A a multi-layer perceptron  a multi-layer perceptron  reconstruct the PPMI matrix

SDNE (2016) [60] A a multi-layer perceptron  a multi-layer perceptron  preserve node lst-order and 2nd-order proximity

GAE* (2016) [61] A X a ConvGNN a similarity measure reconstruct the adjacency matrix

VGAE (2016) [61] A, X a ConvGNN a similarity measure learn the generative distribution of data

ARVGA (2018) [62] A X a ConvGNN a similarity measure learn the generative distribution of data adversarially
DNRE (2018) [63] A an LSTM network an identity function recover network embedding

NetRA (2018) [64] A an LSTM network an LSTM network recover network embedding with adversarial training
DeepGMG (2018) [65] A, X,X¢ aRecGNN a decision process maximize the expected joint log-likelihood

GraphRNN (2018) [66] A a RNN a decision process maximize the likelihood of permutations

GraphVAE (2018) [67] A, X,X¢ aConvGNN a multi-layer perceptron  optimize the reconstruction loss

RGVAE (2018) [68] A, X,X¢ aCNN a deconvolutional net optimize the reconstruction loss with validity constraints
MolGAN (2018) [69] A, X,X¢ aConvGNN a multi-layer perceptron  optimize the generative adversarial loss and the RL loss
NetGAN (2018) [70] A an LSTM network an LSTM network optimize the generative adversarial loss

and node feature information at the same time. The encoder
of GAE* consists of two graph convolutional layers, which
takes the form

Z = enc(X, A) = Geonv(f(Geonv(A, X; ©q)); ©3) (31)

where Z denotes the network embedding matrix of a graph,
f () is a ReLU activation function, and the Gconv(-) function
is a graph convolutional layer defined by (12). The decoder of
GAE* aims to decode node relational information from their
embeddings by reconstructing the graph adjacency matrix,
which is defined as

Av,u = dec(z,,2z,) =0 (zfz,,) (32)

where z, is the embedding of node v. GAE* is trained by
minimizing the negative cross entropy given the real adjacency
matrix A and the reconstructed adjacency matrix A.

Simply reconstructing the graph adjacency matrix may
lead to overfitting due to the capacity of the autoencoders.
Variational GAE (VGAE) [61] is a variational version of
GAE to learn the distribution of data. VGAE optimizes the
variational lower bound L

L = Egzixallog p(AlZ)] — KL[g(Z]X, A)|Ip(Z)] (33)

where K L(-) is the Kullback-Leibler divergence function
that measures the distance between two distributions, p(Z)
is a Gaussian prior p(Z) = [[_, p(z:)) = [[/_, N(z0, 1),
p(Aij = 11z;,2;) = dec(z;,2;) = 0 (2] z;), and q(Z|X,A) =
[T, ¢(z|X, A) with g(z;|X,A) = N(z;|u;, diag(c?)). The
mean vector y; is the ith row of an encoder’s outputs
defined by (31), and logo; is derived similarly as u; with
another encoder. According to (33), VGAE assumes that
the empirical distribution ¢(Z|X, A) should be as close as
possible to the prior distribution p(Z). To further enforce that
the empirical distribution ¢(Z|X, A) approximates the prior
distribution p(Z), adversarially regularized VGAE (ARVGA)
[62], [109] employs the training scheme of the generative

adversarial networks (GANs) [110]. A GAN plays a competi-
tion game between a generator and a discriminator in training
generative models. A generator tries to generate “fake sam-
ples” to be as real as possible, while a discriminator attempts
to distinguish the “fake samples” from real ones. Inspired by
GANs, ARVGA endeavors to learn an encoder that produces
an empirical distribution ¢ (Z|X, A), which is indistinguishable
from the prior distribution p(Z).

Similar to GAE*, GraphSage [42] encodes node features
with two graph convolutional layers. Instead of optimizing
the reconstruction error, GraphSage shows that the relational
information between two nodes can be preserved by negative
sampling with the loss

L(ZD) = - 10g(deC(Zu, Zu)) - QED,,~P,, (v) log(_dec(zm Zu,,))
(34)

where node u is a neighbor of node v, node v, is a distant node
to node v and is sampled from a negative sampling distribution
P,(v), and Q is the number of negative samples. This loss
function essentially enforces close nodes to have similar repre-
sentations and distant nodes to have dissimilar representations.
DGI [56] alternatively drives local network embeddings to
capture global structural information by maximizing local
mutual information. It shows a distinct improvement over
GraphSage [42] experimentally.

For the aforementioned methods, they essentially learn
network embeddings by solving a link prediction problem.
However, the sparsity of a graph causes the number of
positive node pairs to be far less than the number of negative
node pairs. To alleviate the data sparsity problem in learning
network embedding, another line of works convert a graph into
sequences by random permutations or random walks. In such
a way, those deep learning approaches that are applicable to
sequences can be directly used to process graphs. Deep recur-
sive network embedding (DRNE) [63] assumes that a node’s
network embedding should approximate the aggregation of its
neighborhood network embeddings. It adopts a long short-term
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memory (LSTM) network [7] to aggregate a node’s neighbors.
The reconstruction error of DRNE is defined as

L=>" ||z, — LSTM({z,|u € N()})|P

veV

(35)

where z, is the network embedding of node » obtained by
a dictionary lookup, and the LSTM network takes a random
sequence of node v’s neighbors ordered by their node degree
as inputs. As suggested by (35), DRNE implicitly learns
network embeddings via an LSTM network rather than using
the LSTM network to generate network embeddings. It avoids
the problem that the LSTM network is not invariant to the
permutation of node sequences. Network representations with
adversarially regularized autoencoders (NetRAs) [64] propose
a graph encoder—decoder framework with a general loss func-
tion, defined as

L = —E,p,, @ (dist(z, dec(enc(z)))) (36)

where dist(-) is the distance measure between the node embed-
ding z and the reconstructed z. The encoder and decoder of
NetRA are LSTM networks with random walks rooted on
each node v € V as inputs. Similar to ARVGA [62], NetRA
regularizes the learned network embeddings within a prior
distribution via adversarial training. Although NetRA ignores
the node permutation variant problem of LSTM networks,
the experimental results validate the effectiveness of NetRA.

B. Graph Generation

With multiple graphs, GAEs are able to learn the gener-
ative distribution of graphs by encoding graphs into hidden
representations and decoding a graph structure given hidden
representations. The majority of GAEs for graph generation
are designed to solve the molecular graph generation problem,
which has a high practical value in drug discovery. These
methods either propose a new graph in a sequential manner
or in a global manner.

Sequential approaches generate a graph by proposing nodes
and edges step by step. Gomez-Bombarelli er al. [111],
Kusner et al. [112], and Dai et al. [113] model the generation
process of a string representation of molecular graphs named
SMILES with deep CNNs and RNNs as the encoder and
the decoder, respectively. While these methods are domain-
specific, alternative solutions are applicable to general graphs
by means of iteratively adding nodes and edges to a growing
graph until a certain criterion is satisfied. Deep generative
model of graphs (DeepGMG) [65] assumes that the probability
of a graph is the sum over all possible node permutations

p(G)=> p(G.x) 37
where 7 denotes a node ordering. It captures the complex joint
probability of all nodes and edges in the graph. DeepGMG
generates graphs by making a sequence of decisions, namely,
whether to add a node, which node to add, whether to add
an edge, and which node to connect to the new node. The
decision process of generating nodes and edges is conditioned
on the node states and the graph state of a growing graph
updated by a RecGNN. In another work, GraphRNN [66]
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proposes a graph-level RNN and an edge-level RNN to model
the generation process of nodes and edges. The graph-level
RNN adds a new node to a node sequence each time, while
the edge-level RNN produces a binary sequence indicating
connections between the new node and the nodes previously
generated in the sequence.

Global approaches output a graph all at once. Graph varia-
tional autoencoder (GraphVAE) [67] models the existence of
nodes and edges as independent random variables. By assum-
ing the posterior distribution ¢4(z|G) defined by an encoder
and the generative distribution py(G|z) defined by a decoder,
GraphVAE optimizes the variational lower bound

L(¢,0; G) = Eyy6)[—log pa(Glz)] + K Llq,(2|G)|| p(2)]
(38)

where p(z) follows a Gaussian prior and ¢ and 6 are learnable
parameters. With a ConvGNN as the encoder and a simple
multilayer perception as the decoder, GraphVAE outputs a
generated graph with its adjacency matrix, node attributes and
edge attributes. It is challenging to control the global properties
of generated graphs, such as graph connectivity, validity, and
node compatibility. Regularized GraphVAE (RGVAE) [68]
further imposes validity constraints on a GraphVAE to reg-
ularize the output distribution of the decoder. Molecular GAN
(MolGAN) [69] integrates convGNNs [114], GANs [115],
and reinforcement learning objectives to generate graphs with
the desired properties. MolGAN consists of a generator and
a discriminator, competing with each other to improve the
authenticity of the generator. In MolGAN, the generator
tries to propose a fake graph along with its feature matrix,
while the discriminator aims to distinguish the fake sample
from the empirical data. In addition, a reward network is
introduced in parallel with the discriminator to encourage
the generated graphs to possess certain properties according
to an external evaluator. NetGAN [70] combines LSTMs [7]
with the Wasserstein GANs [116] to generate graphs from a
random-walk-based approach. NetGAN trains a generator to
produce plausible random walks through an LSTM network
and enforces a discriminator to identify fake random walks
from the real ones. After training, a new graph is derived by
normalizing a co-occurrence matrix of nodes computed based
on random walks produced by the generator.

In brief, sequential approaches linearize graphs into
sequences. They can lose structural information due to the
presence of cycles. Global approaches produce a graph all at
once. They are not scalable to large graphs as the output space
of a GAE is up to O(n?).

VII. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS

Graphs in many real-world applications are dynamic both in
terms of graph structures and graph inputs. STGNNs occupy
important positions in capturing the dynamicity of graphs.
Methods under this category aim to model the dynamic node
inputs while assuming interdependency between connected
nodes. For example, a traffic network consists of speed sensors
placed on roads, where edge weights are determined by the
distance between pairs of sensors. As the traffic condition of
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one road may depend on its adjacent roads’ conditions, it is
necessary to consider spatial dependence when performing
traffic speed forecasting. As a solution, STGNNs capture
spatial and temporal dependencies of a graph simultaneously.
The task of STGNNs can be forecasting future node values or
labels or predicting spatial-temporal graph labels. STGNNs
follow two directions: RNN-based methods and CNN-based
methods.

Most RNN-based approaches capture spatial-temporal
dependencies by filtering inputs and hidden states passed to
a recurrent unit using graph convolutions [48], [71], [72].
To illustrate this, suppose that a simple RNN takes the form

HY =g (WX® + UH""D +b) (39)

where X € R"*? is the node feature matrix at time step .
After inserting graph convolution, (39) becomes

H® = ¢ (Geonv(X?, A; W) + Geonv(H'™, A; U) + b)
(40)

where Geonv(+) is a graph convolutional layer. Graph convo-
lutional recurrent network (GCRN) [71] combines an LSTM
network with ChebNet [21]. Diffusion convolutional RNN
(DCRNN) [72] incorporates a proposed diffusion graph con-
volutional layer [see (18)] into a GRU network. In addition,
DCRNN adopts an encoder—decoder framework to predict the
future K steps of node values.

Another parallel work uses node-level RNNs and edge-level
RNNs to handle different aspects of temporal information.
Structural-RNN [73] proposes a recurrent framework to predict
node labels at each time step. It comprises two kinds of
RNNSs, namely, a node-RNN and an edge-RNN. The temporal
information of each node and each edge is passed through a
node-RNN and an edge-RNN, respectively. To incorporate the
spatial information, a node-RNN takes the outputs of edge-
RNNSs as inputs. Since assuming different RNNs for different
nodes and edges significantly increases model complexity,
it instead splits nodes and edges into semantic groups. Nodes
or edges in the same semantic group share the same RNN
model, which saves the computational cost.

RNN-based approaches suffer from time-consuming iter-
ative propagation and gradient explosion/vanishing issues.
As alternative solutions, CNN-based approaches tackle
spatial-temporal graphs in a nonrecursive manner with the
advantages of parallel computing, stable gradients, and low-
memory requirements. As illustrated in Fig. 2(d), CNN-based
approaches interleave 1-D-CNN layers with graph convo-
lutional layers to learn temporal and spatial dependencies,
respectively. Assume that the inputs to an STGNN is a tensor
X € RT>"d and the 1-D-CNN layer slides over Aj.;
along the time axis to aggregate temporal information for each
node, while the graph convolutional layer operates on Aj; .
to aggregate spatial information at each time step. CGCN [74]
integrates 1-D convolutional layers with ChebNet [21] or GCN
[22] layers. It constructs a spatial-temporal block by stacking
a gated 1-D convolutional layer, a graph convolutional layer,
and another gated 1-D convolutional layer in sequential order.
ST-GCN [75] composes a spatial-temporal block using a 1-D
convolutional layer and a PGC layer [see (20)].

Previous methods all use a predefined graph structure. They
assume that the predefined graph structure reflects the genuine
dependence relationships among nodes. However, with many
snapshots of graph data in a spatial-temporal setting, it is
possible to learn latent static graph structures automatically
from data. To realize this, Graph WaveNet [76] proposes a
self-adaptive adjacency matrix to perform graph convolutions.
The self-adaptive adjacency matrix is defined as

Aqgp = SoftMax(ReLU(EE])) (41)

where the SoftMax function is computed along the row
dimension, E1 denotes the source node embedding, and E2
denotes the target node embedding with learnable parameters.
By multiplying E1 with E2, one can get the dependence
weight between a source node and a target node. With a
complex CNN-based spatial-temporal neural network, Graph
WaveNet performs well without being given an adjacency
matrix.

Learning latent static spatial dependencies can help
researchers discover interpretable and stable correlations
among different entities in a network. However, in some
circumstances, learning latent dynamic spatial dependencies
may further improve model precision. For example, in a traffic
network, the travel time between two roads may depend on
their current traffic conditions. GaAN [48] employs attention
mechanisms to learn dynamic spatial dependencies through
an RNN-based approach. An attention function is used to
update the edge weight between two connected nodes given
their current node inputs. ASTGCN [77] further includes a
spatial attention function and a temporal attention function
to learn latent dynamic spatial dependencies and temporal
dependencies through a CNN-based approach. The common
drawback of learning latent spatial dependencies is that it
needs to calculate the spatial dependence weight between each
pair of nodes, which costs O (n?).

VIII. APPLICATIONS

As graph-structured data are ubiquitous, GNNs have a wide
variety of applications. In this section, we summarize the
benchmark graph data sets, evaluation methods, and open-
source implementation, respectively. We detail practical appli-
cations of GNNSs in various domains.

A. Data Sets

We mainly sort data sets into four groups, namely, citation
networks, biochemical graphs, social networks, and others.
In Table VI, we summarize selected benchmark data sets.
More details are given in the Supplementary Material A.

B. Evaluation and Open-Source Implementations

Node classification and graph classification are common
tasks to assess the performance of RecGNNs and ConvGNNS.

1) Node Classification: In node classification, most meth-
ods follow a standard split of train/valid/test on benchmark
data sets, including Cora, Citeseer, Pubmed, PPI, and Reddit.
They reported the average accuracy or F1 score on the test
data set over multiple runs. A summarization of experimen-
tal results of methods can be found in the Supplementary
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TABLE VI
SUMMARY OF THE SELECTED BENCHMARK DATA SETS

Category  Data set Source  # Graphs # Nodes(Avg.) # Edges (Avg.) #Features # Classes Citation
[22], [23], [25], [41], [43], [44], [45]
Ciation Cora [117] 1 2708 5429 1433 7 (491, [S01. 511, [53]. [56]. [61]. [62]
Networks | Citeseer [117] 1 3327 4732 3703 6 %g: {23: F‘g}’ (431, 1501, 1511, 153]
[18], [22], [25], [41], [43], [44], [45]
Pubmed [117] 1 19717 44338 500 3 [49], [51], [53], [55], [56], [61], [62]
[70], [95]
DBLP (vil) [I18] 1 4107340 36624464 - - [64], [70], [99]
[18], [42], [43], [48], [45], [50], [55]
PPI [119] 24 56944 818716 50 121 [56]. [58]. [64]
NCI-1 [120] 4110 29.87 32.30 37 2 [25], [26], [46], [52], [57], [96], [98]
Bio- MUTAG [121] 188 17.93 19.79 7 2 [25], [26], [46], [52], [57], [96]
chemical D&D [122] 1178 284.31 715.65 82 2 [26], [46], [52], [54], [96], [98]
Graphs PROTEIN [123] 1113 39.06 72.81 4 2 [26], [46], [52], [54], [57]
PTC [124] 344 255 - 19 2 [25], [26], [46], [52], [57]
QM9 [125] 133885 - - - - [27], [69]
Alchemy [126] 119487 - - - - -
Social Reddit [42] 1 232965 11606919 602 41 [42], [48], [49], [50], [51], [56]
Networks | BlogCatalog  [127] | 10312 333983 - 39 [18], [55], [60], [64]
MNIST [128] 70000 784 - 1 10 [19], [23], [21], [44], [96]
Others METR-LA [129] I 207 1515 2 - [48], [72], [76]
Nell [130] 1 65755 266144 61278 210 [22], [41], [50]
Material B. It should be noted that these results do not nec- library (DGL)’ [133] is released, which provides a fast imple-

essarily represent a rigorous comparison. Shchur et al. [131]
identified two pitfalls in evaluating the performance GNNs on
node classification. First, using the same train/valid/test split
throughout all experiments underestimates the generalization
error. Second, different methods employed different training
techniques, such as hyperparameter tuning, parameter initial-
ization, learning rate decay, and early stopping. For a relatively
fair comparison, we refer the readers to [131].

2) Graph Classification: In graph classification, researchers
often adopt tenfold cross validation (cv) for model evaluation.
However, as pointed out in [132], the experimental settings
are ambiguous and not unified across different works. In par-
ticular, [132] raises the concern of the correct usage of data
splits for model selection versus model assessment. An often
encountered problem is that the external test set of each fold is
used both for model selection and risk assessment. Reference
[132] compares GNNs in a standardized and uniform evalua-
tion framework. They apply an external tenfold CV to get an
estimate of the generalization performance of a model and an
inner holdout technique with a 90%/10% training/validation
split for model selection. An alternative procedure would be
a double-cv method, which uses an external k-fold cv for
model assessment and an inner k-fold cv for model selection.
We refer the readers to [132] for a detailed and rigorous
comparison of GNN methods for graph classification.

3) Open-Source Implementations: These facilitate the work
of baseline experiments in deep learning research. In the
Supplementary Material C, we provide the hyperlinks of the
open-source implementations of the GNN models reviewed in
this article. Noticeably, Fey et al. [92] published a geomet-
ric learning library in PyTorch named PyTorch Geometric,*
which implements many GNNs. Most recently, the deep graph

“https://github.com/rusty 1s/pytorch_geometric

mentation of many GNNs on top of popular deep learning
platforms, such as PyTorch and MXNet.

C. Practical Applications

GNNs have many applications across different tasks and
domains. Despite general tasks that can be handled by each
category of GNNs directly, including node classification,
graph classification, network embedding, graph generation,
and spatial-temporal graph forecasting, other general graph-
related tasks, such as node clustering [134], link prediction
[135], and graph partitioning [136], can also be addressed by
GNNs. We detail some applications based on the following
research domains.

1) Computer Vision: Applications of GNNs in computer
vision include scene graph generation, point clouds’ classi-
fication, and action recognition.

Recognizing semantic relationships between objects facili-
tates the understanding of the meaning behind a visual scene.
Scene graph generation models aim to parse an image into
a semantic graph that consists of objects and their semantic
relationships [137]-[139]. Another application inverses the
process by generating realistic images given scene graphs
[140]. As natural language can be parsed as semantic graphs,
where each word represents an object, it is a promising
solution to synthesize images given textual descriptions.

Classifying and segmenting points’ clouds enable LiDAR
devices to “see” the surrounding environment. A point cloud
is a set of 3-D points recorded by LiDAR scans. Refer-
ences [141]-[143] convert point clouds into k-nearest neighbor
graphs or superpoint graphs and use ConvGNNSs to explore the
topological structure.

Identifying human actions contained in videos facilitates a
better understanding of video content from a machine aspect.

Shttps://www.dgl.ai/
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Some solutions detect the locations of human joints in video
clips. Human joints that are linked by skeletons naturally form
a graph. Given the time series of human joint locations, [73]
and [75] apply STGNNSs to learn human action patterns.

Moreover, the number of applicable directions of GNNs
in computer vision is still growing. It includes human—object
interaction [144], few-shot image classification [145]-[147],
semantic segmentation [148], [149], visual reasoning [150],
and question answering [151].

2) Natural Language Processing: A common application of
GNNs in natural language processing is the text classification.
GNNGs utilize the interrelations of documents or words to infer
document labels [22], [42], [43].

Despite the fact that natural language data exhibit a sequen-
tial order, they may also contain an internal graph structure,
such as a syntactic dependency tree. A syntactic dependency
tree defines the syntactic relations among words in a sentence.
Marcheggiani and Titov [152] propose the Syntactic GCN that
runs on top of a CNN/RNN sentence encoder. The Syntactic
GCN aggregates hidden word representations based on the
syntactic dependency tree of a sentence. Bastings ef al. [153]
apply the Syntactic GCN to the task of neural machine
translation. Marcheggiani et al. [154] further adopt the same
model as in [153] to handle the semantic dependency graph
of a sentence.

Graph-to-sequence learning learns to generate sentences
with the same meaning given a semantic graph of
abstract words (known as abstract meaning representation).
Song et al. [155] propose a graph-LSTM to encode graph-
level semantic information. Beck er al. [156] apply a GGNN
[17] to graph-to-sequence learning and neural machine trans-
lation. The inverse task is sequence-to-graph learning. Gener-
ating a semantic or knowledge graph given a sentence is very
useful in knowledge discovery [157], [158].

3) Traffic: Accurately forecasting traffic speed, volume,
or the density of roads in traffic networks is fundamentally
important in a smart transportation system. Zhang et al. [48],
Li et al. [72], and Yu et al. [74] address the traffic prediction
problem using STGNNs. They consider the traffic network
as a spatial-temporal graph, where the nodes are sensors
installed on roads, the edges are measured by the distance
between pairs of nodes, and each node has the average traffic
speed within a window as dynamic input features. Another
industrial-level application is taxi-demand prediction. Given
historical taxi demands, location information, weather data,
and event features, Yao et al. [159] incorporate LSTM, CNN,
and network embeddings trained by LINE [160] to form a
joint representation for each location to predict the number of
taxis demanded for a location within a time interval.

4) Recommender Systems: Graph-based recommender sys-
tems take items and users as nodes. By leveraging the relations
between items and items, users and users, users and items,
as well as content information, graph-based recommender
systems are able to produce high-quality recommendations.
The key to a recommender system is to score the importance of
an item to a user. As a result, it can be cast as a link prediction
problem. To predict the missing links between users and items,
Berg et al. [161] and Ying et al. [162] propose a GAE that uses

ConvGNNSs as encoders. Monti et al. [163] combine RNNs
with graph convolutions to learn the underlying process that
generates the known ratings.

5) Chemistry: In the field of chemistry, researchers apply
GNN s to study the graph structure of molecules/compounds.
In a molecule/compound graph, atoms are considered as nodes,
and chemical bonds are treated as edges. Node classification,
graph classification, and graph generation are the three main
tasks targeting molecular/compound graphs in order to learn
molecular fingerprints [85], [86], predict molecular properties
[27], infer protein interfaces [164], and synthesize chemical
compounds [65], [69], [165].

6) Others: The application of GNNs is not limited to
the aforementioned domains and tasks. There have been
explorations of applying GNNs to a variety of problems,
such as program verification [17], program reasoning [166],
social influence prediction [167], adversarial attacks preven-
tion [168], electrical health records modeling [169], [170],
brain networks [171], event detection [172], and combinatorial
optimization [173].

IX. FUTURE DIRECTIONS

Though GNNs have proven their power in learning graph
data, challenges still exist due to the complexity of graphs.
In this section, we suggest four future directions of GNNs.

A. Model depth

The success of deep learning lies in deep neural architec-
tures [174]. However, Li et al. [53] show that the performance
of a ConvGNN drops dramatically with an increase in the
number of graph convolutional layers. As graph convolutions
push representations of adjacent nodes closer to each other,
in theory, with an infinite number of graph convolutional
layers, all nodes’ representations will converge to a single
point [53]. This raises the question of whether going deep
is still a good strategy for learning graph data.

B. Scalability Tradeoff

The scalability of GNNs is gained at the price of corrupting
graph completeness. Whether using sampling or clustering,
a model will lose part of the graph information. By sam-
pling, a node may miss its influential neighbors. By cluster-
ing, a graph may be deprived of a distinct structural pattern.
How to tradeoff algorithm scalability and graph integrity could
be a future research direction.

C. Heterogenity

The majority of current GNNs assume homogeneous graphs.
It is difficult to directly apply current GNNs to heterogeneous
graphs, which may contain different types of nodes and edges
or different forms of node and edge inputs, such as images and
text. Therefore, new methods should be developed to handle
heterogeneous graphs.

D. Dynamicity

Graphs are, in nature, dynamic in a way that nodes or edges
may appear or disappear and that node/edge inputs may change
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time by time. New graph convolutions are needed to adapt to
the dynamicity of graphs. Although the dynamicity of graphs
can be partly addressed by STGNNSs, few of them consider
how to perform graph convolutions in the case of dynamic
spatial relations.

X. CONCLUSION

In this article, we conduct a comprehensive overview of
GNNs. We provide a taxonomy that groups GNNs into
four categories: RecGNNs, ConvGNNs, GAEs, and STGNNSs.
We provide a thorough review, comparisons, and summariza-
tions of the methods within or between categories. Then,
we introduce a wide range of applications of GNNs. Data sets,
open-source codes, and model assessment for GNNs are sum-
marized. Finally, we suggest four future directions for GNNS.
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