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Abstract—Network embedding has been widely employed in networked data mining applications as it can learn low-dimensional and

dense node representations from the high-dimensional and sparse network structure. While most existing network embedding methods

only model the proximity between two nodes regardless of the order of the proximity, this paper proposes to explicitly model multi-node

proximities which can be widely observed in practice, e.g., multiple researchers coauthor a paper, and multiple genes co-express a

protein. Explicitly modeling multi-node proximities is important because some two-node interactions may not come into existence

without a third node. By proving that LINE(1st), a recent network embedding method, is equivalent to kernelized matrix factorization,

this paper proposes coupled kernelized multi-dimensional array factorization (Cetera) which jointly factorizes multiple multi-

dimensional arrays by enforcing a consensus representation for each node. In this way, node representations can be more

comprehensive and effective, which is demonstrated on three real-world networks through link prediction and multi-label classification.

Index Terms—Network embedding, kernelized array factorization, link prediction, multi-label classification

Ç

1 INTRODUCTION

NETWORK is a natural and ubiquitous data structure
in various domains, such as social networks, gene

co-expression networks, and co-authorship networks,
simply because objects are related, and dependent on
each other. As a result, many data mining applications
involve network analysis, such link prediction [1], com-
munity detection [2], and node classification [3]. How-
ever, the usually high-dimensional and sparse structure
of networks hampers the capabilities of data mining
and machine learning models. More specifically, high
dimensionality makes it inefficient to train data mining
models while sparsity makes it difficult to generalize
trained models on unseen data. Hence, network embed-
ding [4], [5], [6] has been employed to learn low-dimen-
sional and dense node representations that encode the
network structure, which is basically achieved by pre-
senting nodes close in the network representation to be
close in a particular euclidean space of interest.

Many network embedding methods have been proposed
recently. Deepwalk [4] observes that sequences of nodes
obtained by truncated random walks on the network repre-
sentation can be regarded as sequences of natural language
words, and then encodes node relationships through

establishing the probabilities between a node in the
sequence and other nodes (i.e., the context for generating
the node of interest), which is achieved by employing Skip-
gram [7], a word embedding model. node2vec [6] improves
Deepwalk by designing a biased random algorithm which
can explore diverse neighborhoods of a given node to obtain
the node sequences. GraRep [8] proves that Skip-gram is
equivalent to factorize the transition matrices of various
orders of the network, and then proposes to separately fac-
torize multiple transition matrices using singular value
decomposition. LINE(1st) and LINE(2nd) [5] directly
enforce nodes connected by the first-order links and by the
second-order links to be close in the embedding space,
respectively.

Almost all of them only explicitly model the proximity
between two nodes regardless of the order of the proximity.
Deepwalk [4] and node2vec [6] model the first-order and
higher order proximities where the order depends on how
close the two nodes are in a truncated random walk.
GraRep [8] models the first-order up to a pre-defined kth-
order proximity. LINE(1st) [5] and LINE(2nd) [5] model
the first-order proximity and the second-order proximity,
respectively.

However, in some scenarios, there are many interactions
explicitly involving multiple nodes, e.g.,

� In gene co-expression networks [9] where interac-
tions are established among genes when they co-
express a protein, there exist certain proteins result-
ing from the co-expression of multiple genes.

� In academic social networks where interactions are
established among researchers when they co-author
a paper, there exist many papers which result from
the collaborations of multiple researchers.

� L. Xu and J. Cao are with the Department of Computing, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: {cslcxu, csjcao}@comp.polyu.edu.hk.

� X. Wei is with Facebook Inc., 1 Hacker Way, Menlo Park, CA 94025.
E-mail: weixiaokai@gmail.com.

� P. S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, IL 60601. E-mail: psyu@uic.edu.

Manuscript received 6 Feb. 2018; revised 17 June 2019; accepted 16 July 2019.
Date of publication 30 July 2019; date of current version 5 Nov. 2020.
(Corresponding author: Linchuan Xu.)
Recommended for acceptance by B. Moseley.
Digital Object Identifier no. 10.1109/TKDE.2019.2931833

2414 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 12, DECEMBER 2020

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on November 08,2020 at 20:42:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2224-2425
https://orcid.org/0000-0003-2224-2425
https://orcid.org/0000-0003-2224-2425
https://orcid.org/0000-0003-2224-2425
https://orcid.org/0000-0003-2224-2425
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0000-0002-2725-2529
mailto:cslcxu@comp.polyu.edu.hk
mailto:csjcao@comp.polyu.edu.hk
mailto:weixiaokai@gmail.com
mailto:psyu@uic.edu


� In social networks where interactions are established
among users participating in the same social circles,
there exist social circles consisting of multiple users.

In the network representation, a multi-node interaction is
reflected on all pairwise edges, e.g., each pair of all the
researchers that co-authored a paper has an interaction in
the co-authorship network. Therefore, a multi-node interac-
tion can be regarded as a clique of a network since a clique
is defined as a group of nodes such that each pair of nodes
is connected. Moreover, a clique essentially represents the
strongest structural cohesion among a group of nodes [10].
Hence, a clique can be a general form of multi-node interac-
tion. With the concept of a clique, we can also obtain multi-
node interactions even though the given network does not
explicitly define multi-node interactions, such as Facebook
and Twitter friendship networks.

Multi-node interactions can be split into multiple two-
nodes interactions, but presenting two nodes with interac-
tions which only exist with a third node to be close in the
embedding space without considering the third node is not
appropriate. Moreover, there are some properties of multi-
node interactions that can only be preserved when multi-
node interactions are explicitly modeled. These two points
are further explained as follows:

� Some two-node interactions may not even exist with-
out other nodes, e.g., a particular paper with three
authors may not be finished when one of the authors
is missing, a particular protein co-expressed by mul-
tiple genes may not be produced without certain
genes, and friendships induced by transitivity, i.e.,
friends of my friends are my friends, may not exist
without the intermediate friends.

� The strengths of a two-node interaction with and
without other nodes are different, e.g., the strengths
of the friendship induced by transitivity may be dif-
ferent when the intermediate friends are in the pres-
ence and not in the presence, respectively.

� A two-node interaction may be shared by multiple
multi-node interactions as illustrated in Fig. 1. The
three three-node interactions may belong to different
categories, e.g., three papers in threedifferent domains,
and three social circles with three different commonali-
ties, such as hometown, university and interests. If
solely looking at the two-node interactions between
node 1 and node 2, the diversity in terms of categories
or commonalitiesmay be lost.

In this paper, we thus propose to explicitly model multi-
node interactions in the context of network embedding.

Assume that the example network in Fig. 1 defines a clique
as a multi-node interaction, i.e., there are seven two-node
interactions and three three-node interactions. To embed
the network, the seven two-node interactions should be
encoded into node representations as all existing methods
do. The three-node interactions are also encoded into node
representations as suggested above.

However, it is not trivial to extend from modeling two-
node proximities to modeling multi-node proximities. For
the popular Skip-gram based models like Deepwalk [4] and
node2vec [6], two-node interactions are modeled through
the input and output of a specially-designed neural net-
work. It is challenging to design a neural network to take
two nodes as inputs or assign two nodes to the same output
in order to model three-node interactions. For methods
modeling transition probabilities between nodes like
GraRep [8], two-node interactions are modeled through the
probabilities of a transition from one node to another node.
It is challenging to extend to consider the transition path
while modeling multi-node interactions.

Fortunately, we prove that LINE(1st) [5] is equivalent to
kernelized matrix factorization where the matrix is the adja-
cency matrix and the kernel function is sigmoid function.
More details about the proof can be found in Section 3.
Motivated by the kernelized matrix factorization, we thus
model multi-node interactions using multi-dimensional
adjacency arrays, and then learn node representations via
kernelized array factorization.

For a particular network, there may exist multiple arrays
with different dimensions, which depends on the number
of nodes in interactions. We assign a representation for each
array, i.e., array-specific representation, to each node since
the characteristics that nodes expose in the interactions of
different number of nodes have different semantic mean-
ings as suggested in Fig. 1. Moreover, multiple arrays are
jointly factorized by enforcing a consensus representation
for each node on which all array-specific representations
agree. In this way, the consensus representation summa-
rizes all array-specific characteristics and can be used to
improve array-specific presentations in return. Hence, the
proposed model is named as coupled kernelized multi-
dimensional array factorization (Cetera).

Contributions of the paper are summarized as follows:

� To the best of our knowledge, this paper is the first
one to explicitly model multi-node proximities in the
context of network embedding.

� We prove that LINE(1st) is equivalent to kernelized
matrix factorization where sigmoid function is
employed as the kernel function.

� We propose Cetera to jointly factorize multiple
multi-dimensional arrays via enforcing a consensus
representation for each node.

� We demonstrate the effectiveness of Cetera on three
real-world networks in applications including link
prediction and multi-label classification.

� We present a comprehensive review of network
embedding and propose a novel taxonomy for cate-
gorizing existing network embedding methods.

The rest of the paper is organized as follows. Section 2
presents preliminaries. In Section 3, we give the proof of the

Fig. 1. An example network in which a two-node interaction between
node 1 and node 2 shared by three three-node interactions.
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equivalence of LINE(1st) and kernelized matrix factoriza-
tion. In Section 4, we develop the proposed Cetera model.
Section 5 suggests the optimization algorithm. In Section 6,
we provide empirical evaluation of Cetera. Section 7
presents the related work. In Section 8, we conclude this
paper and introduce our future directions.

2 PRELIMINARIES

In this paper, the studied network is defined as follows:

Definition 1. GðV;EÞ is a network, V is a set of nodes, and E is
a set of directed or undirected, weighted or unweighted edges.

In practice, GðV; EÞ may have or not have explicit
multi-node interactions. In this paper, the type of net-
works with explicit multi-node interactions is referred to
as cooperation networks whose nodes co-operate in an
event, such as co-authorship networks and gene co-
expression networks. All the other networks are catego-
rized as the second type of networks, such as friendship
networks. Correspondingly, we name the second type as
non-cooperation networks.

The way to define multi-node interactions for the two
types of networks is different. For cooperation networks,
multi-node interactions are only established among those
with cooperations. Moreover, interactions of a larger
number of nodes are propagated to interactions of smaller
numbers of nodes, e.g., one four-node interaction produ-
ces four three-node and six two-node interactions, which
is reasonable because the existence of a four-node
cooperation must indicate the existence of a three-node
cooperation. For non-cooperation networks, multi-node
interactions are established among nodes forming cliques.
The weight of each multi-node interaction is chosen as
the smallest weight among all the two-node interactions.

In this paper, multi-node interactions are modeled by
multi-dimensional arrays. An n-dimensional adjacency
array for n-node interactions is defined as follows:

Definition 2. An n-dimensional adjacency array is denoted as
AAðnÞ 2 RjV j�jV j�jV j����ðthe number of jV j is nÞ. VðnÞ denotes
the index space. For each element A

ðnÞ
i1:::in

¼

weight if a interaction among node i1; . . . ; and in
0 otherwise;

�
(1)

where weight = 1 for unweighted networks, i1, . . ., in are indi-
ces of nodes in each dimension, and i1 6¼ ::: 6¼ in.

The two-dimensional array is also referred to as an
adjacency matrix, and arrays of larger dimensions can
also be referred to as tensors. For undirected networks,
arrays of all dimensions are symmetric. For directed net-
works, the arrays are symmetric as well since for directed
networks, multiple nodes form a clique if and only if
there are two edges of different directions between each
pair of nodes.

3 LINE(1ST) AS LIGHT KERNELIZED MATRIX

FACTORIZATION

In this section, we prove that LINE(1st) [5] is equivalent
to kernelized matrix factorization where the kernel is a

similarity function operating in a high-dimensional and
implicit feature space, and is popularly known in the filed
of support vector machine (SVM). Note this proof is dif-
ferent from that of equivalence of LINE(1st) and matrix
factorization without a kernel [11], [12]. In particular, the
previous proof focused on finding a special matrix such
that the dot product of the node embeddings can directly
approximate the corresponding element of that matrix.

In LINE(1st), the proximity of two nodes is quantified as
follows:

pðvv1; vv2Þ ¼ 1

1þ expð�vvT1 vv2Þ
; (2)

where vv1 2 RD and vv2 2 RD are representations of node 1
and 2, respectively, and D is the dimension of representa-
tions. pðvv1; vv2Þ is essentially a sigmoid kernel function, and
is replaced by sðvv1 � vv2Þ in the rest of the section.

Since the sigmoid function estimates the probability of
linkage between two nodes, LINE(1st) presents each pair
of nodes connected by an edge through minimizing KL
divergence between the empirical probability distribution
of linkage and the estimated distribution. After simple
transformations, for unweighted networks, the loss function
can be quantified as follows:

LLINEð1stÞ ¼ �
X

ði;jÞ2E
log sðvvi � vvjÞ: (3)

To avoid the trivial solution that 8i and 8d, vvðdÞi ¼ 1, i.e.,
the dth dimension of node i is equal to infinity, LINE(1st)
employs negative sampling to randomly sample multiple
negative edges, i.e., non-existing edges, and presents each
pair of nodes connected by a negative edge to be apart. As a
result, the final loss function after ignoring the sampling
process can be quantified as follows:

LLINEð1stÞ ¼ �
X

ði;jÞ2E
log sðvvi; vvjÞ �

X
ðh;kÞ =2 E

log sð�vvh � vvkÞ; (4)

which essentially applies cross entropy loss on each edge.
Eq. (4) thus can be reformulated by unifying ði; jÞ 2 E

and ðh; kÞ =2 E into ði; jÞ 2 Vð2Þ as follows:

LLINEð1stÞ ¼
X

ði;jÞ2Vð2Þ
‘ðAð2Þ

ij ; sðvvi � vvjÞÞ; (5)

which is kernelized matrix factorization by employing sig-
moid function as the kernel, and cross entropy loss as the
loss function. Note that LINE(1st) is a light method because
it employs negative sampling to reduce zero elements of the
matrix in order to reduce computation costs.

4 THE PROPOSED CETERA MODEL

Motivated by the equivalence of LINE(1st) and kernelized
matrix factorization, Cetera learns node representations by
performing kernelized array factorization by employing
sigmoid function as the kernel function.

Similar to GraRep [8] which treats different kth-order
proximities differently, i.e., learns a representation for each
node from each order of proximity, Cetera assigns a repre-
sentation for each node to preserve each multi-node
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proximity. Since multi-node proximities are modeled by
multi-dimension arrays, each type of representation for
each node is referred to as an array-specific representation.
The motivation for learning array-specific representations is
that different multi-node proximities involve a unique num-
ber of nodes, and have different semantic meanings as illus-
trated in Fig. 1.

But unlike GraRep learning order-specific representations
separately, Cetera learns all array-specific representations
simultaneously by enforcing consensus representations on
which all array-specific representations agree. The consen-
sus representation is motivated by the consensus principle
utilized in multi-view learning [13], [14] because we can
regard different arrays as different views of the network
structure. In this way, the consensus representations can
fuse information of all multi-node proximities. In return,
consensus representations can improve each type of array-
specific representations. The improved array-specific repre-
sentations can achieve better array-specific tasks, such the
link prediction between two nodes.

4.1 Array-Specific Representation Learning

Because the learning of each array-specific representation is
similar, we thus only take the learning from three-node
proximities as an example. The loss function for factorizing
a three-dimensional array can be quantified by following
the kernelized matrix factorization, i.e., Eq. (5), as follows:

Lð3Þ ¼
X

ði;j;kÞ2Vð3Þ
‘ðAð3Þ

ijk; k
ð3Þðvvð3Þi ; vv

ð3Þ
j ; vv

ð3Þ
k ÞÞ; (6)

where kð3Þð�Þ is a kernel function for quantifying three-node
proximities defined as follows:

k
�
vv
ð3Þ
i ; vv

ð3Þ
j ; vv

ð3Þ
k

�
¼ 1

1þ exp �PD
d v

ð3;dÞ
i v

ð3;dÞ
j v

ð3;dÞ
k

n o ; (7)

where vv
ð3Þ
i is representation for node i with respect to three-

node proximities, and v
ð3;dÞ
i is the value of dimension d. v

ð3;dÞ
j

and v
ð3;dÞ
k are similarly defined. Eq. (7) is an extension of

Eq. (2) from two vectors to three vectors in terms of the sum
of element-wise multiplication. Although the kernel func-
tion kð3Þð�Þ is not formally defined in the literature, it is well
suitable for the purpose of this paper, i.e., to make the three
embeddings to agree with each other, because the sum of
element-wise multiplication can be reduced to the dot prod-
uct of each vector and the combination of the other two vec-
tors. Moreover, the experiments have demonstrated the
effectiveness.

Cross entropy loss function ‘ð�Þ can only be applied
to unweighted networks. For weighted networks, we
modify it as follows: ‘ðAð3Þ

ijk; kðvvð3Þi ; vv
ð3Þ
j ; vv

ð3Þ
k ÞÞ ¼

�A
ð3Þ
ijklog kðvvð3Þi ; vv

ð3Þ
j ; vv

ð3Þ
j Þ A

ð3Þ
ijk > 0

�logð1� kðvvð3Þi ; vv
ð3Þ
j ; vv

ð3Þ
k ÞÞ A

ð3Þ
ijk ¼ 0

(
: (8)

The modification is performed to reflect the edge weight
which may indicate relationship strength since relationships
with frequent interactions may be stronger than those with
only one interaction.

4.2 Consensus Representation Learning

As mentioned before, we employ the consensus principle of
multi-view learning [13], [14] to learn the consensus repre-
sentations. The specific form of the consensus principle
employed is centroid-based co-regularization [15], which is
achieved by regularizing array-specific representations and
the consensus representation to be similar to each other.
Formally, the co-regularization is formulated as follows:

min
ZZ;
P

n
VV ðnÞ

X
n

jjVV ðnÞ � ZZjj2F ; (9)

where ZZ 2 RjV j�D and VV ðnÞ 2 RjV j�D consist of consensus
representations and node representations learned from
n-node proximities, respectively, and jj � jj2F is Frobenius
norm. Since this is the first work to consider multi-node
interactions, Eq. (9) assumes all the representations are in
the same euclidean space. Different spaces and more
sophisticated ways for the consensus learning are left as
future studies.

Minimizing Eq. (9) w.r.t. ZZ thus can learn the consensus
representations. In return, improving array-specific repre-
sentations by utilizing consensus representations can be
achieved by minimizing Eq. (9) w.r.t. array-specific repre-
sentations, i.e., minimizing the following loss function:

L
VV ðnÞ ¼ jjVV ðnÞ � ZZjj2F : (10)

4.3 Joint Learning

By jointly considering all multi-node proximities, the final
loss function for Cetera to embed the network structure can
be quantified by direct addition as follows:

LðVV ð1Þ; . . . ; VV ðnÞ; :::Þ ¼ Lð2Þ þ Lð3Þ þ Lð4Þ:::þ �
X
n

jjVV ðnÞjj2F

þ
X
n

jjVV ðnÞ � ZZjj2F þ �jjZZjj2F ;

(11)

where Lð3Þ is defined in Eq. (6) for preserving three-node
proximities, Lð2Þ and Lð4Þ are similarly defined, jjVV ðnÞjj2F and
jjZZjj2F are regularization terms for avoiding trivial solutions
where the values of embeddings become very large, and
� 2 R is the regularization coefficient. The model can
include proximities involving any number of nodes. In the
experiments, the model only includes a pre-defined set of
proximities. The problem of determining the optimal num-
ber of nodes in the interactions is left as a future study.

5 THE OPTIMIZATION

The loss function in Eq. (11) is not jointly convex over all the
variables, i.e., array-specific representations and consensus
representations. We thus replace it with a sequence of easier
sub-optimizations using an alternating algorithm [16] where
each sub-optimization only solves one variable.

5.1 The Optimization Algorithm

Pseudo-codes of the optimization algorithm are presented
in Algorithm 1. The input r 2 R is negative ratio, which is
the ratio of the number of positive multi-node edges to that
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of negative multi-node edges. The multi-dimensional array
preparation has been presented in Section 3.

Algorithm 1. Alternating Optimization Algorithm

1: Input: GðV;EÞ, D, �, and r
2: Output: VV ð1Þ, . . ., VV ðnÞ, . . ., VV ðNÞ, ZZ
3: Prepare multi-dimensional arrays
4: Pre-train VV ð1Þ, . . ., VV ðNÞ

5: repeat
6: Find the optimal ZZ
7: foreach VV ðnÞ do
8: Solve VV ðnÞ by gradient descent with all the other varia-

bles fixed
9: until iteration ¼ iterationmax or converge
10: end

Before jointly learning all the variables, Algorithm 1 pre-
trains each type of array-specific representations individu-
ally. Pre-training is an important part of an optimization
algorithm as it can initialize a model to a point in parameter
space that renders the learning process more efficient and
effective [17]. In our case, the objective function in Eq. (11) is
not convex, and all array-specific representations are solved
by gradient descent. Hence the initizalization largely deter-
mines the learning performance. The pre-training of each
type of array-specific representations is performed by facto-
rizing the corresponding array, which can also be solved by
gradient descent, e.g., to pre-train VV ð3Þ by only solving
Eq. (6). For learning rate, we employ backtracking line search
[18] to determine an appropriate one which can guarantee
the descent in each iteration during the training process.
Note that the optimizationw.r.t.ZZ is convex, and the optimal
solution can be obtained by straightforward linear algebra.

5.2 Complexity Analysis

The computation of Algorithm 1 is mainly spent on the
multi-dimensional array preparation and the array factori-
zation. For the cooperation networks, the time is used to
propagate interactions of larger number of nodes into inter-
actions of smaller number of nodes, which is essentially a
combination problem. But in the experiments, we only
include up to seven-node interactions. For the co-authorship
network studied in this paper, the average number of

authors is about three [19]. And the number of interactions
starts to decrease when the number of nodes is 4 in Table 1.
Hence, the time for array preparation for the first type of
networks may be safely omitted.

For non-cooperation networks, we need to find multi-
node interactions first. In particular, we obtain interactions
of larger number of nodes by adding nodes to interactions
of smaller number of nodes. Hence, the complexity of pre-
paring up to seven-node interactions is OðjV jðnnzðAð2ÞÞ=2!
þ nnzðAð3ÞÞ=3!þ nnzðAð4ÞÞ=4! þ nnzðAð5ÞÞ=5!þ nnzðAð6ÞÞ=6!
þ nnzðAð7ÞÞ=7!ÞÞ because arrays are symmetric, where
nnzðAð2ÞÞ is the number of non-zero elements of the two-
dimensional array, and others are similarly defined. Since
networks are usually sparse, the scalability to large-scale
networks can be guaranteed.

With respect to array factorization, since we employ neg-
ative ratio to reduce the number of zero elements of the
arrays, the complexity for each array is Oððrþ 1ÞDnnz
ðAðnÞÞÞ, where r is the negative ratio, D is the dimension of
node representations, and n is the dimension of the array.

5.3 Convergence

Algorithm 1 is essentially a block-wise coordinate descent
algorithm [20] with all the array-specific representations
and the consensus representations as block variables. So
convergence can be guaranteed based on the general proof
of convergence for block-wise coordinate descent. More-
over, we observe Algorithm 1 converges very fast in terms
of the outer iterations in the experiments as presented in the
evaluation section.

6 EMPIRICAL EVALUATION

6.1 Baselines

Cetera is evaluated against six recent network embedding
methods, which are Deepwalk [4], LINE [5], GraRep [8],
node2vec [6], NetMF [12], and PTE [21]. The first five mod-
els are designed for homogeneous networks while PTE is
designed for heterogeneous networks. PTE is employed as a
baseline because Cetera utilizes information about multi-
node interactions from the first type of networks, such as
paper-author information, which can be used to construct a
paper-author bipartite network modeled in PTE [21]. But
because Cetera does not utilize further information, such as
label information, only the author-author bipartite network
and the author-paper bipartite network are fed to PTE.

6.2 Datasets

Three real-word networks are studied as follows:

� DBLP [22]: In the experiments, we select several pop-
ular conferences from seven research fields which are
SIGMOD, VLDB, ICDE, PODS, EDBT from Database,
KDD, ICDM, SDM, PAKDD from Data Mining,
AAAI, IJCAI, ICML, ECML from Machine Learning,
and SIGIR, WWW, CIKM, WSDM, and ECIR from
Information Retrieval, CVPR, ICCV, ECCV, ICIP,
BMVC, WSCG, and ACCV from Computer Vision,
ACL, EMNLP, COLING, NAACL, EACL, and
CoNLL from Natural Language Processing, ICMR,
ICME, ACMMM, and SIGMM from Multimedia.
From these conferences, we select papers published

TABLE 1
Network Statistics

Network DBLP Youtube Flickr

# nodes 5091 8916 4700
# 2-node edges 17867 33802 224576
# 3-node edges 14956 45031 239147
# 4-node edges 7684 51270 373022
# 5-node edges 2931 41470 345385
# 6-node edges 859 21712 203930
# 7-node edges 172 6862 79847
# 8-node edges – 1235 20965
# 9-node edges – 128 3546
# 10-node edges – 8 331

# labels 7 5 7
# labels per node 2.46 2.03 5.41
Type undirected

weighted
undirected
unweighted

directed
unweighted
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during the time span from 2000 to 2009 with more
than 2 authors, and select authors with at least two
publications of different fields.

� Youtube [23]: This dataset contains friendship rela-
tionships. We select users that hold the group mem-
bership of any one of five major groups, which are
23, 30, 81, 82 and 367 indicated in the the dataset. We
make the directed network undirected to increase
the number of multi-node edges.

� Flickr [23]: This dataset contains friendship relation-
ships among the users of Flickr. We select users that
hold the group membership of any five of seven
major groups, which are 135, 156, 172, 228, 295, 471
and 1098 indicated in the dataset.

DBLP co-authorship network is the cooperation network
while the Youtube and Flickr friendship networks belong to
the non-cooperation network defined in Section 3. The num-
ber of two-node edges up to seven-node edges of the DBLP
co-authorship network and two-node edges up to ten-node
edges of the Youtube and Flickr friendship networks are
summarized in Table 1. The research fields are used as the
labels for DBLP, and the groups are used as labels for
Youtube and Flickr.

6.3 Experiment Settings

For the implementation, the dimension of node representa-
tions is set as the commonly used 128, the negative ratio is
set as 5 as used in LINE, two-node proximities up to seven-
node proximities are employed in the representation learn-
ing to make fair comparison with GraRep as GraRep models
first-order proximities up to sixth-order proximities in its
paper, regularization coefficient is set as 1.0, and 8 outer
iterations are used as the maximum iterations. Our codes
are written in Java and run on an Intel Genuine Intel(R)
CPU @2.60 GHZ 2.60 GHZ server with 64 GB RAM.

We evaluate the methods in two applications, link predic-
tion and multi-label classification. The dimension of the final
node representations of GraRep is 6� 128 since GraRep con-
catenates all order-specific representations. For Cetera, only
the representations corresponding to 2-dimensional array
are used for link prediction because link prediction is per-
formed between two nodes instead of multiple nodes. In
multi-label classification, we concatenate all array-specific
representations and consensus representations.

6.4 Link Prediction

Link prediction is to infer new interactions among network
nodes, and is typically performed by measuring pair-wise
similarities because interactions are more likely to occur
between similar nodes [1]. In the experiments, the similari-
ties are first computed by the dot product of two node repre-
sentations and then normalized by sigmoid function. The
commonly used AUC (area under the curve) scores are
employed as the performance metric. For DBLP, we perform

future co-authorship prediction where co-authorships aris-
ing during the time span from 2010 to 2013 are employed as
the positive test links, and the same number of negative test
links are randomly sampled for the evaluation purpose. This
process of learning and prediction is repeated 10 times. The
results of average performance are presented in Table 2.

Table 2 shows the proposed Cetera achieves the best per-
formance. The superior performance of other baselines to
LINE and NetMF(T = 1) may suggest the advantage of con-
sidering proximities of higher orders. PTE underperforms
other baselines because the link prediction is to predict the
first-order links which are not preserved in PTE.

One may have a concern that we explicitly model multi-
node interactions but only employ the node presentations
mainly learned from two-node interactions to perform the
link prediction. The explanation is that the links to be pre-
dicted are essentially two-node interactions. But we can uti-
lize characteristics of multi-node interactions to refine the
node representations learned from two-node interactions
because only looking at two-node interactions without con-
sidering other nodes is not inappropriate as explained in
the introduction, e.g., the cooperation between two authors
may not happen without a third author. To make a fair com-
parison with GraRep, the performance obtained by node
representations corresponding to the first-order transition
matrix factorized by GraRep is 63.19.

Besides the traditional link prediction, i.e., the prediction of
co-authorships between two authors, we also study the pre-
diction of co-authorships among multiple authors, which
widely exist in practice. Similarly, the prediction is performed
by measuring the multi-node similarities. We report the AUC
scores of 10 times of experiments in Table 3. It shows that
Cetera outperforms baselines in most times. Although some
baselines have superior performance in other times, they
have extremely unstable performance on different tasks, e.g.,
GraRep scores 88.03 on the six-node link prediction while
scoring 8.57 on the seven-node link prediction. Hence, we
presentweighted average performance of eachmethodwhere
the weight is the number of test links (12708 two-node links,
8140 three-node links, 3912 four-node links, 1704 five-node
links, 690 six-node links, 220 seven-node links). The result
shows that Cetera consistently outperforms all the baselines.

For the Youtube and Flickr networks, we perform miss-
ing link prediction where partial links are used as training
data and the remaining ones are used as test links. Specifi-
cally, we perform nine runs of experiments where the train-
ing links range from 10 to 90 percent of the whole links. The
results are reported in Table 4, which shows similar patterns
to the results for the DBLP co-authorship prediction. We can
see there exist many cliques as shown in Table 1, e.g., the
number of 3-node cliques is even larger than that of two-
node edges. The cliques provide extra information for learn-
ing representations from two-node edges, and hence Cetera
obtains the best performance.

TABLE 2
AUC (Standard Deviation) Scores for DBLP Future Co-Authorship Prediction, Where All the Scores have been Multiplied by

100 Percent here and in the Rest of the Paper

Method Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF (T=1) NetMF (T=10) Cetera

AUC 73.77(1.01) 60.65(0.89) 65.92(1.00) 70.12(1.12) 73.31(0.23) 72.22(1.15) 56.84(0.16) 68.24(0.21) 76.16(0.97)
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6.5 Multi-Label Classification

For DBLP, each researcher may publish papers in more than
one research field, and for Youtube and Flickr, each user
may belong to more than one group. Hence, in multi-label
classification, more than one label are assigned to each data
point. We employ binary-relevance SVM with polynomial
kernel implemented in Meka [24] as the classifier, use 5-fold
cross validation as the evaluation method, and report Micro-
F1 andMacro-F1 scores in Table 5.

It shows that Cetera obtains the best performance on all the
datasets. The advantage of Cetera over baselines can be
explained mainly by two reasons. First, two-node proximities
are essentially partial information of multi-node proximities
because two-node interactions are split from multi-node

interactions for the cooperation networks, or build up multi-
node interactions for those non-cooperation networks. Hence,
Cetera can actually capture more information than all the
baselines. One may note that the improvement on the DBLP
dataset over baselines is not as remarkable as on the Youtube
and the Flickr datasets. Note that for the DBLP dataset,
the number of multi-node interactions is less than that of two-
node interactions as presented in Table 1. Therefore, the
benefits brought by modeling multi-node interactions may be
limited.

To demonstrate the effectiveness of multi-node interac-
tions, we present the performance obtained by array-specific
node representations in Table 6. It is interesting to note that
node representations learned from two-node interactions

TABLE 3
AUC(Standard Deviation) Scores for DBLP Multi-Node Co-Authorship Prediction, Where W. A. is the Abbreviation of “Weighted

Average” and the Weight is the Number of Test Co-Authorships

AUC Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF (T=1) NetMF (T=10) Cetera

Three-node 52.85(1.32) 46.83(1.08) 57.18(1.12) 60.31(1.24) 27.70(0.93) 51.69(1.21) 47.77(0.96) 36.18(1.10) 74.51(0.98)

Four-node 79.74(1.51) 61.86(1.89) 71.94(1.43) 66.22(1.53) 86.99(1.18) 75.24(1.65) 69.55(0.16) 77.62(1.01) 65.03(1.29)
Five-node 52.72(1.19) 52.70(1.38) 48.17(1.28) 53.15(1.26) 13.47(1.16) 53.51(1.09) 46.74(1.16) 35.03(1.42) 63.09(1.27)
Six-node 76.45(1.31) 59.44(1.73) 62.98(1.32) 66.62(1.10) 88.03(1.08) 62.84(1.25) 57.26(1.36) 64.40(1.32) 68.30(1.22)
Seven-node 55.19(1.23) 53.63(1.28) 27.45(1.35) 48.12(1.25) 8.57(1.28) 58.21(1.18) 50.35(1.51) 44.18(1.61) 71.84(1.18)

W. A. 67.01 56.14 62.69 65.32 57.83 65.03 55.29 57.69 73.33

TABLE 4
AUC Scores on Link Prediction When Different Ratios of Links Are Used in the Training Phase

Network Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Youtube

Deepwalk 62.55 66.23 69.56 72.66 75.18 77.86 79.01 80.23 80.89
LINE(1st) 69.20 73.32 76.38 80.69 83.34 85.21 86.67 87.68 88.12
LINE(2nd) 68.01 71.80 75.12 79.27 81.64 84.01 85.61 86.66 86.95
GraRep 60.22 65.40 68.79 70.17 73.14 75.61 77.12 78.63 79.35
node2vec 69.32 73.12 74.79 79.17 80.84 83.44 84.81 85.28 86.05

NetMF(T=1) 65.12 68.55 71.13 73.66 76.75 78.22 79.36 80.16 80.82
NetMF(T=10) 60.15 63.63 66.36 68.76 70.38 72.36 74.11 75.13 75.89

Cetera 75.32 82.68 85.60 87.19 88.56 89.96 90.90 91.34 91.55

Flickr

Deepwalk 62.12 66.86 69.85 71.55 73.01 74.00 74.51 74.82 75.14
LINE(1st) 57.66 60.36 63.12 67.96 69.12 70.57 72.97 74.72 74.82
LINE(2nd) 55.26 57.69 61.02 63.01 62.90 62.96 62.70 62.72 62.82
GraRep 56.19 60.11 62.36 66.55 68.95 70.23 71.31 72.58 72.82
node2vec 56.90 61.22 64.95 67.76 69.03 70.67 71.35 72.82 73.36

NetMF(T=1) 55.66 58.26 61.63 64.11 66.32 68.87 70.37 71.32 72.02
NetMF(T=10) 58.62 62.16 65.15 67.95 69.41 71.60 72.31 73.02 73.52

Cetera 70.32 75.37 78.51 80.02 82.73 83.73 85.15 87.09 88.69

TABLE 5
Micro-F1 and Macro-F1 Scores Obtained by Different Methods for Multi-Label Classification

Macro-F1 Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF(T=1) NetMF(T=10) Cetera

DBLP 76.8 74.7 67.2 73.6 81.0 78.2 72.6 80.1 81.3
Youtube 66.3 65.3 61.9 – 84.3 63.6 55.6 59.6 86.6
Flickr 33.8 35.5 33.7 – 34.8 34.3 33.7 34.6 38.9

Micro-F1 Deepwalk LINE(1st) LINE(2nd) PTE GraRep node2vec NetMF(T=1) NetMF(T=10) Cetera

DBLP 80.5 79.6 74.8 76.6 83.3 81.2 79.4 82.7 83.5
Youtube 69.0 68.8 63.4 – 85.2 65.5 70.0 72.1 87.8
Flickr 71.7 72.5 71.7 – 69.6 72.1 71.6 72.1 72.6
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never obtain the best performance, which can be explained
by the second reason presented below.

Second, each data point usually has more than one label,
e.g., the average number of labels per node is more than 2 as
indicated in Table 1. The diversity of label information can
be preserved more effectively by explicitly modeled multi-
node interactions as illustrated in Fig. 1, i.e., a two-node
interaction may be shared by multiple three-node interac-
tions in different domains (i.e., labels).

It is worth noting that the advantage of Cetera and
GraRep over other baselines is not brought by dimension
advantage. Actually, a larger dimension usually does not
bring better performance as studied in this paper and in
baseline themselves, such as in LINE andGraRep.

6.6 Convergence Analysis

In this section, we study the convergence of Algorithm 1.
Specifically, we study the performance of the algorithm on
applications with respect to the number of outer iterations
where each iteration takes about 719 seconds and 1158 sec-
onds on average for the DBLP and Youtube network,
respectively. We only present the experiments on multi-
label classification for the DBLP and Youtube network in
Fig. 2 because other experiments show similar results. Fig. 2
shows that the algorithm converges fast and can usually
converge to stable performance after about 5 iterations.

6.7 Parameter Sensitivity

This section evaluates how Algorithm 1 is sensitive to the
dimension of arrays and the dimension of representations.
In the experiments, we set the largest dimension of arrays
from 2 to 10, and dimensions of representations from the
choices of f32; 64; 128; 256; 512g. The performance on the
multi-label classification measured by Micro-F1 scores for
the Youtube network is presented in Fig. 3. Fig. 3a shows
Algorithm 1 can achieve stable performance after including
4-node edges. Fig. 3b shows Algorithm 1 is not much

sensitive to the dimension of node representations if the
dimension is not too small (e.g., 32) or too large (e.g., 512).

7 RELATED WORK

In this section, we first present a comprehensive review of
existing network embedding methods, and then present the
relevance of the proposed Cetera to existing methods.

Learning low-dimensional data representations by embed-
ding the network structure has been studied since early 2000s,
and was referred to as graph embedding [25], [26], [27], [28],
[29] then. But graph embedding is actually designed for data
points which are initially independent, i.e., no relationships or
interactions among them. Hence, before performing the
embedding, previousmethods need to establish links between
data points where links are usually based on neighbor rela-
tionships, e.g., k-nearest neighbors or neighbors within a pre-
defined radius of distance. In the rest of this section, graph
embedding is also referred to as early network embedding.

Instead, recent network embedding is designed for data
points with natural linkage relationships. Not needing to
make artificial links, recent network embedding methods
can utilize additional information, explore various network
properties, and have diverse techniques. In this paper, we
thus categorize existing network embedding methods
according to three criteria, i.e., the input information, the
explored network property, and the developed technique.

We present the summary of the taxonomies in a three-
dimensional space corresponding to the aforementioned three
criteria as illustrated in Fig. 4. On each dimension, we only list
the main-stream elements. For instance, on the dimension of
input information, almost all the embedding methods are
designed for one of the four inputs, i.e., relational data, homo-
geneous networks, heterogeneous networks, and attributed
networks.With respect to the comparisonwith existing taxon-
omies, our taxonomies apply the classification criteria paral-
lelly instead of a tree structure [30] in which different
classification criteria are adopted and applied sequentially.

Fig. 2. The performance of multi-label classification with respect to the
number of iterations.

Fig. 3. The performance of multi-label classification with respect to (a)
the dimension of arrays and (b) the dimension of representations (b).

TABLE 6
Micro-F1 and Macro-F1 Scores Obtained by Array-Specific Node Representations Learned by Cetera for Multi-Label Classification

Micro-F1 two-dimensional three-dimensional four-dimensional five-dimensional six-dimensional seven-dimensional

DBLP 79.0 81.5 76.9 77.3 77.4 78.1
Youtube 86.5 86.6 86.7 86.9 86.8 86.5
Flickr 71.3 71.6 70.5 71.4 71.5 71.5

Macro-F1 two-dimensional three-dimensional four-dimensional five-dimensional six-dimensional seven-dimensional

DBLP 70.8 77.3 67.5 67.5 67.8 69.0
Youtube 85.0 85.2 85.2 85.5 85.4 85.1
Flickr 33.3 33.6 31.7 33.4 33.5 33.5
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Weprefer a parallel classification because the three criteria are
at the same levels. Moreover, our taxonomies have different
classification criteria fromand onemore criterion than the tax-
onomies in [31].

7.1 Classification by Input Information

A network is a homogeneous network when it only has one
type of nodes and one type of edges while a heterogeneous
network has more than one type of nodes or more than one
type of edges. A network is an attributed network when its
nodes or edges have attributes, e.g., a co-authorship net-
work can be an attributed network when the authors have
paper keywords as attributes.

7.1.1 Relational Data as Input

Almost allmethods for relational data belong to early network
embedding. Network embedding can be applied to relational
data because it is assumed that real-world data presented in
high-dimensional spaces are expected to concentrate in the
vicinity of a manifold of much lower dimensionality [32].
Hence, network embedding is essentially to model the struc-
ture of the data-supporting manifold, which explains why
early network embedding is also referred to as manifold
learning [32].

Most early network embedding methods employ edge
reconstruction to learn node representations, i.e., minimizing
the distance of nearby data points in the manifold [33] or
maximizing the probability of generating existing edges
using node representations [29]. Themethods based onmini-
mzing distance include [25], [26], [27], [28], [34] while the
methods based onmaximizing probabilities include [29].

7.1.2 Homogeneous Networks as Input

The recent network embedding for homogeneous networks
starts with Deepwalk [4] which is based on Skip-gram [7].
Another popular model is node2vec [6] which extends
Deepwalk to consider communities or roles that nodes
belong to because nodes belonging to the same community
and roles should be close in the embedding space.

There are also many other embedding methods that are
not based on Skip-gram, such as LINE [5], GraRep [8],
HOPE [35], and M-NMF [36]. Most of them except for LINE
(1st) [5] preserve network properties while embedding the
network structure, and hence are introduced in more details
in Section 7.3, i.e., the section of classification by network
property.

7.1.3 Heterogeneous Networks as Input

With the success of Skip-gram based models on homoge-
neous networks, there are alsomany Skip-grambased hetero-
geneous network embedding models, such as metapath2vec
[37], HIN2Vec [38], andHINE [39]. The commonality of these
methods is to design randomwalk algorithms for walking on
heterogeneous networks, which generates sequences of het-
erogeneous nodes, ormeta-paths.

Besides, PTE [21] embeds three bipartite networks where
the three networks share a set of nodes, e.g., word-word net-
work, word-document network, and word-label network
studied in its paper. PTE employs LINE(2nd) [5] to embed
each bipartite network. HNE [40] embeds heterogeneous
information networks with two types of nodes and three
types of edges. More specifically, the two types of nodes are
image and text, and the three types of edges are image-
image edges, image-text edges, and text-text edges. The
edges are established when nodes have similar semantic
meanings or have citation relationships. MVE [41] regards
each type of edges as one view of the given heterogeneous
network. MVE adopts a method similar to LINE [5] to
embed each view of the network, and then jointly embeds
multiple views via an attention mechanism.

7.1.4 Attributed Networks as Input

Attributes provide additional information about nodes and
can make node representations more comprehensive.

TADW [42], shorted for Text-associated Deepwalk, embeds
both the network structure and node attributes extracted from
text-based content through matrix factorization. AANE [43]
learns node representations by not onlyminimizing the differ-
ence of pairs of nodes that are connected but also minimizing
the difference between the similarity computed by node repre-
sentations and the similarity computed by node attributes.

Node label can also be viewed as node attributes. Hence,
we classify semi-supervised network embedding methods
into this category. Both MMDP [44] and DDRW [45] jointly
learn node representations in the way of Deepwalk and train a
SVM classifier on the learned node representations. Similarly,
[46] also jointly learns node representations and trains a classi-
fier. Moreover, [46] proposes an inductive learning method
which estimates a parametric function for nodes not seen dur-
ing the training phase.

7.2 Classification by Technique

Neural network for network embedding is usually feed-for-
ward artificial neural networks which are specially designed
for network embedding. Matrix factorization is the commonly
used method for decomposing a matrix into product of matri-
ceswhich usually consist of node representations in the context
of network embedding. Edge reconstruction ismore like a prin-
ciple that the distance of a pair of nodes that are connected
should be considerably small in the embedding space of inter-
est. Generativemodels for network embedding emphasize that
the observed edges of a particular node are generated by the
underlying conditional distribution, and learn node represen-
tations bymaximizing the likelihood of edges in the network.

7.2.1 Neural Network

Skip-gram based models, such as Deepwalk [4], node2vec
[6], struc2vec [47], and even metapath2vec [37], employ

Fig. 4. Three-dimensional network embedding taxonomy space.
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neural network models for network embedding, because
Skip-gram [7] is essentially specially-designed neural net-
work model. Different from traditional neural network
models, the input to the input layer is a vector of one-hot
representation of nodes, the weights of the input layer to
the first hidden layer is essentially node representations,
and the output estimates the probabilities of interactions of
the input node to all the other nodes.

There are also other kinds of neural network models
used in network embedding. HNE [40] employs deep neu-
ral network models to capture the interactions between het-
erogeneous components, i.e., CNN for image nodes and FC
layers for text nodes. ProjE [48] designs a special neural net-
work with a combination layer and a projection layer. More-
over, it defines a point-wise loss (similar to multi-class
classification) and a list-wise loss (i.e., softmax regression
loss) for knowledge graph embedding.

7.2.2 Matrix Factorization

As mentioned in Section 7.1.4, TADW [42] is essentially a
matrix factorization model, i.e., decomposing a transition
matrix into product of matrices. Similarly, GraRep [8] fac-
torizes transition matrices with different transition steps
using singular value decomposition (SVD). A recent study
[12] proposes a unified matrix factorization model and
proves that Deepwalk, node2vec, LINE and PTE can all be
put under the unified model.

7.2.3 Edge Reconstruction

Almost all early network embedding models are based on
edge reconstruction, i.e., minimizing the distance of pairs of
nodes connected by edges or maximizing the probability of
generating existing edges using node representations as
mentioned in Section 7.1.1. There are also recent network
embedding models based on minimizing distance, such as
AANE [43] and HNE [40], and maximizing probabilities,
such as LINE(1st) [5].

7.2.4 Generative Model

Network embedding methods based on generative models
emphasize that the observed edges of a particular node are
generated by the underlying conditional distribution, and
these models then learn node representations by maximiz-
ing the likelihood of edges in the network. In this sense,
Deepwalk and node2vec mentioned above can also be
regarded as generative models because they use random
walk algorithms to sample “context” nodes for each node,
and attempt to maximize the likelihood of observing
“context” nodes for the given node.

Recently, the game-theoretical min-max framework pro-
posed in generative adversarial nets (GAN) [49] to estimate
generative models has been widely adopted in various
domains including network embedding [50], [51]. The basic
idea of GAN is to jointly estimate two models, i.e., a genera-
tive model G that captures the data distribution, and a dis-
criminative model D that estimates the probability that a
sample comes from the training data rather than G.

7.3 Classification by Network Property

Transitivity means that links are transitive from nodes to
nodes, e.g., friends of my friends are my friends. By

considering transitivity, potential links and high-order links
can be incorporated in node representations. Community is
a group of nodes which have more intra-group links than
inter-group links, which widely exist in real-world net-
works. Structural balance [52], [53] considers the possible
ways in which triangles on three individuals can be signed,
and posits that triangles with three positive signs and those
with one positive sign are more plausible than triangles
with two positive signs or none. Hence, structural balance is
only studied in signed network embedding. A clique is a
group of nodes such that each pair of nodes are connected.

7.3.1 Transitivity

There are manymethods [5], [8], [35], [54] exploring the tran-
sitivity property, which essentially extends the first-order
neighbor relationships to higher-order relationships.

LINE(2nd) [5] explores the principle that the degree of
overlap of two people’s friendship networks correlates with
the strength of ties between them [55]. Essentially, LINE
(2nd) preserves second-order links.

As mentioned in Section 7.2.2, GraRep [8] learns node
representations by factorizing transition matrices. Actually,
GraRep factorizes first-order up to a pre-defined kth order
transition matrices because links are transitive. Based on the
success of utilizing high-order proximities among nodes,
NEU [56] summarizes that high-order proximities are bene-
ficial to learn node representations, and proposes a general
method to incorporate high-order proximities into existing
methods, e.g., Deepwalk, node2vec and GraRep.

All the methods above assume the transition property is
symmetric, but HOPE [35] observes that the transitivity is
asymmetric in directed networks, and proposes an embed-
ding method especially for directed networks.

7.3.2 Community

Two nodes in the same community usually have more com-
monalities than two nodes in different communities. Then it
is meaningful to encode community information into node
representations.

To achieve this purpose, bothM-NMF [36] and ComE [57]
jointly perform network embedding and community detec-
tion. More specifically, on the one hand, they learn node rep-
resentations by embedding the network structure. On the
other hand, they learn the community membership of each
node. The joint learning is achieved by approximating com-
munity structures using the multiplication of node represen-
tations and community representations.

7.3.3 Structural Balance

All the network embedding methods mentioned above are
designed for networks with only positive edges. But in prac-
tice, there are negative relationships in some scenarios, such
as dis-like and dis-trust relationships. Hence, some net-
works may be signed networks with both positive and nega-
tive edges, such as Slashdot and Epinion [53]. Methods
mentioned above are not suitable for embedding signed net-
works since negative links have different semantic mean-
ings from positive links. Moreover, it is less optimal to
separately embed the positive sub-network and the negative
sub-network. Hence, some methods explore the structural
balance theory, such as SiNE [58] and SNEA [59].
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7.4 The Relevance of Cetera to Existing Methods

According to the three-dimensional taxonomy space in
Fig. 4, the proposed Cetera takes homogeneous networks as
input, uses matrix factorization technique, and preserves the
strongest structural cohesion, i.e., clique, for those networks
which do not explicitly definemulti-node interactions.

The major difference from existing methods in terms of
the dimension of input information is that Cetera explicitly
models multi-node interactions as mentioned in the intro-
duction. The major difference in terms of technique is that
Cetera performs kernelized array factorization in stead of
matrix factorization without a kernel. Moreover, Cetera
assigns a consensus representation to each node in order to
jointly factorize multiple arrays. The major difference in
terms of network property is that Cetera explores the stron-
gest structural cohesion for the first time.

8 CONCLUSION AND FUTURE WORK

This paper proposes Cetera to explicitly model multi-node
proximities using multi-dimensional adjacency arrays in
network embedding for the first time. The proposed Cetera
learns node representations by factorizing these arrays by
employing sigmoid function as the kernel function. More-
over, motivated by the consensus principle of multi-view
learning, Cetera enforces consensus learning by fusing all
array-specific representations into consensus representa-
tions, which are expected to improve each type of array-spe-
cific representations in return. Through the evaluation on
three real-world networks in link prediction and multi-label
classification, we demonstrate the advantage of Cetera over
six recent models. In the future, we plan to study how to
determine the optimal n in n-node proximities.
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