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Abstract: Natural disasters, faults, or the sudden outage of major energy resources can create resilience issues in power
systems. Modern distribution systems can reconfigure due to the use of automated protection and control techniques and the
proliferation of distributed generators (DGs). If there are several DGs located nearby, distribution systems can be clustered into
microgrids in an emergency condition. Clustering of distribution systems offers many benefits to achieve high system resilience.
Moreover, demand response (DR) is an efficient way of increasing the operation quality and improving the resilience of the
power system. This study discusses the impact of DR on the resilience of dynamically-clustered distribution systems.
Accounting for the DR while clustering the distribution system can be beneficial for distribution system customers from the
resilience and power quality points-of-view. To this end, the distribution clustering is performed using two different objective
functions to improve its resilience and voltage profile. DR is formulated as new constraints applied to the distribution system
clustering optimisation problem. This study proposes a multi-objective optimisation function that is solved by using an exchange
market algorithm, Pareto efficiency method, and fuzzy satisfying approach. The simulations are performed on IEEE 33-bus test
system.

 Nomenclature
Indices

d DGs number index
i bus index
s objective function index
t time index
z clusters index

Parameters and variables

a, b weighted coefficients
Ak incentive rate of the DR at kth hour
At incentive rate of the DR at tth hour
czP, cip, cpp, czq, ciq, cpq ZIP coefficients
COF combined objective function
D total number of DGs in distribution systems
Et,k cross-elasticity of the customers
Et, t self-elasticity of the customers
g1 risk coefficient of a medium-rank

stockholder
g2 risk coefficient of a low-rank stockholder
k value of the algorithm's iteration counter
N number of objective functions
NB total number of buses in distribution

systems
nj number of medium-rank stockholders
Nobj number of the objective functions
npop total number of market members
nq number of top-rank stockholders
nt1 sum of the total number of member's shares

before the change
NZ number of buses in a specific cluster
OFs,OF̄s two different results of the sth objective

function
OFs

max maximum results of the sth objective
function

OFs
min minimum results of the sth objective

function
OFs

n obtained results of the sth objective
function

Pd, z, t
DG generated active power of the DGs

Pd
MAX_DG maximum available active power of the

DGs
penk penalty rate of the DR at kth hour
pent penalty rate of the DR at tth hour
Pi, t demanded active power after ZIP model
Pi, t
D amount of the customers’ increased or

decreased load after the implementation of
the DR at ith bus and tth hour

Pi, t
LD demanded load of the ith bus at tth hour

after the implementation of the DR
Pi, t

0 demanded active power before ZIP model
popk

group(3) stock value of the intended member of the
third category

popj
group(2) stock value of a member of medium-rank

stockholders
pop1,qgroup(1), pop2,qgroup(1) two randomly selected stocks from the top-

rank stockholders
Pz, t
ENS active power associated with energy not

supplied in the off-grid mode
Pz, t
loss distribution systems’ active power loss

Qd, z, t
DG generated reactive power of the DGs

Qd
MAX_DG maximum possible reactive power of the

DGs
Qi, t

0 demanded reactive power before ZIP model
Qi, t demanded reactive power after ZIP model
Qz, t

loss distribution systems’ reactive power loss

Qz, t
VNS reactive power associated with VArh not

supplied in the off-grid mode
r random number between zero and one
rand uniformly distributed random number
rs random number in the [ − 0.5, 0.5] range
r1 random number between zero and one
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r2 random number between zero and one
tpop rank of the stockholder
Vi, t voltage of the customers after ZIP model
Vi, t

0 voltage of the customers before ZIP model
Ws sth weighted coefficient
Z total number of clusters in distribution

systems
δ market characteristic
Δnt1 change of stocks for a medium-rank

stockholder
Δnt2 change of stocks for a low-rank stockholder
η1 risk taken by a medium-rank stockholder
η2 risk taken by a low-rank stockholder
μ rank coefficient of the stockholder
ρk price of the energy at kth hour after the

implementation of the DR
ρt price of the energy at tth hour after the

implementation of the DR
ρ0,k price of the energy at kth hour before the

implementation of the DR
ρ0, t price of the energy at tth hour before the

implementation of the DR

1 Introduction
With the ever-increasing penetration level of distributed generators
(DGs), it is imperative to define solutions for using DGs to
increase reliability and resilience of the grid of the future. Of
particular importance is developing technologies and operational
tools that help power system operators use DGs effectively to help
power systems withstand extreme events, such as natural disasters,
blackouts, and malicious adversaries [1–3]. According to the U.S.
Department of Energy, events resulting from severe weather
conditions have caused 58% of the outages since 2002 [4]. The
current electric power infrastructure is highly vulnerable to these
extreme events. For example, Hurricane Sandy damaged a large
portion of the eastern U.S. electric power grid where 7.5 million
customers in 15 states experienced power outages [5].

Although using DGs in the distribution system can improve its
reliability and resilience [6], the excessive number of DGs increase
the distribution system control complexity [7, 8]. To tackle this
issue while maximising the benefits from DGs for enhancing
power system resilience, clustering of traditional distribution
systems into multiple microgrids can be adopted as an efficient
solution for operating a highly DG penetrated distribution system.
Microgrids, as active structures for distributing electric power,
facilitate the effective integration of DGs to help with the
enhancement of power system performance [9]. In a clustered
distribution system, each clustered section is operated as a
microgrid that should supply the required demand of the customers
in its area [10]. Clustering of distribution systems into microgrids
has recently been investigated in the literature [11, 12]. The energy
management of the networked microgrids is investigated in [13,
14]. Furthermore, the voltage of the networked microgrids is
studied in [15]. Wang et al. [16] surveyed the effect of the
networked microgrids on the self-healing characteristic of the
power systems. Besides, an approach for the operation of the
networked microgrids in the distribution systems is proposed in
[17]. In [18], an intentional islanding scheme is presented to
prevent the power grid's blackout. A clustering method is proposed
in [19] to design a robust and reliable power system. In [20], a
method is proposed to enhance the resilience of microgrids’
clusters for managing a complex distribution system.

Demand response (DR) is a well-known strategy for addressing
the demand-side management's requirements [21, 22]. DR can
potentially change load profiles by shifting the peak load to the
other periods for improving the reliability, resilience, and economic
operation of the system [23]. In [24], the DR's impact on the
scheduling of the microgrid's daily generation in the islanded mode
has been investigated. The optimal execution of DR for improving
the reliability of the power system is proposed in [25]. The impact
of the DR on the technical, economic, and reliability issues is

surveyed in [26]. The advantages of using the DR in microgrids are
surveyed in several papers [27, 28].

In the literature, distribution system clustering and DR have
been handled separately. However, accounting for the DR while
clustering the distribution system may be beneficial for distribution
system customers from the resilience and power quality points-of-
view. This paper addresses the simultaneous dynamic
implementation of DR and distribution system clustering and
investigates its impacts on the operation of the distribution system.
To this end, the distribution clustering is performed using two
different objective functions to improve its resilience and voltage
profile. DR is formulated as new constraints applied to the
distribution system clustering optimisation problem. A three-stage
optimisation process using the exchange market algorithm (EMA)
[29], Pareto efficiency method, and fuzzy satisfying approach is
utilised to find the optimal results of the proposed problem. The
main contributions of this paper are described as follows:

• DR is integrated into the distribution system clustering
optimisation problem.

• Impact of considering DR while clustering distribution systems
on the resilience and voltage profile is investigated and analysed
using several scenarios and objective functions.

• The simultaneous implementation of DR and dynamic clustering
has resulted in 29.1% reduction in the total daily energy not
supplied (ENS) compared to the case that DR is not applied.

This paper is structured as follows: Section 2 discusses some
preliminaries required to implement the proposed clustering
methodology. The proposed clustering methodology and
formulations are described in Section 3. Section 4 provides the
verification results and discusses the resilience of the distribution
system by implementing the newly introduced method. Section 5
concludes this research. A schematic overview of this paper is
presented in Fig. 1. 

2 Preliminaries
This section discusses the preliminaries required for the proposed
clustering methodology including load modelling, EMA, Pareto
efficiency approach, fuzzy satisfying method, and DR.

2.1 ZIP model

Customer loads are known to be sensitive to the voltage where a
decrease in voltage reduces the amount of real and reactive power
consumed by customers. ZIP model [30] is a well-known method
for modelling the changes in the customers’ demand. To accurately
modelling the voltage sensitivity of the customer and the impact of
conservation voltage reduction, the ZIP model is used by
considering the below constraints

Pi, t = Pi, t
0 czp

Vi, t

Vi, t
0

2

+ cip
Vi, t

Vi, t
0 + cpp , ∀i, t, (1)

Qi, t = Qi, t
0 czq

Vi, t

Vi, t
0

2

+ ciq
Vi, t

Vi, t
0 + cpq , ∀i, t . (2)

2.2 Introduction to EMA

In this paper, to find the optimal solution of proposed distribution
system clustering and DR problem, a three-stage optimisation
strategy including EMA, Pareto efficiency approach, and fuzzy
satisfying method is used. EMA is applied as the first stage for
identifying a set of optimal solutions. EMA is a powerful
evolutionary algorithm for solving optimisation problems inspired
by the trade's trend in the stock market. EMA has two balanced and
unbalanced modes. In each mode, the population members are
divided into low, medium, and high rankings. Members’ ranking
and the risk taken by them to improve their rank have an inverse
relationship. Moreover, this algorithm has two powerful operators,
namely oscillatory and non-oscillatory, which model the real nature
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of the stock market. EMA has been proven to be an efficient,
powerful, accurate, and fast method to find the optimal solutions of
the different types of power system's optimisation problems [31–
33].

In the balanced mode, stockholders compete with each other to
obtain the maximum benefit without taking any risk. Members of
the stock market according to their fitness function are classified
into three categories:

• Top-rank stockholders form around 10 to 30% of total
population members. These stockholders do not change their
stocks to maintain their rank in the market. These stockholders
represent the most optimal problem answers.

• Medium-rank stockholders from around 20 to 50% of total
population members. These stockholders compare their stocks
with stocks of top-rank stockholders to achieve a global
optimum. Each stockholder selects the value of his/her shares
based on the values of stocks of top-rank stockholders using

popj
group(2) = r × pop1,qgroup(1) + (1 − r) × pop2,qgroup(1)

q = 1, 2, 3,…n and j = 1, 2, 3,…nj .
(3)

• Low-rank stakeholders choose their stock values using the
stocks of top-rank stockholders by taking more risk. They adopt
a broader search domain compared to the second category as

Sk = 2 × r1 × pop1,qgroup(1) − popk
group(3) + 2 × r2 ×

pop2,qgroup(1) − popk
group(3) , (4)

popk
group(3),new = popk

group(3) + 0.8 × Sk . (5)
• In the fluctuating mode, the stockholders intelligently exchange

their stocks by taking risks to achieve a higher rank in the
market. Similar to the balanced mode, members of the stock
market are divided into three categories:

• Top-rank stockholders (10 to 30% of total members) tend to
keep their high rank among the other stockholders and do not
exchange their stocks.

• Medium-rank stockholders (20 to 50% of total members) tend to
improve their rank by exchanging their stocks. As their rank in
the market increases, they take less risk. After exchanging the
stocks, the summation of stockholder shares must remain intact.
Medium-rank stockholders participate in the market according
to

Δnt1 = nt1 − δ + 2 × r × μ × η1 , (6)

μ = tpop
npop

, (7)

nt1 = ∑
y = 1

n
sty y = 1, 2, 3,⋯, n, (8)

η1 = nt1 × g1, (9)

g1k = g1,max − g1,max − g1,min

itermax
× k . (10)

• In the medium-rank category, a portion of Δnt1 is randomly
added to one of the stocks of a stockholder. This process
continues until Δnt1 is completely added to all stocks of the
corresponding stockholder. In this procedure, the total value of
stocks for each stockholder must remain intact. Meanwhile,
market information, δ, plays an important role to increase the
convergence speed of algorithm to the optimal answer.

• Low-rank stockholders tend to achieve higher ratings by
changing their stock values in a broader search domain. Stock
changes in this category are based on

Δnt2 = 4 × rs × μ × η2, (11)

rs = 0.5 − rand, (12)

η2 = nt1 × g2 . (13)

In the fluctuating mode, the low-rank category members are not
required to maintain their total value of stocks at a constant value.
In (13), g2 is between zero and one.

2.3 Pareto efficiency approach

By performing the EMA, several solutions are obtained. The top-
ranked solutions of the objective functions are used to find the
Pareto solutions. By considering (14) and (15), the non-dominated
results are selected as the Pareto solutions. In other words, each
selected solution that has at least one better value among the results
of the objective functions (abbreviated as OF) is a Pareto solution,
i.e.

∀s = 1, 2,…,Nobj OFs ≤ OF̄s, (14)

∃s = 1, 2,…,Nobj OFs < OF̄s . (15)

Fig. 1  Schematic overview of the paper
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2.4 Fuzzy satisfying method

After finding the Pareto solutions, the fuzzy satisfying method is
executed for obtaining the optimal solutions of the considered
multi-objective problem among the Pareto solutions. Because
objective functions’ dimensions are not the same, the obtained
results are normalised by

OFs
n =

1 OFs
n ≤ OFs

min

OFs
n − OFs

max OFs
min ≤ OFs

n ≤ OFs
max

0 OFs
max ≤ OFs

n

. (16)

To find the optimal solutions, the combined objective function is
used by using the weighted coefficients as

min [COF] = ∑
s = 1

N
WsOFs, (17)

∑
s = 1

N
Ws = 1. (18)

2.5 DR model

DR could be implemented to increase the quality of the service
provided for the customers by asking them to participate in the
operation of the distribution systems [9]. In DR, the customers
have agreed to decrease or increase their demand according to the
operator's request, and in this regard, they may be paid [31]. In this
paper, multi-period incentive-based DR is proposed. In the
considered DR, the elasticity of the energy price and customer
incentives and penalties are taken into consideration. The DR-
related constraints are given as

Pi, t
LD = Pi, t ×

1 + Et, t ×
ρt − ρ0, t + At + pent

ρ0, t

+ ∑
k = 1
k ≠ t

T
Et,k ×

ρk − ρ0,k + Ak + penk
ρ0,k

, (19)

−0.16Pi, t ≤ Pi, t
D ≤ 0.16Pi, t, (20)

Pi, t
LD = Pi, t + Pi, t

D , (21)

∑
t = 1

24
Pi, t
D = 0. (22)

Equation (19) indicates the multi-period DR's model with elastic
loads. Equation (20) represents the acceptable range of the load for
DR. Equation (21) shows how the customer's load is calculated
after the implementation of the DR. Equation (22) ensures that the
total amount of the daily increased and decreased load of the
customers are equal.

3 DR-based distribution system clustering
formulation and methodology
This section discusses the proposed methodology to use DR for
dynamic clustering of distribution systems.

3.1 Problem formulation and constraints

For the proposed dynamic clustering problem along with DR, the
following constraints are taken into consideration:

0 ≤ Pd, z, t
DG ≤ Pd

Max_DG, (23)

0 ≤ Qd, z, t
DG ≤ Qd

MAX_DG, (24)

0.9 ≤ Vi, t ≤ 1.05, (25)

∑
d = 1

D
Pd, z, t
DG + ∑

z = 1

Z
Pz, t
ENS = ∑

i = 1

NB
Pi, t
LD + ∑

z = 1

Z
Pz, t
loss, (26)

∑
d = 1

D
Qd, z, t

DG + ∑
z = 1

Z
Qz, t

VNS = ∑
i = 1

NB
Qi, t + ∑

z = 1

Z
Qz, t

loss . (27)

Constraints (23) and (24) represent the active and reactive
generation constraints of DGs, respectively. The allowable range of
the distribution systems’ voltage level is formulated in (25). In
(26), the active power balance equation of the proposed model is
described. ENS denotes the required energy of the customers that is
not being supplied by the distribution system. In (27), the reactive
power balance equation is provided. VArh not supplied (VNS)
denotes the demanded reactive power of customers over time that
is not being supplied by the distribution system.

The proposed multi-objective model includes two objectives
given as follows:

OFt
1 = a∑

z = 1

Z
P

z, t
ENS + b∑

z = 1

Z
Q

z, t
VNS, (28)

OFt
2 = VDI = ∑

z = 1

Z

∑
i = 1

NZ
(Vz, i, t − Vz, i, t

0 )2 . (29)

Equation (28) explains the first objective function in which the
minimisation of the ENS and VNS of the clusters are considered.
In this paper, active and reactive powers are assumed to have the
same level of priority. Thus, both a and b are set as 0.5. In practice,
load's reactive power proportionally changes by the variations of
loads’ active power. Equation (29) describes the second objective
function. In this objective function, minimisation of the voltage
deviation index (VDI) is considered. Once the multi-objective
model and constraints are formulated, the EMA, Pareto efficiency
approach, and fuzzy satisfying methods will be applied
consecutively to find the optimal solutions.

3.2 Optimisation steps

The clustering process in the distribution systems along with the
implementation of DR follows the steps below. The flowchart of
the proposed process is shown in Fig. 2. 

Step 1: Enter the initial data of the OF1 or OF2, e.g. number of the
required population and iteration for optimisation, bus data, line
data, DGs’ data, DR's data etc.
Step 2: Generate the initial population of the selective lines for
clustering as well as the output of the DGs considering (23) and
(24).
Step 3: Start the first iteration of the first population and determine
the end buses’ number and location for the selected lines that are
used for clustering and initialising the EMA.
Step 4: Identify the buses and lines of each cluster, reorganise the
bus and line data of each cluster, and run the power flow.
Step 5: Execute the constraints related to the load in (1) and (2),
voltage in (25), and output active and reactive powers of the DGs,
(26) and (27), for each of the population members.
Step 6: Calculate the objective functions in (28) and (29), and other
variables for all of the clusters.
Step 7: Execute Steps 1 to 6 for all members of population until the
algorithm reaches the considered maximum iteration number and
the top-ranked members and their results are determined.
Step 8: Apply DR's constraints in (19)–(22) on all the previously
obtained results.
Step 9: Apply constraints (14) and (15) to obtain the Pareto
solutions. Afterward, the fuzzy satisfying method and weighted
coefficients approach are performed by applying (16)–(18) and the
final results are obtained.
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Remark 1: It should be noted that the proposed optimisation

approach is computationally efficient and can be run in <30 s using
a conventional computer. The fast nature of proposed approach is
of paramount value to accommodate a fast restoration process after
natural disasters.
 

Remark 2: This paper assumes constant energy price and
incentive rate to analyse the effect of the proposed method
regardless of the energy price and the incentive rate. Considering

variable energy price and incentive rate can hide the real impact of
the DR. Accounting for the real-time pricing of the energy can only
add to the complexity of the proposed model which increases the
optimisation time.
 

Remark 3: The idea of clustering distribution systems into
multiple microgrids requires specific regulation and standards from
utilities to facilitate this transition. To effectively implement the
proposed approach, it is assumed that all DGs are fully
controllable. Also, all lines are associated with intelligent
electronic devices and measurement and metering infrastructure.
Moreover, the distribution system should be equipped with tie
switches to accommodate the decoupling and recoupling of the
clustered microgrids. In practice, the tie switches are equipped with
protection relays that have synchronism check capability. Tie
switches should be remotely controllable by the distribution system
control centre.

4 Simulation results and discussion
In this section, the validity of the proposed clustering methodology
is verified through a set of case studies. In the following, the test
system data and parameters and assumptions used in the
methodology are described. Then, the DR and dynamic clustering
methodology are performed for two different objective functions.

4.1 Test system description and assumptions

The proposed methodology is implemented in the IEEE 33-bus test
system (shown in Fig. 3) [34]. The test system loading condition is
derived from [35]. Moreover, the utilised ZIP model's coefficients
are extracted from [36]. The DR penalty is waived to encourage
customers to participate in DR. The energy price and the incentive
rate are assumed to be constant. The utilised self and cross-
elasticities of the incentive-based DR in (19) are provided in [37].
Three DGs are considered as the local demand supplier of the
distribution system. Besides, the maximum active and reactive
power generation and the optimal location of the DGs are adopted
from [38]. For clustering the 33-bus distribution system, three
regions are considered based on the available generation and the
average demanded load of the customers. Fig. 3 shows the
considered regions for clustering and the DGs’ location. In Fig. 3,
the line numbers are highlighted in blue and bus numbers are in
black. The optimisation model is implemented using MATLAB
software.

4.2 DR and dynamic clustering

In this section, the results of the proposed model for simultaneous
implementation of DR and dynamic clustering of distribution
systems are presented for three different scenarios, which are
elaborated as follows.

Scenario 1: The objective function in (28) that focuses on the
combination of ENS and VNS is considered. To create three
clusters within the islanded 33-bus distribution system, two lines
must be selected. The selected lines for optimal clustering of the
distribution system with and without DR for six different hours are
shown in Table 1. In Table 1, because of the dynamic nature of the
implemented model, each period has its own specific clusters.

The optimal generations of the DGs are listed in Table 2,
showing that optimal schedule of these DGs helps them use their
maximum capacity to satisfy the objective function in (28), which
in turn results in the minimum ENS and VNS in the distribution
system. 

Scenario 2: The objective function in (29) that focuses on VDI
minimisation is considered. By using the DR and minimising the
VDI, new dynamic clusters of the distribution system are
determined. Selected lines for clustering the distribution system are
illustrated in Table 3. The results of the second objective function
with and without DR are different from the first in terms of
satisfying the objective functions’ requirements.

In addition to finding the optimal lines for clustering the
distribution system, the optimal outputs of the DGs that are used to
improve the voltage level of the distribution system considering the

Fig. 2  Flowchart of the proposed optimisation process
 

Fig. 3  Initial regions of distribution system and location of DGs
 

Table 1 Selected lines for clustering of 33-bus distribution
system considering OFt

1 with and without DR
Time, h Selected lines

With DR Without DR
4 5 26 5 25
6 6 28 5 26
12 6 26 5 26
19 6 28 6 28
21 5 26 6 27
24 5 26 5 27
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second objective function are shown in Table 4. The DGs’
generations in the case of dynamic clustering of distribution
systems without DR is provided in [38]. Compared to the results of
[38], all of the DGs’ generations are affected by the DR. As
Table 4 shows, DGs only generate the least possible power to
minimise the VDI regardless of the ENS and VNS of the customers
which are not the second objective function's targets.

Scenario 3: Both objective functions in (28) and (29) are
considered. Optimal lines for determining the dynamic clusters are
selected by using the EMA, Pareto efficiency approach, and fuzzy

satisfying method. The top-ranked solution is chosen as the optimal
solution. Table 5 summarises the optimal dynamic clusters’
structure of the proposed multi-objective problem with and without
DR. These dynamic clusters are defined to provide the optimal
operation of the distribution system from both the voltage and
resilience points-of-view.

Table 6 shows the DGs’ active and reactive powers when both
objective functions are considered. The results in Table 6 show that
the multi-objective clustering problem provides a trade-off between
ENS/VNS and VDI as the targets. The DGs’ active and reactive

Table 2 Optimal output of 33-bus distribution system's DGs considering OFt
1 with DR

Time, h Active power, MW Reactive power, MVAr
DG1 DG2 DG3 DG1 DG2 DG3

4 1.5 0.9998 0.7 0.6630 0.4724 0.3452
6 1.5 1 0.7 0.4833 0.4645 0.4505
12 1.5 0.9993 0.7 0.568 0.4976 0.4783
19 1.5 1 0.7 0.4935 0.3130 0.5447
21 1.5 1 0.7 0.689 0.3025 0.4713
24 1.5 1 0.7 0.3751 0.2773 0.3891

 

Table 3 Selected lines for clustering of 33-Bus distribution system considering OFt
2 with and without DR

Time, h Selected lines
With DR Without DR

4 5 30 10 30
6 5 30 5 30
12 5 30 5 30
19 5 30 11 30
21 5 30 5 30
24 10 30 5 30

 

Table 4 Optimal output of 33-bus distribution system's DGs considering OFt
2 with DR

Time, h Active power, MW Reactive power, MVAr
DG1 DG2 DG3 DG1 DG2 DG3

4 0.05 0.05 0.0507 0.05 0.05 0.05
6 0.05 0.0994 0.05 0.05 0.05 0.05
12 0.05 0.05 0.0594 0.05 0.05 0.05
19 0.0573 0.0517 0.0813 0.05 0.05 0.05
21 0 0644 0.05 0.05 0.05 0.05 0.05
24 0.0674 0.05 0.0538 0.05 0.05 0.05

 

Table 5 Selected lines for clustering of 33-bus distribution system considering COFt with and without DR
Time, h Selected lines

With DR Without DR
4 8 27 7 27
6 11 28 8 28
12 12 29 9 29
19 10 28 8 27
21 7 27 8 28
24 8 27 7 26

 

Table 6 Optimal output of 33-bus distribution system's DGs considering COFt with DR
Time, h Active power, MW Reactive power, MVAr

DG1 DG2 DG3 DG1 DG2 DG3
4 1.5 0.4466 0.7 0.506 0.3434 0.5802
6 0.613 0.7023 0.565 0.551 0.1706 0.715
12 0.6409 0.3216 0.644 0.7 0.05 0.6009
19 0.05 0.2868 0.7 0.681 0.081 0.8075
21 0.7326 0.7646 0.565 0.564 0.4544 0.6449
24 1.4358 0.6843 0.681 0.45 0.1359 0.6639
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power generations in Scenario 3 are lower than Scenario 1 when
the ENS and VNS are the targets and higher than Scenario 2, which
targets VDI.

The values of the first and second objective functions, OFt
1 and

OFt
2, corresponding to Scenarios 1 and 2 with and without DR are

provided in Table 7. As it can be seen, the objective functions’

values are significantly improved compared to the without DR
mode. In most of the hours, the ENS and VNS of the distribution
system are decreased considering the performance of the DR. Also,
the VDI of the distribution system is reduced as well. Meanwhile.
the daily comparison is presented in the next section. Fig. 4
illustrates a sample structure of the dynamic clusters. Fig. 4 shows
the clusters of the 19th period in which lines 10 and 28 are selected
for clustering as demonstrated in Table 5. Each cluster has a DG
for supplying its demand. Because most Cluster 1 customers have a
lower demand than the other clusters, its size is relatively larger.
Fig. 5 shows a sample of the Pareto solutions (blue dots) and the
optimal solution selected by fuzzy satisfying method (red dot). 

4.3 DR and recoupling of microgrid clusters

In a clustered distribution system, microgrid clusters may
experience shortage of generation during some periods and require
immediate support from their neighbouring microgrids. This
section studies the effect of recoupling two clusters and
implementing the DR when one of them is in urgent need of power
and the other is capable of supporting its neighbour. The goal of
cluster recoupling is to increase the reliability and resilience of the
distribution system. This approach can decrease the overall ENS of
the distribution system which in turn improves its overall reliability
and resilience.

The ENS of the three clusters before the coupling are shown in
Table 8. ENS1, ENS2, and ENS3 correspond to Cluster 1, Cluster
2, and Cluster 3, respectively. TENS denotes the total ENS of the
distribution system. As seen in Table 8, the majority of the ENS is
from Cluster 1 due to the structure of the distribution system and
its demand. Since the implemented DR has utilised the DGs’
capability to supply sufficient reactive power, the VNS for all
clusters is equal to zero. ENS of Cluster 1 and the coupled clusters
are shown in Table 9. Comparing Tables 8 and 9, one can observe
that in some hours (e.g. fourth and twelfth hours) when the
dynamic clusters are coupled, the TENS of the distribution system
is decreased. Fig. 6 illustrates the distribution system with the
coupled clusters at hour 12 with DR. 

4.4 Numerical analysis of impact of DR on dynamic
clustering in scenario 3

In Fig. 7, TENS of the clustered distribution system is expressed. 
In this figure, the influence of the DR on the clustered distribution
system considering the variation of the TENS during a day is
demonstrated. Fig. 7 shows that by implementing the DR, the
concentration of TENS is shifted from the peak and middle periods
of the day to the initial and final hours of the day. It is noticeable
that during these periods, the demand for customers is less than the
daily average demand of the customers.

The optimal total daily not supplied demands of the distribution
system with DR and without DR are calculated and shown in
Table 10. Total daily ENS (TDENS) and Total daily VNS
(TDVNS) describe the aggregated amount of the total distribution
system's minimum daily ENS and VNS, respectively. Table 10
indicates 29.1% reduction in the TDENS by applying the DR
compared to the absence of the DR. Implementing the DR in
clustering the distribution systems significantly improves their
resilience level by supplying a more demanded load of the
customers.

5 Conclusion and future work
In this paper, dynamic clustering of off-grid distribution systems
along with DR is performed to improve the resilience and voltage
profile in the distribution systems. In the proposed methodology,
ENS, VNS, and VDI are considered as the objective functions; by
using these objective functions, a comprehensive multi-objective
problem is modelled and investigated. This multi-objective
problem is solved by using the fuzzy satisfying method, Pareto
efficiency approach, and EMA. This dynamic clustering transforms
an off-grid distribution system to autonomous clusters where each
cluster has the least dependency to the other clusters. Moreover, the
execution of the DR improves the reliability and resilience of the

Table 7 Values of OFt
1 and OFt

2 with and without DR
Time, h OFt

1 OFt
2

DR No DR DR No DR
4 0.2384 0.06703 0.000877 0.0009365
6 0.9897 0.26142 0.000331 0.0009420
12 0.8434 0.88451 0.000303 0.00022445
19 1.271 1.28438 0.000110 0.00012547
21 0.6312 1.14965 0.000648 0.00017608
24 0.3016 0.04045 0.000853 0.00110161

 

Fig. 4  New dynamic clusters at hour 19
 

Fig. 5  Sample of the optimal solution and Pareto front solutions
 

Table 8 Not supplied demand of the distribution system
before coupling of clusters
Time, h ENS1, MWh ENS2, MWh ENS3, MWh TENS, MWh
4 0 0 0.0098 0.0098
6 0.2246 0.1054 0.1555 0.4855
12 0 0 0.0189 0.0189
19 0.1590 0.0677 0.1183 0.3451
21 0.0659 0.0115 0.0683 0.1456
24 0.0638 0.0079 0.0695 0.1412

 

Table 9 Not supplied demand of the distribution system
after coupling of clusters
Time, h ENS, MWh

ENS1 ENS2 TENS
4 0 0 0
6 0.2246 0.261 0.4855
12 0 0 0
19 0.1590 0.1861 0.3451
21 0.0659 0.0798 0.1456
24 0.0638 0.0774 0.1412

 

5236 IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 22, pp. 5230-5238
© The Institution of Engineering and Technology 2020



distribution system. This proposed method increases the resilience
of the distribution system by providing power support among
clusters. A total of 29.1% reduction in the TDENS is achieved by
applying the DR compared to the absence of the DR. Additionally,
the effect of clusters’ coupling is also investigated. The obtained
results verify the effectiveness of the proposed methodology and
impacts of the DR on the reliability, resilience, and voltage of the
dynamic clusters of the distribution system. As a potential future
work, researchers can consider the financial risk-based scheduling
of clustered microgrids in the presence of DR.
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