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MOMENTS OF THE 2D SHE AT CRITICALITY

YU GU, JEREMY QUASTEL AND LI-CHENG TSAI

We study the stochastic heat equation in two spatial dimensions with a multiplicative white noise, as the
limit of the equation driven by a noise that is mollified in space and white in time. As the mollification
radius ε→0, we tune the coupling constant near the critical point, and show that the single time correlation
functions converge to a limit written in terms of an explicit nontrivial semigroup. Our approach consists
of two steps. First we show the convergence of the resolvent of the (tuned) two-dimensional delta Bose
gas, by adapting the framework of Dimock and Rajeev (J. Phys. A 37:39 (2004), 9157–9173) to our setup
of spatial mollification. Then we match this to the Laplace transform of our semigroup.

1. Introduction and main result

In this paper, we study the stochastic heat equation (SHE), which informally reads

∂t Z = 1
2∇

2 Z +
√
βξ Z , Z = Z(t, x), (t, x) ∈ R+×Rd ,

where ∇2 denotes the Laplacian, d ∈ Z+ denotes the spatial dimension, ξ denotes the spacetime white
noise, and β > 0 is a tunable parameter. In broad terms, the SHE arises from a host of physical phenomena
including the particle density of diffusion in a random environment, the partition function for a directed
polymer in a random environment, and, through the inverse Hopf–Cole transformation, the height function
of a random growth surface; the two-dimensional Kardar–Parisi–Zhang (KPZ) equation. We refer to
[Corwin 2012; Khoshnevisan 2014; Comets 2017].

When d = 1, the SHE enjoys a well-developed solution theory: For any Z(0, x) = Z ic(x) that is
bounded and continuous, and for each β > 0, the SHE (in d = 1) admits a unique C ([0,∞)×R)-valued
mild solution, where C denotes continuous functions [Walsh 1986; Khoshnevisan 2014]. Such a solution
theory breaks down in d > 2, due to the deteriorating regularity of the spacetime white noise ξ , as the
dimension d increases. In the language of stochastic PDE [Hairer 2014; Gubinelli et al. 2015], d = 2
corresponds to the critical, and d = 3, 4, . . . to the supercritical regimes.

Here we focus on the critical dimension d = 2. To set up the problem, fix a mollifier ϕ ∈ C∞c (R2),
where C∞c denotes smooth functions with compact support, with ϕ > 0 and

∫
ϕ dx = 1, and mollify the

noise as

ξε(t, x) :=
∫

R2
ϕε(x − y)ξ(t, y)dy, ϕε(x) := 1

ε2ϕ(
x
ε
).
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Consider the corresponding SHE driven by ξε,

∂t Zε = 1
2∇

2 Zε +
√
βεξεZε, Zε = Zε(t, x), (t, x) ∈ R+×R2, (1-1)

with a parameter βε > 0 that has to be finely tuned as ε→ 0. The noise ξε is white in time, and we
interpret the product between ξε and Zε in the Itô sense. Let p(t, x) := 1/(2π t) exp(−|x |2/(2t)), x ∈R2,
denote the standard heat kernel in two dimensions. For fixed Z(0, x) = Z ic ∈ L 2(R2) and ε > 0, it is
standard, though tedious, to show that the unique C ((0,∞)×R2)-valued mild solution of (1-1) is given
by the chaos expansion

Zε(t, x) =
∫

R2
p(t, x − x ′)Z ic(x ′) dx ′+

∞∑
k=1

Iε,k(t, x), (1-2)

Iε,k(t, x) :=
∫ ( k∏

s=1

p(τs+1− τs, x (s+1)
− x (s))

√
βεξε(τs, x (s))dτsdx (s)

)
p(τ1, x (1)− x ′)Z ic(x ′) dx ′, (1-3)

where the integral goes over all 0 < τ1 < . . . < τk < t and x ′, x (1), . . . , x (k) ∈ R2, with the convention
x (k+1)

:= x and τk+1 := t .
From the expression (1-3) of Iε,k , it is straightforward to check that, for fixed βε = β > 0 as ε→ 0,

the variance Var[Iε,k] diverges, confirming the breakdown of the standard theory in d = 2. We hence
seek to tune βε→ 0 in a way so that a meaningful limit of Zε can be observed. A close examination
shows that the divergence of Var[Iε,k] originates from the singularity of p(t, 0)= (2π t)−1 near t = 0, so
it is natural to propose βε = β0/|log ε| → 0, β0 > 0. The ε→ 0 behavior of Zε for small values of β0

has attracted much attention recently. For fixed β0 ∈ (0, 2π), [Caravenna et al. 2017] showed that the
fluctuations of Zε(t, •) converge (as a random measure) to a Gaussian field; more precisely, the solution of
the two-dimensional Edwards–Wilkinson (EW) equation. For β0= β0,ε→ 0, [Feng 2016] showed that the
corresponding polymer measure exhibits diffusive behaviors. The logarithm hε(t, x) := β−1/2

ε log Zε(t, x)
is also a quantity of interest: it describes the free energy of random polymers and the height function
in surface growth phenomena which solves the two-dimensional KPZ equation. The tightness of the
centered height function was obtained in [Chatterjee and Dunlap 2020] for small enough β0. It was then
shown in [Caravenna et al. 2020] that the centered height function converges to the EW equation for all
β0 ∈ (0, 2π), and in [Gu 2020] for small enough β0; i.e., the limit is Gaussian.

However, the ε→ 0 behavior of Zε goes through a transition at β0 = 2π . Consider the n-th order
correlation function of the solution of the mollified SHE (1-1) at a fixed time:

uε(t, x1, . . . , xn) := E

[ n∏
i=1

Zε(t, xi )

]
. (1-4)

By the Itô calculus, this function satisfies the n particle (approximate) delta Bose gas

∂t uε(t, x1, . . . , xn)=−(Hεuε)(t, x1, . . . , xn), xi ∈ R2, uε(0)= Z⊗n
ic , (1-5)

where Hε is the Hamiltonian

Hε :=−
1
2

n∑
i=1

∇
2
i −βε

∑
16i< j6n

δε(xi−x j ), δε(x):=ε−28(ε−1x), 8(x):=
∫

R2
ϕ(x+y)ϕ(y)dy, (1-6)
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with the shorthand notation∇2
i :=∇

2
xi

. It can be shown (e.g., from [Albeverio et al. 1988, Equation (I.5.56)])
that, for n = 2, the Hamiltonian Hε has a vanishing/diverging principal eigenvalue as ε→ 0, respectively,
for β0 < 2π and β0 > 2π . This phenomenon in turn suggests a transition in behaviors of Zε at β0 = 2π .
This transition is also demonstrated at the level of pointwise limit (in distribution) of Zε(t, x) as ε→ 0
by [Caravenna et al. 2017].

The preceding observations point to an intriguing question of understanding the behavior of Zε and uε
at this critical value β0 = 2π . For the case of two particles (n = 2), by separating the center-of-mass and
the relative motions, the delta Bose gas can be reduced to a system of one particle with a delta potential
at the origin. Based on this reduction and the analysis of the one-particle system in [Albeverio et al. 1988,
Chapter I.5], Bertini and Cancrini [1998] gave an explicit ε→ 0 limit of the second order correlation
functions (tested against L 2 functions). Further, given the radial symmetry of the delta potential, the
one particle system (in d = 2) can be reduced to a one-dimensional problem along the radial direction.
Despite its seeming simplicity, this one-dimensional problem already requires sophisticated analysis.
Although the final answer is nontrivial, it does not rule out a lognormal limit. For n > 2, these reductions
no longer exist, and to obtain information on the correlation functions stands as a challenging problem.
The only prior results are for n = 3. Feng [2016] showed that for Zε the limiting ratio of the cube root of
the third pointwise moment to the square root of the second moment is not what one would expect from a
lognormal distribution, indicating (but not proving) nontrivial fluctuations. Using techniques developed
in [Caravenna et al. 2019a] to control the chaos series, Caravenna et al. [2019b] obtained the convergence
of the third order correlations of Zε to a limit given in terms of a sum of integrals.

In this paper, we proceed through a different, functional analytic route, and obtain a unified description
of the ε→ 0 limit of all correlation functions of Zε. We now prepare some notation for stating our main
result. Hereafter, throughout the paper, we set

βε :=
2π
|log ε|

+
2πβfine

|log ε|2
, (1-7)

where βfine ∈R is a fixed, fine-tuning constant. This fine-tuning constant does not complicate our analysis,
though the limiting expressions do depend on βfine. Let γEM = 0.577 . . . denote the Euler–Mascheroni
constant, and, with 8 as in (1-1) and (1-6), set

β? := 2 (log 2+βfine−β8− γEM),

β8 :=

∫
R4
8(x1) log|x1− x ′1|8(x

′

1) dx1dx ′1,
(1-8)

and

j(t, β?) :=
∫
∞

0

tα−1eβ?α

0(α)
dα. (1-9)

We will often work with vectors x = (x1, . . . , xn) ∈R2n , where xi ∈R2, and y = (y2, . . . , yn) ∈R2n−2,
where yi ∈ R2. We say xi is the i -th component of x . For n > 2 and 16 i < j 6 n, consider the linear
transformation Si j : R

2n−2
→ R2n that takes the first component of R2n−2 and repeats it in the i-th and
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j-th components of R2n ,

Si j (y2, . . . , yn) := (y3, . . . , y2︸︷︷︸
i-th

, . . . , y2︸︷︷︸
j-th

, . . . , yn). (1-10)

This operator Si j induces the lowering operator Si j :L
2(R2n)→L 2(R2n−2), which is defined as

(Si j u)(y) := u(Si j y). (1-11)

Let H α(R2n) denote the Sobolev space of degree α ∈ R. As we will show in Lemma 4.1, (1-11)
defines an unbounded operator L 2(R2n)→L 2(R2n−2), and there exists an adjoint

S∗i j :L
2(R2n−2)→

⋂
a>1

H −a(R2n).

Let
Pt := e

t
2
∑n

i=1 ∇
2
i

denote the heat semigroup on L 2(R2n); its integral kernel will be denoted P(t, x) :=
∏n

i=1
1

2π t exp
(
−
|xi |

2

2t

)
.

Define the operator PJ
t :L

2(R2n−2)→L 2(R2n−2) to be

PJ
t := j(t, β?)e

t
4∇

2
2+

t
2
∑n

i=3 ∇
2
i . (1-12)

This operator “squeezes” the first component x1 in the heat semigroup and multiplies the result by the
function j(t, β?). The function is related to the operator Jz defined later in (1-22) (see Lemma 8.4) and
hence the notation PJ

t .
We need to prepare some index sets. Hereafter we write i < j for a pair of ordered indices in
{1, . . . , n}, i.e., two elements i < j of {1, . . . , n}. For n,m ∈ Z+, we consider

−−→
(i, j)= ((ik, jk))mk=1 such

that (ik < jk) 6= (ik+1 < jk+1), i.e., m ordered pairs with consecutive pairs nonrepeating. Let

Dgm(n,m) :=
{−−→
(i, j) ∈ ({1, . . . , n}2)m : (ik < jk) 6= (ik+1 < jk+1)

}
, (1-13)

Dgm(n) :=
∞⋃

m=1

Dgm(n,m) (1-14)

denote the sets of all such indices, with the convention that Dgm(1,m) := ∅, m ∈ Z+. The notation
Dgm(n) refers to “diagrams”, as will be explained in Section 2. Let

6m(t) :=
{
Eτ = (τa)a∈ 1

2 Z∩[0,m] ∈ R2m+1
+
: τ0+ τ1/2+ . . .+ τm = t

}
, (1-15)

so that for a fixed t ∈R+, the integral
∫
6m(t)

( • )dEτ denotes a (2m+1)-fold convolution over the set 6m(t).
For a bounded operator Q :K →K ′ between Hilbert spaces K and K ′, let ‖Q‖op := sup‖u‖K =1‖Qu‖K ′

denote the inherited operator norm. We use the subscript “op” (standing for “operator”) to distinguish
the operator norm from the vector norm, and omit the dependence on K and K ′, since the spaces will
always be specified along with a given operator. The L 2 spaces in this paper are over C, and we write
〈 f, g〉 :=

∫
Rd f (x)g(x) dx for the inner product. (Note our convention of taking complex conjugate in

the first function.) Throughout this paper we use C(a, b, . . .) to denote a generic positive finite constant
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that may change from line to line, but depends only on the designated variables a, b, . . . . We view the
mollifier ϕ as fixed throughout this paper, so the dependence on ϕ will not be specified.

We can now state our main result.

Theorem 1.1. (a) The operators

Pt +DDgm(n)
t , DDgm(n)

t :=

∑
−−→
(i, j)∈Dgm(n)

D
−−→
(i, j)
t , t > 0, (1-16)

define a norm-continuous semigroup on L 2(R2n), where, for
−−→
(i, j)= ((ik, jk))mk=1,

D
−−→
(i, j)
t : =

∫
6m(t)

Pτ0S
∗

i1 j1(4πP
J
τ1/2
)

(m−1∏
k=1

Sik jkPτkS
∗

ik+1 jk+1
(4πPJ

τk+1/2
)

)
Sim jmPτm dEτ . (1-17)

The sum in (1-16) converges absolutely in operator norm, uniformly in t over compact subsets
of [0,∞).

(b) Start the mollified SHE (1-1) from Zε(0, •) = Z ic(•) ∈ L 2(R2). For any f (x) = f (x1, . . . , xn) ∈

L 2(R2n), n ∈ Z+, we have

E[〈 f, Z⊗n
ε,t 〉] := E

[∫
R2n

f (x)
n∏

i=1

Zε(t, xi ) dx
]
−→ 〈 f, (Pt +DDgm(n)

t ) Z⊗n
ic 〉 as ε→ 0, (1-18)

uniformly in t over compact subsets of [0,∞).

Remark 1.2. Since the method is through explicit construction of a convergent series for the resolvent on
L 2(R2n), our result does not apply to the flat initial condition Z ic(x)≡ 1. We conjecture that Theorem 1.1
extends to such initial data, and leave this to future work.

Theorem 1.1 gives a complete characterization of the ε→ 0 limit of fixed time correlation functions of
the SHE with an L 2 initial condition. We will show in Section 2 that for each

−−→
(i, j) ∈ Dgm(n), D

−−→
(i, j)

possesses an explicit integral kernel. Hence the limiting correlation functions (i.e., the right-hand side
of (1-18)) can be expressed as a sum of integrals. From this expression, we check (in Remark 2.1) that for
n = 2 our result matches that of [Bertini and Cancrini 1998], and for n = 3, we derive (in Proposition 2.2)
an analogous expression of [Caravenna et al. 2019b, Equations (1.24)–(1.26)].

A question of interest arises as to whether one can uniquely characterize the limiting process of Zε.
This does not follow directly from correlation functions, or moments, since we expect a very fast moment
growth in n (see Remark 1.8). Still, as a simple corollary of Theorem 1.1, we are able to infer that every
limit point of Zε must have correlation functions given by the right-hand side of (1-18). The corollary is
mostly concretely stated in terms of the vague topology of measures, or equivalently testing measures
against compactly supported continuous functions. One could generalize to L 2 test functions but we do
not pursue this here.

Corollary 1.3. Let Z ic and Zε(t, x) be as in Theorem 1.1, and, for each fixed t , view µε,t(dx) :=
Zε(t, x)dx as a random measure. Then, for any fixed t ∈ R+, the law of {µε,t(dx)}ε∈(0,1) is tight in the
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vague topology, and, for any limit point µ∗,t(dx) of {µε,t(dx)}ε∈(0,1), and for any compactly supported,
continuous f1, . . . , fn ∈ Cc(R

2), n ∈ Z+,

E

[ n∏
i=1

∫
R2

fi (xi )µ∗,t(dxi )

]
= 〈 f1⊗ · · ·⊗ fn, (Pt +DDgm(n)

t ) Z⊗n
ic 〉. (1-19)

Furthermore, if Z ic(x), f (x)> 0 are nonnegative and not identically zero, then

E

[(∫
R2

f (x)µ∗,t(dx)− E

[∫
R2

f (x)µ∗,t(dx)
])3]

> 0. (1-20)

Due to the critical nature of our problem, as ε→ 0 the moments go through a nontrivial transition as
β0 passes through 2π . To see this, in (1-2), use the orthogonality E[Iε,k(t, x1)Iε,k′(t, x2)] = 0, k 6= k ′, to
express the second (n = 2) moment as

E

[(∫
R2

Zε(t, x) f (x)dx
)2]

=

∫
R8

2∏
i=1

p(t, xi − x ′i ) f (xi )Z ic(x ′i ) dx ′i dxi +

∞∑
k=1

∫
R4

E

[ 2∏
i=1

Iε,k(t, xi ) f (xi )

]
dx1dx2.

As seen in [Caravenna et al. 2019b], the major contribution of the sum spans across a divergent number
of terms — across all k’s of order |log ε| → ∞. We are probing a regime where the limiting process
“escapes” to indefinitely high order chaos as ε→ 0, reminiscent of the large time behavior of the SHE/KPZ
equation in d = 1.

Because of this, obtaining the ε → 0 limit from chaos expansion requires elaborate and delicate
analysis. In fact, just to obtain an ε-independent bound (for fixed Z ic and test functions fi ) from the chaos
expansion is a challenging task. Such analysis is carried out for n = 2, 3 in [Caravenna et al. 2019b] (in a
discrete setting and in the current continuum setting, both with Z ic ≡ 1). Here, we progress through a
different route. From (1-4), (1-5), and (1-6) obtaining the limit of the correlation functions is equivalent
to obtaining the limit of the semigroup e−tHε , which reduces to the study of Hε itself, or its resolvent.

The delta Bose gas enjoys a long history of study, motivated in part by phenomena such as unbounded
ground-state energy and infinite discrete spectrum observed in d = 3. We do not survey the literature here,
and refer to the references in [Albeverio et al. 1988]. Of most relevance to this paper is the work [Dimock
and Rajeev 2004], which studied d = 2 with a momentum cutoff, and established the convergence of the
resolvent of the Hamiltonian to an explicit limit [Dimock and Rajeev 2004, Equation (90)]. Here, we
follow the framework of [Dimock and Rajeev 2004], but instead of the momentum cutoff, we work with
the space-mollification scheme as in (1-6), in order to connect the delta Bose gas to the SHE.

Hereafter we always assume n > 2, since the n = 1 case of Theorem 1.1 is trivial. We write I for the
identity operator in Hilbert spaces. For z ∈ C \ [0,∞), let

Gz :=

(
−

1
2

n∑
i=1

∇
2
i − z I

)−1

(1-21)
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denote the resolvent of the free Laplacian in R2n . Let Jz be the unbounded operator

L 2(R2n−2)→L 2(R2n−2)

defined via its Fourier transform

Ĵzv(p2−n) := log
( 1

2 |p|
2
2−n − z

)̂
v(p2−n), (1-22)

where p2−n := (p2, . . . , pn) ∈ R2n−2 and

|p|22−n :=
1
2 |p2|

2
+ |p3|

2
+ . . .+ |pn|

2,

with domain

Dom(Jz) :=
{
v ∈L 2(R2n−2) :

∫
R2n
|̂v(p2−n) log(|p|22−n + 1)|2dp2−n <∞

}
.

Let L 2
sym(R

2n) denote the subspace of L 2(R2n) consisting of functions symmetric in the n-components,
i.e., u(x1, . . . , xn)= u(xσ(1), . . . , xσ(n)), for all permutations σ ∈ Sn . Recall β? and βfine from (1-8). As
the main step toward proving Theorem 1.1, in Sections 3–7, we show the following:

Proposition 1.4 (limiting resolvent). There exists C <∞ such that, for z ∈ C with Re(z) <−eCn2
+β? ,

(a) the following defines a bounded operator on L 2(R2n)→L 2(R2n):

Rz = Gz +

∞∑
m=1

∑
−−→
(i, j)∈Dgm(n,m)

GzS∗i1 j1(4π(Jz −β? I)−1)

×

m∏
s=2

(Sis−1 js−1GzS∗is js (4π(Jz −β? I)−1))Sim jmGz, (1-23)

where the sum converges absolutely in operator norm;

(b) when restricted to L 2
sym(R

2n), the operator takes a simpler form,

Rsym
z := Gz+

2
n(n− 1)

(∑
i< j

GzS∗i j

)(
1

4π

(
Jz−β? I

)
−

2
n(n− 1)

∑d
Si jGzS∗k`

)−1(∑
i< j

Si jGz

)
. (1-24)

The sum
∑d is over distinct pairs (i < j) 6= (k < `).

Remark 1.5. The leading term 2π/|log ε| of βε in (1-7) is easily seen to arise from the divergence in
Si jGzS∗i j when we replace Si j by approximate versions Sεi j . See the discussion following (6-4).

Theorem 1.6 (convergence of the resolvent). There exist constants C1 and C2(βfine) <∞, where C1

is universal while C2(βfine) depends only on βfine, such that for all ε ∈ (0, 1/C2), for z ∈ C with
Re(z) <−eC1n2

+β? , and for Hε defined in (1-6),

(a) (Hε − z) has a bounded inverse L 2(R2n)→L 2(R2n),

(b) Rε,z := (Hε − z)−1
→Rz strongly on L 2(R2n), as ε→ 0.
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Remark 1.7. In stating and proving Proposition 1.4 and Theorem 1.6 we have highlighted the dependence
on βfine. For the purpose of this paper, keeping the dependence is unnecessary (since βfine can be fixed
throughout), but we choose to do so for its potential future applications.

Remark 1.8. Given Theorem 1.6, by the Trotter–Kato theorem [Reed and Simon 1972, Theorem VIII.22],
there exists an (unbounded) self-adjoint operator H on L 2(R2n), the limiting Hamiltonian, such that
Rz = (H− z I)−1, Im(z) 6= 0. As implied by Theorem 1.6, the spectra of Hε and H are bounded below
by −eCn2

+β? . Such a bound is first obtained under the momentum cutoff in [Dell’Antonio et al. 1994].
The prediction [Rajeev 1999], based on a nonrigorous mean-field analysis, is that the lower end of the
spectrum of H should approximate −ec?n , for some c? ∈ (0,∞) that depends on βfine.

Remark 1.9. One can match e−tH to the operator Pt +DDgm(n)
t on the right-hand side of (1-18) heuristi-

cally by taking the inverse Laplace transform of Rz in (1-23) in z. At a formal level, doing so turns the
operators G• and (J•−β? I)−1 into P• and PJ

•
, respectively, and the products of operators in z become

the convolutions in t .

Remark 1.10. It is an interesting question whether the resolvent method, which is applied to the critical
window in this paper, also applies to the subcritical regime β0 < 2π . In the subcritical regime, it is the
fluctuations |log ε|1/2(Zε−1) that converge to the EW equation, as shown in [Caravenna et al. 2017] using
a chaos expansion. In order to apply the resolvent method, one needs to center and scale the correlation
functions (1-4). The result on the convergence of the two point correlation function is a straightforward
application of the resolvent method. Analyzing the higher order correlation functions under such centering
and scaling is an interesting open question.

Remark 1.11 (SHE in d>3). In higher dimensions d>3, the appropriate tuning parameter is βε=β0ε
d−2.

For small β0, the studies on the EW-equation limit of the SHE/KPZ equation include [Magnen and
Unterberger 2018; Gu et al. 2018; Dunlap et al. 2020], and results on the pointwise fluctuations of Zε and
the phase transition in β0 can be found in [Mukherjee et al. 2016; Comets and Liu 2017; Comets et al.
2018; 2020; Cosco and Nakajima 2019]. For discussions on directed polymers in a random environment,
we refer to [Comets 2017].

Outline. In Section 2 we give an explicit expression for the limiting semigroup in terms of diagrams and
use this to derive Corollary 1.3 from Theorem 1.1. In Section 3, we derive the key expression (3-6) for
the resolvent Rε,z , which allows the limit to be taken term by term: the limits are obtained in Sections 4
through 6, and these are used in Section 7 to prove Proposition 1.4(a)–(b), Theorem 1.6(a)–(b) and the
convergence part of Theorem 1.1(b). In Section 8, we complete the proof of Theorem 1.1 by constructing
the semigroup and matching its Laplace transform to the limiting resolvent Rz .

2. Diagram expansion

In this section, we give an explicit integral kernel D
−−→
(i, j)(t, x, x ′) of the operator D

−−→
(i, j)
t in Theorem 1.1.

and show how the kernel D
−−→
(i, j)(t, x, x ′) can be encoded in terms of diagrams. This is then used to show
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how Corollary 1.3 follows from Theorem 1.1. The operators Si jPt , PtS∗i j and Si jPtS∗k` have integral
kernels

(Si jPt u)(y) =
∫

R2n
P(t, Si j y− x)u(x) dx, y = (y2, . . . , yn) ∈ R2n−2, (2-1)

(PtS∗i jv)(x) =
∫

R2n−2
P(t, x − Si j y)v(y) dy, x = (x1, . . . , xn) ∈ R2n, (2-2)

(Si jPtS∗k`v)(y)=
∫

R2n−2
P(t, Si j y− Sk`y′)v(y′) dy′, y = (y2, . . . , yn) ∈ R2n−2. (2-3)

From this we see that D
−−→
(i, j)
t has integral kernel

D
−−→
(i, j)(t, x, x ′)=

∫
6m(t)

dEτ
∫

P(τ0, x−Si1 j1 y(1/2))dy(1/2)·4π PJ (τ1/2, y(1/2)−y(1))dy(1)

·

m−1∏
k=1

(
P(τk, Sik jk y(k)−Sik+1 jk+1 y(k+1/2))dy(k+1/2)4π PJ (τk+1/2, y(k+1/2)

−y(k+1))dy(k+1))
·P(τm, Sim jm y(m)−x ′), (2-4)

where 6m(t) is defined in (1-15), x, x ′ ∈ R2n , and y(a) ∈ R2n−2 with a ∈
( 1

2 Z
)
∩ (0,m].

We wish to further reduce (2-4) to an expression that involves only the two-dimensional heat kernel
p(τ, xi ) and j(τ, β?). Recall from (1-10) that (Si j y) := x is a vector in R2n such that xi = x j . In (2-4),
we write

Sik jk y(a) = (y(a)3 , . . . , y(a)2︸︷︷︸
ik -th

, . . . , y(a)2︸︷︷︸
jk -th

, . . . , y(a)n )= (x (a)1 , . . . , x (a)n )1{x (a)ik
= x (a)jk },

and accordingly, dy(a) = d′x (a), where a = k− 1
2 , k. The vector x (a) is in R2n , but the integrator d′x (a) is

(2n−2)-dimensional due to the contraction x (a)ik
= x (a)ik

. More explicitly,

d′x (a) :=
(

dx (a)ik

∏
6̀=ik , jk

dx (a)`

)
=

(
dx (a)jk

∏
`6=ik , jk

dx (a)`

)
, a = k− 1

2 , k.

We express P as the product of two-dimensional heat kernels, i.e., P(τ, x) =
∏n
`=1 p(τ, x`) with x =

(x1, . . . , xn), and similarly for PJ (τ, •); see (8-6) for the explicit expression. This gives

D
−−→
(i, j)(t, x, x ′) :=∫

6m(t)
dEτ
∫ n∏

`=1

p(τ0, x`−x (1/2)` )1{x (1/2)i1
= x (1/2)j1 }d′x (1/2)

·4π j(τ1/2,β?)p
(1

2τ1/2, x
(1/2)
i1
−x (1)i1

) ∏
`6=i1, j1

p(τ1/2, x
(1/2)
` −x (1)` )d′x (1)

·

m−1∏
k=1

( n∏
`=1

1
{

x (k)ik
= x (k)jk

}
p(τk, x

(k)
` −x (k+1/2)

` )1
{

x (k+1/2)
ik+1

= x (k+1/2)
jk+1

}
d′x (k)

·4π j(τk+1/2,β?)p
( 1

2τk+1/2, x
(k+1/2)
ik+1

−x (k+1)
ik+1

) ∏
`6=ik , jk

p
(
τk+1/2, x

(k+1/2)
` −x (k+1)

`

)
d′x (k+1)

)
·

n∏
`=1

p(τm, x
(m)
` −x ′`). (2-5)
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x1
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1
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3=4

1
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x ′1
x ′2

x ′3

x ′4

(0) (1/2) (1) (3/2) (2) (5/2) (3) (3+1/2)

τ0 τ1/2 τ1 τ3/2 τ2 τ5/2 τ3

Figure 1. Schematic representation of x (a)` , with n = 4 and E(i, j)= ((1< 2), (2< 3), (3< 4)).
Each dot represents a point x (a)` , a ∈

( 1
2 Z
)
∩
[
0, 3 + 1

2

]
, with the convention x` := x (0)` and

x ′` := x (3+1/2)
` . In the figure, the ` indices are printed in black next to the dot, while the a

superscripts are put over the vertical, dashed line. The horizontal distances between dash lines
represent time lapses τa .

This complicated-looking formula can be conveniently recorded in terms of diagrams. Set A :=( 1
2 Z
)
∩
[
0,m+ 1

2

]
, and adopt the convention x (0) := x and x (m+1/2)

:= x ′. We schematically represent
spacetime R+×R2 by the plane, with the horizontal direction being the time axis R+, and the vertical
direction representing the space R2. We put dots on the plane representing x (a)` , a ∈ A. Dots with
smaller a sit to the left of those with bigger a, and those with the same a lie on the same vertical line.
The horizontal distance between x (a−1/2)

` and x (a)` , a ∈ A, represents a time lapse τa > 0. We fix the time
horizon between x` = x (0)` and x ′` = x (m+1/2)

` to be t , which forces τ0+ τ1/2+ . . .+ τm = t . The points
x (a)` are generically represented by distinct dots, expect that x (a)ik

and x (a)jk are joined for k = a− 1
2 , a.

In these cases we call the dot double, otherwise single. See Figure 1 for an example with n = 4 and
−−→
(i, j)= ((1< 2), (2< 3), (3< 4)).

Next, connect dots that represent x (a−1/2)
` and x (a)` together by a “single” line except for the case

when both ends are double points, by a “double” line otherwise. To each regular line we assign a

x1

x2
x3
x4

1=2

3

4

1=2

3

4

1

2=3

4

1

2=3

4

1

2

3=4

1
2

3=4

x ′1
x ′2

x ′3

x ′4

(0) (1/2) (1) (3/2) (2) (5/2) (3) (3+1/2)

τ0 τ1/2 τ1 τ3/2 τ2 τ5/2 τ3

Figure 2. The diagram representation for D E(i, j)(t, x, x ′), with n = 4 and E(i, j)= ((1< 2),
(2< 3), (3< 4)). Each regular (single) line between dots is assigned p(τ, x (a−1/2)

` − x (a)` ),
while each double line is assigned 4π j(τ, β?)p

( 1
2τ, x (a−1/2)

` − x (a)`
)
, where x (a−1/2)

` and x (a)`
are represented by the dots at the two ends, and τ is the horizontal distance between these
dots.
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x1

x2

1=2 1=2

x ′1

x ′2

(0) (1/2) (1) (1+ 1/2)

τ0 τ1/2 τ1

Figure 3. The diagram of D((12))(t, x, x ′).

two-dimensional heat kernel p(τa, x (a−1/2)
` − x (a)` ), and to each double line assign the quantity

4π j(τa, β?)p
( 1

2τa, x (a−1/2)
` − x (a)`

)
.

The kernel D
−−→
(i, j)(t, x, x ′) is then obtained by multiplying together the quantities assigned to the (regular

and double) lines, and integrate the x (a)’s and τa’s, with the points x` := x (0)` and x ′` = x (m+1/2)
` being

fixed. See Figure 2 for an example with n = 4 and
−−→
(i, j)= ((1< 2), (2< 3), (3< 4)).

In the following two subsections, we examine the n = 2, 3 cases, and derive some useful formulas.

2A. The n = 2 case. In this case, the only index is the singleton
−−→
(i, j)= ((1< 2)), whereby

(P + DDgm(2))(t, x1, x2, x ′1, x ′2)

=

2∏
`=1

p(t, x`− x ′`)+
∫
τ0+τ1/2+τ1=t

dEτ
∫ 2∏

`=1

p(τ0, x`− x (1/2)1 )dx (1/2)1 (2-6a)

· 4π j(τ1/2, β?)p
( 1

2τ1/2, x (1/2)1 − x (1)1

)
dx (1)1 (2-6b)

·

2∏
`=1

p(τ1, x (1)1 − x ′`), (2-6c)

and the diagram of D((12))(t, x, x ′) is given in Figure 3.
In (2-6a), rewrite the products in the center-of-mass and relative coordinates,

2∏
`=1

p(τ, x) = p

(
1
2
τ,

x1+ x2

2

)
p(2τ, x1− x2),

and then integrate over x (1/2)1 , x (1)1 ∈ R2, using the semigroup property of p(•, •). We then obtain

(P + DDgm(2))(t, x1, x2, x ′1, x ′2)

= p
( 1

2 t, xc− x ′c
)(

p(2t, xd− x ′d)+
∫
τ0+τ1/2+τ1=t

dEτ p(2τ0, xd) 4π j(τ1/2, β?) p(2τ1, x ′d)
)
, (2-7)

where xc :=
1
2(x1+ x2), xd := x1− x2, and similarly for x ′

•
.

Remark 2.1. The formula (2-7) matches [Bertini and Cancrini 1998, Equations (3.11)–(3.12)] after
a reparametrization. Recall β? from (1-8). Comparing our parametrization (1-7) with [Bertini and
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Cancrini 1998, Equation (2.6)], we see that β? here corresponds to logβ in [Bertini and Cancrini 1998].
The expression in (2-7) matches [Bertini and Cancrini 1998, Equations (3.11)–(3.12)] upon replacing
(xd, x ′d) 7→ (x, y), β? 7→ logβ, and using the identity,∫ τ

0
p(2(τ − s), xd)p(2s, x ′d) ds =

1
8π2τ

exp
(
−

1
4τ
(|xd|

2
+ |x ′d|

2)

)
K0

(
|xd||x ′d|

2τ

)
, (2-8)

where Kν denotes the modified Bessel function of the second kind.
To prove (2-8), by scaling in τ , without loss of generality we assume τ = 1. On the left-hand

side of (2-8), factor out exp
(
−

1
4(|xd|

2
+ |x ′d|

2)
)
, decompose the resulting integral into s ∈ (0, 1/2) and

s ∈ (1/2, 1), for the former perform the change of variable u = (1− s)/s, and for the latter u = s/(1− s).
We have

(l.h.s. of (2-8))= exp
(
−

1
4(|xd|

2
+ |x ′d|

2)
)
I?, I? := 2

∫
∞

1

1
(4π)2u

e−
1
4 (u|xd|

2
+

1
u |x
′

d|
2) du.

The integrand within the last integral stays unchanged upon the change of variable u 7→ 1/u, while the
range maps to (0, 1). We hence replace 2

∫
∞

1 ( • ) du with
∫
∞

0 ( • ) du. Within the result, perform a change
of variable v = 2u|xd|

2, and from the result recognize 1
2πv e−1/(2v)(|xd|

2
|x ′d|

2)
= p(v, |xd||x ′d|). We get

I? =
∫
∞

0

1
(4π)2v

e−
|xd|

2
|x ′d|

2

2v e−
v
8 dv =

1
8π

G
−

1
8
(|xd||x ′d|),

where Gz(|x |)= Gz(x) :=
(
−

1
2∇

2
− z I

)−1
(0, x) denotes the two-dimensional Green’s function. We will

show in Lemma 6.2 that Gz(x)= 1
π

K0(
√
−2z|x |). This gives (2-8).

2B. The n = 3 case. Here we derive a formula for the limiting centered third moment. We say
−−→
(i, j)=

((ik < jk))mk=1 ∈ Dgm(n) is degenerate if
⋃m

k=1{ik, jk}$ {1, . . . , n}, and otherwise nondegenerate. Let
Dgm′(n) denote the set of all nondegenerate elements of Dgm(n), and, accordingly,

DDgm′(n)
t :=

∑
−−→
(i, j)∈Dgm′(n)

D
−−→
(i, j)
t .

Proposition 2.2. Start the SHE from Zε(0, •)= Z ic(•) ∈L 2(R2). For any f ∈L 2(R2),

E
[(
〈 f, Zε,t 〉− E[〈 f, Zε,t 〉]

)3]
−→ 〈 f ⊗3,DDgm′(3)

t Z⊗3
ic 〉 as ε→ 0, (2-9)

uniformly in t over compact subsets of [0,∞).

Proof. Expand the left-hand side of (2-9) into a sum of products of n′ = 1, 2, 3 moments of 〈 f, Zε,t 〉 as

E
[(
〈 f, Zε,t 〉− E[〈 f, Zε,t 〉]

)3]
= E[〈 f, Zε,t 〉3] − 3E[〈 f, Zε,t 〉2] E[〈 f, Zε,t 〉]+ 2(E[〈 f, Zε,t 〉])3. (2-10)

For the n′= 1 moment, rewriting the SHE (1-1) in the mild (i.e., Duhamel) form and taking the expectation
give

E[〈 f, Zε,t 〉] = 〈 f, p ∗ Z ic〉 =

∫
R4

f (x ′)p(t, x ′− x)Z ic(x) dxdx ′,

where ∗ denotes convolution in x ∈ R2. Note that for n′ = 2 the only index Dgm(2)= {((1< 2))} is the
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singleton and that 〈 f ⊗n′,Pt Z⊗n′
ic 〉 = 〈 f, p ∗ Z ic〉

n′ .

We then have

lim
ε→0

E[〈 f, Zε,t 〉3] = (〈 f, p ∗ Z ic〉)
3
+〈 f ⊗3,DDgm(3)

t Z⊗3
ic 〉, (2-11)

lim
ε→0

E[〈 f, Zε,t 〉2] = (〈 f, p ∗ Z ic〉)
2
+〈 f ⊗2,D((12))

t Z⊗2
ic 〉. (2-12)

Inserting (2-11)–(2-12) into (2-10) gives

lim
ε→0

E
[(
〈 f, Zε,t 〉− E[〈 f, Zε,t 〉]

)3]
= 〈 f ⊗3,DDgm(3)

t Z⊗3
ic 〉− 3〈 f, p ∗ Z ic〉 〈 f ⊗2,D((12))

t Z⊗2
ic 〉. (2-13)

For n′ = 3, degenerate indices in Dgm(3) are the singletons ((1< 2)), ((1< 3)), ((2< 3)). This being
the case, we see that the last term in (2-13) exactly cancels the contribution of degenerate indices in
〈 f ⊗3,DDgm(3)

t Z⊗3
ic 〉. The desired result follows. �

2C. Proof of Corollary 1.3. Here we prove Corollary 1.3 assuming Theorem 1.1 (which will be proven
in Section 8). Our first goal is to show µε,t(dx1) := Zε(t, x1)dx1, as a random measure on R2, is tight in ε,
under the vague topology. This tightness has been established in [Bertini and Cancrini 1998], and we repeat
the argument here for the sake of being self-contained. By [Kallenberg 1997, Lemma 14.15], this amounts
to showing

∫
R2 g(x)µε,t(dx) = 〈g, Zε,t 〉 is tight (as a C-valued random variable), for each g ∈ Cc(R

2).
Apply Theorem 1.1 with n = 2, with Z ic(x1) 7→ |Z ic(x1)| ∈L 2(R2), and with f (x1, x2)= |g(x1)g(x2)|.
We obtain that E[|〈Zε,t , g〉|2] is uniformly bounded in ε, so

∫
R2 g(x)µε,t(dx) is tight.

Fixing a limit point µ∗,t of {µε,t }ε, we proceed to show (1-19). Fix a sequence εk → 0 such that
µεk ,t,Z → µ∗,t vaguely, as k → ∞. The desired result (1-19) follows from Theorem 1.1 if we can
upgrade the preceding vague convergence of µεk ,t,Z to convergence in moments. To this end we appeal
to Theorem 1.1. Note that |Z ic(•)| itself is in L 2(R2). Also, for fixed f1, . . . , fn ∈ Cc(R

2), the function
f (x1, . . . , x2n) :=

∏n
i=1| fi (xi ) fi (xn+i )| is in L 2(R2n). Applying Theorem 1.1 with n 7→ 2n, with

Z ic(x1) 7→ |Z ic(x1)| ∈L 2(R2), and with f (x1, . . . , x2n)=
∏n

i=1| fi (xi ) fi (xn+i )|, we obtain that

E[〈 f, |Zε,t |⊗2n
〉] = E[|〈 f1⊗ · · ·⊗ fn, Z⊗n

ε,t 〉|
2
] = E

[∣∣∣∣ n∏
i=1

∫
R2

fi (xi )µε,t(dxi )

∣∣∣∣2]
is uniformly bounded in ε. Hence

(∏n
i=1

∫
R2 fi (xi )µε,t(dxi )

)
is uniformly integrable in ε (as C-valued

random variables), which guarantees the desired convergence in moments.
We now move on to showing (1-20). For Z ic(x1), f1(x1) > 0, both not identically zero, we apply

Proposition 2.2 to obtain the ε→ 0 limit of the centered, third moment of
∫

R2 f1(x1)µε,t,Z (dx1). As just
argued, such a limit is also inherited by µ∗,t , whereby

E

[(∫
R2

f1(x1)µ∗,t(dx1)− E

[∫
R2

f1(x1)µ∗,t(dx1)

])3]
= 〈 f ⊗3

1 ,DDgm′(3)
t Z⊗3

ic 〉. (2-14)

As seen from (2-5), the operator D
−−→
(i, j) has a strictly positive integral kernel. Under the current assumption

that Z ic and f1 are nonnegative and not identically zero, we see that the right-hand side of (2-14) is strictly
positive.
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3. Resolvent identity

In this section we derive the identity (3-6) for the resolvent Rε,z = (Hε − z)−1 which is the key to our
analysis.

Let Hfr := −
1
2

∑
i ∇

2
i denote the “free Hamiltonian”, and let Vε :L 2(R2n)→L 2(R2n)

Vεu(x) :=
∑
i< j

δε(xi − x j )u(x)

denote the operator of multiplication by the approximate delta potential, which is a bounded operator for
each ε > 0. The Hamiltonian Hε is then an unbounded operator on L 2(R2n) with domain H 2(R2n) (the
Sobolev space), i.e.,

Hε :=Hfr−βεVε, Dom(Hε) :=H 2(R2n)⊂L 2(R2n). (3-1)

The first step is to build a “square root” of Vε. More precisely, we seek to construct an operator Sεi j ,
indexed by a pair i < j , and its adjoint S∗εi j such that Vε =

∑
i< j S

∗

εi jφ φSεi j . To this end, for each ε > 0
and 16 i < j 6 n, consider the linear transformation Tεi j : R

2n
→ R2n:

Tεi j (x1, . . . , xn) :=

(
xi − x j

ε
,

xi + x j

2
, xi j

)
, (3-2)

where xi j ∈ R2(n−2) denotes the vector obtained by removing the i, j-th components from x ∈ R2n . In
other words, the transformation Tεi j places the relative distance (on the scale of ε) and the center of mass
corresponding to (xi , x j ) in the first two components, while keeping all other components unchanged.
The transformation Tεi j has inverse Sεi j = T−1

εi j : R
2n
→ R2n:

Sεi j (y1, . . . , yn) := (y3, . . . , y2+
εy1
2︸ ︷︷ ︸

i-th

, . . . , y2−
εy1
2︸ ︷︷ ︸

j-th

, . . . , yn). (3-3)

Accordingly, we let Sεi j and S∗εi j be the induced operators L 2(R2n)→L 2(R2n),

(Sεi j u)(y) := u(Sεi j y), (S∗εi jv)(x) := ε
−2v(Tεi j x). (3-4)

It is straightforward to check that S∗εi j is the adjoint of Sεi j , i.e., the unique operator for which 〈S∗εi jv, u〉=
〈v,Sεi j u〉, for all u, v ∈L 2(R2n). Since Sεi j , Tεi j are both invertible, the operators Sεi j ,S∗εi j are bounded
for each ε > 0. The function 8 (defined in (1-6)) is even and nonnegative, so we can set φ(x) :=

√
8(x)

and view (φv)(y) := φ(y1)v(y1, . . . , yn) as a bounded multiplication operator on L 2(R2n). From (3-4),
it is straightforward to check

Vε =
∑
i< j

S∗εi jφ φSεi j . (3-5)

Remark 3.1. We comment on how our setup compares to that of [Dimock and Rajeev 2004]. They
work in L 2

sym(R
2n), corresponding to n Bosons in R2, the key idea being to decompose the action of

the delta potential Vε on L 2
sym(R

2n) into some intermediate actions from L 2
sym(R

2n) into an “auxiliary
space”, consisting of n− 2 Bosons and an “angle particle”. In our current setting, the auxiliary space is
L 2(R2n) 3 v = v(y1, y2, y3, . . . , yn). The components y3, . . . , yn correspond to the n− 2 particles, the
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component y2 corresponds to the angle particle, while y1 is a “residual” component that arises from our
space-mollification scheme, and is not presented under the momentum-cutoff scheme of [Dimock and
Rajeev 2004].

Given (3-5), the next step is to develop an expression for the resolvent Rε,z = (Hε − z)−1 that is
amenable for the ε→ 0 asymptotic. In the case of momentum cutoff, such a resolvent expression is
obtained in [Dimock and Rajeev 2004, Equation 68] by comparing two different ways of inverting a
two-by-two (operator-valued) matrix. Here, we derive the analogous expression (i.e., (3-6)) using a
more straightforward procedure — power-series expansion of (operator-valued) geometric series. Recall
Dgm(n,m) from (1-13), recall that ‖Q‖op denotes the operator norm of Q, and recall from (1-21) that Gz

denotes the resolvent of the Laplacian.

Lemma 3.2. For all ε ∈ (0, 1) and z ∈ C such that Re(z) <−βε(1+
∑

i< j ‖Sεi jφ‖op)
2, we have

Rε,z :=(Hε − z I)−1
= Gz +

∞∑
m=1

∑
−−→
(i, j)∈Dgm(n,m)

(GzS∗εi1 j1φ) (3-6a)

· (β−1
ε I −φSε12GzS∗ε12φ)

−1
m∏

k=2

(
(φSεik−1 jk−1GzS∗εik jkφ)(β

−1
ε I −φSε12GzS∗ε12φ)

−1) (3-6b)

· (φSim jmGz). (3-6c)

Remark 3.3. As stated, Lemma 3.2 holds for Re(z) <−C1(ε, n), with a threshold C1(ε, n) that depends
on ε. This may not seem useful as ε→ 0, however, as we will show later in Section 7, the right-hand
side of (3-6) is actually analytic (in norm) in {z : Re(z) < −C2(n)}, for some threshold C2(n) <∞
that is independent of ε. It then follows immediately (as argued in Section 7) that (3-6) extends to all
Re(z) <−C2(n).

Proof. To simplify notation, set S̃i j := β
1/2
ε φSεi j , S̃ i j

:= (S̃i j )
∗
= β

1/2
ε S∗εi jφ, and G̃k`

i j := S̃i jGzS̃k`.
In (3-6b), factor β−1

ε from the inverse. Under the preceding shorthand notation, we rewrite (3-6) as

Rε,z = Gz +

∞∑
m=1

∑
−−→
(i, j)∈Dgm(n,m)

GzS̃ i1 j1 ·
(
I − G̃12

12
)−1

m∏
k=2

G̃ik jk
ik−1 jk−1

(
I − G̃12

12
)−1
· S̃im jmGz. (3-7)

Our goal is to expand the inverse in (3-7), and then simplify the result to match (Hε − z I)−1.
To expand the inverse in (3-7), we utilize the geometric series (I −Q)−1

= I +
∑
∞

k=1 Q
k , valid for

‖Q‖op < 1. Indeed, ‖Gz‖op 6 1/(−Re(z)), so under the assumption on the range of Re(z) we have
‖S̃12

12‖op < 1. Using the geometric series for Q= G̃12
12 , and inserting the result into (3-7) gives

Rε,z = Gz +
∑

GzS̃ i1 j1 G̃12
12 · · · G̃

12
12︸ ︷︷ ︸

`1

G̃i2 j2
i1 j1 G̃

12
12 · · · G̃

12
12︸ ︷︷ ︸

`2

G̃i3 j3
i2 j2 · · · G̃

im jm
im−1 jm−1

G̃12
12 · · · G̃

12
12︸ ︷︷ ︸

`m

S̃im jmGz, (3-8)

where the sum is over `1, . . . , `m > 0,
−−→
(i, j) ∈ Dgm(n,m), and m = 1, 2, . . . . The sum converges

absolutely in operator norm by our assumption on z. Since Gz acts symmetrically in the n components,
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we have G̃12
12 = G̃i j

i j , for any pair i < j . Use this property to rewrite (3-8) as

Rε,z = Gz +
∑

GzS̃ i1 j1 G̃i1 j1
i1 j1 · · · G̃

i1 j1
i1 j1︸ ︷︷ ︸

`1

G̃i2 j2
i1 j1 G̃

i2 j2
i2 j2 · · · G̃

i2 j2
i2 j2︸ ︷︷ ︸

`2

G̃i3 j3
i2 j2 · · · G̃

im jm
im−1 jm−1

G̃im jm
im jm · · · G̃

im jm
im jm︸ ︷︷ ︸

`m

S̃im jmGz. (3-9)

The summation can be reorganized as
∑
∞

m′=1
∑

i1< j1 · · ·
∑

im′< jm′
( • ). To see this, recall from (1-13) that

−−→
(i, j) ∈ Dgm(n,m) consists of pairs (ik < jk) under the constraint that consecutive pairs are nonrepeating,
i.e., (ik−1 < jk−1) 6= (ik < jk). The right-hand side of (3-9) replenishes all possible repeatings of
consecutive pairs, and hence lifts the constraints imposed by Dgm(n,m). In the resulting sum, express
G̃i j

k` = S̃ i jGzS̃k` to get

Rε,z =

∞∑
m=0

Gz

(∑
i< j

S̃ i j S̃i jGz

)m

.

From (3-5), we have
∑

i< j S̃
i j S̃i j = βεVε, hence Rε,z = Gz(I − βεVεGz)

−1. Further Gz = (Hfr− z I)−1

gives

Rε,z = (Hfr− z I)−1(I −βεVε(Hfr− z I)−1)−1
= (Hfr− z I −βεVε)−1

= (Hε − z I)−1.

This completes the proof. �

The resolvent identity (3-6) is the gateway to the ε→ 0 limit. Roughly speaking, we will show that
all terms in (3-6) converge to their limiting counterparts in the expression of Rz given in (1-23). The
expression (1-23), however, does not expose such a convergence very well. This is so because some
operators in (1-23) map one function space to a different one, (e.g., Si j maps functions of n components
to n− 1 components), while all operators in the sum over m in (3-6) map L 2(R2n) to L 2(R2n). We next
rewrite (1-23) in a way that better compares with (3-6). To this end, consider the operators

�φ :L
2(R2n) →L 2(R2n−2), (�φv)(y2−n) :=

∫
R2
φ(y1)v(y1, y2−n)dy1, (3-10)

φ⊗ • :L 2(R2n−2)→L 2(R2n), (φ⊗ v)(y1, y2−n) := φ(y1)v(y2−n). (3-11)

Given that φ ∈ C∞c (R2), it is readily checked that �φ and φ⊗ • are bounded operators. Note that from
φ :=

√
8, φ has unit norm, i.e.,

∫
R2 φ

2dy = 1. From this we obtain �φ(φ ⊗Q) = Q, for a generic
Q :L 2(R2n)→L 2(R2n−2) or Q :L 2(R2n−2)→L 2(R2n−2). Using this property, we rewrite (1-23) as

Rz =Gz+

∞∑
m=1

∑
−−→
(i, j)∈Dgm(n,m)

(GzS∗i1 j1�φ) (3-12a)

·
(
φ⊗4π(Jz−β? I)−1�φ

) m∏
s=2

(
(φ⊗Sis−1 js−1GzS∗is js�φ)(φ⊗4π(Jz−β? I)−1�φ)

)
(3-12b)

·(φ⊗Si jGz). (3-12c)

That is, we augment the missing y1 dependence (in the operators Si j , S∗i j , etc.) along the subspace
Cφ ⊂L 2(R2). Equation (3-12) gives a better expression for comparison with (3-6).
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For future references, let us setup some terminology for the operators in (3-6) and (3-12). We call
the operators Si jGz or φ⊗Si jGz in (3-12c) the limiting incoming operators, and the operators GzS∗i j or
GzS∗i j�φ in (3-12a) the limiting outgoing operators. Slightly abusing language, we will use these phrases
interchangeably to infer operators with and without the action by φ ⊗ • or �φ . Similarly, we call the
operators in (3-6c) the prelimiting incoming operators, and the operators in (3-6a) the prelimiting outgoing
operators. Next, with Jz defined in (1-22) in the following, we refer to (Jz−β? I) and (β−1

ε I−Sε12GzS∗ε12)

as the limiting and prelimiting diagonal mediating operators, respectively, and refer to Si jGzS∗k` and
Sεi jGzS∗εk`, with (i < j) 6= (k < `), as the limiting and prelimiting off-diagonal mediating operators.

As we will show in Section 4, each prelimiting incoming and outgoing operator converges to its limiting
counterpart, and, as we will show in Section 5, each off-diagonal mediating operator converges to its
limiting counterpart. Diagonal mediating operators require a more delicate treatment because β−1

ε I and
Sεi jGzS∗εi j both diverge on their own, and we need to cancel the divergence (and also to take an inverse)
to obtain a limit. This procedure, sometimes referred to as renormalization in the physics literature, will
be carried out in Section 6.

4. Incoming and outgoing operators

In this section we obtain the ε→ 0 limit of φSεi jGz and GzS∗εi jφ to φ⊗ (Si jGz) and GzS∗i j�φ . The main
result is stated in Lemma 4.4.

Recall the linear transformation Si j and its induced operator Si j from (1-10)–(1-11). Comparing (3-3)
and (1-10), we see that Sεi j (y1, . . . , yn)→ Si j (y2, . . . , yn) as ε→ 0. Namely, Si j is the pointwise limit
of Sεi j . This observation hints that Si j should be the limit of Sεi j , and the ε→ 0 limit of the incoming
operator φSεi jGz should be obtained by replacing Si j with Sεi j . Note that, however, the operator Si j is
unbounded, because, unlike Sεi j , Si j maps between spaces of different dimensions; the y1 dependence in
Sεi j (y1, . . . , yn) “vanishes” as ε→ 0 (see (3-3)).

As the first step of building the limiting operators, we construct the domain of Si j , along with its
adjoint S∗i j . In the following we will often work in the Fourier domain. Let

f̂ (q) :=
∫

Rd
e−iy·q f (y)

dq
(2π)d/2

denote Fourier transform of functions on Rd ; the inverse Fourier transform then reads

f (y)=
∫

Rd
eiy·q f̂ (q)

dq
(2π)d/2

.

Let S (Rd) denote the space of Schwartz functions, namely the space of C∞ functions on Rd with
derivatives decaying at super-polynomial rates; see [Rudin 1991, Definition 7.3]. In our subsequential
analysis, d is typically 2n or 2(n− 1). Consider the (invertible) linear transformation R2n

→ R2n:

Mi j q := (q3, . . . ,
1
2q2+ q1︸ ︷︷ ︸

i-th

, . . . , 1
2q2− q1︸ ︷︷ ︸

j-th

, . . . , qn). (4-1)

For q ∈R2n , we write qi− j := (qi , . . . , q j )∈R2( j−i+1), and recall that qi j ∈R2n−4 is obtained by removing
the i-th and j-th components of q.
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Lemma 4.1. (a) The operator Si j , given by (1-11), is unbounded from L 2(R2n) to L 2(R2n−2), with

Dom(Si j ) :=

{
f ∈L 2(R2n) :

∫
R2
| f̂ (Mi j (q1, •))|dq1 ∈L 2(R2n−2)

}
⊂L 2(R2n), (4-2)

and for f ∈ Dom(Si j ), we have

Ŝi j f (q2−n)=

∫
R2

f̂ (Mi j q)
dq1

2π
. (4-3)

In addition, for all a > 1, we have H a(R2n)⊂ Dom(Si j ).

(b) The operator

Ŝ∗i j g(p) :=
1

2π ĝ(pi + p j , pi j ) (4-4)

maps L 2(R2n−2)→
⋂

a>1 H −a(R2n), and is adjoint to Si j in the sense that

〈S∗i j g, f 〉 = 〈g,Si j f 〉, g ∈L 2(R2n−2), f ∈H a(R2n), a > 1. (4-5)

Proof. (a) Let us first show (4-3) for f ∈S (R2n). On the Fourier transform of f , perform the change
of variables x = S1i j y, where S1i j = Sεi j |ε=1, and then substitute p = Mi j q. From (3-3), it is readily
checked that |det(S1i j )| = 1, and from (4-1), we have (S1i j y) · (Mi j q)= y · q, so

f̂ (Mi j q)=
∫

R2n
e−iy·q f (S1i j y)

dy
(2π)n

. (4-6)

Our goal is to calculate the Fourier transform of f (Si j •). Comparing (1-10) and (3-3) for ε = 1, we see
that (S1i j y)|y1=0 = Si j (y2−n). It is hence desirable to “remove” the y1 variable on the right-hand side
of (4-6). To this end, apply the identity∫

R2n−2
g(0, y2−n)e−iq2−n ·y2−n

dy2−n

(2π)n−1 =

∫
R2

ĝ(q)
dq1

2π
, g ∈S (R2n)

with g(•)= f (S1i j •) to obtain∫
R2

f̂ (Mi j q)
dq1

2π
=

∫
R2n−2

e−iy2−n ·q2−n f (S1i j y)
∣∣

y1=0
dy2−n

(2π)n−1 =

∫
R2n−2

e−iy2−n ·q2−n f (Si j y2−n)
dy2−n

(2π)n−1 .

The last expression is Ŝi j f (q2−n) by definition. We hence conclude (4-3) for f ∈S (R2n). By approxi-
mation, it follows that Si j extends to an unbounded operator with domain (4-2), and the identity (4-3)
extends to f ∈ Dom(Si j ).

Fixing a > 1, we proceed to show H a(R2n)⊂ Dom(Si j ). For f ∈H a(R2n), it suffices to bound∫
R2n−2

∣∣∣∣∫
R2
| f̂ (Mi j q)|dq1

∣∣∣∣2dq2−n. (4-7)

Within the integrals, multiply and divide by
(1

2 |Mi j q|2+ 1
) a

2 . Use 1
2 |Mi j q|2 > |q1|

2 (as readily checked
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from (4-1)) and apply the Cauchy–Schwarz inequality over the integral in q1. We then obtain

(4-7)=
∫

R2n−2

∣∣∣∣∫
R2

1

(1
2 |Mi j q|2+ 1)

a
2
( 1

2 |Mi j q|2+ 1)
a
2 | f̂ (Mi j q)|dq1

∣∣∣∣2dq2−n

6
∫

R2

(
1

|q1|2+ 1

)a

dq1 ‖ f ‖H a(R2n) 6
C

a− 1
‖ f ‖H a(R2n). (4-8)

This verifies H a(R2n)⊂ Dom(Si j ).

(b) That S∗i j maps L 2(R2n−2) to
⋂

a>1 H −a(R2n) is checked by similar calculations as in (4-8). To
check (4-5), calculate the inner product 〈S∗i j g, f 〉 in Fourier variables from (4-4). Within the resulting
integral, perform a change of variable p=Mi j q , and use |det(Mi j )| = 1 and (pi + p j , pi j )= (M

−1
i j p)2−n

(as readily checked from (4-1)). In the last expression (M−1
i j p)2−n denotes the last (n− 1) components

of the vector M−1
i j p ∈ (R2)n . We then obtain

〈S∗i j g, f 〉 =
∫

R2n
ĝ(pi + p j , pi j ) f̂ (p)

dp
2π
=

∫
R2n

ĝ(q2−n) f̂ (Mi j q)
dq
2π
.

From (4-3), we see that the last expression matches 〈g,Si j f 〉. �

Recall that, for each Re(z) < 0, Gz(L
2(R2n)) =H 2(R2n). This together with Lemma 4.1 implies

that Si jGz is defined on the entire L 2(R2n), with image in L 2(R2n−2), and that GzS∗i j is defined on
L 2(R2n−2), with image in L 2(R2n). Informally, Gz increases regularity by 2, while Si j and S∗i j both
decrease regularity by −(1+), as seen from Lemma 4.1. In total Si jGz and GzS∗i j have regularity exponent
2− (1+)= 1− > 0.

We now establish a quantitative bound on the operator norm of the limiting operators Si jGz and GzS∗i j .

Lemma 4.2. For 16 i < j 6 n and Re(z) < 0, ‖Si jGz‖op = ‖GzS∗i j‖op 6 C (Re(−z))−1/2.

Proof. That ‖Si jGz‖op=‖GzS∗i j‖op follows by (4-5), so it is enough to bound ‖Si jGz‖op. Fix u ∈L 2(R2n)

and apply (4-3) for f = Gzu to get

Ŝi jGzu(q2−n)=

∫
R2

û(Mi j q)
1
2 |Mi j q|2− z

dq1

2π
. (4-9)

Calculating the norm of Si jGzu from (4-9) gives

‖Si jGzu‖2 =
∫

R2n−2

∣∣∣∣∫
R2

û(Mi j q)
1
2 |Mi j q|2− z

dq1

2π

∣∣∣∣2dq2−n.

Apply the Cauchy–Schwarz inequality over the q1 integration, and within the result use 1
2 |Mi j q|2 > |q1|

2

(as readily checked from (4-1)) and Re(z) < 0. We get

‖Si jGzu‖2 6
(∫

R2

1
(|q1|2+Re(−z))2

dq1

(2π)2

)
‖u‖2.

The last integral over q1 can be evaluated in polar coordinate form to be 1
4πRe(−z). This completes the

proof. �
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Having built the limiting operator, our next step is to show the convergence. In the course of doing so,
we will often use a partial Fourier transform in the last n− 1 components:

f (y1, q2−n) :=

∫
R2n−2

e−i(y2,...,yd )·(q2,...,qn) f (y1, . . . , yn)

n∏
i=2

dyi

2π
. (4-10)

Recall Sεi j from (3-4). To prepare for the proof of the convergence, we establish an expression of Sεi j u
in partial Fourier variables.

Lemma 4.3. For every 16 i < j 6 n and u ∈S (R2n), we have

Sεi j u(y1, q2−n)=

∫
R2

eiεq1·y1 û(Mi j q)
dq1

2π
. (4-11)

Proof. A partial Fourier transform can be obtained by inverting a full transform in the first component:

Sεi j f (y1, q2−n)=

∫
R2

Ŝεi j f (q)eiy1·q1
dq1

2π
. (4-12)

We write the full Fourier transform as Ŝεi j f (q)=
∫

R2n e−iy·q f (Sεi j y) dy
(2π)n . We wish to perform a change

of variable x = Sεi j y. Doing so requires understanding how (y · q) transform accordingly. Defining

Mεi j q := (q3, . . . ,
1
2q2+ ε

−1q1︸ ︷︷ ︸
i-th

, . . . , 1
2q2− ε

−1q1︸ ︷︷ ︸
j-th

, . . . , qn),

it is readily checked that y ·q = (Mεi j q) ·(Sεi j y). Given this, we perform the change of variable x = Sεi j y.
With |det(Sεi j )| = ε

2, we now have

Ŝεi j f (q)= ε−2
∫

R2n
e−i(Mεi j q)·x f (x)

dx
(2π)n

= ε−2 f̂ (Mεi j q). (4-13)

Inserting (4-13) into the right-hand side of (4-12), and performing a change of variable q1 7→ εq1, under
which Mεi j q 7→ Mi j q, we conclude the desired result (4-11). �

We now show the convergence. Recall �φ from (3-10).

Lemma 4.4. For each i < j and Re(z) < 0, we have

‖φSεi jGz −φ⊗ (Si jGz)‖op+‖GzS∗εi jφ−GzS∗i j�φ‖op 6 C ε
1
2 (−Re(z))−1/4

−→ 0, as ε→ 0.

Proof. It suffices to consider φSεi jGz since GzS∗εi jφ = (φSεi jGz)
∗ and GzS∗i j�φ = (φ ⊗ (Si jGz))

∗. Fix
u ∈S (R2n), and, to simplify notation, let u′ := (φSεi jGz −φ⊗ (Si jGz))u. We use (4-9) and (4-11) to
calculate the partial Fourier transform of u′ as

u′(y1, q2−n)= φ(y1)

∫
R2

eiεy1·q1 − 1
1
2 |Mi j q|2− z

û(Mi j q)
dq1

2π
.

From this we calculate the norm of u′ as

‖u′‖2 =
∫

R2n
|u′(y1, q2−n)|

2dy1dq2−n =

∫
R2n

∣∣∣∣φ(y1)

∫
R2

eiεy1·q1 − 1
1
2 |Mi j q|2− z

û(Mi j q)
dq1

2π

∣∣∣∣2dy1dq2−n.



MOMENTS OF THE 2D SHE AT CRITICALITY 199

Recall that, by assumption, φ ∈ C∞c (R2) is fixed, so |φ(y1)| 6 C1{|y1|6C}. For |y1| 6 C we have
|eiεy1·q1 − 1|6 C ((ε|q1|)∧ 1). Using this and |Mi j q|2 > 2|q1|

2 (as verified from (4-1)), we have

‖u′‖2 6 C
∫

R2n−2

(∫
R2

(ε|q1|)∧ 1
|q1|2−Re(z)

|̂u(Mi j q)|
dq1

2π

)2

dq2−n 6 C‖u‖2
∫

R2

(
(ε|q1|)∧ 1
|q1|2−Re(z)

)2

dq1.

Set −Re(z)= a > 0 to simplify notation. We perform a change of variable q1 7→
√

aq1 in the last integral
to get

1
a

∫
R2

(ε
√

a|q1|)
2
∧ 1

(|q1|2+ 1)2
dq1.

Decompose it according to |q1|< ε
1/2a1/4 and |q1|> ε

1/2a1/4. For the former use

(ε
√

a|q1|)
2
∧ 1

(|q1|2+ 1)2
6 1,

and for the latter use (ε
√

a|q1|)
2
∧ 1 6 (ε

√
a|q1|)

2. It is readily checked that the integrals are both
bounded by Cεa−1/2. �

5. Off-diagonal mediating operators

To get a rough idea of how the mediating operators (those in (3-6b)) should behave as ε→ 0, we perform
a regularity exponent count similar to the discussion just before Lemma 4.2. Recall that Gz increases
regularity by 2, while Si j and S∗k` decrease regularity by −(1+). Formally the regularity of Si jGzS∗k`
adds up to 2− (1+)− (1+)= 0− < 0. This being the case, one might expect Sεi jGzS∗εk` to diverge, in a
somewhat marginal way, as ε→ 0.

As we will show in the next section, the diagonal operator Sε12GzS∗ε12 diverges logarithmically in ε.
This divergence, after a suitable manipulation, cancels the relevant, leading order divergence in β−1

ε I
(recall from (1-7) that β−1

ε →∞). On the other hand, for each (i < j) 6= (k <`), the off-diagonal operator
Sεi jGzS∗εk` converges. This is not an obvious fact, cannot be teased out from the preceding regularity
counting, and is ultimately due to an inequality derived in [Dell’Antonio et al. 1994, Equation (3.2)]. We
treat the off-diagonal terms in this section.

We begin by building the limiting operator.

Lemma 5.1. Fix (i < j) 6= (k < `) and Re(z) < 0. We have that GzS∗k`(L
2(R2n−2)) ⊂ Dom(Si j ), so

Si jGzS∗k` maps L 2(R2n−2) to L 2(R2n−2). Furthermore, ‖Si jGzS∗k`‖op 6 C and

〈g,Si jGzS∗k` f 〉 =
∫

R2n
ĝ(pi + p j , pi j )

1
1
2 |p|

2− z
f̂ (pk + p`, pk`)

dp
(2π)2

, (5-1)

for f, g ∈L 2(R2n−2).

Proof. The inequalities derived in [Dell’Antonio et al. 1994, Equations (3.1), (3.3), (3.4), (3.6)] translate,
under our notation, into

sup
α>0

∫
R2n

|̂g(pi + p j , pi j )| | f̂ (pk + p`, pk`)|

|p|2+α
dp 6 C ‖g‖ ‖ f ‖, (5-2)
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for all (i < j) 6= (k < `) and f, g ∈L 2(R2n−2). Also, from (4-4) we have

Ŝ∗i j g(p)=
1

2π ĝ(pi + p j , pi j ), Ŝ∗k` f (p)= 1
2π f̂ (pk + p`, pk`). (5-3)

A priori, we only have GzS∗k` f ∈L 2(R2n) from Lemma 4.1. Given (5-2)–(5-3) together with Re(z) < 0,
we further obtain∫

R2n

∣∣∣∣̂g(pi + p j , pi j )
1

1
2 |p|

2− z
Ŝ∗k` f (p)

∣∣∣∣ dp

=

∫
R2n

∣∣∣∣̂g(q2−n)
1

1
2 |Mi j q|2− z

Ŝ∗k` f (Mi j q)
∣∣∣∣ dq 6 C‖g‖‖ f ‖, (5-4)

where, in deriving the equality, we apply a change of variable q = M−1
i j p, together with (pi + p j , pi j )=

(M−1
i j p)2−n and |det(Mi j )| = 1 (as readily verified from (4-1)). Referring to the definition (4-2) of

Dom(Si j ), since (5-4) holds for all g ∈ L 2(R2n−2), we conclude GzS∗k` f ∈ Dom(Si j ) and further that
|〈g,Si jGzS∗k` f 〉| = |〈S∗i j g,GzS∗k` f 〉| 6 C‖g‖‖ f ‖. The desired identity (5-1) now follows from (5-3). �

We next derive the ε > 0 analog of (5-1). Recall that v(y1, q2−n) denotes partial Fourier transform in
the last n− 1 components.

Lemma 5.2. For (not necessarily distinct) (i < j), (k < `), Re(z) < 0, and v,w ∈S (R2n),

〈w,Sεi jGzS∗εk`v〉

=

∫
R2n
ŵ( ε2(pi − p j ), pi + p j , pi j )

1
1
2 |p|

2− z
v̂( ε2(pk − p`), pk + p`, pk`) dp (5-5a)

=

∫
R2+2+2n

w(y′1, pi + p j , pi j )
e

1
2 iε((pi−p j )·y′1−(pk−p`)·y1)

1
2 |p|

2− z
v(y1, pk + p`, pk`)

dy1dy′1dp
(2π)2

. (5-5b)

Proof. Fixing v,w ∈S (R2n), we write 〈w,Sεi jGzS∗εk`v〉 = 〈S
∗

εi jw,GzS∗εk`v〉. Our goal is to express the
last quantity in Fourier variables, which amounts to expressing S∗εk`v and S∗εi jw in Fourier variables.
Recall (from (3-4)) that S∗εi j acts on L (R2n) by v(•) 7→ ε−2v(Tεi j •), where Tεi j is the invertible linear
transformation defined in (3-2). Write

Ŝ∗εi jw(p)=
∫

R2n
e−ip·xε−2w(Tεi j x)

dx
(2π)n

.

We wish to perform a change of variable Tεi j x = y. Doing so requires understanding how (p ·x) transform
accordingly. Defining M̃εi j p :=

(
ε
2(pi− p j ), pi+ p j , pi j

)
, it is readily checked that p ·x = M̃εi j p ·(Tεi j x).

Given this, we perform the change of variable Tεi j x = y. With |det(Tεi j )| = ε
−2, we now have

Ŝ∗εi jw(p)=
∫

R2n
e−i(M̃εi j p)·yw(y)

dy
(2π)n

= ŵ(M̃εi j p)= ŵ
(
ε

2
(pi − p j ), pi + p j , pi j

)
,

and similarly Ŝ∗εk`v(p) = v̂
(
ε
2(pk − p`), pk + p`, pk`

)
. From these expressions of S∗εk`v and S∗εi jw we

conclude (5-5a). The identity (5-5b) follows from (5-5a) by writing v(y1, p2−n)=
∫

R2 eiy1·p1 v̂(p) dp1
2π (and

similarly for w). �
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A useful consequence of Lemma 5.2 is the following norm bound.

Lemma 5.3. For distinct (i < j) 6= (k < `), Re(z) < 0, and ε ∈ (0, 1), ‖φSεi jGzS∗εk`φ‖op 6 C.

Proof. In (5-5b), apply (5-2) with f (•) = φ(y1) v(y1, •) and g(•) = φ(y′1) w(y
′

1, •). and integrate the
result over y1, y′1. We have

|〈φw,Sεi jGzS∗εk`(φv)〉|6 C
∫

R2
‖v(y1, •)‖φ(y1)dy1

∫
R2
‖w(y′1, •)‖φ(y

′

1)dy′1.

The last expression, upon an application of the Cauchy–Swchwarz inequality in y1 and in y′1, is bounded
by C‖v‖‖w‖. From this we conclude ‖φSεi jGzS∗εk`φ‖op 6 C . �

We are now ready to establish the convergence of the operator φ Sεi jGzS∗εk` φ for distinct pairs. Recall
�φ from (3-10).

Lemma 5.4. For each (i < j) 6= (k < `), and Re(z) < 0, we have φ Sεi jGzS∗εk` φ→ φ⊗ (Si jGzS∗k`�φ)
strongly as ε→ 0.

Proof. Our goal is to show φ Sεi jGzS∗εk`φv→ φ ⊗ Si jGzS∗k`�φv, for each v ∈ L 2(R2n). As shown in
Lemmas 5.1 and 5.3, the operators (Sεi jGzS∗εk`) and (Si jGzS∗k`) are norm-bounded, uniformly in ε. Hence
it suffices to consider v ∈S (R2n), the Schwartz space. To simplify notation, set uε := (φ Sεi jGzS∗εk`φ)v
and u := (φ⊗Si jGzS∗k`�φ)v. The strategy of the proof is to express ‖uε−u‖2 as an integral, and use the
dominated convergence theorem.

The first step is to obtain expressions for the partial Fourier transforms of uε = (φ Sεi jGzS∗εk`φ)v
and u = (φ ⊗ Si jGzS∗k`�φ)v. To achieve this, we fix v,w ∈ S (R2n), in (5-1), set ( f (•), g(•)) =
(φ(y1)v(y1, •), φ(y′1)w(y

′

1, •)), and integrate over y1, y′1. Note that f̂ (p2−n) = φ(y1) v(y1, p2−n) (and
similarly for g). We have

〈w, u〉 =
∫

R2+2+2n
w(y′1, pi + p j , pi j )φ(y

′

1)
1

1
2 |p|

2− z
φ(y1) v(y1, pk + p`, pk`)

dy1dy′1dp
(2π)2

. (5-1’)

Similarly, in (5-5b), substitute (v,w)= (φv, φw) to get

〈w, uε〉 =
∫

R2+2+2n
w(y′1, pi + p j , pi j ) (5-5b’)

φ(y′1)
e

1
2 iε((pi−p j )·y′1−(pk−p`)·y1)

1
2 |p|

2− z
φ(y1) v(y1, pk + p`, pk`)

dy1dy′1dp
(2π)2

. (5-6)

Equations (5-1’) and (5-5b’) express the inner product (against a generic w) of uε and u in partial Fourier
variables. From these expressions we can read off uε(y′1, q2−n) and u(y′1, q2−n). Specifically, we perform
a change of variable q = M−1

i j p =
( 1

2(pi − p j ), pi + p j , pi j

)
in (5-1’) and (5-5b’), so that w takes

variables (y′1, q2−n) instead of (y′1, pi + p j , pi j ). From the result we read off

u(y′1, q2−n)=

∫
R4

fz,v dy1dq1, uε(y′1, q2−n)=

∫
R4

Eε fz,v dy1dq1. (5-7)
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Here Eε and fz,v are (rather complicated-looking) functions of q, y1, y′1, given in the following. The
precisely functional forms of fz,v and Eε will be irrelevant. Instead, we will explicitly signify what
properties of these functions we are using whenever doing so. We have Eε := eiεq1·y′1−iε[M−1

k` Mi j q]1·y1 and

fz,v := φ(y′1)
1

1
2 |Mi j q|2− z

φ(y1) v(y1, [M−1
k` Mi j q]2−n)

1
(2π)2

.

Additionally, we will need an auxiliary function v′ ∈L 2(R2n) such that v′(y1, p̃)= |v(y1, p̃)|. Such
a function v′ = v′(y) is obtained by taking the inverse Fourier of |v(y1, q2−n)| in q2−n . Note that
‖v′‖ = ‖v‖<∞. Set a := −Re(z) > 0 and u′ := (φ⊗Si jG−aS∗k`�φ)v

′. We have

u′(y′1, q2−n)=

∫
R4

f−a,v′ dy1dq1, f−a,v′ > | fz,v|> 0. (5-8)

Now, use (5-7) and (5-8) to write

‖uε − u‖2 6
∫

R2n

(∫
R4
| fz,v| |Eε − 1|dy1dq1

)2

dy′1dq2−n, (5-9)

‖u′‖2 =
∫

R2n

(∫
R4

f−a,v′dy1dq1

)2

dy′1dq2−n. (5-10)

View (5-9)–(5-10) as integrals over R8+2n , i.e.,

r.h.s. of (5-9) :=
∫

R8+2n
gε d(. . .), r.h.s. of (5-10) :=

∫
R8+2n

g d(. . .).

We now wish to apply the dominated convergence theorem on gε and g. To check the relevant conditions,
note that: since |Eε − 1| 6 1 and | fz,v| 6 f−a,v′ , we have 0 6 gε 6 g; since |Eε − 1| → 0 pointwisely
on R8+2n , we have gε → 0 pointwise on R8+2n; the integral of g over R8+2n evaluates to ‖u′‖2 =
‖(φ⊗Si jGzS∗k`�φ)v

′
‖

2, which is finite since the operators Si jGzS∗k`, (φ⊗ • ), and �φ are bounded. The
desired result

∫
R8+2n gε d(. . .)= ‖wε −w‖2→ 0 follows. �

6. Diagonal mediating operators

The main task here is to analyze the asymptotic behavior of the diagonal part φ Sε12GzS∗ε12φ, which
diverges logarithmically. We begin by deriving an expression for 〈w, φ Sε12GzS∗ε12φ v〉 that exposes such
ε→ 0 behavior. Let Gz(x) :=

(
−

1
2∇

2
− z I

)−1
(0, x), x ∈R2, denote Green’s function in two dimensions.

Recall that

|p|22−n :=
1
2 |p2|

2
+ |p3|

2
+ . . .+ |pn|

2.

Lemma 6.1. For v,w ∈L 2(R2n), we have

〈w, φ Sε12GzS∗ε12φv〉

=

∫
R2n
w(y′1, p2−n) φ(y′1)

1
2Gε2( 1

2 z− 1
4 |p|

2
2−n)
(y′1− y1) φ(y1) v(y1, p2−n) dy1dy′1dp2−n. (6-1)
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Proof. Apply Lemma 5.2 for (i < j) = (k < `) = (1 < 2) and for (v,w) 7→ (φv, φw), and perform a
change of variable

( p1−p2
2 , p1+ p2

)
7→ (p1, p2) in the result. We obtain

〈w, φSε12GzS∗ε12φv〉 =

∫
R2+2+2n

w(y′1, p2−n)φ(y′1)
eiεp1·(y′1−y1)

|p1|2+
1
2 |p|

2
2−n − z

φ(y1) v(y1, p2−n)
dy1dy′1dp
(2π)2

,

(6-2)
and we recognize ∫

R2

eip1·x1

1
2 |p1|2− z

dp1

(2π)2

as the Fourier transform of the two-dimensional Green’s function Gz . �

Given the expression on the right-hand side of (6-1), we seek to analyze the behavior of Gz(x) for
small |z|:

Lemma 6.2. Take the branch cut of the complex-variable functions
√

z and (log z) to be (−∞, 0], let
γEM denote the Euler–Mascheroni constant. For all x 6= 0 and z ∈ C \ [0,∞), we have

Gz(x)= 1
π

K0(
√
−2z|x |)=− 1

π
log
√
−z|x |
√

2
−

1
π
γEM+ A(

√
−zx), (6-3)

for some A(•) that grows linearly near the origin, i.e., sup|z|6a(|z|
−1
|A(z)|)6 C(a), for all a <∞.

The proof follows from classical special function theory. We present it here for the readers’ convenience.

Proof. Write the equation
(
−

1
2∇

2
− z

)
Gz(x)= 0, x 6= 0, in radial coordinates, compare the result to the

modified Bessel equation [Abramowitz and Stegun 1966, 9.6.1], and note that Gz(x) vanishes at |x |→∞.
We see that Gz(x)=cK0(

√
−2z|x |), for some constant c, where Kν denotes the modified Bessel function of

second kind. To fix c, compare the known expansion of K0(r) around r = 0 [Abramowitz and Stegun 1966,
9.6.54] (noting that I0(0)= 1 therein), and use −πr d

dr Gz(|r |)= 1 (because
(
−

1
2∇

2Gz(x)− z
)
= δ(x))

for r→ 0. We find c = 1
π

. The second equality follows from [Abramowitz and Stegun 1966, 9.6.54]. �

For subsequent analysis, it is convenient to decompose L 2(R2n) into a “projection onto φ” and its
orthogonal compliment. More precisely, recall�φ from (3-10), and that

∫
φ2
= 1, we define the projection

5φ := φ⊗�φ :L
2(R2n)→L 2(R2n), (φ⊗�φv)(y) := φ(y1)

∫
R2
φ(y′1)v(y

′

1, y2−n) dy′1. (6-4)

Returning to the discussion about the ε→ 0 behavior of φ Sε12GzS∗ε12φ, inserting (6-3) into (6-1),
we see that (φSε12GzS∗ε12φ) has a divergent part

( 1
2π |log ε|

)
5φ. The coefficient

( 1
2π |log ε|

)
matches

the leading order of β−1
ε (see (1-7)), so

( 1
2π |log ε|

)
5φ cancels the divergence β−1

ε I on the subspace
Img(5φ), but still leaves the remaining part β−1

ε I |Img(5φ)⊥ = β
−1
ε (I −5φ) divergent. However, recall

that (β−1
ε I −φ Sε12GzS∗ε12φ) appears as an inverse in the resolvent identity (3-6). Upon taking the inverse,

the divergent part on Img(5φ)
⊥ becomes a vanishing term.

We now begin to show the convergence of (β−1
ε I −φ Sε12GzS∗ε12φ)

−1. Doing so requires a technical
lemma. To set up the lemma, consider a collection of bounded operators {Tε,p : L 2(R2)→ L 2(R2)},
indexed by ε ∈ (0, 1) and p ∈ R2n−2, such that for each ε > 0, supp∈R2n−2 ‖Tε,p‖op <∞. Note that here,
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unlike in the preceding, here p = (p2, . . . , pn) ∈ R2n−2 denotes a vector of n− 1 components. For each
ε ∈ (0, 1), construct a bounded operator Tε as

Tε :L 2(R2n)→L 2(R2n), Tεu(•, p) := Tε,p u(•, p).

Roughly speaking, we are interested in an operator Tε that acts on y1 ∈ R2 in a way that depends on the
partial Fourier components p = (p2, . . . , pn) ∈ R2n−2. The operator Tε,p records the action of Tε on y1

per fixed p ∈ R2n−2. We are interested in obtaining the inverse T −1
ε and its strong convergence (as ε ↓ 0).

The following lemma gives the suitable criteria in terms of each Tε,p.

Lemma 6.3. Let {Tε,p} and Tε be as in the preceding. If each Tε,p is invertible with

sup
{
‖T −1
ε,p ‖op : ε ∈ (0, 1), p ∈ R2n−2}

:= b <∞,

and if each T −1
ε,p permits a norm limit, i.e., there exists T ′p :L 2(R2)→L 2(R2) such that

T −1
ε,p −→ T ′p in norm as ε→ 0, for each fixed p ∈ R2n−2,

then Tε is invertible with supε∈(0,1) ‖T −1
ε ‖op 6 b <∞,

T −1
ε −→ T ′, strongly, as ε→ 0,

and ‖T ′‖op 6 b<∞, where the operator T ′ :L 2(R2n)→L 2(R2n) is built from the limit of each T −1
ε,p as

T ′u(•, p) := T ′p u(•, p).

Proof. We construct the inverse of Tε. By assumption each Tε,p has inverse T −1
ε,p , from which we define

T ′ε u(•, p) := T −1
ε,p u(•, p).

It is readily checked that ‖T ′ε ‖op 6 supε,p‖T −1
ε,p ‖6 b, and the operator T ′ε actually gives the inverse of Tε,

i.e., T ′εTε = TεT ′ε = I . Note that, for each p ∈ R2n−2, the operator T ′p inherits a bound from T −1
ε,p , i.e.,

supp ‖T ′p‖op 6 supε,p ‖T −1
ε,p ‖op 6 b. Together with the definition of T ′ we also have ‖T ′‖op 6 b.

It remains to check the strong convergence. For each u ∈L 2(R2n) we have

‖T −1
ε u− T ′u‖2 =

∫
R2n−2

(∫
R2
|T −1
ε,p u(y1, p)− T ′p u(y1, p)|2 dy1

)
dp

6
∫

R2n−2

(
‖T −1
ε,p − T ′p‖

2
op

∫
R2
|u(y1, p)|2 dy1

)
dp.

The integrand within the last integral converges to zero pointwisely, and is dominated by 4b2
|u(y1, p)|2,

which is integrable over R2n . Hence by the dominated convergence theorem ‖T −1
ε u− T ′u‖2→ 0. �

With Lemma 6.3, we next establish the norm boundedness and strong convergence of

(β−1
ε I −φ Sε12GzS∗ε12φ)

−1

in two steps, first for fixed p ∈ R2n−2. Slightly abusing notation, in the following lemma, we also
treat 5φ (defined in (6-4)) as its analog on L 2(R2), namely the projection operator 5φ f (y1) :=

φ(y1)
∫

R2 φ(y′1) f (y′1) dy′1.
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Lemma 6.4. For each p ∈ R2n−2, define an operator Tε,p :L 2(R2)→L 2(R2),

Tε,p f (y1) := β
−1
ε f (y1)−φ(y1)

∫
R2

1
2Gε2( 1

2 z− 1
4 |p|

2
2−n)
(y1− y′1)φ(y

′

1) f (y′1) dy′1. (6-5)

Then, there exist constants C1 < ∞ and C2(βfine) > 0 such that, for all Re(z) < −eβ?+C1 and ε ∈
(0, 1/C2(βfine)),

‖(Tε,p)−1
‖op 6 C (log(−Re(z))−β?)−1,

(Tε,p)−1
−→

4π

log
(1

2 |p|
2
2−n − z

)
−β?

5φ, in norm as ε→ 0, for each fixed p ∈ R2n−2.

Proof. Throughout the proof, we say a statement holds for −Re(z) large enough, if the statement holds
for all −Re(z) > eβ?+C , for some fixed constant C <∞, and we say a statement holds for all ε small
enough, if the statement holds for all ε < 1/C(βfine), for some constant C(βfine) <∞ that depends only
on βfine.

Our first goal is to show Tε,p is invertible and establish bounds on ‖T −1
ε,p ‖op. We do this in two separate

cases: (i)
∣∣ 1

2 |p|
2
2−n − z

∣∣6 ε−2 and (ii)
∣∣ 1

2 |p|
2
2−n − z

∣∣> ε−2.

(i) The first step here is to derive a suitable expansion of Tε,p. Recall that we have abused notation to
write 5φ (defined in (6-4)) for the projection operator 5φ f (y1) := φ(y1)

∫
R2 φ(y′1) f (y′1) dy′1. Applying

Lemma 6.2 yields

Tε,p = β−1
ε I +

(
−

1
2π |log ε| + 1

4π log(1
2 |p|

2
2−n − z)− 1

2π log 2+ 1
2π γEM

)
5φ +Lφ −Aε,z,p, (6-6)

where Lφ and Aε,z,p are integral operators L 2(R2)→L 2(R2) defined as

(Lφ f )(y1) :=
1

2π
φ(y1)

∫
R2

log|y1− y′1|φ(y
′

1) f (y′1) dy′1, (6-7)

(Aε,z,p f )(y1) :=
1
2
φ(y1)

∫
R2

A
( 1

2 |y1− y′1|ε
√

1
2 |p|

2
2−n − z

)
φ(y′1) f (y′1) dy′1, (6-8)

and the function A(•) is the remainder term in Lemma 6.2. Let 5⊥ := I −5φ denote the orthogonal
projection onto (Cφ)⊥ in L 2(R2) and recall βε from (1-7). In (6-6), decomposing

β−1
ε I = β−1

ε 5⊥+
1

2π
(|log ε| −βε,fine)5φ,

where βε,fine := |log ε| − |log ε|(1+βfine/|log ε|)−1, we rearrange terms to get

Tε,p = β−1
ε 5⊥+

1
4π

(
log
( 1

2 |p|
2
2−n − z

)
−β ′?,ε

)
5φ +Lφ −Aε,z,p, (6-9)

where β ′?,ε := 2(log 2+βε,fine− γEM). We next take the inverse of Tε,p from (6-9), utilizing

(Q− Q̃)−1
=

∞∑
m=0

Q−1(Q̃Q−1)m, ‖(Q− Q̃)−1
‖op 6 ‖Q−1

‖op/(1−‖Q−1
‖op‖Q̃‖op), (6-10)

valid for operators Q, Q̃ such that Q is invertible with ‖Q−1
‖op‖Q̃‖op < 1. Our choice will be Q :=

β−1
ε 5⊥+

1
4π

(
log
( 1

2 |p|
2
2−n − z

)
−β ′?,ε

)
5φ and Q̃ := −Lφ +Aε,z,p.
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From (6-7), we have ‖Lφ‖op <∞. Under our current assumption
∣∣1

2 |p|
2
2−n− z

∣∣6 ε−2, from (6-8) and
the property of A(•) stated in Lemma 6.2, we have ‖Aε,z,p‖op 6 C <∞. Hence

‖−Lφ +Aε,z,p‖op 6 C. (6-11)

With 5⊥ and 5φ being projection operators orthogonal to each other, we calculate(
β−1
ε 5⊥+

1
4π

(
log
( 1

2 |p|
2
2−n − z

)
−β ′?,ε

)
5φ

)−1
= βε5⊥+ 4π

(
log
( 1

2 |p|
2
2−n − z

)
−β ′?,ε

)−1
5φ. (6-12)

The operator norm of this inverse is thus bounded by max{βε, 4π/(log(−Re(z))−β ′?,ε)}. Since β ′?,ε→
β?+ 2β8 and βε→ 0, this allows us to get a convergent series (6-10) for −Re(z) large enough and ε
small enough, with ‖T −1

ε,p ‖op 6 C(log(−Re(z))−β?)−1.

(ii) Now we consider the case
∣∣ 1

2 |p|
2
2−n − z

∣∣> ε−2. We apply (6-10) again to (6-5) with Q= β−1
ε I . To

check the relevant condition, we write the operator Tε,p (in (6-5)) in a coordinate-free form as

Tε,p = β−1
ε I −φ 1

2G
(n=1)
ε2( 1

2 z− 1
4 |p|

2
2−n)
φ,

where G(n=1)
z denotes the two-dimensional Laplace resolvent. Recall that Re(z) < −e−β?+C1 < 0, so

Re
( 1

2 z− 1
4 |p|

2
2−n

)
< 0, which gives∥∥G(n=1)

ε2( 1
2 z− 1

4 |p|
2
2−n)

∥∥
op =

∣∣ε2( 1
2 z− 1

4 |p|
2
2−n
)∣∣−1

.

Under the current assumption
∣∣ 1

2 |p|
2
2−n − z

∣∣> ε−2, this is bounded by 2, so∥∥φ 1
2G

(n=1)
ε2( 1

2 z− 1
4 |p|

2
2−n)
φ
∥∥6 C.

Since β−1
ε →∞, (6-10) applied to (6-5) with Q=β−1

ε I , show that T −1
ε,p exists with ‖T −1

ε,p ‖op6C (log ε)−1,
for all ε small enough.

Having obtained T −1
ε,p and its bound, we next show the norm convergence. The condition

∣∣1
2 |p|

2
2−n−z

∣∣6
ε−2 holds for all ε 6 C(p), whence we have from (6-10) that

T −1
ε,p =

(
βε5⊥+

4π

log
( 1

2 |p|
2
2−n−z

)
−β ′?,ε

5φ

) ∞∑
m=0

(
(−Lφ+Aε,z,p)

(
βε5⊥+

4π

log
( 1

2 |p|
2
2−n−z

)
−β ′?,ε

5φ

))m

.

(6-13)
We now take termwise the limit in (6-13). Referring to (6-8), with p ∈ R2n−2 being fixed, the linear
growth property of A(•) in Lemma 6.2 gives that Aε,z,p converges to 0 in norm. Since βε→ 0,

βε5⊥+
4π

log
( 1

2 |p|
2
2−n − z

)
−β ′?,ε

5φ −→
4π

log
( 1

2 |p|
2
2−n − z

)
−β?− 2β8

5φ, in norm.

Further, the bound (6-11) guarantees that, for all −Re(z) large enough, the series (6-13) converges
absolutely in norm, uniformly for all ε small enough. From this we conclude T −1

ε,p → T ′p in norm, where

T ′p :=
4π

log
( 1

2 |p|
2
2−n − z

)
−β ′?− 2β8

∞∑
m=0

5φ

(
4π

log
( 1

2 |p|
2
2−n − z

)
−β?− 2β8

(−Lφ)5φ

)m

. (6-14)



MOMENTS OF THE 2D SHE AT CRITICALITY 207

This expression can be further simplified using 5m
φ =5φ and 5φLφ5φ =

β8
2π5φ ,

T
′

p =
4π

log
( 1

2 |p|
2
2−n − z

)
−β?− 2β8

∞∑
m=0

5φ

(
−2β8

log
( 1

2 |p|
2
2−n − z

)
−β?− 2β8

5φ

)m

=
4π

log
( 1

2 |p|
2
2−n − z

)
−β?

5φ.

This completes the proof. �

Recall Jz from (1-22). Combining Lemmas 6.3–6.4 immediately gives the main result of this section:

Lemma 6.5. There exist constants C1 <∞,C2(βfine) > 0 such that, for all Re(z) <−eβ?+C1 , and for all
ε ∈ (0, 1/C2(βfine)), the inverse (β−1

ε I −φ Sε12GzS∗ε12φ)
−1
:L 2(R2n)→L 2(R2n) exists, with∥∥(β−1

ε I −φ Sε12GzS∗ε12φ
)−1∥∥

op 6 C (log(−Re(z))−β?)−1, (6-15)(
β−1
ε I −φ Sε12GzS∗ε12φ

)−1
−→ 4πφ⊗

(
(Jz −β? I)−1�φ

)
, strongly, as ε→ 0. (6-16)

7. Convergence of the resolvent

In this section we collect the results of Sections 3–6 to prove Proposition 1.4(a)–(b) and Theorem 1.6(a)–(b)
and the convergence part of Theorem 1.1(b).

Proposition 1.4(a) and Theorem 1.6(a) follow from the bounds obtained in Lemmas 4.2–4.4, 5.3, and 6.5.
We now turn to Theorem 1.6(b). Recall that Lemma 3.2, as stated, applies only for Re(z) <−C(n, ε),
for some threshold C(n, ε) that depends on ε. Here we argue that the threshold can be improved to be
independent of ε. Using the bounds from Lemmas 4.2–4.4, 5.3, and 6.5 on the right-hand side of (3-6), we
see that (Rε,z −Gz) defines an analytic function (in operator norm) in B := {Re(z) <−eCn2

+β?}. On the
other hand, we also know that (Rε,z −Gz) is analytic in z off σ(Hε)∪ [0,∞), where σ(Hε)⊂ R denotes
the spectrum of Hε. Consequently, both sides must match on B \ σ(Hε). We now argue B ∩ σ(Hε)=∅,
so the matching actually holds on the entire B. Assuming the contrary, we fix z0 ∈ B ∩ σ(Hε), take a
sequence zk ∈ B and approach zk → z0 along the vertical axis. Along this sequence (Rε,zk − Gzk ) is
bounded, contradicting z0 ∈ σ(Hε).

We now show the convergence of the resolvent, i.e., (3-6) to (3-12). As argued previously, both series
(3-6) and (3-12) converge absolutely in operator norm, uniformly over ε. It hence suffices to show
termwise convergence. By Lemmas 4.4, 5.4, and 6.5, each factor in (3-6a)–(3-6c) converges to its limiting
counterparts in (3-12a)–(3-12c), strongly or in norm. Using this in conjunction with the elementary,
readily checked fact

QεQ′ε→QQ′ strongly if Qε,Q′ε are uniformly bounded and Qε→Q,Q′ε→Q′ strongly,

we conclude the desired convergence of the resolvent, Theorem 1.6(b).
Next we prove Proposition 1.4(b). First, given the bounds from Lemmas 4.2–4.4, 5.3, and 6.5, we

see that Rsym
z in (1-24) defines a bounded operator on L 2(R2n) for all Re(z) <−eβ?+n2C . Our goal is to

match Rsym
z to Rz on L 2

sym(R
2n), for these values of z. Apply (6-10) with Q= 1

4π (Jz −β? I) and with
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Q̃= 2
n(n−1)

∑dSi jGzS∗k` for the prescribed values of z (so that the condition for (6-10) to apply checks).
We obtain

Rsym
z = Gz +

∑
GzS∗i1 j1

(
4π(Jz −β? I)−1

m∏
s=2

(
2

n(n− 1)
SksksGzS∗is js 4π(Jz −β? I)−1

))
×

2
n(n− 1)

Skm+1km+1Gz, (7-1)

where the sum is over all pairs (i1< j1), (k2<`2) 6= (i2< j2), . . . , (km <`m) 6= (im < jm), (km+1< km+1),
and all m.

At this point we need to use the symmetry of L 2
sym(R

2n). Let

L 2
sym′(R

2n−2) :=
{
v ∈L 2(R2n−2) : v(y2, yσ(3), . . . , yσ(n))= v(y2, y3, . . . , yn) σ ∈ Sn−2

}
denote the space of functions on R2n−2 that are symmetric in the last (n− 2) components. It is readily
checked that the incoming operator (i.e., Skm+1km+1Gz) maps L 2

sym(R
2n) into L 2

sym′(R
2n−2), that the

mediating operators (i.e., SksksGzS∗is js and 4π(Jz −β? I)−1) map L 2
sym′(R

2n−2) to L 2
sym′(R

2n−2). Further,
given that Gz acts symmetrically in the n components, we have

Si jGz
∣∣
L 2

sym(R
2n)
= Si ′ j ′Gz

∣∣
L 2

sym(R
2n)
, for all (i < j), (i ′ < j ′). (7-2)

Also, from (5-1) we have

Sk`GzS∗i j

∣∣
L 2

sym′ (R
2n−2)
= Sσ(k)σ (`)GzS∗σ(i)σ ( j)

∣∣
L 2

sym′ (R
2n−2)

, for all (i < j) 6= (k < `), σ ∈ Sn. (7-3)

In (7-1), use (7-3) to rearrange the sum over (k2 < `2) 6= (i2 < j2) as

2
n(n− 1)

∑
(k2<`2)6=(i2< j2)

Sk2`2GzS∗i2 j2

∣∣
L 2

sym′ (R
2n−2)
=

∑
i2< j2

Si1 j1GzS∗i2 j2

∣∣
L 2

sym′ (R
2n−2)

1{(i2< j2) 6=(i1<i1)}.

That is, we use (7-3) for some σ ∈ Sn such that (σ (k2) < σ(k2))= (i1 < j1). Doing so reduces the sum
over double pairs (k2 < `2) 6= (i2 < j2) into a sum over a single pair (i2 < j2) with (i2 < j2) 6= (i1 < j1),
and the counting in this reduction cancels the prefactor 2/(n(n− 1)). Continue this procedure inductively
from s = 2 through s = m, and then, at the m+ 1 step, similarly use (7-2) to write

2
n(n− 1)

∑
km+1<`m+1

Skm+1`m+1Gz
∣∣
L 2

sym(R
2n)
= Sim jmGz

∣∣
L 2

sym(R
2n)
.

We then conclude Proposition 1.4(b),

Rsym
z |L 2

sym(R
2n) =Rz|L 2

sym(R
2n). (7-4)

We now turn to the convergence of the fixed time correlation functions in Theorem 1.1(b). Given
Theorem 1.6, applying the Trotter–Kato theorem (see [Reed and Simon 1972, Theorem VIII.22]), we
know that there exists an (unbounded) self-adjoint operator H on L 2(R2n), such that Rz (in (1-23)) is the
resolvent for H, i.e., Rz = (H− z I)−1, for all Im(z) 6= 0. Theorem 1.6 also guarantees that the spectra
of Hε and H are bounded below, uniformly in ε. More precisely, σ(Hε), σ (H) ⊂ (−C1(n, β?),∞),
for all ε ∈ (0, 1/C2(βfine)), for some C1(n, β?) <∞ and C2(βfine) > 0. Fix t ∈ R+. We now apply
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[Reed and Simon 1972, Theorem VIII.20], which says that if self-adjoint operators Hε → H in the
strong resolvent sense, and f is bounded and continuous on R then f (Hε)→ f (H) strongly. We use
f (λ)= e(−tλ)∧C1(n,β?), which is bounded and continuous, and from what we have proved, f (Hε)= e−tHε

and f (H)= e−tH. Hence

e−tHε −→ e−tH strongly on L 2(R2n), for each fixed t ∈ R+. (7-5)

For Theorem 1.1(b), we wish to upgrade this convergence to be uniform over finite intervals in t . Given
the lower bound on the spectra, we have the uniform (in ε) norm continuity:

‖e−tHε − e−sHε‖op+‖e−tH
− e−sH

‖op 6 C2(n, β?)|t − s|eC2(n,β)(t∨s),

for all ε ∈ (0, 1/C2(βfine)) and s, t ∈ [0,∞). This together with (7-5) gives

lim
ε→0

sup
t∈[0,τ ]

‖e−tHεu− e−tHu‖ = 0, u ∈L 2(R2n), τ <∞.

Comparing this with (1-4), we now have, for each fixed g ∈L 2(R2n),

E[〈Z⊗n
ε,t , g〉] −→ 〈Z⊗n

ic , e−tHg〉, uniformly over finite intervals in t. (7-6)

What is missing for the proof of Theorem 1.1 is the identification of the semigroup e−tH with the explicit
operators defined in (1-16), (1-17). This is the subject of the next section.

8. Identification of the limiting semigroup

The remaining task is to match e−tH to the operator Pt +DDgm(n)
t on the right-hand side of (1-18). To

rigorously perform the heuristics in Remark 1.9, it is more convenient to operate in the forward Laplace
transform, i.e., going from t to z. Doing so requires establishing bounds on the relevant operators in (1-17),
and verifying the semigroup property of Pt +DDgm(n)

t , defined in (1-16). The bounds will be established
in Section 8A, and as step toward verifying the semigroup property, we establish an identity in Section 8B.

8A. Bounds and Laplace transforms. We begin with the incoming and outgoing operators. We now
establish a quantitative bound on the norms of Si jPt and PtS∗i j , and match them to the corresponding
Laplace transform.

Lemma 8.1. (a) For each pair i < j and t ∈ R+, Si jPt : L 2(R2n) → L 2(R2n−2) and PtS∗i j :

L 2(R2n−2)→L 2(R2n) are bounded with

‖Si jPt‖op+‖PtS∗i j‖op 6 Ct−1/2.

(b) For each pair i < j , Re(z) < 0, u ∈L 2(R2n), and v ∈L 2(R2n−2),∫
R+

et z
〈v,Si jPt u〉 dt =

∫
R+×R4n−2

et zv(y)P(t, Si j y− x)u(x) dtdydx = 〈u,Si jGzv〉,∫
R+

et z
〈u,PtS∗i jv〉 dt =

∫
R+×R4n−2

et zu(x)P(t, x − Si j y)v(y) dtdxdy = 〈u,GzS∗i jv〉,

where the integrals converge absolutely (over R+ and over R+×R2n−4).



210 YU GU, JEREMY QUASTEL AND LI-CHENG TSAI

Proof. It suffices to consider Si jPt since PtS∗i j = (Si jPt)
∗.

(a) Fixing u ∈L 2(R2n), we use (4-3) to bound

‖Si jPt u‖2 =
∫

R2n−2

(∫
R2

P̂t u(Mi j q)
dq1

2π

)2

dq2−n =

∫
R2n−2

(∫
R2

e−
1
2 t |Mi j q|2 û(Mi j q)

dq1

2π

)2

dq2−n.

On the right-hand side, bound |Mi j q|2 > 1
2 |q1|

2 (as checked from (4-1)), and apply the Cauchy–Schwarz
inequality in the q1 integral. We conclude the desired result

‖Si jPt u‖2 6 C
∫

R2
(e−

1
4 t |q1|

2
)2dq1 ‖u‖2 6

C
t
‖u‖2.

(b) Fix Re(z) < 0, integrate 〈v,Si jPt u〉 against ezt over t ∈ (0,∞), and use (4-3) to get∫
∞

0
ezt
〈v,Si jPt u〉 dt =

∫
∞

0

∫
R2n
v̂(q2−n)et z− t

2 |Mi j q|2 û(Mi j q)(2π)−1 dtdq.

This integral converges absolutely since ‖Si jPt‖op 6Ct−1/2 and Re(z) < 0. This being the case, we swap
the integrals and evaluate the integral over t to get∫

∞

0
ezt
〈v,Si jPt u〉 dt =

∫
R2n
v̂(q2−n)

1
1
2 |Mi j q|2− z

û(Mi j q)
dq
2π
.

The last expression matches 〈v,Si jGzu〉, as seen from (4-9). �

Lemma 8.2. (a) For distinct pairs (i < j) 6= (k < `), t ∈ R+, PtS∗k`(L
2(R2n−2))⊂ Dom(Si j ), so the

operator Si jPtS∗k` maps L 2(R2n−2)→L 2(R2n−2). Further

‖Si jPtS∗k`‖op 6 Ct−1.

(b) For distinct pairs (i < j) 6= (k < `), v,w ∈L 2(R2n−2), and Re(z) < 0,∫
R+×R4n−4

eztw(y)P(t, Si j y− Sk`y′)v(y′) dtdydy′ = 〈w,Si jGzS∗k`v〉, (8-1)

where the integral converges absolutely.

Remark 8.3. Unlike in the case for incoming and outgoing operators, here our bound on Ct−1 on the
mediating operator does not ensure the integrability of ‖Si jPtS∗k`‖op near t = 0. Nevertheless, the integral
in (8-1) still converges absolutely.

Proof. Fix distinct pairs (i < j) 6= (k < `) and v,w ∈L (R2n−2).

(a) As argued just before Lemma 8.1, we have PtS∗k`v ∈ L 2(R2n). To check the condition PtS∗k`v ∈
Dom(Si j ), consider∫

R2n

∣∣∣∣ŵ(q2−n)e−
t
2 |Mi j q|2 Ŝ∗k`v(Mi j q)

∣∣∣∣ dq
2π
=

∫
R2n

∣∣∣∣ŵ(pi + p j , pi j )e
−

t
2 |p|

2
Ŝ∗k`v(p)

∣∣∣∣ dp
2π
, (8-2)

where the equality follows by a change of variable q = M−1
i j p, together with (pi + p j , pi j )= [M

−1
i j p]2−n



MOMENTS OF THE 2D SHE AT CRITICALITY 211

and |det(Mi j )| = 1 (as readily verified from (4-1)). In (8-2), bound e−
t
2 |p|

2
6 C (t |p|2)−1 and use (5-2)

to get
(8-2)6 C t−1

‖v‖ ‖w‖. (8-3)

Referring to the definition (4-2) of Dom(Si j ), since (5-4) holds for all w ∈ L 2(R2n−2), we conclude
PtS∗k`v ∈ Dom(Si j ) and |〈w,Si jPtS∗k`v〉| = |〈S

∗

i jw,PtS∗k`v〉|6 Ct−1
‖w‖ ‖v‖.

(b) To prove (8-1), assume for a moment z = −λ ∈ (−∞, 0) is real, and v(y), w(y) > 0 are positive.
In (8-1), express the integral over y, y′ as 〈w,Si jPtS∗k`v〉 = 〈S

∗

i jw,PtS∗k`v〉, and use (5-3) to get∫
R+×R4n−4

eztw(y)P(t, Si j y− Sk`y′)v(y′) dtdydy′

=

∫
∞

0
e−λt

(∫
R2n
ŵ(pi + p j , pi j )e

−
t
2 |p|

2
v̂(pk + p`, pk`) dp

)
dt.

The integral on the right-hand side converges absolutely over R+×R2n , i.e., jointly in t, p. This follows
by using (5-2) together with

∫
∞

0 e−λt− t
2 |p|

2
dt = 1/

(
λ+ 1

2 |p|
2
)
. Given the absolute convergence, we swap

the integrals over t and over p, and evaluate the former to get the expression for 〈w,Si jGzS∗k`v〉 on the
right-hand side of (5-1). For general v(y), w(y), the preceding calculation done for (v(y), w(y)) 7→
(|v(y)|, |w(y)|) and for z 7→ Re(z) guarantees the relevant integrability. �

Recall j(t, β?) from (1-9). For the diagonal mediating operator, let us first settle some properties of j.

Lemma 8.4. For each Re(z) <−eβ? , the Laplace transform of j(t, β?) evaluates to∫
∞

0
ezt j(t, β?) dt =

1
log(−z)−β?

, (8-4)

where the integral converges absolutely, and j(t, β?) has the pointwise bound

j(t, β?)= |j(t, β?)|6 C t−1∣∣log
(
t ∧ 1

2

)∣∣−2e(β?+1)Ct , t ∈ R+. (8-5)

Proof. To evaluate the Laplace transform, assume for a moment that z ∈ (−∞,−eβ?) is real. Integrate (1-9)
against ezt over t . Under the current assumption that z is real, the integrand therein is positive, so we
apply Fubini’s theorem to swap the t and α integrals to get∫

∞

0
ezt j(t, β?) dt =

∫
∞

0

eβ?α

0(α)

(∫
∞

0
tα−1e−(−zt)dt

)
dα.

The integral over t , upon a change of variable −zt 7→ t , evaluates to 0(α)/(−z)α. Canceling the 0(α)
factors and evaluating the remaining integral over α yields (8-4) for z∈ (−∞,−eβ?). For general z∈C with
Re(z) <−eβ? , since |ezt

| = eRe(z)t , the preceding result guarantees integrability of |e−zt+αβ? tα−10(α)−1
|

over (t, α) ∈ R2
+

. Hence Fubini’s theorem still applies, and (8-4) follows.
To show (8-5), in (1-9), we separate the integral (over α ∈ R+) into two integrals over α > 1 and over

α < 1, denoted by I+ and I−, respectively. For I+, we use the bound exp(− log0(α))6 α
2 logα−Cα

(see [Abramowitz and Stegun 1966, 6.1.40]) to write I+ 6
∫
∞

1 exp
(
−α

( 1
2 logα− (C+β?)− log t

))
dα. It

is now straightforward to check that I+ 6 e(β?+1)Ct . Using | 1
0(α)
|6Cα, α ∈ (0, 1) (see [Abramowitz and
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Stegun 1966, 6.1.34]), we bound I− as I− 6 Ct−1eβ?
∫ 1

0 αtαdα. For all t > 1
2 , the last integral is indeed

bounded by e(β?+1)Ct . For t < 1
2 , we write tα = e−α| log t | and perform a change of variable α| log t | → t

to get I− 6 C t−1eβ? | log t |−2
∫
| log t |

0 αe−αdα 6 C t−1eβ? | log t |−2. Collecting the preceding bounds and
adjusting the constant C gives (8-5). �

Referring to the definition (1-12) of PJ
t , we see that this operator has an integral kernel

(PJ
t v)(y)=

∫
R2n−2

PJ (t, y, y′)v(y′) dy′, PJ (t, y, y′) := j(t, β?)p
( t

2 , y2− y′2
) n∏

i=3

p(t, yi− y′i ). (8-6)

Lemma 8.5. (a) For each t ∈ R+, PJ
t :L

2(R2n−2)→L 2(R2n−2) is a bounded operator with

‖PJ
t ‖op 6 C

(
t ∧ 1

2

)−1∣∣log(t ∧ 1
2)
∣∣−2e(β?+1)Ct . (8-7)

(b) Further, for each v,w ∈L 2(R2n−2) and Re(z) <−eβ? ,∫
R+

ezt
〈w,PJ

t v〉 dt =
∫

R+×R4n−4
ezt w(y)PJ (t, y, y′)v(y′) dtdydy′ = 〈w, (Jz −β? I)−1v〉, (8-8)

where the integrals converge absolutely (over R+ and over R+×R4n−4).

Proof. Part (a) follows from (8-5) and the fact that heat semigroups have unit norm, i.e., ‖e−at∇2
i ‖op = 1,

a > 0. For part (b), we work in Fourier domain and write∫
R4n−4

w(y)PJ (t, y, y′)v(y′) dtdydy′ = j(t, β?)
∫

R2n−2
ŵ(p)e−

1
2 t |p|22−n v̂(p)dp,

where, recall that |p|22−n =
1
2 |p2|

2
+ |p3|

2
+ . . .+ |pn|

2. Integrate both sides against ezt over t ∈ R+, and
exchange the integrals over p and over t . The swap of integrals are justified the same way as in the proof
of Lemma 8.2, so we do not repeat it here. We now have∫

R+×R4n−4
eztw(y)PJ (t, y, y′)v(y′) dtdydy′ =

∫
R2n−2

(∫
∞

0
ezt− 1

2 t |p|22−n j(t, β?)dt
)
ŵ(p)̂v(p)dp.

Applying (8-4) to evaluate the integral over t yields the expression in (1-22) for 〈w, (Jz −β? I)−1v〉. �

8B. An identity for the semigroup property. Our goal is to prove Lemma 8.8 in the following. Key to
the proof is the identity (8-12). It depends on a cute fact about the 0 function. Set

pk(α) :=
0(α+ k+ 1)
0(α+ 1)

= (α+ k) · · · (α+ 1)α, α > 0. (8-9)

with the convention p−1 := 1.

Lemma 8.6. For m ∈ Z>0,

pm(α)=

∫ α

0

m∑
k=0

(
m+ 1

m− k+ 1

)
(m− k)! pk−1(α1) dα1.
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Proof. Taking the derivative gives d
dα pm(α) =

∑m
j=0

∏m
jc(α + i), where

∏m
jc denotes a product over

i ∈ {0, . . . ,m} \ { j}. Our goal is to express this derivative in terms of pm−1(α), pm−2(α), . . . . The j =m
term skips the (α+m) factor, and is hence exactly pm−1(α). For other values of j , we use (α−m) to
compensate the missing (α+ j) factor. Namely, writing (α+m)= (α+ j + (m− j)), we have∏m

jc
(α+ i)= pm−1(α)+ (m− j)

∏m−1

jc
(α+ i). (8-10)

This gives

d
dα

pm(α)=

m∑
j=0

∏m

jc
(α+ i)=

m∑
j=0

pm−1(α)+

m∑
j=0

(m− j)
∏m−1

jc
(α+ i).

In (8-10), we have reduced
∏m

jc(α+ i) to
∏m−1

jc (α+ i), i.e., the same expression but with m decreased
by 1. Repeating this procedure yields

d
dα

pm(α)=

m∑
`=1

pm−`(α)

( m∑
j=0

(m− j)+(m− j − 1)+ · · · (m− j − `)+

)

=

m∑
`=1

pm−`−1(α)

m∑
j=0

`−1∏
i=0

( j − i)+ =
m∑
`=1

pm−`−1(α)

(
m+ 1
`+ 1

)
`! , (8-11)

where
∏

i∈∅(•) := 1. Within the last equality, we have used the identity
∑m

j=0
∏`−1

i=0 ( j − i)+ =
(m+1
`+1

)
`!.

In (8-11), perform a change of variable m−` := k, and integrate in α, using pm(0)= 0 to get the result. �

Lemma 8.7. For s < t ∈ R+, i < j , we have

j(t, β?)=
∫

0<t1<s

∫
s<t2<t

j(t1, β?)(t2− t1)−1j(t − t2, β?) dt1dt2. (8-12)

Proof. Write j(t, β?)= j(t) to simplify notation. Let the right-hand side of (8-12) be denoted by F(s, t).
It is standard to check that F(s, t) is continuous on 0< s < t <∞. Hence it suffices to show∫ t

0
F(s, t)sm ds = j(t)

∫ t

0
sm ds = j(t) (m+ 1)−1tm+1, m ∈ Z>0. (8-13)

From (8-5), it is readily checked both sides of (8-13) grow at most exponentially in t . Taking Laplace
transform on both sides of (8-5), the problem is further reduced to showing, for some C(m, β?) <∞,∫

∞

0

∫ t

0
e−λt F(s, t)sk dtds =

∫
∞

0
e−λt j(t) (m+ 1)−1tm+1dt, λ > C(m, β?). (8-14)

The left-hand side can be computed:

l.h.s. of (8-14)=
∫
∞

0

eβ?αλ−α−m−1

m+ 1

(∫ α

0

m∑
k=0

(
m+ 1

m− k+ 1

)
(m− k)! pk−1(α1)dα1

)
dα. (8-15)
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The integral (8-15) is indeed finite for large enough λ> C(β?,m). The right-hand side is given by

r.h.s. of (8-14)=
∫
∞

0

eβ?αλ−α−m−1

m+ 1
pm(α) dα. (8-16)

By Lemma 8.6 the two coincide. �

Lemma 8.8. For t ′ < s < t ∈ R+, i < j , we have∫
t ′<t1<s

∫
s<t2<t

(4πPJ
t1−t ′)Si jPt2−t1S

∗

i j (4πP
J
t−τ2

) dt1dt2 = PJ
t−t ′ . (8-17)

Remark 8.9. The integral (8-17) converges absolutely in operator norm. This is seen by writing
Si jPt2−t1S∗i j = (Si jPs−t1)(Pt2−sS∗i j ), and by using the bounds from Lemmas 8.1(a) and 8.5(a).

Proof. For τ > 0, the operator Si jPτS∗i j has an integral kernel

P(τ, Si j (y− y′))= (p(τ, y2− y2))
2

n∏
i=3

p(τ, yi − yi ),

where p denotes the two-dimensional heat kernel. From this and (p(τ, y))2 = 1
4πτ p

(
τ
2 , y

)
, we have

Si jPτS∗i j =
1

4πτ exp
(
−
τ
4∇

2
2 −

τ
2

∑n
i=3 ∇

2
i

)
. Recall that PJ

τ := j(τ, β?) exp
(
−
τ
4∇

2
2 −

τ
2

∑n
i=3 ∇

2
i

)
. We

obtain

l.h.s. of (8-17)= 4πe−
t−t ′

4 ∇
2
2−

t−t ′
2
∑n

i=3 ∇
2
i

∫
t ′<t1<s

∫
s<t2<t

j(t1− t ′)(t2− t1)−1j(t − t2) dt1dt2.

The desired result now follows from (8-12). �

8C. Proof of Theorem 1.1. We begin with a quantitative bound on D
−−→
(i, j)
t .

Lemma 8.10. For
−−→
(i, j)= ((ik, jk))mk=1 ∈ Dgm(n,m), t ∈ R+ and λ> 2, we have

‖D
−−→
(i, j)
t ‖op 6 C

(
log
( t

2m+1 ∧
1
2

))−1m2eλC (β?+1)t(C/ log λ)m−1. (8-18)

Proof. To simplify notation, we index the incoming and outgoing operators by 0 and by m: Q(0)
τ0 := Pτ0S∗i1 j1 ,

Q(m)
τm := Sim jmPτm , we will index the diagonal mediating operators by half integers: Q(a)

τa := 4πPJ
τa

,
a ∈

( 1
2 +Z

)
∩ (0,m), and index the off-diagonal mediating operators by integers: Q(a)

τa := Sia jaPτaS∗ia+1 ja+1
,

a ∈ Z∩ (0,m). Under this notation,

D
−−→
(i, j)
t =

∫
6m(t)

Q(0)
τ0

Q(1/2)
τ1/2
· · · Q(m)

τm
dEτ . (1-17’)

In general, integrals like the one on the right-hand side of (1-17’) should be defined as operator-
valued integrals. Here we appeal to a simpler alternative definition. Recall from (2-1)–(2-2), (2-3),
and (8-6) that each Q(a)

τa has an integral kernel. Accordingly, for each u, u′ ∈ L 2(R2n), we interpret
〈u′,

∫
6m(t)

Q(0)
τ0 Q(1/2)

τ1/2 · · · Q
(m)
τm dEτ u〉 as an integral over6m(t)×(R2n)2m+1 by expressing each Q(a)

τa by its
kernel. Our subsequent analysis implies that this integral is absolutely convergent for each u, u′ ∈L 2(R2n),
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and therefore (1-17’) defines an operator on L 2(R2n). Since all the kernels are positive (see (2-1), (2-2),
(2-3), and (8-6)), we have

|〈u′,D
−−→
(i, j)
t u〉| =

∣∣∣〈u′, ∫
6m(t)

Q(0)
τ0

Q(1/2)
τ1/2
· · · Q(m)

τm
dEτ u

〉∣∣∣
6
∫
6m(t)

∣∣∣∣〈u′,∏
a∈A

Q(a)
τa

u
〉∣∣∣∣ dEτ =

∫
6m(t)

〈
|u′|,

∏
a∈A

Q(a)
τa
|u|
〉

dEτ . (8-19)

We now seek to bound (8-19). An undesirable feature of (8-19) is the constraint τ0+τ1/2+ . . .+τm = t
from 6m(t). To break such a constraint, fix λ > 2. In (8-19), multiply and divide by eλβ?t , and use
6m(t)⊂

(⋃
a∈A

{
τa >

t
2m+1

})
∩ (0, t)2m+1 to obtain

‖D
−−→
(i, j)
t ‖op 6 eλβ?t

∑
a∈A

Fa, Fa :=

(
sup

τ∈[ t
2m+1 ,t]

e−λβ?τ‖Q(a)
τ ‖op

) ∏
a′∈A\{a}

∥∥∥∥∫ t

0
e−λβ?τQ(a′)

τ dτ
∥∥∥∥

op
. (8-20)

To bound the “sup” term in (8-20), forgo the exponential factor (i.e., e−λβ?τ 6 1), and use the bound on
‖Q(a)

τ ‖op from Lemmas 8.1(a), 8.2(a), and 8.5(a). We have

sup
τ∈[ t

2m+1 ,t]
e−λβ?τ‖Q(a)

τ ‖op6C


(t/m)−1/2 for a= 0,m,

(t/m)−1 for a ∈Z∩(0,m),

(t/m)−1
(
log
( t

2m+1∧
1
2

))−2eC(1+β?)t for a ∈
( 1

2+Z
)
∩(0,m),

6CmeC(1+β?)t


t−1/2 for a= 0,m,

t−1 for a ∈Z∩(0,m),

t−1
(
log
( t

2m+1∧
1
2

))−2 for a ∈
( 1

2+Z
)
∩(0,m).

(8-21)

Moving on, to bound the integral terms in (8-20), for a′∈{0,m}∪
((1

2 Z
)
∩(0,m)

)
, we forgo the exponential

factor, and use the bound from Lemma 8.1(a) to get∥∥∥∥∫ t

0
eλβ?τQ(a′)

τ dτ
∥∥∥∥

op
6
∫ t

0
‖Q(a′)

τ ‖opdτ 6 Ct1/2 for a′ = 0,m, (8-22)∥∥∥∥∫ t

0
eλβ?τQ(a′)

τ dτ
∥∥∥∥

op
6
∫ t

0
‖Q(a′)

τ ‖opdτ

6 C
(
log
( t

2m+1 ∧
1
2

))−1eC(1+β?)t for a′ ∈
( 1

2 +Z
)
∩ (0,m). (8-23)

The bound (8-23) gives a useful logarithmic decay in t→ 0, but has an undesirable exponential growth in
t→∞. We will also need a bound that does not exhibit the exponential growth. For a′ ∈

( 1
2 Z
)
∩ (0,m),

we use the fact that Q(a′)
τ is an integral operator with a positive kernel to write∥∥∥∥∫ t

0
e−λβ?τQ(a′)

τ dτ
∥∥∥∥

op
6

∥∥∥∥∫ ∞
0

e−λβ?τQ(a′)
τ dτ

∥∥∥∥
op
.
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The last expression is a Laplace transform, and has been evaluated in Lemmas 8.2(b) and 8.5(b), whereby∥∥∥∥∫ t

0
e−λβ?τQ(a′)

τ dτ
∥∥∥∥

op
6

{
‖Si jG−λβ?S∗k`‖op for a′ ∈ (0,m)∩Z,

‖(J−λβ? −β?)−1
‖op for a′ ∈ (0,m)∩

( 1
2 +Z

)
.

Here (i < j) 6= (k < `) corresponds to the index a′. Using the bounds on ‖Si jGzS∗k`‖op from Lemma 5.1
and the bound ‖(J−λβ? −β?)−1

‖6 1/ log λ (see (1-22)) we have∥∥∥∥∫ t

0
e−λβ?τQ(a′)

τ dτ
∥∥∥∥

op
6 C

{
1 for a′ ∈ (0,m)∩Z,

(log λ)−1 for a′ ∈ (0,m)∩
( 1

2 +Z
)
.

(8-24)

For a ∈ 1
2 Z, inserting the bounds (8-21)–(8-22), (8-24) into (8-20) gives

Fa 6 CmeλC (β?+1)t(log
( t

2m+1 ∧
1
2

))−2 t−1+ 1
2+

1
2 (log λ)m−1C2m+1.

For a 6∈ 1
2 Z, in (8-20), use the bound (8-21) for the sup term, use (8-23) for a′ = 1

2 , and use (8-22) and
(8-24) for other a′. This gives

Fa 6 CmeλC (β?+1)t(log
( t

2m+1 ∧
1
2

))−1
{

t−1/2+1/2 for a ∈ {0,m}
t−1+1/2+1/2 for a ∈ Z∩ (0,m)

}
(log λ)m−1C2m+1.

Inserting these bounds on Fa into (8-20), we conclude the desired result (8-18). �

Proof of Theorem 1.1(a). Sum the bound (8-18) over
−−→
(i, j) ∈ Dgm(n), and note that

|Dgm(n,m)|6 (n(n− 1)/2)m

(see (1-13)). In the result, choosing λ= Cn2 for some large but fixed C <∞, we have

‖DDgm(n)
t ‖op 6

∞∑
m=1

m2n2(log
( t

2m+1 ∧
1
2

))−1 2−(m−1) exp(CeCn2
(β?+ 1)t) (8-25)

6 C n2 exp(eCn2
(β?+ 1)Ct). (8-26)

This verifies that DDgm(n)
t defines a bounded operator on L 2(R2n).

To show the semigroup property, we fix s < t ∈ R+ and calculate

(Ps +DDgm(n)
s )(Pt−s +DDgm(n)

t−s ),

which boils down to calculating

PsPt−s, PsD
−−−→
(i ′, j ′)
t−s , D

−−→
(i, j)
s Pt−s, D

−−→
(i, j)
s D

−−−→
(i ′, j ′)
t−s ,

for
−−→
(i, j) ∈ Dgm(n,m) and

−−−→
(i ′, j ′) ∈ Dgm(n,m′). To streamline notation, we relabel the time variables

as tk := τ0+ . . .+ τk/2−1, and set

B
−−→
(i, j)(Et ) := Pt1S

∗

i1 j1(4πP
J
t2−t1)

(m−1∏
k=1

Sik jkPt2k+1−t2kS
∗

ik+1 jk+1
(4πPJ

τ2k+2−t2k+1
)

)
Sim jmPt−t2m .
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Using (1-17’) and the semigroup property of P•, we have PsPt−s = Pt ,

PsD
−−−→
(i ′, j ′)
t−s =

∫
(s,t)2m′

<

B
−−−→
(i ′, j ′)(Et ) dEt, (8-27)

D
−−→
(i, j)
s Pt−s =

∫
(0,s)2m

<

B
−−→
(i, j)(Et ) dEt, (8-28)

D
−−→
(i, j)
s D

−−−→
(i ′, j ′)
t−s =

∫
�2m,2m′ (s,t)

B
−−−−→
(i ′′, j ′′)(Et ) dEt, (8-29)

where
(a, b)k< := {Et ∈ (a, b)k : a < t1 < · · ·< tk < b},

�k,`(s, t) := {Et ∈ (0, t)k+` : · · ·< tk < s < tk+1 < · · ·< tk+` < t},

and
−−−−→
(i ′′, j ′′) is obtained by concatenating

−−→
(i, j) and

−−−→
(i ′, j ′), i.e.,

−−−−→
(i ′′, j ′′)= (i ′′k , j ′′k )

m+m′
k=1 :=

(
(i1 < j1), . . . , (im < jm), (i ′1 < j ′1), . . . , (im′ < jm′)

)
.

Such an index is not necessarily in Dgm(n), because we could have (im < jm)= (i ′1 < j ′1). When this
happens, applying Lemma 8.8 with (i, j)= (im, jm) and with (t ′, t) 7→ (t2m−1, t2m+2) gives

D
−−→
(i, j)
s D

−−−→
(i ′, j ′)
t−s =

∫
�2m−1,2m′−1(s,t)

B
−−−−→
(i ′′′, j ′′′)(Et ) dEt, (8-29’)

where
−−−−−→
(i ′′′, j ′′′) is obtained by removing (i ′1 < j ′1) from

−−−−→
(i ′′, j ′′), i.e.,

−−−−−→
(i ′′′, j ′′′) :=

(
(i1 < j1), . . . , (im < jm), (i2 < j2) . . . , (im′ < jm′)

)
∈ Dgm(n).

Summing (8-27)–(8-29), (8-29’) over
−−→
(i, j),

−−−→
(i ′, j ′) ∈ Dgm(n) verifies the desired semigroup property:

PsPt−s +
(
PsD

Dgm(n)
t−s +DDgm(n)

s Pt−s +DDgm(n)
s DDgm(n)

t−s
)
= Pt +DDgm(n)

t−s .

We now turn to norm continuity. Given the semigroup property, it suffices to show continuity at
t = 0. The heat semigroup Pt is indeed continuous at t = 0. As for DDgm(n)

t , we have DDgm(n)
0 := 0, and

from (8-25), limt→0 ‖D
Dgm(n)
t ‖op = 0.

Proof of Theorem 1.1(b). Given (7-6), proving part (b) amounts to showing Pt + DDgm(n)
t = e−tH.

Equivalently, for fixed u, u′ ∈ L 2(R2n) and for f (t) := 〈u′, (Pt +DDgm(n)
t )u〉 and g(t) := 〈u′, e−tHu〉,

the goal is to show f (t)= g(t) for all t > 0. Both functions are continuous since Pt +DDgm(n)
t and e−tH

are norm-continuous. Further, by (8-26) and from σ(H)⊂ [−C(n, β?),∞) we have

‖Pt +DDgm(n)
t ‖op+‖e−tH

‖op 6 C(n, β?) exp(C(n, β?)t).

Hence it suffices to match the Laplace transforms of f (t) and g(t) for sufficiently large values λ>C(n, β?)
of the Laplace variable.
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To evaluate the Laplace transform of f (t)=〈u′, (Pt+D
Dgm(n)
t )u〉, assume for a moment u(x), u′(x)>0,

integrate (1-17’) (viewed as in integral operator) against e−λt u′(x)u(x ′) over t ∈ R+ and x, x ′ ∈ R2n , and
sum the result over all

−−→
(i, j) ∈ Dgm(n). This gives∫

∞

0
e−λt f (t) dt =

∫
∞

0
e−λtPt dt +

∑
−−→
(i, j)∈Dgm(n)

〈
u′,
(∏

a∈A

∫
∞

0
e−λtQ(a)

t dt
)

u
〉
, (8-30)

where, the operator Q(a)
t are indexed as described in the preceding. In deriving (8-30), we have exchanged

sums and integrals, which is justified because each Q(a)
t has a positive kernel, and u(x ′), u′(x)> 0 under

the current assumption. On the right-hand side of (8-30), the Laplace transforms
∫
∞

0 e−tλQ(a)
t dt are

evaluated as in Lemmas 8.1(b), 8.2(b), and 8.5(b). Putting together the expressions from these lemmas,
and comparing the result to (3-12), we now have∫

∞

0
e−λt f (t) dt = 〈u′, (r.h.s. of (1-23)|z=−λ)u〉 = 〈u′,R−λu〉 =

∫
∞

0
e−λt g(t) dt.

For general u, u′ ∈ L 2(R2n), the preceding calculation done for (u(x), u′(x ′)) 7→ (|u(x)|, |u′(x ′)|)
guarantees the relevant integrability, and justifies the exchange of sums and integrals.
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