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Abstract 
Mass-gathering built environments such as hospitals, schools, and airports can become hot 
spots for pathogen transmission and exposure. Disinfection is critical for reducing infection risks 
and preventing outbreaks of infectious diseases. However, cleaning and disinfection are labor-
intensive, time-consuming, and health-undermining, particularly during the pandemic of the 
coronavirus disease in 2019. To address the challenge, a novel framework is proposed in this 
study to enable robotic disinfection in built environments to reduce pathogen transmission and 
exposure. First, a simultaneous localization and mapping technique is exploited for robot 
navigation in built environments. Second, a deep-learning method is developed to segment and 
map areas of potential contamination in three dimensions based on the object affordance 
concept. Third, with short-wavelength ultraviolet light, the trajectories of robotic disinfection are 
generated to adapt to the geometries of areas of potential contamination to ensure complete 
and safe disinfection. Both simulations and physical experiments were conducted to validate the 
proposed methods, which demonstrated the feasibility of intelligent robotic disinfection and 
highlighted the applicability in mass-gathering built environments. 
 
Keywords 
Robotic Disinfection; Built Environment; COVID-19; Infection Prevention; Deep Learning. 
 
1. Introduction 
Diseases caused by microbial pathogens have long plagued humanity, and are responsible for 
over 400 million years of potential life lost (a measure of premature mortality) annually across 
the globe [1]. Mass-gathering built environments such as hospitals, schools, and airports can 
become hot spots for microbial pathogen colonization, transmission, and exposure, spreading 
infectious diseases among people in communities, cities, nations, and worldwide. The outbreaks 
of infectious diseases impose huge burdens on our society. For instance, with more than 20 
million people infected and 760,318 killed (as of August 14, 2020) [2], the pandemic of the 
coronavirus disease 2019 (COVID-19) continues to impose a staggering infection and death toll. 
In addition, the epidemic of flu costs the U.S. healthcare system an average of $11.2 billion 
each year [3]. During the 2019-2020 flu season, it was estimated that 24,000 to 62,000 people 
could die because of flu [4]. Each year, there are about 1.7 million hospital-acquired infections in 
the U.S., resulting in 99,000 related deaths [5]. The disastrous impacts of infections on the 
society and economy are enormous, highlighting the urgency for developing effective means to 
mitigate the spread of infectious pathogens in built environments. 
 
Suggested by the World Health Organization (WHO) and the Centers for Disease Control and 
Prevention (CDC), frequent cleaning and disinfection are critical for preventing pathogen 
transmission and exposure to slow down the spread of infectious diseases. For instance, during 
the pandemic of COVID-19, 472 subway stations in New York City were disinfected overnight by 
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workers after a second confirmed COVID-19 case in New York [6]. Deep cleanings are also 
conducted for school buildings during the closures [7]. Now disinfection is a routine and 
necessary for all mass-gathering facilities, including schools, airports, transit systems, and 
hospitals. However, manual process is labor-intensive, time-consuming, and health-
undermining, limiting the effectiveness and efficiency of disinfection. First, pathogens can 
survive on a variety of surfaces for a long period of time. For example, norovirus and influenza A 
virus were found on objects with frequent human contacts in elementary school classrooms [8]. 
The coronavirus that causes severe acute respiratory syndrome (SARS) can persist on 
nonporous surfaces such as plastics for up to 9 days [9]. Second, pathogens spread very 
quickly within built environments. It was found that contamination of a single doorknob or 
tabletop can further contaminate commonly touched objects and infect 40-60% of people in the 
facilities [10]. Hence, the cleaning and disinfection workers are burdened by heavy workloads 
and subject to high infection risks. Third, workers could be harmed by the chemicals and 
devices used for disinfection. For instance, nurses who regularly clean surfaces with 
disinfectants were found to be at a higher risk of chronic obstructive pulmonary disease [11]. 
Exposure to disinfectants was also found to cause asthma [12]. Therefore, there is a critical 
need for an automated process for indoor disinfection to replace human workers from such 
labor-intensive and high-risk work. 
 
To address this critical need, the objective of this study is to create and test a novel framework 
and new algorithms for a robotic manipulator to conduct automatic disinfection in indoor 
environments to reduce pathogen transmission and exposure, and thus potentially prevent 
outbreaks of infectious diseases. The contribution of this study is twofold. First, a deep-learning 
method is developed to detect and segment the areas of potential contamination. Using the 
visual simultaneous localization and mapping (SLAM) technique, the segmented areas of 
potential contamination are mapped in a three-dimensional (3D) space to guide the robotic 
disinfection process. Second, a new method is proposed to control a robot to move to the areas 
needing disinfection, and generate trajectories based on the geometries of areas of potential 
contamination and surrounding contexts. The adaptive motion will ensure disinfection quality 
and safety. The rest of the paper is organized as follows. Related studies are reviewed in 
Section 2 to reveal the knowledge gaps and technical barriers to be addressed in this study. 
Then, the framework and methods are elaborated in Section 3, followed by the experimentation 
and evaluation in Section 4. Section 5 concludes this study by discussing the applicability of 
robotic disinfection in built environments, and limitations, and future research directions. Table 1 
presents a list of abbreviations used in this paper. 
  

Table 1 List of abbreviations 
Abbreviation Definition 
AP Average Precision 
CNN Convolutional Neural Network 
DSC Dice Coefficient 
DWA Dynamic Window Approach 
IK Inverse Kinematics 
IoU Intersection over Union 
LTM Long Term Memory 
mAP Average of AP over all classes 
mDSC Average of DSC over all classes 
mIoU Average of IoU over all classes 
ROS Robot Operating System 
SLAM Simultaneous Localization and Mapping 
STM Short Term Memory 



3 
 

UV Ultraviolet 
WM Working Memory 

 
2. Literature Review 
Cleaning and disinfection robots, such as the ones with ultraviolet (UV) lights, have been used 
in healthcare facilities [13,14] to prevent hospital-acquired infections. Perceived as a mobile UV 
light, the robot configuration only allows it to disinfect the room at an aggregate level. Precision 
disinfection is not considered feasible with this robot. During the COVID-19 pandemic, a new 
robot has been deployed to use vaporized hydrogen peroxide to clean and disinfect the stations 
and trains in Hong Kong [15]. Many studies focused on floor-cleaning robots. For example, the 
hTetro floor cleaning robot was developed [16–18], which can reconfigure its morphology to 
maximize its productivity based on the perceived environments. A novel method was proposed 
in [19] to express the situations of floor-cleaning robots to users. There are very few intelligent 
robot systems that can perform precision disinfection for various objects in different built 
environments. The absence of such intelligent robots stems from two knowledge gaps. First, 
there lacks a method to enable the robot to perceive and map the areas of potential 
contamination in the built environments, hindering the precision disinfection. Second, the robot 
needs to adapt its trajectories with respect to different areas of potential contamination for 
effective and safe disinfection. However, this capability has not been achieved by existing robot 
systems. Therefore, this study aims to address the two knowledge gaps and technical barriers. 
Next, a number of studies regarding fundamental robotic techniques are also reviewed. 
 
SLAM is a fundamental technique that enables the robots to perceive the environment, localize 
itself, and build a map for subsequent applications. The SLAM techniques need to be 
compatible with the robot operating system (ROS) to allow robot navigation in built 
environments. GMapping [20] is a ROS default SLAM approach that uses a particle filter to 
create grid maps and estimate robot poses. GMapping and TinySLAM [21] can be used for 
localization and autonomous navigation. Using 2D light detection and ranging (LiDAR) with low 
computation resources, Hector SLAM [22] and ethzasl_icp_mapping [23] can provide real-time 
2D occupancy mapping. Google Cartographer [24] is an efficient graph-based SLAM approach 
using portable laser ranger-finders. Maplab [25] and VINS-Mono [26] are graph-based SLAM 
approaches that fuse the information from an inertial measurement unit and a camera. The 
RTAB-Map [27] is a complete graph-based SLAM and has been incorporated in a ROS package 
for various applications. ORB-SLAM2 [28] is a popular feature-based visual SLAM approach 
that has been adapted to monocular, stereo, and RGB-D cameras. In contrast to feature-based 
algorithms, dense visual odometry DVO-SLAM [29] uses photometric and depth errors over all 
pixels of two consecutive RGB-D images to estimate camera motion.  
 
Robot perception is important for deriving intelligent robot decisions and actions. In this 
application, robots need to perceive the areas of potential contamination on various objects for 
cleaning and disinfection. Detecting and segmenting the areas of potential contamination from 
images are related to object detection and semantic segmentation. In addition, the concept of 
object affordance is also relevant. Many studies have been conducted in object detection and 
recognition [30–34], scene classification [35,36], indoor scene understanding [37,38]. However, 
merely detecting the scene elements is not enough to make intelligent decisions. Particularly for 
this application, detecting a computer on an office desk does not mean that the computer needs 
to be disinfected. The existing object detection and segmentation techniques lack the 
capabilities to reason out which areas or under what circumstances, the object or the part of the 
object needs specific disinfection. Understanding how human interact with different objects will 
help determine the potential areas of contamination. For example, high-touch areas are 
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considered to be contagious and should be disinfected based on WHO and CDC suggestions. 
Human interactions with objects have implications on how and which part of objects may be 
contaminated and could contaminate different parts of human body. In computer vision, studies 
have been conducted to predict affordance of whole objects [39,40]. In [41], a region proposal 
approach was integrated with convolutional neural network (CNN) feature-based recognition 
method to detect affordance. In [42], a method was developed to learn affordance segmentation 
using weakly supervised data. In [43], a number of studies of object affordance in computer 
vision and robotics were reviewed. Despite the advancements, there still remains a gap in 
linking the semantic segmentation and object affordance with the areas of potential 
contamination. This study aims to address this limitation. 
 
There are many studies conducted on robot control and trajectory generation. A number of 
studies have been conducted in object grasping [44–46], which is closely related to our 
application. For instance, in [47], an “Objects Common Grasp Search” algorithm was developed 
to find grasp strategies that are suitable for various objects. The grasp strategies need to satisfy 
force-closure and quality measure criteria considering forces and torque applied to the objects. 
In [48], a robot grasping planning approach was proposed to extract grasp strategies from 
human demonstration. Human grasp intentions and constraints were also incorporated to 
improve the efficiency of grasp planning. In [49], a randomized physics-based motion planner 
was developed to allow complex multi-body dynamical robot-object interactions. The method 
can be adapted to cluttered and uncertain environments. In addition, in [50], an adaptive 
framework was proposed to allow construction robots to perceive and model the geometry of its 
workpieces using sensors and building information model data. In our application, after 
identifying the areas of potential contamination, the robot needs to move to an appropriate 
position and adapt its trajectory with respect to the geometry of the areas of potential 
contamination for complete disinfection and avoiding collision with adjacent objects. The 
methods developed in previous studies are not directly applicable, and thus a new method will 
be developed in this study to address this technical limitation. 
 
3. Methods 
Fig. 1 presents an overview of the proposed method that enables intelligent robotic disinfection 
in built environments. The robot is equipped with an RGB-D camera for SLAM and perception in 
built environments. RTAB-Map is used to provide pose estimation and generate 2D occupancy 
map. A deep learning method is developed to segment object affordance from the RGB-D 
images and map the segments to areas of potential contaminations in a 3D map. The high-
touch areas can be automatically detected and segmented, which may be colonized by a variety 
of pathogens. The 3D semantic occupancy map and the locations of the areas of potential 
contamination are exploited for robot disinfection planning. The robots, with UV lights attached 
to end-effectors, will navigate to appropriate positions, and adapt its scanning trajectories to 
disinfect the objects. The framework and methods are detailed as follows. 
 

 
Fig. 1. Methodology overview 
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3.1 Localization and Mapping 
The RTAB-Map SLAM method [27], a graph-based SLAM technique, is used in this study to 
locate the robot and produce the occupancy map for navigation, see Fig. 2. The structure of the 
map consists of nodes and links. Odometry nodes publish odometry information to estimate 
robot poses. Visual odometry obtained from ORB-SLAM2 [28] is used as odometry input in this 
study, because ORB-SLAM2 is fast and accurate. The short-time memory (STM) module is 
used to create nodes to memorize the odometry and rgb-d images, and calculate other 
information such as visual features and local occupancy grids. In order to limit the working 
memory (WM) size and reduce the time to update the graph, a weighting mechanism is used to 
determine which nodes in WM are transferred to long-term memory (LTM). Nodes in the LTM 
can be brought back to WM when a loop closure is detected. Links are used to store 
transformation information between two nodes. The neighbor and loop closure links are used as 
constraints for graph optimization and odometry drift reduction. The Bag of Words approach [51] 
is used for loop closure detection. The visual features extracted from local feature descriptor 
such as Oriented FAST and rotated BRIEF (ORB) [52] are quantized to a vocabulary for fast 
comparison. The outputs from RTAB-Map include camera pose and 2D occupancy grid, which 
are further used for semantic mapping and robot navigation. The rtabmap-ros package is 
available in ROS, which enables seamless integration with autonomous robots for this 
application. Because the settings of built environments do not change very frequently, maps of 
the built environments can be first produced and then used to locate and navigate the robots 
during the cleaning and disinfection process to improve the efficiency and reduce memory use. 
 

 
Fig. 2. RTAB-Map SLAM framework (adapted from [27]) 

 
3.2 3D Segmentation of Areas of Potential Contamination 
The areas of potential contamination need to be automatically detected and mapped in 3D 
space to guide robotic disinfection. Particularly the object surfaces with frequent human 
contacts are the areas of potential contaminations requiring disinfection. Therefore, those areas 
need to be automatically detected and segmented from the RGB images, and thereafter 
projected to a 3D semantic map for robot navigations and actions. To this end, a deep learning 
method is developed based on the object affordance concept [40] and the approach proposed in 
[53] to segment the areas of potential contamination. It is necessary to label a surface that has 
interactions with different parts of human body. For example, the seating surface of a chair has 
contact with human hip, and the backrest has contact with human back, and the armrest has 
contact with human hand, posing different implications for distinction. Five object affordance 
labels are selected, including walk, grasp, pull, place, and sit, as these activities cover the most 
common interactions with inanimate objects in built environments. For example, the walkable 
areas indicate the places where the robot can move and conduct floor cleaning. The places 
where grasping, pulling, and placing occur represent potential high-touch areas that need to be 
frequently disinfected. 
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In this study, to train a deep learning method to segment the object surfaces as the areas of 
potential contamination, the ADE20K datasets [54] and simulated images [55] with appropriate 
labels are used. Fig. 3 presents some sample images of the training dataset. The ADE20K 
training dataset only labels objects and their parts. Similar to [56], a transfer table is defined to 
map 116 object labels to the corresponding five object affordance labels. Table 2 presents 
several examples. Each object or its part is associate with a five-dimensional vector, 
representing the five object affordance labels. The value 1 indicates that a specific object 
affordance is associated with an object or its part, and value 0 indicates that a specific object 
affordance is not associate with an object or its part. For example, “floor” is associated with 
“walk” affordance, “*/door/knob” is associated with “pull” affordance. If the correspondence 
between an object and the five affordance labels cannot be established, then the association 
will not be performed to ensure the reliability of predicting affordance from the trained network. 
Fig. 4 (a) presents an example of the label transformation. Using Table 2, annotated data from 
ADE20K can be transferred to affordance ground truth data. For instance, seat base is 
transferred to sit affordance. Fig. 4 (b) presents additional labelled simulated image for training. 
Affordances are directly annotated for the simulated dataset. 
 

 
Fig. 3. Sample images ((a)-(b) from ADE20K dataset [54], (c)-(d) from simulated images [55]) 

 
Table 2 Examples of the transfer table  

Affordance Seat Bottle Floor */door/knob Countertop … 
Walk (surfaces a human can walk) 0 0 1 0 0 … 
Grasp (objects that can be 
grasped and moved by hands) 0 1 0 0 0 … 

Pull (surfaces that can be pulled 
by hooking up fingers or by a 
pinch movement) 

0 0 0 1 0 … 

Place (elevated surfaces where 
objects can be placed on) 0 0 0 0 1 … 

Sit (surfaces a human can sit) 1 0 0 0 0 … 
 
 

(a) (b) (d)(c)
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Fig. 4 Example of annotated dataset. (a) using transfer table to transform original object labels 
in ADE20K dataset to affordance labels (green (seat base - sit); yellow (tabletop - place); blue 
(floor - walk)); b. annotated simulated image  
 
The deep learning method is based on a convolutional neural network (CNN) following the U-
Net architecture [57]. The encoder-decoder architecture is efficient for training and 
implementation when the input and output images are of similar sizes. Fig. 5 illustrates the U-
Net architecture. The ResNet50 network [58] is used as the encoder. The architecture of 
ResNet50 includes basic block and bottleneck block, shown in Fig. 5. The basic block consists 
of convolution, batch normalization, ReLU, and max-pooling layers. An initial 7*7 convolution 
with a stride of 2 is first applied, followed by the batch normalization and ReLU activation layer. 
Thereafter, a max-pooling operation is conducted with a kernel size of 3 and a stride of 2. The 
two steps can reduce the spatial size, and thus reduce the computation cost and the number of 
parameters in the deep layers. In the bottleneck, the network has four connected blocks. As the 
network progresses from shallow to deep block, the spatial size of the input image reduces to 
half, and the channel number doubles.  
 
For the decoder network, a refinement module is used to integrate low-level features and high-
level semantic information from encoder network, and thus enhancing mask encoding [59]. First, 
the refinement module upsamples feature map size to be the same as that of skip connection 
from encoder network. The bilinear interpolation method [60] is used to perform upsampling. 
Then, skip feature map are concatenated with the local feature map. Last, convolution and 
batch normalization with ReLU activation are performed to compute the feature map of the next 
layer.  
 

(b)
Sit Place WalkOriginal

(a)
Original Annotated
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Fig. 5. Semantic segmentation with the U-Net architecture  

 
After segmenting the object affordance from the 2D RGB images as the areas of potential 
contamination, it is necessary to project the 2D labels to a 3D grid map for guiding robot 
navigation and disinfection. As depth images are registered to the reference frame of RGB 
images, the first step is to use the classical pinhole camera model [61] to obtain the point cloud 
of the environment. Given a pixel (x, y) and its depth d, its world coordinate (X, Y, Z) is 
computed by Eq. (1), where fx, fy are the camera focal length in pixel units, (cx, cy) represents 
the principal point that is usually at the image center. Fig. 6 presents an example of the obtained 
point cloud. Each point stores information of world coordinates, label information, and its highest 
probability predicted by the network. 

                                               (1) 
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Fig. 6. An example of point cloud generation 

 
Second, octomap library [62] is applied to generate a 3D occupancy grid map, using the 
obtained point cloud as input. A voxel filter is used to reduce the size of the point cloud to 
accelerate the mapping process. In each voxel space, only one point is stored as one point is 
adequate to update an octree node. The voxel filter resolution is set to the same resolution as 
that of the occupancy map. The resolution of the occupancy map is set as 4 cm, which can 
provide adequate details in indoor environments while maintaining processing efficiency. Fig. 7 
presents an example of a 3D point cloud filtering. The image size is 960×540 and 518,400 
points are generated for each frame. After using the voxel filter, the number of points reduces to 
23,009 for the frame shown in Fig. 7. The number of filtered points could vary from frames due 
to noises in sensory data.  
 

 
Fig. 7. Using voxel filter for 3D mapping. 

 
Since the camera is constantly moving, semantic information may continuously update. For 
instance, a small object may not be accurately segmented when the camera’s view angle is not 
at a favorable position. Hence, semantic information at the pixel level from different frames are 
fused to deal with this situation, see Fig. 8. If two affordances are the same, the affordance will 
be kept, and the probability becomes the average of the two affordances. Otherwise, the 
affordance with higher confidence is kept and the probability is decreased to 0.9 of its original 
probability. This process can allow the occupancy map to update the semantic information with 
a new prediction of higher confidence. After the above steps, the areas of potential 
contamination are predicted and projected to the 3D occupancy map, which can further guide 
the robotic disinfection.  
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Fig. 8. Semantic fusion of two different frames 

 
3.3 Motion Planning for Robotic Disinfection 
After mapping the areas of potential contamination, the next step is to generate robot motions to 
scan the areas with UV light for disinfection. The robot has a 3 degree of freedom base and 6 
degree of freedom manipulator. First, the robot needs to move to the objects needing 
disinfection. A hierarchical planning approach is adopted, which consists of global and local 
path planning. Global path planning provides an optimal path from the start to the goal, and 
local path planning outputs a series of velocity commands for the robot. The A* algorithm [63] is 
used to find a globally optimal path for the robot. The heuristic function h(n) is used to guide the 
trajectory search toward a goal position. The A* algorithm can find the shortest path very 
efficiently. In this study, the Manhattan distance is used as the heuristic function that is defined 
in Eq. (2). This equation is used to calculate Manhattan distance from any node (n (xn, yn)), to 
the goal (g (xg, yg)) in the graph.  

                                              (2) 
The cost function is given in Eq. (3), where g(n) is the cost from starting point to node n, f(n) is 
the total cost. The objective is to minimize the total cost.  

                                                      (3) 
Given a global path to follow, the local planner produces velocity commands for the robot. The 
Dynamic Window Approach (DWA) algorithm [64] serves as the local planner. The algorithm 
samples velocities in the robot’s control space discretely within a given time window. The 
samples intersect with obstacles will be recognized and eliminated. An optimal pair of (v, w) for 
the robot is determined by maximizing the objective function defined in Eq. (4), which is 
dependent on (1) proximity to the global path, (2) proximity to the goal, and (3) proximity to 
obstacles.  

                                 (4) 
where fa(v, w) represents the distance between global path and the endpoint of the trajectory, 
fd(v, w) is the distance to the goal from the endpoint of the trajectory, fc(v, w) is the grid cell costs 
along the trajectory, α is the weight for how much the controller should stay close to the global 
path, β is the weight for how much the robot should attempt to reach the goal, and γ is the 
weight for how much the robot should attempt to avoid obstacles. 
 
After moving to the vicinity of the objects, the scanning-based disinfection can be conducted. 
Because the UV light has been demonstrated to effectively reduce the bioburden of 
epidemiologically relevant pathogens, in this study, an UV disinfection device is integrated into 
the mobile manipulator as an end-effector. The continuous low doses of UV light can kill 

Pseudo-code for semantic fusion 
function fusion (sem1, sem2) 
   if sem1.color is sem2.color then 
      semfusion.color = sem2.color 
      semfusion.probability = (sem1.probability+ sem2.probability)/2 
   else 
      if sem1.probability < sem2.probability then 
         semfusion = sem2 
         else 
         semfusion = sem1 
   semfusion.probability = 0.9 × semfusion.probability 
return semfusion 
 

 

( ),n n n a n ah x y x x y y= - + -

( ) ( ) ( )f n g n h n= +

( ) ( ) ( )cost , , ,a d cf v w f v w f v wa b g= + +



11 
 

pathogens on various surfaces of the objects without harming human tissues. Human 
interventions can also be incorporated to guide the robot disinfection. For example, humans can 
issue commands to a robot to disinfect a particular area or object or schedule a fleet of robots to 
disinfect large facilities such as hospitals, schools, and airports. In addition, the human user 
could further adjust the autonomy or can force any decision of the robot regardless of what and 
how the onboard operation progresses. For instance, the user could stop the robot immediately 
in any unexpected safety-critical situations. 
 
A list of waypoints is used as inputs to generate a trajectory for robotic disinfection. Waypoints 
are defined as individual points along the path followed by the end-effector. There are four steps 
to generate a trajectory from waypoints (see Fig. 9). First, sampling points are linearly 
interpolated between the first waypoint and the second waypoint. 1cm resolution is used to 
interpolate the points. The number of points between the two waypoints is the distance divided 
by the resolution. Second, TRAC-IK algorithm [65] is used as inverse kinematics (IK) solver to 
calculate joint solutions. This algorithm is a numerical IK solver that combines both 
pseudoinverse Jacobian and Sequential Quadratic Programming-based nonlinear optimization 
solvers. The solver will stop and return the best solution once either of the two solvers finishes 
with a solution. Third, taking the current position as the starting position and next waypoint as 
the goal, the first and second steps are repeated until all the waypoints are traversed. Finally, all 
the joint solutions are connected to generate a trajectory including velocity, acceleration, and 
duration.  
 

 
Fig. 9. Flowchart to generate a trajectory from waypoints 

 
To make the disinfection process more efficient, the robotic arm is preprogrammed to adapt to 
objects with various geometries. As shown in Fig. 10, a plane scanning zone and a cylinder 
scanning zone are developed to generate scanning trajectories for different objects. Plane-
scanning is suitable for objects that have plane surfaces such as office desk, keyboard, push 
bar of drinking fountain. Cylinder-scanning is suitable for objects that have large curvature such 
as a kettle. The two types of scanning zones can account for a variety of objects that are 
commonly seen in the built environments. The size of the scanning zone adapts to the 
segmented areas of potential contamination. Based on the 3D segments, a distance away from 
the surface will be maintained to generate the scanning zones and trajectories. 

Waypoints
Cartesian

path

TRAC-IK solver

Joint 
solutions

… …

… …

Interpolation



12 
 

 
Fig. 10. Plane-scanning and cylinder-scanning zones. Yellow arrow represents waypoints and 

their corresponding poses along the trajectory. 
 
4. Experiments and Results 
Both simulations and physical experiments were conducted to validate the proposed methods. 
Segmentation and 3D mapping of potential areas of contamination were validated in indoor 
environments, including a dining room, a conference room, and a restroom in a university 
campus building. Motion planning for robotic disinfection was validated using a robot simulation 
platform and an AUBO-i5 robotic arm. 
 
4.1 Segmentation and Mapping Evaluation 
4.1.1 Evaluation datasets 
The ADE20K dataset [54] and simulated dataset [55] were used to evaluate the performance of 
the network. The ADE20K dataset contains a total of 22,210 images with 20,210 training images 
and 2,000 validation images. The simulated dataset contains 2,530 synthetic images with 2,280 
training images and 250 testing images. Hence, a total number of 22,490 images including both 
real and simulated images are used for training. The real and simulated images are first merged 
and then randomly mixed. Each mini batch for training can have samples from both datasets. In 
addition, data augmentation technique is used to increase its volume and variability of the 
training dataset. Training samples were augmented by cropping multiple image patches based 
on image quality and varying color and contrast of images to improve the capability and 
generalization of the trained model. Online augmentation method is used due to two reasons. 
First, as the model observes more samples in the training process, the model trained with online 
data augmentation can generalize better than the model trained with offline data augmentation 
[66]. Second, online augmentation does not need to store a large amount of augmented data in 
local disk. The validation set consists of 1,000 real images and 120 simulated images that are 
randomly split from the training dataset. The performance of the network was evaluated on 
2,000 real images and 250 simulated images. 
 
4.1.2 Metrics 
To evaluate the performance of affordance segmentation, the metrics including the intersection 
over union (IoU), dice coefficient (DSC), and average precision (AP) were used to evaluate the 
network performance. These metrics have been widely used in evaluating the performance of 
semantic segmentation [67–69]. The IoU is the area of overlap between the predicted 
segmentation and the ground truth divided by the area of union between the predicted 

Cylinder scanningPlane scanning
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segmentation and the ground truth. The maximum IoU value is 1 representing perfect 
segmentation. The IoU metric is defined in Eq. (5), where Yai is the ground truth for affordance a 
at pixel i ∈	I,  represents predicted affordance. The binarized prediction of the network is 
used to compute the IoU. The threshold values 0.2 and 0.5 are used in the experiment.  

                                               (5) 

The DSC is similar to the IoU, which is another measure of overlap between prediction and ground 
truth. This measure ranges from 0 to 1, where a DSC of 1 denotes perfect and complete overlap. 
The DSC is defined in Eq. (6).  

                                            (6) 

The AP metric summarizes a precision-recall curve as the weighted mean of precisions achieved 
at each threshold. AP is not dependent on a single threshold value since it averages over multiple 
levels. The AP is defined in Eq. (7), where Pn and Rn are the precision and recall at the nth 
threshold, and Pn is defined as precision at cut-off n in the list. 

                                                      (7) 

 
4.1.3 Implementation 
The models were trained on a workstation running Ubuntu 16.04 with Dual Intel Xeon Processor 
E5-2620 v4, 64GB RAM, and Dual NVIDIA Quadro P5000 with a pytorch backend [70]. The 
network was trained using RMSProp optimizer [71] with a learning rate of 0.0001 and batch size 
of 16. The ResNet50 encoder was initialized with weights pretrained on ImageNet [72]. The 
pretrained weight was further trained on the dataset without freezing any weights. The early 
stopping technique [73] was adopted to prevent overfitting. Specifically, the network is trained 
on the training set, and if the loss on the evaluation set does not decrease for 20 epochs, the 
training process will stop and the best model observed on the evaluation set will be saved. The 
performance of the network is evaluated on the testing dataset. 
 
4.1.4 Results on Semantic Mapping 
Fig. 11 presents the results of the affordance segmentation on the training, validation, and 
testing sets. The training set achieved the highest mAP, mIoU, and mDSC since the model is 
optimized using this set. The testing set #1 achieved the second-highest scores, and the 
difference of all the three metrics between the training set and testing set #1 is less than 0.1. 
However, testing set #2 achieved the smallest scores among the four datasets. This is because 
the training set contains both real and simulated images, while testing set #2 only contains real 
images. Synthetic images cannot reproduce richness and noise in the real ones, which may 
lead to the network trained on synthetic images performs undesirable on real images. 
Therefore, the network trained on both simulated and real images have a better performance on 
a testing set combines both samples.  
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Fig. 11 The performance of the network on the training set, validation set, and two testing sets. 

(Testing #1 consists of 2000 real images and 250 simulated images and testing #2 only 
contains 2000 real images. mAP, mIoU, and mDSC are the average of AP, IoU, and DSC over 

all classes.)  
 
Table 3 presents the network performance for individual affordance on testing set #2. The 
results show a strong variation in performance for different affordances. For instance, 
affordance walk achieves the highest IoU and AP scores, which is attributed to a relatively large 
sample size compared to other affordances such as grasp and pull. In addition, walking surface 
often covers large areas in the scene. Pull has the lowest prediction accuracy among the five 
affordances. The pull affordance represents objects that can be pulled such as doorknob and 
cabinet handle. These objects are relatively small and have a small sample size in the dataset. 
The walk, grasp, place, and sit affordances achieved DSC and AP scores higher than 0.5, 
indicating the usability of the proposed method in built environments.  
 

Table 3 Performance for individual affordance on testing set #2 
Affordance DSC@0.2 DSC@0.5 IoU@0.2 IoU@0.5 AP 
Walk 0.84 0.87 0.72 0.77 0.94 
Grasp 0.51 0.51 0.31 0.30 0.50 
Pull 0.36 0.17 0.23 0.10 0.32 
Place 0.57 0.56 0.38 0.37 0.62 
Sit 0.64 0.60 0.47 0.42 0.67 

 
The performance of the proposed method is also compared with two studies that achieved the 
best performance of affordance segmentation using RGB images captured in built 
environments. In [74], a Multi-scale CNN was developed to segment affordance in RGB images. 
Roy and Todorovic [74] achieved IoU scores 0.67 and 0.34 on walk and sit affordances, 
respectively. The proposed network achieved 0.76 and 0.42 for IoU scores for walk and sit 
affordances at the threshold 0.5. Lüddecke et al. [56] reported the best AP scores for sit, grasp, 
pull, place, and walk affordance are 0.54, 0.30, 0.02, 0.45, and 0.96. The proposed network 
achieved AP scores 0.67, 0.50, 0.32, 0.62, and 0.94 for sit, grasp, pull, place, and walk 
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affordances on the same test set. Hence, it can be concluded that the proposed semantic 
segmentation method is at least comparable with the state-of-the-art. 
 
A Kinect sensor is used to perform RTAB-Map SLAM and generate the semantic 3D occupancy 
map using the network. The frame size provided by the Kinect is 960*540 pixels. Fig. 12 shows 
the predicted affordances in images captured in the building. Walk, Grasp, Pull, Place, and Sit 
affordances are color-coded, and the color intensity represents their corresponding probabilities. 
 

 
Fig. 12. Results of affordance segmentation 

 
Fig. 13 presents the results of 3D semantic occupancy mapping. Images were obtained to 
perform RTAB-Map SLAM to obtain camera poses. Thereafter, semantic reconstruction was 
conducted using recorded video and camera trajectory. At a resolution of 4cm, the indoor scene 
can be properly reconstructed. The results indicate that the proposed method can successfully 
segment affordances. The walk, place, sit, and grasp affordances are reasonably segmented. In 
Fig. 13 (a), small tablet arm of sofa on the left side is correctly segmented as place affordance. 
However, small objects like doorknob are not correctly recognized in the semantic map. In 
addition, a part of the table surface is wrongly identified as walk affordance. This is possibly due 
to the small size of the training data. The occupancy map can be continuously updated during 
the robot disinfection action to address the incorrect segmentation. 

Original Place (yellow); Walk (blue) Sit (red); Grasp (green); Pull (purple)
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Fig. 13. Results of 3D semantic reconstruction 

 
4.2 Processing Time 
The processing time for each step was assessed in this study. Table 4 presents the average 
time spent on each processing stage. The occupancy map resolution is set as 4 cm. As shown 
in the table, the processing frequency of the entire system is about 3.2 Hz and 4.0 Hz for image 
size 960×540 and 512×424, respectively. The octomap update is the most time-consuming step 
in the system, since it requires raycasting to update occupancy map. The raycasting is used to 
clear all the voxels along the line between the origin and end point. The SLAM method achieves 
a high frame rate to track the camera in real time. Semantic segmentation and semantic point 
cloud generation are also run at a very high frame rate. Our system runs at 3.2 Hz for a high-
resolution image streaming, which can be adapted to most indoor online applications.  
 

Table 4 Average processing time for each step (Process with * and process with **  
executed at the same time) 

Step Consumed time 
960×540 512×424 

SLAM * 50.2 ms 35.4 ms 
Semantic segmentation ** 25.1 ms 20.4 ms 
Semantic point cloud generation ** 28.3 ms 13.7 ms 
Octomap update (resolution 4 cm) ** 254.6 ms 215.7 ms 
Total 308.0 ms 249.8 ms 

 
Moreover, the occupancy map resolution significantly impacts the processing time. Fig. 14 
presents the relationship between processing time and occupancy map resolution for image 
size 960×540 and 512×424. The result indicates that the processing time significantly 
decreases with decreasing map resolution. In addition, processing time increases as the image 
size increases under different occupancy map resolutions. When the resolution is 0.06 cm, the 

Background Sit Grasp PullPlace Walk

(a) Dining room (b) Conference room
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processing time can reduce to 206.5 ms and 134.2 ms for image size 960*540 and 512*524, 
respectively. However, a lower resolution may not capture detailed information, especially for 
small objects.  

 
Fig. 14. Influence of image size and occupancy map resolution on processing time 

 
4.3 Implementation of Robotic Disinfection 
Physical and simulated experiments were performed to test the scanning-based disinfection. A 
Husky UR5 mobile manipulation robot is simulated in the gazebo. Husky is a mobile robot that 
can navigate in the ground plane. UR5 robotic arm can generate a designed path to scan the 
areas of contamination using UV light. The distribution of ROS is Kinetic, and the version of 
Gazebo is 7.16.0. The 3D occupancy map collected in the built environment was loaded into the 
simulation platform to test robot navigation. Table 5 shows the performance of path planning of 
the robot. The average computing time for 20 simulation experiments is low, and generated 
paths can successfully avoid collision with obstacles. The results demonstrate the efficiency and 
effectiveness of the robot path planning method. Fig. 15 presents two representative examples 
of the path planning of the robot. The robot moves to the proximity of objects needing 
disinfection. 
 

Table 5 Performance of base robot path planning 
Simulation  
case 

Computing time (second) Number of cases 
without collision Average Minimum Maximum 

20 0.231 0.2 0.375 20 
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Fig. 15. Implementation of robot navigation. Red arrow is the pose of a goal point.  

 
After navigating to the areas of potential contamination, trajectory will be generated to perform 
disinfection. Fig. 16 presents two examples of robot disinfection, where table surface and sofa 
seat surface were disinfected with plane scanning. The generated robotic arm trajectory can 
avoid collision with objects using the semantic occupancy map. The execution times are 2.89s 
and 4.37s for the sofa seat and part of tabletop, respectively. Additional scanning can be 
performed to ensure adequate exposure of UV light to eradicate pathogens. This study did not 
investigate the relationship between adequate UV light exposure and the effects of eradicating 
pathogens. The results demonstrate the feasibility of using robots to conduct disinfection.  
 

 
Fig. 16. Results of robotic arm motion planning. Yellow arrow represents  

waypoints and their corresponding pose along the trajectory.  
 

Implementation 
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In addition, a physical experiment was conducted using an AUBO-i5 robotic arm with a UV light 
attached as its end effector. The UV light will automatically turn on when it is close to the object 
surface requiring disinfection and shut off when moving away. As shown in Fig. 17, objects are 
correctly segmented to their corresponding affordances. Cabinet handle, the outside surface of 
tea kettle, and table surface are segmented as pull, grasp, and place, respectively. For cabinet 
handle and table surface, plane scanning is used to conduct disinfection. The outside surface of 
tea kettle is disinfected with cylinder scanning. The segmentation and mapping of areas of 
potential contamination can provide guidance for robot disinfection in the physical experiment, 
demonstrating the efficacy of the proposed method.   
 

 
Fig. 17. Results of robotic disinfection based on affordance map. 

 
5. Conclusion 
The mass-gathering built environments such as hospitals, schools, airports, and transit systems 
harbor a variety of pathogens that may cause diseases. Frequent disinfection is critical for 
preventing the outbreak of infectious diseases in built environments. However, manual 
disinfection process is labor-intensive, time-consuming, and health-undermining, highlighting the 
values of automated and robotic disinfection. To reduce the public health risks and alleviate the 
extensive labor efforts, this study presents a framework and algorithmic techniques to enable a 
robot to automatically use UV lights to disinfect the areas of potential contamination. Using 
SLAM technique, the robot is able to create occupancy map and estimate its pose. The areas of 
potential contamination are detected and segmented based on object affordance. The robot can 
then navigate to the areas needing disinfection and the robotic arm can generate an efficient 
and collision-free path to clean the area. The developed robots present a promising and safe 
solution to reduce the transmission and spread of microbial pathogens such as influenza and 
coronavirus. 
 

Case 1: Disinfect the cabinet handle

Case 2: Disinfect the surface of tea kettle

Case 3: Disinfect the tabletop

Affordance segmentation

Pull (pink); Place (green);

Walk (yellow); Grasp (blue) 
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Using the proposed method has at least two benefits in cleaning and disinfection practice. First, 
the robot platform can reduce the infection risk of cleaning workers by keeping them away from 
contaminated areas. Second, affordance information can guide the robot to focus on hot spots 
and thoroughly disinfect potentially contaminated areas. Thus, the developed methods will help 
reduce the seasonal epidemics, as well as pandemics of new virulent pathogens. The 
developed method achieved high accuracy in segmenting floors and high-touch surfaces as 
areas of potential contamination. Empirical evidence [75] suggests that floors can harbor a 
variety of pathogens including the SARS-CoV-2 for a long period. Human movements can lead 
to resuspensions of pathogens deposited on the floor, further contaminating other surfaces. 
Hence, to avoid reciprocal contamination and enhance disinfection efficiency, both floors and 
high-touch areas need to be disinfected. The performance in 3D segmentation and mapping 
achieved by this method demonstrated its applicability. With the developed perception 
capability, functionalities such as vacuum, spray, and mopping can be incorporated into the 
robot system for floor cleaning. In addition, comparing with overhead UV lights, the robotic 
disinfection proposed in this study can reach the places where conventional overhead lights 
cannot reach. Conventional germicidal UV lights can lead to skin cancer and cataracts, which 
pose a health threat to humans. The precision UV light scanning achieved by the adaptive robot 
motion can ensure the continuous and complete disinfection of high-touch areas, which is safer, 
and more efficient and effective than the overhead UV lights. 
 
There are some limitations that need to be addressed in future studies. First, the network 
reported a low accuracy in segmenting the areas of potential contamination on small objects 
such as doorknobs and cabinet handles in unfavorable circumstances. The low accuracy stems 
from the scarcity of the available data. Future studies are needed to augment the dataset and 
develop more robust deep learning algorithm for 3D segmentation. Second, the developed robot 
system only employs UV lights to disinfect high-touch areas. However, other operation modes 
such as vacuum, spray, and swipe are needed to clean and disinfect a variety of surfaces, 
including floors. Advanced control techniques should be developed and parameters such as 
scanning time, spray dose, and swipe force should be calibrated for these modes to achieve 
optimal disinfection performance. Third, this study considers a single robot for disinfection at a 
room scale. A fleet of robots might be needed to disinfect a large facility such as a hospital or an 
airport. The planning and scheduling of multiple robots for coordinated disinfection will be an 
interesting and useful future study. Fourth, human presence and social context have not been 
considered in this research. The robot should never point the UV light to humans and should not 
spray disinfectant in vicinity of humans. Moreover, the robot should not interrupt ongoing human 
activities for disinfection. Future studies are needed to enable the robots to learn the rules and 
understand the contexts, which are important for the actual deployment in human-centric built 
environments. 
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