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Abstract. For any right-angled Coxeter group Γ on k generators, we
construct proper actions of Γ on Opp, q ` 1q by right-and-left multipli-
cation, and on the Lie algebra opp, q ` 1q by affine transformations, for
some p, q P N with p`q`1 “ k. As a consequence, any virtually special
group admits proper affine actions on some R

n: this includes e.g. sur-
face groups, hyperbolic 3-manifold groups, examples of word hyperbolic
groups of arbitrarily large virtual cohomological dimension, etc. We
also study some examples in cohomological dimension two and four, for
which the dimension of the affine space may be substantially reduced.

1. Introduction

Tiling space with regular shapes is an old endeavor, both practical and
ornamental. It is also at the heart of crystallography, and Hilbert, prompted
by recent progress in that discipline, asked in his 18th problem for a better
understanding of regular tilings of Euclidean space R

n. In 1910, Bieberbach
[Bi] gave a partial answer by showing that a discrete group Γ acting properly
by affine Euclidean isometries on R

n has a finite-index subgroup acting as a
lattice of translations on some affine subspace R

m. Moreover, m “ n if and
only if the quotient ΓzRn is compact, and the number Nn of such cocompact
examples Γ up to affine conjugation is finite for fixed n. Crystallographers
had known since 1891 that N2 “ 17 and N3 “ 219 (or 230 if chiral meshes
are counted twice), a result due independently to Schoenflies and Fedorov.

The picture for affine actions becomes much less familiar in the absence
of an invariant Euclidean metric. The Auslander conjecture [Au] states that
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if Γ acts properly discontinuously and cocompactly on R
n by affine trans-

formations, then Γ should be virtually (i.e. up to finite index) solvable, or
equivalently [Mi], virtually polycyclic. This conjecture has been proved up to
dimension six [FG, T2, AMS5] and in certain special cases [GoK, T1, AMS4],
but remains wide open in general.

In 1983, Margulis [M1, M2] constructed the first examples of proper ac-
tions of nonabelian free groups Γ on R

3, answering a question of Milnor [Mi].
These actions do not violate the Auslander conjecture as they are not cocom-
pact. They preserve a flat Lorentzian structure on R

3 and the corresponding
affine 3-manifolds are now known as Margulis spacetimes. Drumm [Dr] con-
structed more examples of Margulis spacetimes by building explicit funda-
mental domains in R

3 bounded by polyhedral surfaces called crooked planes ;
it is now known [CDG, DGK2, DGK5] that all Margulis spacetimes are ob-
tained in this way. Full properness criteria for affine actions by free groups on
R
3 were given by Goldman–Labourie–Margulis [GLM] and subsequently by

the authors [DGK1, DGK2, DGK5]. In higher dimensions, Abels–Margulis–
Soifer [AMS2, AMS3] have studied proper affine actions by free groups whose
linear part is Zariski-dense in an indefinite orthogonal group, showing that
such actions exist if and only if the signature is, up to sign, of the form
p2m, 2m´1q with m • 1. In [S1], Smilga generalized Margulis’s construction
and showed that for any noncompact real semisimple Lie group G there exist
proper actions, on the Lie algebra g » R

dimpGq, of nonabelian free discrete
subgroups of G ˙ g acting affinely via the adjoint action, with Zariski-dense
linear part; Margulis spacetimes correspond to G “ PSLp2,Rq » SOp2, 1q0.
More recently, Smilga gave a sufficient condition [S2] (also conjectured to be
necessary), given a real semisimple Lie group G and a linear representation
V of G, for the semidirect product G˙V to admit a nonabelian free discrete
subgroup acting properly on V and whose linear part is Zariski-dense in G.

1.1. New examples of proper affine actions. The existence of proper
affine actions by nonabelian free groups suggests the possibility that other
finitely generated groups which are not virtually solvable might also admit
proper affine actions. However, in the more than thirty years since Mar-
gulis’s discovery, very few examples have appeared. In particular, until now,
all known examples of word hyperbolic groups acting properly by affine trans-
formations on R

n were virtually free groups. In this paper, we give many
new examples, both word hyperbolic and not, by establishing the following.

Theorem 1.1. Any right-angled Coxeter group on k generators admits proper
affine actions on R

kpk´1q{2.

Right-angled Coxeter groups, while simple to describe in terms of gen-
erators and relations, have a rich structure and contain many interesting
subgroups. For example, the fundamental group of any closed orientable
surface of negative Euler characteristic embeds as a finite-index subgroup
in the right-angled pentagon group. Further, since any right-angled Artin
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group embeds into a right-angled Coxeter group [DJ], we obtain the following
answer to a question of Wise [W2, Problem 13.47].

Corollary 1.2. Any right-angled Artin group admits proper affine actions
on R

n for some n • 1.

See e.g. [BB] for interesting subgroups of right-angled Artin groups, for
which Corollary 1.2 provides proper affine actions. Note that, in general,
if a group Γ admits a subgroup Γ

1 of index m with a proper affine action
on R

n, then the induced action of Γ on pRnqΓ{Γ1 » R
mn is itself affine and

proper. Haglund–Wise [HW1] proved that the fundamental group of any
special nonpositively curved cube complex embeds into a right-angled Artin
group, and so we obtain the following.

Corollary 1.3. Any virtually special group admits a proper affine action
on R

n for some n • 1.

Virtually special groups include:

‚ all Coxeter groups (not necessarily right-angled) [HW2];
‚ all cubulated word hyperbolic groups, using Agol’s virtual specialness

theorem [Ag];
‚ therefore, all fundamental groups of closed hyperbolic 3-manifolds,

using [Sag, KM]: see [BW];
‚ the fundamental groups of many other 3-manifolds, see [W1, Li, PW].

Januszkiewicz–Świa̧tkowski [JS] found word hyperbolic right-angled Cox-
eter groups of arbitrarily large virtual cohomological dimension; see also [O]
for another construction. Hence another consequence of Theorem 1.1 is:

Corollary 1.4. There exist proper affine actions by word hyperbolic groups
of arbitrarily large virtual cohomological dimension.

The Auslander conjecture is equivalent to the statement that a group act-
ing properly discontinuously by affine transformations on R

n is either virtu-
ally solvable, or has virtual cohomological dimension † n. In the examples
from Theorem 1.1, the dimension n “ kpk ´ 1q{2 of the affine space grows
quadratically in the number of generators k, while the virtual cohomological
dimension of the Coxeter group acting is naively bounded above by k (and
is even much smaller in the examples above [JS, O]). Hence, Theorem 1.1 is
far from giving counterexamples to the Auslander Conjecture.

1.2. An outline: properness from contraction properties. In order
to describe our approach to proving Theorem 1.1, start with a Lie group G

acting by isometries on a complete metric space X. Consider a discrete group
Γ and a representation p⇢, ⇢1q : Γ Ñ GˆG such that Γ acts properly discon-
tinuously on X via ⇢. The action of Γ on G by right-and-left multiplication
via p⇢, ⇢1q, given by

(1.1) � ‚ g :“ ⇢1p�qg⇢p�q´1,
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is not necessarily properly discontinuous: for instance, if ⇢1 “ h⇢p¨qh´1 for
some h P G, then h is a global fixed point. On the other hand, in some cases
the action (1.1) may be shown to be properly discontinuous by exhibiting a
map f : X Ñ X which is uniformly contracting (i.e. with Lipschitz constant
† 1) and p⇢, ⇢1q-equivariant: f ˝ ⇢p�q “ ⇢1p�q ˝ f for all � P Γ. The basic
idea is that the p⇢, ⇢1q-action of Γ on G projects equivariantly down to the
⇢-action on X via the fixed point map g fiÑ Fixpg´1 ˝fq, which is well defined
due to the contraction property. Proper discontinuity of the action on the
base X then implies proper discontinuity upstairs on G: see Section 3.1.

This principle suggests an infinitesimal analogue, as in [DGK1], for p⇢, ⇢1q
very close to the diagonal of G ˆ G and f close to IdX. Let g “ TeG be the
Lie algebra of G, with G acting on g via the adjoint representation. Given a
representation p⇢, uq : Γ Ñ G ˙ g, the affine action of Γ on g given by

(1.2) � ‚ v :“ Adp⇢p�qqv ` up�q
is in many cases obtained from (1.1) by a limiting and rescaling process,
thinking of G ˙ g » TG as the normal bundle to the diagonal in G ˆ G.
Such an affine action on g will be properly discontinuous (because g will
project onto X in an equivariant way similar to the above) if we can build
a uniformly contracting vector field on X satisfying an appropriate p⇢, uq-
equivariance property (Sections 3.2–3.3).

The affine actions we construct for Theorem 1.1 will all be of the form (1.2)
for G “ Opp, q ` 1q an indefinite orthogonal group. Indeed, a right-angled
Coxeter group Γ on k generators (say, infinite and irreducible) admits explicit
families of discrete embeddings ⇢ : Γ Ñ Opp, q`1q as a reflection group, with
p ` q ` 1 “ k, which have long been studied by Tits, Vinberg, and others
(see Section 6.2).

The above strategy of ensuring properness from contraction works well
when q “ 0: in this case we take X to be the Riemannian symmetric space
of G “ Opp, 1q, namely the real hyperbolic space H

p. For representations
⇢, ⇢1 : Γ Ñ G as reflection groups as above, the action of Γ on H

p via ⇢ is by
reflections in the walls of a polytope P⇢ of Hp, and similarly for ⇢1. Natural
p⇢, ⇢1q-equivariant maps f are constructed by taking P⇢ projectively to P⇢1 ,
wall to wall, and extending equivariantly by the reflections. The map f will
turn out to be uniformly contracting as soon as, roughly speaking, P⇢1 is
obtained by pushing the walls of P⇢ closer together. See Section 3, and the
examples of Section 4.

For the general case of Theorem 1.1, we cannot consider only q “ 0, as
most right-angled Coxeter groups do not embed in Opp, 1q. In the case q ° 0,
the orthogonal group G “ Opp, q ` 1q has higher real rank, and we are faced
with a dilemma. On the one hand, the contraction strategy, as described
above, starts with a metric G-space X, such as the Riemannian symmetric
space XG of G. On the other hand, a perhaps more natural space in which to
see the geometry of the Tits–Vinberg representations ⇢ : Γ Ñ G “ Opp, q`1q
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is in a pseudo-Riemannian symmetric space, namely the pseudo-Riemannian
analogue H

p,q
Ä PpRkq of Hp in signature pp, qq. Indeed:

(i) The generators of Γ naturally act via ⇢ by reflections in the walls of a
polytope P⇢ of Hp,q, depending continuously on ⇢.

(ii) We may build natural p⇢, ⇢1q-equivariant maps f by taking P⇢ projec-
tively to P⇢1 , walls to walls, just as in the H

p case.
(iii) Since the “distances” in H

p,q are computed by a simple cross-ratio
formula, similar to H

p in the projective model, the “contraction” prop-
erties of our map f (for some suitable notion of contraction) are easy
to check locally in the fundamental domain P⇢.

By contrast, for the action on the Riemannian symmetric space XG, there
are no obvious choices of fundamental domains (i) or of explicit equivariant
maps (ii) with which to work. Further, any G-invariant metric on XG in-
volves the singular values of k ˆ k matrices, making local contraction (iii)
potentially difficult to check. Hence, we abandon the Riemannian symmetric
space XG, and prove Theorem 1.1 by employing a version of the contraction
strategy outlined above, adjusted and reinterpreted appropriately to work
in the pseudo-Riemannian space H

p,q (see Section 5). Despite the obvious
hurdle that Hp,q is not a metric space, enough structure survives to apply our
approach: a key step will be to check that ⇢pΓq-orbits in H

p,q escape mostly
in spacelike directions, in which their growth resembles that of actions on H

p

(Lemma 5.4).
In the remainder of this introduction, we give a more precise account of

our parallel results concerning actions on G and on g, starting with the case
of g yielding Theorem 1.1.

1.3. Proper actions on Lie algebras. Let G be a Lie group, acting on
its Lie algebra g via the adjoint action, and let Γ be a discrete group. We
consider affine actions of Γ on g determined, as in (1.2), by a representation
p⇢, uq : Γ Ñ G ˙ g » TG where ⇢ : Γ Ñ G is a group homomorphism and
u : Γ Ñ g a ⇢-cocycle, i.e. a map satisfying

(1.3) up�1�2q “ up�1q ` Adp⇢p�1qqup�2q
for all �1, �2 P Γ. For instance, for any smooth path p⇢tqtPI in HompΓ, Gq
(where I is an open interval) and any t P I, the map ut : Γ Ñ g given by
utp�q “ d

d⌧

ˇ̌
⌧“t

⇢⌧ p�q⇢tp�q´1 is a ⇢t-cocycle; it is the unique ⇢t-cocycle such
that for all � P Γ,

(1.4) ⇢⌧ p�q “ ep⌧´tqutp�q`op⌧´tq⇢tp�q as ⌧ Ñ t.

The cocycles in this paper will all be constructed in this way. (In general
there may exist cocycles which are not integrable, i.e. not tangent to any
such deformation path: see [LM, §2].) We prove the following.

Theorem 1.5. For any irreducible right-angled Coxeter group Γ on k gen-
erators, there exist p, q P N with p ` q ` 1 “ k and a smooth path p⇢tqtPI
in HompΓ, Gq of faithful and discrete representations into G :“ Opp, q ` 1q
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(where I ‰ ? is an open interval) such that for any t P I, the affine action

of Γ on g » R
kpk´1q{2 via p⇢t, d

ds

ˇ̌
s“t

⇢s⇢
´1

t q is properly discontinuous.

Since any right-angled Coxeter group is a direct product of irreducible
ones, we obtain Theorem 1.1 by applying Theorem 1.5 to each irreducible
factor and then taking the direct sum of the resulting affine actions.

We also use similar techniques as in Theorem 1.5 to construct, in some
specific cases, examples of proper affine actions on g “ opp, q ` 1q where
p ` q ` 1 is smaller than the number k of generators of Γ.

Proposition 1.6. (a) For any even k • 6, the group Γ generated by reflec-
tions in the sides of a convex right-angled k-gon of H2 admits proper affine
actions on g “ op3, 1q » R

6.
(b) The group Γ generated by reflections in the faces of a 4-dimensional reg-

ular right-angled 120-cell admits proper affine actions on g “ op8, 1q » R
36.

The group Γ is virtually the fundamental group of a closed surface of
genus • 2 in (a), and of a closed hyperbolic 4-manifold in (b). Both examples
follow from a general face-coloring method explained in Proposition 4.1. The
baby case of this method (involving a single color) also gives a direct way to
construct Margulis spacetimes, see Remark 4.3.(4).

Whereas the examples of proper affine actions by free groups of Margulis,
Drumm, Abels–Margulis–Soifer, and Smilga all relied to some degree on the
idea of free groups playing ping pong on R

n, for Theorem 1.5 and Proposi-
tion 1.6 we rather use a sufficient condition for properness based on the idea
of contraction explained in Section 1.2 (see Propositions 3.6 and 5.5). This
condition generalizes a properness criterion from [DGK1, DGK2, DGK5] for
actions on op2, 1q » pslp2,Rq in terms of uniformly contracting vector fields
on H

2. From this properness criterion, the topology of the quotient manifolds
(Margulis spacetimes) may be read off directly. Similarly here, the proper-
ness of the affine actions of Proposition 1.6 will be derived from uniformly
contracting vector fields on H

p (for p “ 3, 8), and again the topology of the
quotient manifolds will be clear from our methods (see Remark 3.8). How-
ever, the contraction arguments in H

p,q for the general case of Theorem 1.5
are too coarse to control the topology of the quotients.

We note that the affine actions in Theorem 1.5 preserve a nondegenerate
symmetric bilinear form on g, namely the Killing form, of signature given
by (2.6) below. This induces a flat pseudo-Riemannian metric on the quo-
tient manifolds.

1.4. Proper actions on Lie groups. Following [DGK1, DGK2], and in
the spirit of Section 1.2, we view the proper affine actions on the Lie alge-
bra g in Theorem 1.5 as “infinitesimal analogues” of proper actions on the
corresponding Lie group G for the action of GˆG by right-and-left multipli-
cation (1.1). We prove the following “macroscopic version” of Theorem 1.5.

Theorem 1.7. For any irreducible right-angled Coxeter group Γ on k gen-
erators, there exist p, q P N with p ` q ` 1 “ k and a smooth path p⇢tqtPI
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in HompΓ, Gq of faithful and discrete representations into G :“ Opp, q ` 1q
(where I ‰ ? is an open interval) such that for any t ‰ s in I, the action of
Γ on G by right-and-left multiplication via p⇢t, ⇢sq is properly discontinuous.

In general, it is easy to obtain proper actions on G by right-and-left multi-
plication by considering a discrete group Γ, a representation ⇢ P HompΓ, Gq
with finite kernel and discrete image, and a representation ⇢1 P HompΓ, Gq
with bounded image (for instance the constant representation, with image
teu Ä G): such proper actions are often called standard. The point of Theo-
rem 1.7 is to build nonstandard proper actions on G, where both factors are
faithful and discrete — and in fact, can be arbitrarily close to each other.

We also construct examples of proper actions on G “ Opp, q ` 1q where
p ` q ` 1 is smaller than the number k of generators of Γ, in the same cases
as for Proposition 1.6.

Proposition 1.8. (a) For any even k • 6, the group Γ generated by reflec-
tions in the sides of a convex right-angled k-gon in H

2 admits proper actions
on G “ Op3, 1q by right-and-left multiplication via pairs p⇢, ⇢1q P HompΓ, Gq2
with ⇢, ⇢1 both faithful and discrete.

(b) The group Γ generated by reflections in the faces of a 4-dimensional
regular right-angled 120-cell admits proper actions on G “ Op8, 1q by right-
and-left multiplication via pairs p⇢, ⇢1q P HompΓ, Gq2 with ⇢, ⇢1 both faithful
and discrete.

Full properness criteria for proper actions on Opn, 1q via p⇢, ⇢1q with ⇢ geo-
metrically finite were provided in [K2, GuK] in terms of uniform contraction
in H

n (see Remark 3.9).

Remark 1.9. For p • 1, the group G “ Opp, q`1q has four connected com-
ponents. The proper actions on G constructed in Theorem 1.7 and Proposi-
tion 1.8 all yield proper actions on the identity component G0.

For p “ 2 and q “ 0, the identity component G0 “ Op2, 1q0 is the so-called
anti-de Sitter 3-space AdS3, a Lorentzian analogue of H

3. The group of
orientation-preserving isometries of AdS3 identifies with the quotient of the
four diagonal components of GˆG by tpId, Idq, p´Id,´Idqu, acting on G0 by
right-and-left multiplication. Many examples of proper actions on AdS3 were
constructed since the 1980s, see in particular [KR, Sal, K2, GuK, GKW, DT].

Examples of nonstandard cocompact proper actions on Opn, 1q by right-
and-left multiplication for n ° 2 were constructed in [Gh, Ko], using defor-
mation techniques. After we announced the results of this paper, Lakeland–
Leininger [LL] found examples of nonstandard cocompact proper actions on
Op3, 1q and Op4, 1q by right-angled Coxeter groups which cannot be obtained
from standard proper actions by deformation. Note that for cocompact
proper actions on Opn, 1q by right-and-left multiplication via p⇢, ⇢1q, one of ⇢
or ⇢1 has finite kernel and discrete image [K1], but not both (see [T] for n “ 2

and use Mostow rigidity for n ° 2). On the other hand, in the noncompact
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proper actions that we construct in Theorem 1.7 and Proposition 1.8, both
⇢, ⇢1 have finite kernel and discrete image.

1.5. Plan of the paper. In Section 2 we recall some background on pseudo-
Riemannian hyperbolic spaces H

p,q. In Section 3 we state and prove some
sufficient criteria for properness, expressed in terms of uniform contraction
in metric spaces (Propositions 3.2 and 3.6). In Section 4 we give examples
in H

3 and H
8, establishing Propositions 1.6 and 1.8. In Section 5 we state

and prove analogous criteria for general Hp,q (Theorem 5.3). In Section 6
we prove Theorems 1.5 (hence also 1.1) and 1.7 by constructing appropriate
families of representations p⇢tqtPI to which Theorem 5.3 applies.
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oung Choi, Bill Goldman, Gye-Seon Lee, Ludovic Marquis, Vivien Ripoll,
and Anna Wienhard for interesting discussions. We also thank Piotr
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working conditions provided by the MSRI in Berkeley, where most of this
work was done in the Spring 2015, the CNRS-Pauli Institute in Vienna, and
the IHES in Bures-sur-Yvette.

2. Notation and reminders

In this section we set up some notation and recall a few definitions and
basic facts on properly convex domains in projective space, on the pseudo-
Riemannian hyperbolic spaces H

p,q, and on eigenvalues and singular values
of elements of GLpRp`q`1q.

2.1. Properly convex domains in projective space. Let V be a real
vector space of dimension • 2. Recall that an open subset Ω of PpV q is said
to be properly convex if it is convex and bounded in some affine chart of
PpV q. There is a natural metric dΩ on Ω, the Hilbert metric:

dΩpx, yq :“ 1

2
log ra, x, y, bs

for all distinct x, y P Ω, where r¨, ¨, ¨, ¨s is the P
1pRq-valued cross-ratio on a

projective line, normalized so that r0, 1, t,8s “ t, and where a, b are the
intersection points of BΩ with the projective line through x and y, with
a, x, y, b in this order. The metric space pΩ, dΩq is proper (i.e. closed balls
are compact) and complete.

The group AutpΩq :“ tg P PGLpV q | g ¨ Ω “ Ωu acts on Ω by isometries
for dΩ. As a consequence, any discrete subgroup of AutpΩq acts properly
discontinuously on Ω.

Let rΩ Ä R
k be a convex open cone lifting Ω. There is a unique lift

of AutpΩq to SL˘pV q that preserves rΩ. The dual convex cone of rΩ is by
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definition
rΩ˚ :“

 

' P V ˚ | 'pvq † 0 @v P rΩ
(
,

where rΩ is the closure of rΩ in V rt0u. The image Ω˚ of rΩ˚ in PpV ˚q does not

depend on the chosen lift rΩ; it is a nonempty properly convex open subset of
PpV ˚q, called the dual convex set of Ω, and preserved by the dual action of
AutpΩq on PpV ˚q. We can use any nondegenerate symmetric bilinear form

x¨, ¨y on V to view rΩ˚ and Ω
˚ as subsets of V and PpV q respectively:

(2.1) rΩ˚ »
 

w P V | xw, vy † 0 @v P rΩ
(

and Ω
˚ :“ PprΩ˚q.

Remark 2.1. It follows from the definition that if Ω
1

Ä Ω are nonempty
properly convex open subsets of PpRn`1q, then the corresponding Hilbert
metrics satisfy dΩ1px, yq • dΩpx, yq for all x, y P Ω

1. When Ω is an ellipsoid,
pΩ, dΩq is isometric to the real hyperbolic space.

2.2. The pseudo-Riemannian space H
p,q. For p, q P N with p • 1, let

R
p,q`1 be R

p`q`1 endowed with a symmetric bilinear form x¨, ¨yp,q`1 of sig-
nature pp, q ` 1q. We set

H
p,q :“

 

rvs P PpRp,q`1q
ˇ̌

xv, vyp,q`1 † 0
(
.

The form x¨, ¨yp,q`1 induces a pseudo-Riemannian metric g
p,q of signature

pp, qq on H
p,q. Explicitly, the metric g

p,q at a point rvs is obtained from
the restriction of x¨, ¨yp,q`1 to the tangent space at v{

a
´xv, vyp,q`1 of the

hypersurface
pHp,q :“

 

v P R
p,q`1 | xv, vyp,q`1 “ ´1

(
,

a double cover of Hp,q with covering group tId,´Idu. The sectional curvature
of gp,q is constant negative, hence Hp,q can be thought of as a pseudo-Rieman-
nian analogue of the real hyperbolic space H

p “ H
p,0 in signature pp, qq.

The isometry group of the pseudo-Riemannian space Hp,q is POpp, q`1q “
Opp, q ` 1q{tId,´Idu. The point stabilizers are conjugate to Opp, qq, hence
H

p,q » POpp, q ` 1q{Opp, qq.
The set H

p “ H
p,0 is a properly convex open subset of PpRp,1q, and the

Hilbert metric dHp on H
p coincides with the standard hyperbolic metric. On

the other hand, for q • 1 the space H
p,q is not convex in PpRp,q`1q. The

boundary of Hp,q in PpRp,q`1q, given by

BHp,q “
 

rvs P PpRp,q`1q | xv, vyp,q`1 “ 0
(
,

is a quadric which, in any Euclidean chart of PpRp,q`1q, has p ´ 1 positive
and q negative principal curvature directions at each point.

Consider x P H
p,q lifting to px P pHp,q. A nonzero vector Vx P TxH

p,q

and the geodesic line L it generates are called spacelike (resp. lightlike, resp.
timelike) if g

p,q
x pVx, Vxq is positive (resp. zero, resp. negative). The line L

is then the intersection of Hp,q with a projective line meeting BHp,q in two
(resp. one, resp. zero) points: see Figure 1. For instance, if Vx P TxH

p,q »
Tpx pHp,q » pxK

Ä R
p,q`1 satisfies xVx, Vxyp,q`1 “ 1, then L is spacelike, with
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unit-speed parametrization

(2.2) t fi›Ñ expxptVxq “ rcoshptq px ` sinhptqVxs P H
p,q.

In general, the totally geodesic subspaces of Hp,q are exactly the intersections
of Hp,q with projective subspaces of PpRp,q`1q. As in [GlMo], we shall use

H
3,0

H
2,1

`

`2

`0`1

Figure 1. Left: H
3 “ H

3,0 with a geodesic line ` (neces-
sarily spacelike). Right: H

2,1 with three geodesic lines `2
(spacelike), `1 (lightlike), and `0 (timelike).

the following convention.

Notation 2.2. If x, y P H
p,q are distinct points belonging to a spacelike

line, we denote by dHp,qpx, yq ° 0 the pseudo-Riemannian distance between
x and y, obtained by integrating

?
gp,q over the geodesic path from x to y.

If x, y P H
p,q are equal or belong to a lightlike or timelike line, we set

dHp,qpx, yq :“ 0.

Using (2.2), we see that for any distinct points x, y P H
p,q lying on a

spacelike line L,

(2.3) dHp,qpx, yq “ arccosh |xpx, pyyp,q`1| ° 0

where px, py P pHp,q are respective lifts of x, y. The following Hilbert geometry
interpretation, well-known in the H

p setting, also holds in H
p,q because L is

a copy of H1: normalizing the cross-ratio r¨, ¨, ¨, ¨s as in Section 2.1,

(2.4) dHp,qpx, yq “ 1

2
log ra, x, y, bs ° 0

where a, b are the two intersection points of BHp,q with the projective line
through x and y, with a, x, y, b in this order. The following (see Figure 2) is
a pseudo-Riemannian analogue of the first variation formula in Riemannian
geometry.

Proposition 2.3. For any x, y P H
p,q on a spacelike line and for any tangent

vectors Zx P TxH
p,q and Zy P TyH

p,q,

d

dt

ˇ̌
ˇ
t“0

dHp,q

`
expxptZxq, expyptZyq

˘
“ ´g

p,q
x

`
Zx, V

y
x

˘
´ g

p,q
y

`
Zy, V

x
y

˘
,
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where V z1

z P T`1
z H

p,q is the unit vector at z pointing towards z1.

Proof. Let px, py P pHp,q be respective lifts of x, y with xpx, pxyp,q`1 “ xpy, pyyp,q`1

“ ´1 and xpx, pyyp,q`1 † 0. We view Zx and V
y
x as vectors of R

p,q`1 via

the canonical identifications TxH
p,q » Tpx pHp,q » pxK

Ä R
p,q`1, and sim-

ilarly for Zy and V x
y . The vectors V

y
x and V x

y are unit spacelike. Let

� :“ dHp,qpx, yq ° 0. By (2.2) we may write py “ coshp�q px ` sinhp�qV y
x

and px “ coshp�q py ` sinhp�qV x
y , and sinhp�q “

b
xpx, pyy2p,q`1

´ 1 by (2.3).

For t P R, the point expxptZxq P H
p,q of (2.2) lifts to the vector cosh tpx `

sinh tZx in pHp,q
Ä R

p,q`1 and similarly for expyptZyq. Then (2.3) yields

sinhp�q d
dt

ˇ̌
ˇ
t“0

dHp,q

`
expxptZxq, expyptZyq

˘

“ d

dt

ˇ̌
ˇ
t“0

cosh
`
dHp,q

`
expxptZxq, expyptZyq

˘˘

“ d

dt

ˇ̌
ˇ
t“0

´ xcoshptq px ` sinh tZx, coshptq py ` sinhptqZyyp,q`1

“ ´xZx, pyy ´ xpx, Zyyp,q`1

“ ´xZx, coshp�q px ` sinhp�qV y
x yp,q`1 ´ xcoshp�q py ` sinhp�qV x

y , Zyyp,q`1

“ ´ sinhp�qxZx, V
y
x yp,q`1 ´ sinhp�qxV x

y , Zyyp,q`1,

and the result follows from the definition of the metric g
p,q. ⇤

x

Zx

V y
x

y

Zy

V x
y

�

Figure 2. Illustration of Proposition 2.3

Note that when q • 1, the function dHp,q is not a distance function on H
p,q

in the usual sense: for many triples it does not satisfy the triangle inequality.
See [GlMo, § 3] for further discussion of this issue.

Remark 2.4. If pX, gq is a Hadamard manifold (i.e. a simply connected
finite-dimensional Riemannian manifold of nonpositive curvature), then for
any x, y P X and Zx P TxX and Zy P TyX, one has as in Proposition 2.3:

d

dt

ˇ̌
ˇ
t“0

dX
`
expxptZxq, expyptZyq

˘
“ ´gxpZx, V

y
x q ´ gypZy, V

x
y q

where V z1

z P TzX is the unit vector at z pointing towards z1. This follows
from the first variation formula, and the absence of conjugate points [KN,
Ch. VIII, Cor. 2.4 & Th. 5.1].

2.3. The Lie algebra opp, q ` 1q. Since POpp, q ` 1q “ IsompHp,qq, the Lie
algebra opp, q`1q identifies with the set of Killing fields on H

p,q, i.e. of vector
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fields whose flow is isometric: an element Y P opp, q ` 1q corresponds to the
Killing field

(2.5) x fi›Ñ d

dt

ˇ̌
ˇ
t“0

expptY q ¨ x P TxH
p,q,

see e.g. [De, Ex. 17.9]. This identification is canonical, and we will use it
throughout Sections 5 and 6, writing e.g.

up�qpxq P TxH
p,q

for the value of the Killing field associated to up�q at a point x P H
p,q, when

p⇢, uq : Γ Ñ Opp, q ` 1q ˙ opp, q ` 1q is a representation.
The Lie algebra opp, q`1q, endowed with its Killing form p,q`1, identifies

with R
p1,q1

where

(2.6) pp1, q1q “
`
ppq ` 1q , pp2 ` q2 ´ p ` qq{2

˘
.

The adjoint action of Opp, q ` 1q on opp, q ` 1q preserves p,q`1. Using geo-
metric properties of actions on H

p,q, we shall construct proper affine actions
on opp, q ` 1q » R

p1,q1

.

2.4. Relating the pseudo-metric dHp,q with the highest eigenvalue.

For any g P GLpRp`q`1q, we denote by �1pgq • ¨ ¨ ¨ • �p`q`1pgq (resp.
µ1pgq • ¨ ¨ ¨ • µp`q`1pgq) the logarithms of the moduli of the eigenvalues
(resp. singular values) of g. If } ¨ } denotes the operator norm associated to
the standard Euclidean norm on R

p`q`1, then

(2.7) µ1pgq “ log }g}.
An element g P GLpRp`q`1q is called proximal in PpRp`q`1q, or proxi-

mal for short, if �1pgq ° �2pgq; equivalently, g admits a unique attract-
ing fixed point in PpRp`q`1q. If g P Opp, q ` 1q Ä GLpRp`q`1q, then
�ipgq “ ´�p`q`2´ipgq and µipgq “ ´µp`q`2´ipgq for all i. In particular,
any proximal element g P Opp, q ` 1q has, not only an attracting fixed point,
but also a repelling fixed point in PpRp`q`1q; these points belong to BHp,q.

In Section 5.4 we shall use the following classical observations.

Lemma 2.5. Let g P Opp, q ` 1q and let y P H
p,q.

(1) We have lim sup
nÑ`8

1

n
dHp,qpy, gnyq § �1pgq.

(2) If g is proximal, with attracting and repelling fixed points ⇠˘
g P BHp,q,

and if y R p⇠`
g qK Y p⇠´

g qK, then
1

n
dHp,qpy, gnyq ›Ñ

nÑ`8
�1pgq.

Proof. (1) By writing the Jordan decomposition of g as the commuting prod-
uct of a hyperbolic, a unipotent, and an elliptic element, we see that }gn}
is bounded above by en�1pgq times a polynomial function of n, hence so is
|xv, gnvyp,q`1| where rvs “ y. We conclude using (2.3).

(2) Again, by (2.3), it suffices to study the growth of xv, gnvyp,q`1 where
rvs “ y. The projective hyperplane p⇠˘

g qK is the projectivization of the

sum of the generalized eigenspaces of g for eigenvalues other than e¯�1pgq.
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Therefore the assumption on y means that v, when decomposed over the gen-
eralized eigenspaces of g, has nonzero components v`, v´ along ⇠`

g and ⇠´
g .

These components are not orthogonal. In the pairing xv, gnvyp,q`1, the term

xv´, gnv`yp,q`1 “ en�1pgqxv´, v`yp,q`1 therefore dominates all the others,

and grows like en�1pgq as n Ñ `8. We conclude using (2.3). ⇤

We shall also use the following fact, which combines a result of Abels–
Margulis–Soifer [AMS1, Th. 5.17] with a small compactness argument of
Benoist: see the two lemmas of [Be, § 4.5]. Recall that a representation
into GLpRp,q`1q is called strongly irreducible if its image does not preserve
any nonempty finite union of nonzero proper linear subspaces of Rp,q`1.

Fact 2.6 ([AMS1, Be]). Let Γ be a discrete group and ⇢1 : Γ Ñ GLpRp,q`1q
a strongly irreducible representation such that ⇢1pΓq contains a proximal ele-
ment. Then there exist a finite set F Ä Γ and a constant C⇢1 • 0 such that
for any � P Γ, we may find f P F such that ⇢1p�fq is proximal and satisfies
�1p⇢1p�fqq • µ1p⇢1p�qq ´ C⇢1 .

2.5. A Finsler metric on the Riemannian symmetric space. Let X “
G{pOppq ˆOpq`1qq be the Riemannian symmetric space of G “ Opp, q`1q,
with basepoint x0 “ res P X. In Section 5.4 we shall use the following
G-invariant Finsler metric dX on X:

(2.8) dXpg ¨ x0, g1 ¨ x0q :“ µ1pg´1g1q “ log }g´1g1}
for all g, g1 P G, where }¨} is the Euclidean operator norm on R

p`q`1 as above.
This is indeed a metric: dX vanishes only on the diagonal of X ˆ X because
µ1|G vanishes only on GXOpp` q`1q “ Oppq ˆOpq`1q; symmetry follows
from the equality µ1pgq “ µ1pg´1q for g P G “ Opp, q ` 1q; and dX satisfies
the triangle inequality because the operator norm } ¨ } is submultiplicative.

3. Metric contraction and properness

In this section we give some sufficient conditions for the properness of
actions of discrete groups on Opp, 1q and opp, 1q; we shall use these conditions
to prove Propositions 1.6 and 1.8 in Section 4. Extensions to Opp, q`1q and
opp, q`1q will be given in Section 5, and used to prove Theorems 1.5 and 1.7
in Section 6.

In the whole section, we consider, for a topological group G:

‚ the action of GˆG on G by right-and-left multiplication: pg1, g2q¨g “
g2gg

´1

1
;

‚ if G is a Lie group with Lie algebra g, the affine action of G˙ g on g

through the adjoint action: pg, Zq ¨ Y “ AdpgqY ` Z.

3.1. Actions on groups. Let G be a topological group acting continu-
ously by isometries on a complete metric space pX, dq which is proper (i.e.
closed balls are compact). Given a discrete group Γ and a representation
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p⇢, ⇢1q : Γ Ñ G ˆ G, recall that a map f : X Ñ X is called p⇢, ⇢1q-equivariant
if for all � P Γ and x P X,

(3.1) fp⇢p�q ¨ xq “ ⇢1p�q ¨ fpxq.
We shall use the following terminology.

Definition 3.1. Let Γ be a discrete group and ⇢ : Γ Ñ G a representa-
tion defining a properly discontinuous action of Γ on X. A representation
⇢1 : Γ Ñ G is coarsely uniformly contracting with respect to p⇢,Xq if there
exists a quadruple pO, f, C, C 1q such that

‚ O is a nonempty closed ⇢pΓq-invariant subset of X,
‚ C P r0, 1q and C 1 are real numbers,
‚ f : O Ñ X is a p⇢, ⇢1q-equivariant continuous map such that for any
x, y P O,

dpfpxq, fpyqq § C dpx, yq ` C 1.

In this case we say that f is coarsely C-Lipschitz. If we can take C 1 “ 0,
then we say that f is C-Lipschitz and that ⇢1 is uniformly contracting with
respect to p⇢,Xq.

(We use the terminology of contraction with respect to p⇢,Xq rather than
p⇢,Oq since O is not unique and its choice will not play any role in the paper.
It will be important to specify the ambient space X in Proposition 5.6.)

The following general statement, applied to pG,Xq “ pOpp, 1q,Hpq, will let
us derive properness of certain actions on G by right-and-left multiplication
from coarse uniform contraction on X. By FpOq we will always refer to the
set of compact subsets of a complete proper metric space O, endowed with
the Hausdorff topology. Note that a properly discontinuous action of Γ on
O induces a properly discontinuous action of Γ on FpOq.

Proposition 3.2. Let G be a topological group acting continuously by isome-
tries on a proper complete metric space pX, dq. Let Γ be a discrete group and
p⇢, ⇢1q : Γ Ñ G ˆ G a representation such that the action of Γ on X via ⇢

is properly discontinuous, and such that ⇢1 is coarsely uniformly contracting
with respect to p⇢,Xq, with pO, f, C, C 1q as in Definition 3.1. Then the map

Π : G ›Ñ FpOq
g fi›Ñ

 

x P O | dpg ¨ x, fpxqq is minimal
(

is well defined and takes any compact set to a compact set. Moreover, Π is
equivariant with respect to the actions of Γ on G by right-and-left multipli-
cation via p⇢, ⇢1q, and on FpOq via ⇢. In particular, the action of Γ on G by
right-and-left multiplication via p⇢, ⇢1q is properly discontinuous.

Proof. Choose a basepoint x0 P O. For any g P G and x P O, we have

dpg ¨ x, fpxqq • dpg ¨ x, g ¨ x0q ´ dpg ¨ x0, fpx0qq ´ dpfpx0q, fpxqq
• p1 ´ Cq dpx, x0q ´ pC 1 ` dpg ¨ x0, fpx0qqq.(3.2)
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Thus x fiÑ dpg ¨ x, fpxqq is a proper function on the proper metric space
pO, d|OˆOq for any g P G, and so Π is well defined.

The map Π takes compact sets to compact sets. Indeed, let C be a
compact subset of G. By continuity of the action, there exists R ° 0 such
that for all g P C we have dpg ¨ x0, fpx0qq § R, hence Πpgq is contained in
tx P O | dpx, x0q § pC 1 ` 2Rq{p1 ´ Cqu by (3.2).

The equivariance of Π follows from that of f : for any � P Γ and x P O,

d
`
⇢1p�qg⇢p�q´1¨p⇢p�q¨xq, fp⇢p�q¨xq

˘
“ dp⇢1p�qg¨x, ⇢1p�q¨fpxqq “ dpg¨x, fpxqq.

By equivariance of Π, since the action of Γ on FpOq via ⇢ is properly
discontinuous, so is the action of Γ on G by right-and-left multiplication via
p⇢, ⇢1q. Indeed, if C is a compact subset of G, then ΠpC q is a compact subset
of FpOq. By properness of the action of Γ on FpOq, there is a finite subset
S Ä Γ such that ⇢p�q ¨ ΠpC q X ΠpC q “ ? for all � P Γr S. By equivariance
of Π, we have ⇢1p�qC ⇢p�q´1 X C “ ? for all � P Γr S as well. ⇤

3.2. Equivariance and contraction for vector fields. Suppose now that
G is a finite-dimensional Lie group, X is a Hadamard manifold, and G acts
smoothly by isometries on X.

There is a natural linear map Ψ from the Lie algebra g of G to the space
of Killing fields on X, i.e. vector fields on X whose flow is isometric: it takes
Y P g to the vector field ΨpY q :“ px fiÑ d

dt

ˇ̌
t“0

expptY q ¨ xq as in (2.5). For
any pg, Y, xq P G ˆ g ˆ X we have

(3.3) ΨpAdpgqY qpg ¨ xq “ g˚pΨpY qpxqq.
Similarly to the notions of equivariance (3.1) and contraction (Defini-

tion 3.1) above, we shall use the following terminology.

Definition 3.3. Let p⇢, uq : Γ Ñ G ˙ g be a representation. A vector field
Z on X is p⇢, uq-equivariant if whenever Zpxq belongs to some ΨpY q P Ψpgq,
the vector Zp⇢p�q ¨ xq belongs to Ψpp⇢, uqp�q ¨ Y q: namely, for all � P Γ and
x P X,

(3.4) Zp⇢p�q ¨ xq “ ⇢p�q˚Zpxq ` Ψpup�qqp⇢p�q ¨ xq.

Definition 3.4. Let Γ be a discrete group and ⇢ : Γ Ñ G a representation
defining a properly discontinuous action of Γ on X. A ⇢-cocycle u : Γ Ñ g is
coarsely uniformly contracting with respect to X if there exists a quadruple
pO, Z, c, c1q such that

‚ O is a nonempty closed ⇢pΓq-invariant subset of X,
‚ c † 0 and c1 are real numbers,
‚ Z : O Ñ TX is a p⇢, uq-equivariant continuous vector field on O such

that for any x, y P O,

(3.5)
d

dt

ˇ̌
ˇ
t“0

d
`
expxptZpxqq, expyptZpyqq

˘
§ c dpx, yq ` c1.
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In this case we say that Z is coarsely c-lipschitz. If we can take c1 “ 0, then
we say that Z is c-lipschitz and that u is uniformly contracting with respect
to X.

Here we use a lowercase l in lipschitz to emphasize the infinitesimal aspect.
The left-hand side of (3.5) is linear in Z by Remark 2.4 and vanishes by
definition for Z a Killing field. The p⇢, uq-equivariance of Z entails that both
sides of (3.5) are invariant under replacing px, yq with p⇢p�q ¨ x, ⇢p�q ¨ yq.

Definitions 3.3 and 3.4 are motivated by the classical notion of equiv-
ariance (3.1) and by Definition 3.1, via the following construction. This
construction will actually produce all uniformly contracting cocycles ap-
pearing in this paper, and also lies at the heart of [DGK1] with pG,Xq “
pSOp2, 1q,H2q.
Lemma 3.5. Consider an open interval I Q 0, a smooth path p⇢⌧ q⌧PI in
HompΓ, Gq, and the ⇢0-cocycle u :“ d

d⌧

ˇ̌
⌧“0

⇢⌧⇢
´1

0
. For any smooth family

pf⌧ : X Ñ Xq⌧PI of maps such that f0 “ IdX and f⌧ is p⇢0, ⇢⌧ q-equivariant
for all ⌧ P I, the derivative Zpxq :“ d

d⌧

ˇ̌
⌧“0

f⌧ pxq is p⇢0, uq-equivariant. If
moreover there exists c P R such that f⌧ is p1 ` c⌧q-Lipschitz for all ⌧ • 0,
then Z is c-lipschitz. In particular, if c † 0, then u is uniformly contracting
with respect to X.

Proof. For any ⌧ • 0 and x P X, by equivariance of f⌧ we have

f⌧ p⇢0p�q ¨ xq “
`
⇢⌧ p�q⇢0p�q´1

˘
⇢0p�q ¨ f⌧ pxq.

Differentiating both sides with respect to ⌧ at ⌧ “ 0 yields

Zp⇢0p�q ¨ xq “ pId ˝ ⇢0p�qq˚pZpxqq ` Ψpup�qq
`
⇢0p�q ¨ f0pxq

˘
,

hence the equivariance property (3.4).
Suppose that there exists c P R such that f⌧ is p1 ` c⌧q-Lipschitz for all

⌧ • 0. For any x, y P X, we have

c dpx, yq •
dpf⌧ pxq, f⌧ pyqq ´ dpx, yq

⌧
›Ñ
⌧Ñ0

d

d⌧

ˇ̌
ˇ
⌧“0

dpf⌧ pxq, f⌧ pyqq.

Observe that d

d⌧

ˇ̌
⌧“0

expxp⌧Zpxqq “ Zpxq “ d

d⌧

ˇ̌
⌧“0

f⌧ pxq and similarly for y.
Therefore, by applying Proposition 2.3 twice, we have

d

d⌧

ˇ̌
ˇ
⌧“0

d
`
expxp⌧Zpxqq, expyp⌧Zpyqq

˘
“ d

d⌧

ˇ̌
ˇ
⌧“0

dpf⌧ pxq, f⌧ pyqq.

The desired uniform contraction property follows:

d

d⌧

ˇ̌
ˇ
⌧“0

d
`
expxp⌧Zpxqq, expyp⌧Zpyqq

˘
§ c dpx, yq,

showing that Z is c-lipschitz. ⇤

3.3. Actions on Lie algebras. Here is the infinitesimal counterpart of
Proposition 3.2. Again, we denote by Ψ the natural linear map from the
Lie algebra g of G to the set of Killing fields on X.
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Proposition 3.6. Let G be a finite-dimensional Lie group acting smoothly
by isometries on a Hadamard manifold X. Let Γ be a discrete group and
p⇢, uq : Γ Ñ G˙ g a representation such that Γ acts properly discontinuously
on X via ⇢, and such that u is coarsely uniformly contracting with respect
to X, with pO, Z, c, c1q as in Definition 3.4. Then the map

⇡ : g ›Ñ FpOq
Y fi›Ñ

 

x P O | }Zpxq ´ ΨpY qpxq} is minimal
(

is well defined and takes any compact set to a compact set. Moreover, ⇡

is equivariant with respect to the affine action of Γ on g via p⇢, uq and the
action of Γ on FpOq via ⇢. In particular, the affine action of Γ on g via
p⇢, uq is properly discontinuous.

Proof. Choose a basepoint x0 P O. For any vector field V on O and any
x P O, Remark 2.4 implies

´}V px0q} ´ }V pxq} §
d

dt

ˇ̌
ˇ
t“0

d
`
expxptV pxqq, expx0

ptV px0qq
˘
;

in particular, if V is coarsely c-lipschitz (Definition 3.4), then

(3.6) ´}V px0q} ´ }V pxq} § c dpx, x0q ` c1.

By Remark 2.4, the sum of a coarsely c-lipschitz vector field and a Killing
field is still coarsely c-lipschitz. Therefore, for any Y P g, by applying (3.6)
to V “ Z ´ ΨpY q and using c † 0, we find

}Zpxq ´ ΨpY qpxq} • |c| dpx, x0q ´ p}Zpx0q ´ ΨpY qpx0q} ` c1q.
Thus x fiÑ }Zpxq ´ ΨpY qpxq} is a proper function on X for any Y P g, i.e.
⇡ is well defined. Moreover, since Y fiÑ }Zpx0q ´ ΨpY qpx0q} is bounded on
compact sets, ⇡ takes compact sets to compact sets. The equivariance of ⇡
follows from that of Z, from the linearity of Ψ, and from (3.3): for any � P Γ

and x P O,

}
`
Z ´ Ψ

`
Adp⇢p�qqY ` up�q

˘˘
p⇢p�q ¨ xq}

“
››⇢p�q˚pZpxqq ` Ψpup�qqp⇢p�q ¨ xq ´ Ψ

`
Adp⇢p�qqY ` up�q

˘
p⇢p�q ¨ xq

››
“}⇢p�q˚pZpxqq ´ ⇢p�q˚pΨpY qpxqq} “ }pZ ´ ΨpY qqpxq}.

By equivariance of ⇡, since the action of Γ on FpOq via ⇢ is properly discon-
tinuous, so is the affine action of Γ on g via p⇢, uq. ⇤

3.4. Fibrations. While the coarse projection arguments of Sections 3.1 and
3.3 (and, later, Section 5.3) are useful for determining proper discontinuity of
an action, such arguments seem to give little information about the topology
of the quotient manifolds. However, when the coarsely Lipschitz maps f and
lipschitz vector fields Z of Propositions 3.2 and 3.6 are well behaved, we can
deduce explicit fibrations for the quotient manifolds modeled on the group
G and its Lie algebra g. This idea already appeared in [GuK, Prop. 7.2] and
in [DGK1, Prop. 6.3].
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Proposition 3.7. (1) In the context of Proposition 3.2, suppose that f is
C-Lipschitz (i.e. C 1 “ 0) and that O “ X. Then Π : G Ñ FpOq takes
any g P G to a singleton of O “ X, i.e. we have a Γ-equivariant map
Π : G Ñ X, and this map is continuous. If furthermore G acts transitively
on X, with point stabilizer K, and if Γ is torsion-free, then the quotient
of G under the action of Γ by right-and-left multiplication via p⇢, ⇢1q is a
K-bundle over the manifold ⇢pΓqzX.

(2) In the context of Proposition 3.6, suppose that Z is c-Lipschitz (i.e.
c1 “ 0) and that O “ X. Then ⇡ : g Ñ FpOq takes any Y P g to a
singleton of O “ X, i.e. we have a Γ-equivariant map ⇡ : g Ñ X, and
this map is continuous. If furthermore G acts transitively on X, with
infinitesimal point stabilizer k, and Γ is torsion-free, then the quotient of
g under the affine action of Γ via p⇢, uq is a k-bundle over the manifold
⇢pΓqzX.

In (2), by the infinitesimal stabilizer of a point x P X we mean the set of
elements Y P g corresponding (via Ψ) to Killing fields on X that vanish at x,
or equivalently the Lie algebra of the stabilizer of x in G.

Proof. (1) For any g P G the map g´1 ˝ f : X Ñ X is C-Lipschitz, hence
admits a unique fixed point Πpgq in X since C † 1. The map Π :

G Ñ X is continuous: indeed, if g1 P G is close enough to g that
dpx, g1´1 ˝ fpxqq § p1 ´ Cq " where x “ Πpgq, then g1´1 ˝ f takes the
"-ball centered at x to itself, hence Πpg1q lies within " of x “ Πpgq.

If G acts transitively on X, then Π is surjective, and each fiber Π´1pxq “
tg P G | g ¨ x “ fpxqu is a left G-translate of the stabilizer of x in G.
This gives G the structure of a Γ-equivariant K-bundle over X, which
descends to the quotient manifolds if Γ has no torsion; this structure is
smooth if f is.

(2) For any Y P g the vector field Z´ΨpY q is c-lipschitz on X, hence inward-
pointing on any large enough sphere since c † 0. By Brouwer’s fixed
point theorem, Z ´ ΨpY q therefore admits a zero ⇡pY q in X, unique
since c † 0. The map ⇡ : g Ñ X is continuous: indeed, if Y 1 P g is
close enough to Y that }ΨpY ´ Y 1qpxq} § |c| " where x “ ⇡pY q, then
Z ´ ΨpY 1q “ pZ ´ ΨpY qq ` ΨpY ´ Y 1q is inward-pointing on the sphere
of radius " centered at x (for the Killing field ΨpY ´ Y 1q has constant
component along any given geodesic through x), hence ⇡pY 1q lies within
" of x “ ⇡pY q.

If G acts transitively on X, then ⇡ is surjective, and each fiber ⇡´1pxq “
tY P g | ΨpY qpxq “ Zpxqu is a g-translate of the infinitesimal stabilizer
of x. This gives g the structure of a Γ-equivariant k-bundle over X, which
descends to the quotient manifolds if Γ has no torsion; this structure is
smooth if Z is. ⇤
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Remark 3.8. In (2) above with G acting transitively on X, the quotient
p⇢, uqΓzg is isomorphic, as a k-bundle, to the quotient by ⇢pΓq of the tauto-
logical k-subbundle B of g ˆ X Ñ X whose fiber above x P X is the infini-
tesimal stabilizer of x. Indeed, by a partition-of-unity argument, ⇡ : g Ñ X

admits a Γ-equivariant section � such that �pxqpxq “ Zpxq for all x P X, and
pY, xq fiÑ �pxq ` Y then defines an equivariant bundle isomorphism B „Ñ g.

In (1), no section exists in general, but one can still describe the bun-
dle structure on G topologically as a pullback of the tautological K-bundle
over X by any p⇢, ⇢1q-equivariant map (not necessarily contracting).

Remark 3.9. Suppose pG,Xq “ pOpp, 1q,Hpq.
(0) As in Section 2.3, the Killing form p,1 on g “ opp, 1q has signature

pp, ppp ´ 1q{2q. The stabilizer K “ Oppq ˆ Op1q (resp. the infinitesimal
stabilizer k “ oppq) appearing in Proposition 3.7 is a maximal negative
definite totally geodesic subspace of G (resp. linear subspace of g), for
the G-invariant pseudo-Riemannian structure induced by p,1.

(1) When ⇢ is geometrically finite, a converse to Proposition 3.2 holds: up
to switching ⇢ and ⇢1, the action of Γ on G by right-and-left multiplica-
tion via p⇢, ⇢1q is properly discontinuous if and only if the action of Γ on
X via ⇢ is properly discontinuous and ⇢1 is coarsely uniformly contract-
ing with respect to p⇢,Xq. In fact in this case ⇢1 is actually uniformly
contracting with respect to p⇢,Xq, and one can find a p⇢, ⇢1q-equivariant
C-Lipschitz map (for some C † 1) defined on O “ X “ H

p, making
Proposition 3.7.(1) applicable. This was proved in [K2] for p “ 2 and
convex cocompact ⇢, and in [GuK] in general.

(2) For p “ 2 and convex cocompact ⇢, a similar converse to Proposi-
tion 3.6 holds up to replacing u by ´u, by [DGK1, Th. 1.1]; again, u

is actually uniformly contracting with respect to X, and one can find
a p⇢, uq-equivariant c-lipschitz vector field (for some c † 0) defined on
O “ X “ H

p, making Proposition 3.7.(2) applicable. The same state-
ment for geometrically finite ⇢ will be proved in [DGK5]. On the other
hand, this converse fails for p “ 3, as op3, 1q » pslp2,Cq has a complex
structure and properness, unlike uniform contraction, is unaffected when
we multiply a cocycle by a nonzero complex number.

4. Examples of proper actions on Opp, 1q and opp, 1q for small p

In this section we prove Propositions 1.6 and 1.8 by applying Proposi-
tions 3.2 and 3.6.

4.1. Uniformly contracting maps obtained by colorings. Recall that
a discrete subgroup of Opp, 1q is called convex cocompact if it acts with
compact quotient on a nonempty convex subset of the hyperbolic space H

p.
The property for a representation of a discrete group to be injective and
discrete with convex cocompact image is stable under small deformations
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and under embedding into a larger Opp1, 1q. We shall use the word coloring
for any map to a finite set: the image of an element is then called its color.

Our proof of Propositions 1.6 and 1.8 uses the following construction.

Proposition 4.1. Let Γ be a convex cocompact subgroup of Opp, 1q generated
by the orthogonal reflections t�iu1§i§k in the faces tFiu1§i§k of a right-angled
convex polyhedron of H

p. For 1 § i § k, let vi “ pwi, 1q P R
p,1 be a

normal vector to Fi. Suppose there exist an integer m • 0 and a coloring
� : t1, . . . , ku Ñ t0, . . . ,mu such that �piq ‰ �pjq whenever Fi intersects Fj.
Let u0, . . . , um be the vertices of a regular simplex inscribed in the unit sphere
of Rm (if m “ 0, take u0 “ 0 P R

0). For any 1 § i § k and t P R, we set

vti :“
`
coshptqwi,

?
m sinhptqu�piq, 1

˘
P R

p`m,1.

Then for any t P R, the representation ⇢t : Γ Ñ Opp ` m, 1q taking �i to the
orthogonal reflection in pvtiqK

Ä R
p`m,1 is well defined, and for small enough

|t| it is still injective and discrete, with convex cocompact image. Moreover,
for any 0 † t § s with t small enough, there exists a p⇢t, ⇢sq-equivariant,
coshptq
coshpsq -Lipschitz map ft,s : Hp`m Ñ H

p`m; we may take ft,t “ IdHp`m and

ft,s depending smoothly on pt, sq.

Proof. Let t P R. In order to prove that ⇢t is well defined, we only need to
check that xvti , vtjyp`m,1 “ 0 whenever Fi intersects Fj . Since xvi, vjyp,1 “ 0

we have xwi, wjyp,0 “ 1, and xu�piq, u�pjqym,0 “ ´1{m. Therefore

xvti , vtjyp`m,1 “ cosh2ptqxwi, wjyp,0 ` m sinh2ptqxu�piq, u�pjqym,0 ´ 1

“ cosh2ptq ´ sinh2ptq ´ 1 “ 0.

For small enough |t| the representation ⇢t : Γ Ñ Opp`m, 1q is injective and
discrete with convex cocompact image, since this property is stable under
embedding Opp, 1q into Opp ` m, 1q and under small deformation.

We now assume that t ° 0 is such that ⇢t is faithful and discrete, and
fix s • t. Let Pt Ä PpRp`m,1q be the polytope bounded by the PpvtiqK for
1 § i § k, so that Pt X H

p`m is a fundamental domain for the action of
⇢tpΓq on H

p`m, with polyhedral boundary. Define similarly Ps. We endow
the affine chart txp`m`1 “ 1u » R

p`m of PpRp`m,1q with the standard
Euclidean metric, so that H

p`m is the unit open ball centered at 0. In this

chart, the linear map coshpsq
coshptq IdRp ‘ sinhpsq

sinhptq IdRm takes the vti to the vsi . Dually,

f :“ coshptq
coshpsq IdRp ‘ sinhptq

sinhpsq IdRm

must take Pt to Ps. The restriction of f to Pt X H
p`m can be p⇢t, ⇢sq-

equivariantly extended by orthogonal reflections in the faces of Pt and Ps,
yielding a p⇢t, ⇢sq-equivariant map ft,s : Hp`m Ñ H

p`m. This map is pro-
jective in restriction to any ⇢tpΓq-translate of Pt, and it takes each reflection
face of Pt to the corresponding reflection face of Ps, hence it is globally
continuous. If s ° t, then ft,spHp`mq is strictly contained in H

p`m.
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In order to check that the continuous map ft,s : H
p`m Ñ H

p`m is coshptq
coshpsq -

Lipschitz, by the triangle inequality, it is enough to focus on the restriction
f to one fundamental domain H

p`m X Pt. Since fpHp`mq (an ellipsoid) is

contained in the ball of radius coshptq
coshpsq † 1 centered at 0 in our Euclidean

chart, while H
p`m is the unit ball, the result is an immediate consequence

of the following Lemma 4.2, which quantifies Remark 2.1. ⇤

Lemma 4.2. Fix a Euclidean chart Rn of PnpRq. If Br denotes the ball of
radius r in R

n centered at 0, then the Hilbert metrics on Br and B1 satisfy
dBrpx, yq • dB1

px, yq{r for all r P p0, 1q and x, y P Br.

Proof. Consider a line ` of the Euclidean chart R
n through points x, y P

B1, with ` X BB1 “ ta, bu and a, x, y, b lying in this order on `. We can
parametrize ` at unit Euclidean velocity by pxtqtPR so that pa, x, y, bq “
px´↵, x0, x�, x�q for some �,↵,� ° 0. We have

dB1
px, yq “ 1

2
log

ˆ
� ` ↵

� ´ �

N
0 ` ↵

0 ´ �

˙
„

�Ñ0

�
↵´1 ` �´1

2
.

The factor ⌫B1

`,x :“ p↵´1 ` �´1q{2 expresses the Finsler norm associated to
the Hilbert metric dB1

near x, in the direction of `, in terms of the ambient
Euclidean norm. If we replace B1 with a scaled ball B1´⌧ for some ⌧ ° 0,
then the new endpoints of ` X B1´⌧ lie at linear coordinates ´↵⌧ and �⌧
such that d

d&

ˇ̌
&“⌧

↵& § ´1 and d

d&

ˇ̌
&“⌧

�& § ´1. Therefore

d

d&

ˇ̌
ˇ
&“⌧

⌫
B1´&

`,x

⌫
B1´⌧

`,x

•
↵´2
⌧ ` �´2

⌧

↵´1
⌧ ` �´1

⌧

“ ↵⌧ {�⌧ ` �⌧ {↵⌧

↵⌧ ` �⌧
•

1

1 ´ ⌧
,

where we use ↵⌧ ` �⌧ § 2 ´ 2⌧ for the last inequality. Integrating this
logarithmic derivative over ⌧ P r0, 1 ´ rs, we find ⌫Br

`,x • ⌫B1

`,x{r. This is valid

for all ` and x, hence dBr • dB1
{r. ⇤

Remarks 4.3. (1) The p⇢t, ⇢sq-equivariant maps ft,s of Proposition 4.1 are
not smooth, but continuous and piecewise projective. Similarly, setting
ut :“ d

ds

ˇ̌
s“t

⇢s⇢
´1

t : Γ Ñ opp`m, 1q, the p⇢t, utq-equivariant vector fields

Zt :“ d

ds

ˇ̌
s“t

fs, which are uniformly contracting by Lemma 3.5, are not
smooth. However, they can be made smooth while remaining uniformly
contracting, e.g. using the equivariant convolution procedure described
in [DGK1, § 5.5].

(2) Groups Γ as in Proposition 4.1 are finitely generated, hence admit a
torsion-free subgroup Γ1 of finite index by Selberg’s lemma [Se, Lem. 8].
Propositions 3.2, 3.6, and 3.7 apply in this setting, yielding:

‚ quotient manifolds p⇢t, ⇢sqpΓ1qzOpp`m, 1q with the structure of an
pOpp ` mq ˆ Op1qq-bundle over the hyperbolic manifold ⇢tpΓ1qzHp,

‚ quotient affine manifolds p⇢t, utqpΓ1qzopp ` m, 1q with the structure
of an opp ` m, 1q-bundle over the hyperbolic manifold ⇢tpΓ1qzHp.
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(3) The case m “ 0 (a single color) of Proposition 4.1 is valid: it applies
to groups Γ freely generated by k involutions, and acting by reflections
on H

p. For p “ 2, applying Proposition 3.6 to an index-two torsion-
free subgroup Γ1 of Γ, we obtain examples of proper affine actions of
free groups on op2, 1q » R

2,1; the corresponding affine 3-manifolds are
Margulis spacetimes.

4.2. Proof of Propositions 1.6 and 1.8. Let Γ be the discrete subgroup of
Op2, 1q generated by the reflections in the faces of a convex right-angled k-gon
in H

p “ H
2, for k • 6 even. Color the sides of the k-gon, alternatingly, with

labels 0 and 1. Applying Proposition 4.1 with m “ 1 yields, for small enough
0 † t † s, faithful and discrete representations ⇢t, ⇢s : Γ Ñ Op3, 1q and

p⇢t, ⇢sq-equivariant, coshptq
coshpsq -Lipschitz maps ft,s : H3 Ñ H

3 (Figure 3 shows

a fundamental polyhedron). In particular, ⇢s is uniformly contracting with
respect to p⇢t,H3q (Definition 3.1), and by Lemma 3.5 the ⇢t-cocycle ut :“
d

ds

ˇ̌
s“t

⇢s⇢
´1

t is uniformly contracting with respect to H
3 (Definition 3.4) since

d

ds

ˇ̌
s“t

coshptq
coshpsq “ ´ tanhptq † 0. Applying Propositions 3.2 and 3.6, we obtain

Propositions 1.8.(a) and 1.6.(a).

H
3

F t
4

F t
5

F t
6

F t
1

F t
2

F t
3

Pt

Figure 3. A fundamental domain PtXH
3

for the action of ⇢tpΓq on H
3, bounded by

planes F t
i “ pvtiqK for 1 § i § k (here

k “ 6, i.e. Γ is a right-angled hexagon
group). The hexahedron Pt becomes ver-
tically more elongated as t Ñ 0. The faces
F t
1
, F t

2
, F t

3
are at the back; the ellipsoid H

3

is shaded.

Similarly, in order to prove Propositions 1.8.(b) and 1.6.(b), it is enough
to color the faces of the regular 120-cell of R

4 with m ` 1 “ 5 colors so
that adjacent faces receive different colors. This is a well-known construction
which we briefly recall below; it is contained e.g. in Coxeter’s study of regular
4-dimensional compounds [C, §14.3]. See Figure 4.

The 120-cell can be described as follows. Let ' “
?
5`1

2
“ 1.618 . . . be

the golden ratio. Let w1 . . . , w120 P R
4 be the unit vectors obtained from the

rows of the matrix

(4.1)
1

2

¨
˝
0 0 0 2

1 1 1 1

0 '´1 1 '

˛
‚

by sign changes and even permutations of the four coordinates. We endow
R
4 with its standard Euclidean inner product x¨, ¨y4,0. The affine hyperplanes
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Figure 5. The orientation-preserving symmetries
of a regular icosahedron in Euclidean 3-space per-
mute five collections of six edges each, giving an
isomorphism ◆ to the alternating group A5. Each
color is preserved by a copy of A4, the tetrahedron
group.

composition of a certain quasi-Fuchsian representation Γ1 Ñ SOp3, 1q0 »
PSLp2,Cq with the adjoint representation SOp3, 1q0 Ñ SLpop3, 1qq.

By contrast, for any dimension n • 2, an affine action on R
n whose linear

part is the composition of a Fuchsian (i.e. faithful and discrete) representa-
tion ⇢0 : Γ1 Ñ SLp2,Rq with an irreducible representation ⌧n : SLp2,Rq Ñ
SLpn,Rq is never properly discontinuous. This was proved by Mess [Me] and
Goldman–Margulis [GoMa] in the case n “ 3 (for which ⌧3 is the adjoint rep-
resentation, with image SOp2, 1q0) and in general by Labourie [La]. Recently,
it was shown further [DZ] that a continuous deformation of ⌧n ˝ ⇢0 is never
the linear part of a proper affine action, either. Such representations make
up what is known as a Hitchin component of HompΓ1, SLpn,Rqq. It would be
interesting to determine which connected components of HompΓ1, SLpn,Rqq
contain the linear part of a proper affine action by a surface group Γ1.

4.3. A variant of Lemma 4.2. In order to prove Theorems 1.5 and 1.7 in
Section 6.4, we will need the following variant of Lemma 4.2, in which we
replace the Euclidean metric on an affine chart of PnpRq with the standard
spherical metric of PnpRq given, for all v, w P R

n`1
r t0u, by

(4.2) dPnpRq
`
rvs, rws

˘
“ min

`
>pv, wq,>pv,´wq

˘
P

”
0,

⇡

2

ı
,

where by convention angles between vectors take values in r0,⇡s.
Lemma 4.5. Let pH⌧ q⌧•0 be a smooth family of connected open subsets of
P
npRq with smooth boundaries BH⌧ . Let ` Ä P

npRq be an open projective
segment intersecting BH0 twice, transversely. For small ⌧ • 0, let pa⌧ , b⌧ q
be the open segment ` X H⌧ , endowed with its Hilbert metric dpa⌧ ,b⌧ q. If BH⌧

expands outwards everywhere with normal velocity • 1 (for dPnpRq) at ⌧ “ 0,
then for all x, y P pa0, b0q,

d

dt

ˇ̌
ˇ
⌧“0

dpa⌧ ,b⌧ qpx, yq § ´2 dpa0,b0qpx, yq.

Proof. Let a0, x, y, b0 P ` X H0 be lined up in this order. Let s fiÑ xs be a
unit-speed (for dPnpRq) parametrization of ` such that x “ x0 and y “ x� for
some � ° 0. For any small ⌧ • 0, we have pa⌧ , x, y, b⌧ q “ px´↵⌧

, x0, x�, x�⌧
q

for some ↵⌧ ,�⌧ P p0,⇡q with ↵⌧ ` �⌧ † ⇡. If BH⌧ expands outwards with
normal velocity • 1, then d

d⌧

ˇ̌
⌧“0

↵⌧ • 1 and d

d⌧

ˇ̌
t“0

�⌧ • 1. Then

dpa⌧ ,b⌧ qpx, yq “ 1

2
log

ˆ
tan � ` tan↵⌧

tan � ´ tan�⌧

N
0 ` tan↵⌧

0 ´ tan�⌧

˙
„

�Ñ0

�
cot↵⌧ ` cot�⌧

2
.
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The factor ⌫⌧`,x :“ pcot↵⌧ ` cot�⌧ q{2 expresses the Hilbert metric dpa⌧ ,b⌧ q
near x in terms of the ambient spherical metric, in the ` direction. Since
cot1 “ ´ sin´2, its logarithmic derivative at ⌧ “ 0 satisfies

d

d⌧

ˇ̌
ˇ
⌧“0

⌫⌧`,x

⌫0`,x
“

´
`

d

d⌧

ˇ̌
⌧“0

↵⌧

˘
sin´2 ↵0 ´

`
d

d⌧

ˇ̌
⌧“0

�⌧
˘
sin´2 �0

cot↵0 ` cot�0

§ ´ sin´2 ↵0 ` sin´2 �0

cot↵0 ` cot�0
“ ´

sin↵0

sin�0
` sin�0

sin↵0

sinp↵0 ` �0q § ´2.

Thus pd⌫⌧`,x{d⌧q|⌧“0 § ´2⌫0`,x for all x P ` X H0. Integrating ⌫⌧`,x for x in a
subsegment � Ä ` X H⌧ returns the Hilbert length of � in ` X H⌧ ; the result
follows by exchanging the integration and differentiation. ⇤

5. Pseudo-Riemannian contraction and properness

In Propositions 3.2 and 3.6 we established sufficient properness conditions
for actions of a discrete group Γ on a topological group G by right-and-left
multiplication, and on a finite-dimensional Lie algebra g by affine transfor-
mations through the adjoint action. These conditions involved a notion of
coarse uniform contraction in a metric G-space pX, dq.

Fixing integers p, q P N with p ` q • 1, we shall now state and prove
sufficient properness conditions (Theorem 5.3) for similar actions on G “
Opp, q ` 1q and on g “ opp, q ` 1q » R

pp`q`1qpp`qq{2. This will be used in
Section 6 to prove Theorems 1.5 and 1.7.

5.1. Uniform spacelike contraction in H
p,q and proper actions. In

order to state Theorem 5.3, we first introduce a notion of spacelike coarse
uniform contraction in the pseudo-Riemannian space H

p,q, endowed with the
pseudo-metric dHp,q of Notation 2.2.

Let G “ Opp, q ` 1q. Given p⇢, uq : Γ Ñ G ˙ g, we say that a vector
field Z defined on a ⇢pΓq-invariant subset O of Hp,q is p⇢, uq-equivariant if Z
satisfies (3.4) for all � P Γ and x P O. From now on, we will drop the map Ψ

of (3.4) from the notation, as it is a canonical isomorphism between the Lie
algebra g “ opp, q ` 1q and the space of Killing fields on H

p,q. We introduce
the following terminology extending Definitions 3.1 and 3.4.

Definition 5.1. Let Γ be a discrete group and ⇢ : Γ Ñ G “ Opp, q ` 1q a
representation with finite kernel and discrete image, preserving a nonempty
properly convex open subset Ω of Hp,q.

(1) A representation ⇢1 : Γ Ñ G is coarsely uniformly contracting in
spacelike directions with respect to p⇢,Ωq if there exists a quadruple
pO, f, C, C 1q such that

‚ O is a nonempty closed ⇢pΓq-invariant subset of Ω (e.g. Ω itself,
or a single ⇢pΓq-orbit),

‚ C P r0, 1q and C 1 are real numbers,
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‚ f : O Ñ H
p,q is a continuous, p⇢, ⇢1q-equivariant map such that

for any x, y P O on a spacelike line,

dHp,qpfpxq, fpyqq § C dHp,qpx, yq ` C 1 .

In this case we say that f is coarsely C-Lipschitz in spacelike direc-
tions. If we can take C 1 “ 0, then we say that f is C-Lipschitz in
spacelike directions and that ⇢1 is uniformly contracting in spacelike
directions with respect to p⇢,Ωq.

(2) A ⇢-cocycle u : Γ Ñ g is coarsely uniformly contracting in spacelike
directions with respect to Ω if there exists a quadruple pO, Z, c, c1q
such that

‚ O is a nonempty closed ⇢pΓq-invariant subset of Ω,
‚ c † 0 and c1 are real numbers,
‚ Z : O Ñ THp,q is a continuous, p⇢, uq-equivariant vector field

on O such that for any x, y P O on a spacelike line,

d

dt

ˇ̌
ˇ
t“0

dHp,q

`
expxptZpxqq, expyptZpyqq

˘
§ c dHp,qpx, yq ` c1 .

In this case we say that Z is coarsely c-lipschitz in spacelike directions.
If we can take c1 “ 0, then we say that Z is c-lipschitz in spacelike
directions and that u is uniformly contracting in spacelike directions
with respect to Ω.

Of course there are always two projective segments between any given
pair px, yq of points of PpRp`q`1q. For x, y P H

p,q, if one of these segments
is a spacelike geodesic segment of H

p,q, then the other projective segment
exits H

p,q. In Definition 5.1, for x, y P O Ä Ω Ä H
p,q on a spacelike line, the

segment between x and y that remains in H
p,q also remains in the properly

convex set Ω.
The following statement is similar to Lemma 3.5 and its proof is identical,

restricted to pairs of points in spacelike position.

Lemma 5.2. Consider an open interval I Q 0, a smooth path p⇢⌧ q⌧PI in
HompΓ,Opp, q ` 1qq, and the ⇢0-cocycle u :“ d

d⌧

ˇ̌
⌧“0

⇢⌧⇢
´1

0
. For any smooth

family pf⌧ : Ω Ñ H
p,qq⌧PI of maps such that f0 “ IdΩ and f⌧ is p⇢0, ⇢⌧ q-

equivariant for all ⌧ P I, the derivative Zpxq :“ d

d⌧

ˇ̌
⌧“0

f⌧ pxq is p⇢0, uq-
equivariant. If moreover there exists c P R such that f⌧ is p1`c⌧q-Lipschitz in
spacelike directions for all ⌧ • 0, then Z is c-lipschitz in spacelike directions.

Here is the main result of this section, generalizing Propositions 3.2 and 3.6.

Theorem 5.3. Let G “ Opp, q ` 1q for p, q P N with p ` q ° 1. Let Γ be a
discrete group and ⇢ : Γ Ñ G a representation with finite kernel and discrete
image, preserving a nonempty properly convex open subset Ω of Hp,q.

(1) Let ⇢1 : Γ Ñ G be a strongly irreducible representation such that ⇢1pΓq
contains a proximal element. If ⇢1 is coarsely uniformly contracting
in spacelike directions with respect to p⇢,Ωq, then the action of Γ on
G by right-and-left multiplication via p⇢, ⇢1q is properly discontinuous.
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(2) Let u : Γ Ñ g be a ⇢-cocycle. If u is coarsely uniformly contracting
in spacelike directions with respect to Ω, then the affine action of Γ
on g » R

pp`q`1qpp`qq{2 via p⇢, uq is properly discontinuous.

See Section 2.4 for the notions of proximality and strong irreducibility.
We shall prove the infinitesimal statement (2) in Section 5.3 and the state-
ment (1) in Section 5.4.

5.2. A preliminary lemma: actions on convex subsets of H
p,q. For

x P H
p,q, we denote by T`1

x H
p,q the set of unit spacelike tangent vectors at x;

it is isometric to the quadric tv P R
p,q | xv, vyp,q “ `1u.

Lemma 5.4. Let Γ be a discrete group and ⇢ : Γ Ñ Opp, q ` 1q a represen-
tation with finite kernel and discrete image, preserving a nonempty properly
convex open subset Ω of Hp,q

Ä PpRp,q`1q. For any compact subset D of Ω,

(1) all accumulation points of the ⇢pΓq-orbit of D are contained in BHp,q;
(2) there exists a bounded family of compact sets Kx Ä T`1

x H
p,q, for x

ranging over D, such that for all but finitely many � P Γ,

⇢p�q ¨ D Ä

£

xPD
expxpR`

Kxq;

(3) in particular, if p�nqnPN goes to infinity in Γ (i.e. leaves every finite
subset of Γ), then for any sequences pxnqnPN, px1

nqnPN of D we have
dHp,qpxn, ⇢p�nq ¨ x1

nq Ñ `8.

Proof. (1) Suppose by contradiction that there are sequences pxnqnPN of D
and p�nqnPN of Γ such that the �n are pairwise distinct and for yn :“ ⇢p�nq¨xn
the sequence pynqnPN converges to some y P H

p,q. We can lift the xn P H
p,q

to vectors pxn P pHp,q
Ä R

p,q`1, i.e. xpxn, pxnyp,q`1 “ ´1. Both the pxn and the
⇢p�nq ¨ pxn stay in a compact subset of Rp,q`1 and p⇢p�nq ¨ pxnqnPN converges
to a unit timelike vector px. On the other hand, since ⇢ has finite kernel
and discrete image, there exists a vector v P R

p,q`1 such that p⇢p�nq ¨ vqnPN
is unbounded in R

p,q`1. (Indeed, at least one vector of any given basis of
R
p,q`1 must satisfy this property.) Up to passing to a subsequence, we may

assume that the direction of ⇢p�nq ¨ v converges to some null direction `.
There exists " ° 0 such that all segments rpxn ´ "v, pxn ` "vs Ä R

p,q`1
r t0u

project to segments �n contained in Ω. The images ⇢p�nq¨�n, which are again
contained in Ω, converge to the full projective line spanned by px and `. This
contradicts the proper convexity of Ω. Thus the ⇢pΓq-orbit of D does not
have any accumulation point in H

p,q.
(2) Let y be an accumulation point of the orbit ⇢pΓq ¨ D, and consider

x P D. By (1) we have y P BHp,q, and so y cannot be seen from x in a
timelike direction since timelike geodesics do not meet BHp,q. It cannot be
seen in a lightlike direction either: otherwise, the tangent plane to BHp,q at
y contains the interval rx, yq Ä Ω, and any small perturbation rx1, yq still lies
in Ω — but x1 can be chosen so that near y this perturbation crosses BHp,q,
which would contradict Ω Ä H

p,q. Therefore y P BHp,q is seen from x in a
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spacelike direction. We conclude using the compactness of the accumulation
set of the ⇢pΓq-orbit of D.

(3) This is a direct consequence of (1) and (2). ⇤

5.3. Properness for affine actions on g “ opp, q ` 1q. We now prove
Theorem 5.3.(2). As in Sections 2.3 and 5.1, we view g “ opp, q ` 1q as
the space of Killing fields on H

p,q. As in Section 3, we denote by FpOq
the set of compact subsets of O Ä Ω, endowed with the Hausdorff topology
for the restriction of the Hilbert metric dΩ of Section 2.1. Note that in
Definition 5.1.(2), up to restricting the set O Ä Ω we may always choose
it to be compact modulo ⇢pΓq. Theorem 5.3.(2) therefore reduces to the
following.

Proposition 5.5. Let Γ be a discrete group, ⇢ : Γ Ñ G “ Opp, q ` 1q a
representation with finite kernel and discrete image, preserving a properly
convex open subset Ω of Hp,q, and u : Γ Ñ g a ⇢-cocycle. Suppose that u is
coarsely uniformly contracting in spacelike directions with respect to p⇢,Ωq,
with pO, Z, c, c1q as in Definition 5.1.(2) and ⇢pΓqzO compact. Choose a
continuous family of norms p} ¨ }xqxPO on TxH

p,q which is ⇢-invariant in the
sense that }⇢p�q˚v}⇢p�q¨x “ }v}x for all � P Γ, all x P O, and all v P TxH

p,q.
Then the map

⇡ : g ›Ñ FpOq
Y fi›Ñ

 

x P O | }pZ ´ Y qpxq}x is minimal
(

is well defined and takes any compact subset of g to a compact subset of
FpOq. Moreover, ⇡ is equivariant with respect to the affine action of Γ on g

via p⇢, uq and the action of Γ on FpOq via ⇢. In particular, the affine action
of Γ on g via p⇢, uq is properly discontinuous.

The proof follows closely that of Proposition 3.6.

Proof. Let D Ä H
p,q be a compact fundamental domain for the action of

Γ on O via ⇢. By Lemma 5.4.(2), there is a compact set D1
Ä O such

that any x P D sees any point of O r D1 in a spacelike direction belonging
to Kx Ä T`1

x H
p,q, for some compact set Kx staying away from the null

directions. By compactness, there exists R ° 0 such that

|gp,qx pw, vq| § R }w}x
for all w P TxH

p,q and v P Kx with x P D, where g
p,q is the pseudo-

Riemannian metric of Hp,q from Section 2.2. Consider y P OrD1: it belongs
to ⇢p�q ¨D for some � P Γ. By equivariance, for any x P D, the point y sees x
in a spacelike direction in Ky :“ ⇢p�q˚K⇢p�q´1¨y, and |gp,qy pw, vq| § R }w}y
for all w P TyH

p,q and v P Ky. Applying Proposition 2.3 to the pair px, yq,
we obtain that for any vector field V defined at both x and y,

d

dt

ˇ̌
ˇ
t“0

dHp,q

`
expxptV pxqq, expyptV pyqq

˘
• ´R }V pxq}x ´ R }V pyq}y ;
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in particular, if V is coarsely c-lipschitz in spacelike directions (Definition 5.1.(2)),
then

(5.1) c dHp,qpx, yq ` c1
• ´R }V pxq}x ´ R }V pyq}y.

A vector field is coarsely c-lipschitz in spacelike directions if and only if its
sum with any Killing field is. Therefore, for any Y P g, by applying (5.1) to
V “ Z ´ Y and using c † 0, we find

R }pZ ´ Y qpyq}y • |c| dHp,qpx, yq ´
`
c1 ` R }pZ ´ Y qpxq}x

˘
.

The term c1 ` R }pZ ´ Y qpxq}x is independent of y and remains bounded
as Y varies in a compact set, while the term |c| dHp,qpx, yq is independent
of Y and goes to `8 as y goes to infinity in O, by Lemma 5.4.(3). Since
Z is continuous, this shows that ⇡ is well defined and takes compact sets to
compact sets.

The equivariance of ⇡ follows from that of Z: for any � P Γ and x P O,

}
`
Z ´ pAdp⇢p�qqY ` up�qq

˘
p⇢p�q ¨ xq}⇢p�q¨x

“ }⇢p�q˚pZpxqq ` up�qp⇢p�q ¨ xq ´ pAdp⇢p�qqY ` up�qqp⇢p�q ¨ xq}⇢p�q¨x
“}⇢p�q˚ppZ ´ Y qpxqq}⇢p�q¨x “ }pZ ´ Y qpxq}x.

By equivariance of ⇡, since the action of Γ on FpOq via ⇢ is properly discon-
tinuous, so is the affine action of Γ on g via p⇢, uq. ⇤

5.4. Properness for actions on G “ Opp, q`1q by right-and-left multi-

plication. Theorem 5.3.(1) is an immediate consequence of Proposition 3.2
and of the following.

Proposition 5.6. Let Γ be a discrete group and ⇢ : Γ Ñ G “ Opp, q ` 1q
a representation with finite kernel and discrete image, preserving a properly
convex open subset Ω ‰ ? of Hp,q. Let ⇢1 : Γ Ñ G be a strongly irreducible
representation such that ⇢1pΓq contains a proximal element. If ⇢1 is coarsely
uniformly contracting in spacelike directions with respect to p⇢,Ωq (Defini-
tion 5.1.(1)), then ⇢1 is coarsely uniformly contracting with respect to p⇢,Xq
(Definition 3.1), where X :“ G{pOppq ˆ Opq ` 1qq is the Riemannian sym-
metric space of G endowed with the G-invariant metric dX of (2.8).

See Section 2.4 for the notions of proximality and strong irreducibility. In
the proof we shall also use the notation �1 and µ1 from Section 2.4 (loga-
rithms of the dominant eigenvalue and singular value).

Proof. By Definition 5.1.(1) of coarse uniform spacelike contraction, there
exist a ⇢pΓq-invariant subset O ‰ ? of Ω and a p⇢, ⇢1q-equivariant map
f : O Ñ H

p,q that is coarsely C-Lipschitz in spacelike directions, for some
C † 1.

Let x P X be a point which is not fixed by any element ⇢p�q ‰ ˘Id

for � P Γ. This exists since the set of fixed points in X of any element
g P Gr t˘Idu is a submanifold of positive codimension.
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Consider the orbit OX :“ ⇢pΓq ¨ x Ä X, in natural bijection with Γ.
Let us check that the p⇢, ⇢1q-equivariant map fX : OX Ñ X taking every
⇢p�q ¨ x to ⇢1p�q ¨ x is coarsely C-Lipschitz. If x0 “ res P X is the basepoint
used in Section 2.5, then the triangle inequality implies |dXpg1 ¨ x, g2 ¨ xq ´
dXpg1 ¨x0, g2 ¨x0q| § 2 dXpx, x0q for all g1, g2 P G. Therefore, in order to show
that fX is coarsely C-Lipschitz, we only need to find C 1 P R such that for all
�1, �2 P Γ,

dX
`
⇢1p�1q ¨ x0, ⇢1p�2q ¨ x0

˘
§ C dX

`
⇢p�1q ¨ x0, ⇢p�2q ¨ x0

˘
` C 1.

By the definition (2.8) of dX, this means finding C 1 P R such that for all
� P Γ,

(5.2) µ1p⇢1p�qq § C µ1p⇢p�qq ` C 1.

We first check that for any � P Γ with ⇢1p�q proximal,

(5.3) �1p⇢1p�qq § C �1p⇢p�qq.
For such an element � P Γ, let ⇠˘

⇢1p�q P BHp,q be the attracting and repelling

fixed points of ⇢1p�q. Suppose by contradiction that fpOq Ä p⇠`
⇢1p�qqK Y

p⇠´
⇢1p�qqK. Since fpOq is ⇢1pΓq-invariant, so is the Zariski closure Z of fpOq in

PpRp,q`1q. Any irreducible component Zi of Z is contained either in p⇠`
⇢1p�qqK

or in p⇠´
⇢1p�qqK, hence spans a proper subspace of Rp,q`1. The union of these

subspaces is preserved by ⇢1pΓq, contradicting strong irreducibility. Therefore
there exists x P O such that fpxq R p⇠`

⇢1p�qqK Y p⇠´
⇢1p�qqK, and Lemma 2.5.(2)

gives

lim
nÑ`8

1

n
dHp,qpfpxq, ⇢1p�qn ¨ fpxqq “ �1p⇢1p�qq.

On the other hand, by Lemma 5.4, for any large enough n P N the points x

and ⇢p�nq ¨ x are on a spacelike line, hence

dHp,qpfpxq, ⇢1p�qn ¨ fpxqq § C dHp,qpx, ⇢p�qn ¨ xq ` C2

by assumption on f , for some C2 P R independent of n. Using Lemma 2.5.(1),
we obtain �1p⇢1p�qq § C �1p⇢p�qq, i.e. (5.3) holds.

Let us now find C 1 P R such that (5.2) holds for all � P Γ. Let F Ä Γ

and C⇢1 • 0 be given by Fact 2.6, and let

C 1 :“ C⇢1 ` Cmax
fPF

µ1p⇢pfqq P R.

For any � P Γ, we can find f P F such that ⇢1p�fq is proximal and µ1p⇢1p�qq §

�1p⇢1p�fqq`C⇢1 . By (5.3), we have �1p⇢1p�fqq § C �1p⇢p�fqq. For any g P G

we have µ1pgq “ log }g}, hence µ1pgq • �1pgq and µ1pgg1q § µ1pgq ` µ1pg1q
for all g, g1 P G. We deduce

µ1p⇢1p�qq § C �1p⇢p�fqq ` C⇢1 § C µ1p⇢p�fqq ` C⇢1 § C µ1p⇢p�qq ` C 1. ⇤

Remark 5.7. At the level of proofs, the parallel between g and G broke down
to some extent between Sections 5.3 and 5.4. In Section 5.3, we were not
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able to use the spacelike-contracting vector fields on O Ä Ω Ä H
p,q to pro-

duce contracting vector fields on a Hadamard (or even Finsler) manifold X,
to which we might have applied Proposition 3.6; but we could mimic Propo-
sition 3.6 by building an equivariant projection to FpOq using the pseudo-
distance dHp,q on H

p,q. In Section 5.4, starting from spacelike contracting
maps from O Ä Ω Ä H

p,q to H
p,q, we were not able to mimic Proposition 3.2

and build a well-behaved projection to FpOq; but we could produce coarsely
contracting maps in the symmetric space X “ G{pOppq ˆOpq`1qq, endowed
with an appropriate G-invariant Finsler metric, and apply Proposition 3.2
directly. It is unclear to us whether or how the two arguments could be
unified.

6. Uniform spacelike contraction for right-angled Coxeter

groups

In this section we prove Theorems 1.5 and 1.7 using the sufficient condi-
tions for properness provided by Theorem 5.3.

Here is an outline of the argument: for a right-angled Coxeter group Γ on k

generators, we consider a certain natural one-parameter family p⇢tqtPp´8,´1s
of deformations of the Tits canonical representation of Γ into GLpk,Rq. Vin-
berg’s theory [V] gives a natural properly convex domain Ut of PpRkq on
which Γ acts properly discontinuously via ⇢t. We truncate Ut to get a smaller

properly convex ⇢tpΓq-invariant domain Ωt of PpRkq that lives in a copy qHp,q
t

of H
p,q for some p, q P N with p ` q ` 1 “ k. We may assume that the

signature pp, qq stays constant for t in a certain open interval in p´8,´1q.
Up to conjugating everything to the standard copy of Hp,q, we may therefore
meaningfully ask if certain equivariant maps between these domains Ωt are
uniformly contracting in spacelike directions: we show that this is indeed the
case (Proposition 6.6) for some explicit piecewise projective maps, and we
also prove a vector-field counterpart. This allows us to apply Theorem 5.3
to prove Theorems 1.5 (hence 1.1) and 1.7.

6.1. Basic setting. We fix a right-angled Coxeter group

(6.1) Γ “ ΓS “ x�1, . . . , �k | p�i�jqmi,j “ 1 @i, jy,
where mi,i “ 1 and mi,j “ mj,i P t2,8u for all i ‰ j. Any subset S1

of the generating set S “ t�1, . . . , �ku defines a subgroup ΓS1 of Γ, with a
presentation obtained from (6.1) by restricting to i, j such that �i, �j P S1.
We assume Γ to be irreducible, which means that S cannot be written as a
nontrivial disjoint union S “ S1 \ S2 such that ΓS1 and ΓS2 commute.

If the number k of generators is 1, then Γ » Z{2Z and Theorems 1.5
and 1.7 are trivial. If k “ 2, then Γ is an infinite dihedral group; it admits
properly discontinuous actions on the line H

1, to which we can apply Propo-
sition 4.1 with pm, pq “ p0, 1q and conclude using Propositions 3.2 and 3.6
just as in Section 4. (The actions on Op1, 1q0 and on op1, 1q thus produced
are conjugate to the standard Γ-action on the line.)
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From now on, we will assume k • 3. In particular, Γ is infinite.

6.2. The canonical representation and its deformations. The matrix
M´1 :“ p´ cosp⇡{mi,jqq1§i,j§k, with the convention ⇡{8 “ 0, is called the
Gram matrix of Γ. It defines a (possibly degenerate) symmetric bilinear form
x¨, ¨y´1 on R

k. Let pe1, . . . , ekq be the standard basis of Rk. The canonical (or
geometric) representation ⇢´1 : Γ Ñ AutpRk, x¨, ¨y´1q Ä GLpk,Rq, studied
by Tits and others, is given by

⇢´1p�iq : v fi›Ñ v ´ 2xv, eiy´1 ei, 1 § i § k.

Note that M´1 :“ Idk ´ N , where N “ pNi,jq1§i,j§k satisfies Ni,j “ 1 if
mi,j “ 8, and 0 otherwise. This matrix N is irreducible with nonnegative
entries. By the Perron–Frobenius theorem, there is a unique (up to scale)
eigenvector vPF of N with positive coordinates, corresponding to the highest
eigenvalue �PF ° 0. In fact �PF •

?
2 since, by irreducibility, N contains a

principal submatrix
´

0 1 0
1 0 1
0 1 0

¯
or

´
0 1 1
1 0 1
1 1 0

¯
.

One way to deform the canonical representation is to consider, for any
t P p´8,´1s, the matrix Mt :“ IdRk ` tN , i.e. Mt “ ppMtqi,jq1§i,j§k with

pMtqi,j “

$
&
%

1 if mi,j “ 1, i.e. i “ j,

0 if mi,j “ 2,

t § ´1 if mi,j “ 8.

This matrix Mt still defines a symmetric bilinear form x¨, ¨yt on R
k, and one

can define a representation ⇢t : Γ Ñ AutpRk, x¨, ¨ytq by

⇢tp�iq : v fi›Ñ v ´ 2xv, eiyt ei, 1 § i § k.

Similar deformations were studied e.g. in [Kr].
Note that detpMtq is a polynomial in t which is not identically zero (con-

sider t “ 0), hence it is nonzero outside some finite set E of exceptional
values of t. For any t P p´8,´1s r E, the form x¨, ¨yt is nondegenerate.

The general theory of reflection groups developed by Vinberg applies to
the representations ⇢t. For any t P p´8,´1s r E, the orthant

r∆t “ tv P R
k | xv, eiyt § 0 @1 § i § ku

satisfies vPF P Intp r∆tq: for any i we have xvPF, eiyt † 0 since this is the i-th
coordinate of MtpvPFq “ p1 ` t�PFqvPF and t�PF § ´

?
2. Each generator �i

of Γ acts via ⇢t by reflection in the hyperplane Kerpx¨, eiytq, called the i-th

wall of r∆t. By [V, Th. 2 & 5], the representation ⇢t is faithful and discrete,
and the open cone

rUt :“ Int
`
⇢tpΓq ¨ r∆t

˘

is convex. The action of Γ on rUt via ⇢t is properly discontinuous, with

fundamental domain r∆t X rUt. The image Ut of rUt in the projective space
PpRkq is an open convex subset of PpRkq, and the action of ⇢t on Ut is
properly discontinuous with fundamental domain ∆t X Ut, where ∆t is the

image of r∆t in PpRkq. We shall call Ut the Tits–Vinberg domain of ⇢tpΓq.
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By [V, Prop. 19], the representation ⇢t is irreducible, hence Ut is properly
convex, i.e. its closure contains no projective line. In fact the following holds
(see also [Ma, Th. 2.18] or [DGKLM]).

Proposition 6.1. For any t P p´8,´1s r E, the representation ⇢t : Γ Ñ
GLpk,Rq is strongly irreducible.

Proof. Since Γ is an irreducible right-angled Coxeter group on k • 3 genera-

tors, its Gram matrix contains a principal submatrix
´

1 -1 -1
-1 1 -1
-1 -1 1

¯
or

´
1 -1 0
-1 1 -1
0 -1 1

¯
.

The corresponding 3-generator subgroup of Γ is isomorphic to the group
generated by the reflections in the sides of a triangle of H2 with three ideal
vertices (resp. two ideal vertices and one right angle). In particular, Γ con-
tains a nonabelian free group on two generators.

For t P p´8,´1s r E, suppose by contradiction that ⇢t preserves a finite
collection V “ tV1, . . . , Vmu of subspaces 0 à Vi à R

k. We may assume that
each intersection Vi X Vj is either t0u or another V`. The action of Γ on R

k

via ⇢t permutes the Vi; let Γ1 be the finite-index subgroup of Γ preserving
each Vi.

We claim that dimpViq • 2 for all i. Indeed, if Vi were a line Rv, then
⇢tpΓq ¨ v would span R

k (since ⇢t is irreducible), hence would contain a basis
of Rk, which would be a simultaneous eigenbasis for all elements of ⇢tpΓ1q,
making Γ1 abelian. But Γ contains a nonabelian free group, hence cannot
be virtually abelian: this shows that dimpViq • 2 for all i.

Up to reordering we may assume r :“ dimV1 “ minViPV dimVi • 2. For
any 1 § j § k we have ⇢tp�jq ¨ V1 P V . If ⇢tp�jq ¨ V1 ‰ V1, since ⇢tp�jq is a
reflection in a hyperplane, we get that V1X⇢tp�jq¨V1 P VYt0u has dimension
r ´ 1 ° 0, contradicting the minimality of r. Thus ⇢tp�iq ¨ V1 “ V1 for all j,
contradicting the irreducibility of ⇢t. ⇤

Remark 6.2. For t P p´8,´1srE, the convex cone r∆t is the nonnegative
span of the vectors e1

1
ptq, . . . , e1

kptq given by the columns of the matrix ´M´1

t ,
i.e. xe1

iptq, ejyt “ ´�ij for all 1 § i, j § k. Its projectivization ∆t is a simplex
with vertices re1

1
ptqs, . . . , re1

kptqs.

6.3. Construction of convex sets Ωt in pseudo-Riemannian hyper-

bolic spaces. We now fix an open interval I Ä p´8,´1qrE. For t P I the
symmetric bilinear form x¨, ¨yt is nondegenerate of constant signature; since
Γ is infinite this signature has the form pp, q ` 1q for some p • 1 and q • 0.
The group AutpRk, x¨, ¨ytq identifies with Opp, q`1q and we can consider the
pseudo-Riemannian hyperbolic space

qHp,q
t :“ trvs P PpRkq | xv, vyt † 0u,

defined like H
p,q in Section 2.2. The Tits–Vinberg domain Ut Ä PpRkq is

properly convex, but not contained in qHp,q
t in general. With the eventual

goal of applying Theorem 5.3, we now look for a ⇢tpΓq-invariant properly

convex open subset Ωt Ä Ut contained in qHp,q
t .
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As in (2.1), using the nondegenerate symmetric bilinear form x¨, ¨yt we

view the dual convex cone rU˚
t of rUt as a subset of R

k (rather than of the
dual vector space of Rk):

rU˚
t “

 

x P R
k | xx, vyt † 0 @v P rUt

(
.

We also set
rΩt :“ rUt X rU˚

t ,

and denote by U˚
t and Ωt the respective images of rU˚

t and rΩt in PpRkq. For
e1
1
ptq, . . . , e1

kptq P R
k as in Remark 6.2, let us consider the polyhedral cone

rΣt :“ r∆t X tv P R
k | xv, e1

iptqyt § 0 @iu “ r∆t X ∞k
i“1

R
`ei

“
 

v P ∞k
i“1

R
`ei

ˇ̌
xv, eiyt § 0 @i

(
.(6.2)

The image Σt of rΣt in PpRkq is obtained from the simplex ∆t by truncating
each vertex re1

iptqs by the hyperplane dual to re1
iptqs. We observe that Σt is

nonempty: for instance, rvPFs P IntpΣtq since vPF has positive entries.

Lemma 6.3. For any t P I, the set Ωt is nonempty and properly convex.
It is the intersection of all nonempty, ⇢tpΓq-invariant properly convex open

subsets of Ut, and satisfies Ωt “ Intp⇢tpΓq ¨Σtq Ä qHp,q
t . Moreover, Σt Ä qHp,q

t .

Remark 6.4. Similar convex domains for reflection groups in pseudo-Rie-
mannian hyperbolic spaces H

p,q were previously investigated, in somewhat
different language, by Dyer [Dy] and Dyer–Hohlweg–Ripoll [DHR], moti-
vated by the study of Kac–Moody algebras.

Proof of Lemma 6.3. Let us first show that rUt X ´ rU˚
t “ ?. By ⇢tpΓq-

invariance, it is enough to check r∆tX´ rU˚
t “ ?. Points of ´ rU˚

t pair positively

with the e1
i P B rUt, i.e. can be written

∞k
i“1

siei with si † 0. If x is such a
point and |sj | “ min1§i§k |si|, then xx, ejyt “ sj `t

∞

mr,j“8 sr ° 0, showing

x R r∆t. Thus rUt X ´ rU˚
t “ ?.

It follows that rUt X ´ rU˚
t spans a ⇢tpΓq-invariant linear subspace of Rk of

dimension † k, hence reduces to t0u by irreducibility of ⇢t. It also follows
that Ωt “ Ut X U˚

t .
Let us check that Ωt ‰ ?. The group ⇢tpΓq contains elements which are

proximal in PpRkq, for instance ⇢tp�i�jq for any i ‰ j with mi,j “ 8: this
is seen by a direct computation, as in the basis pe1, . . . , ekq the matrix of
⇢tp�iq is the identity minus twice the i-th row of Mt. Let Λt Ä PpRkq be
the closure of the set of attracting fixed points of all proximal elements of

⇢tpΓq; necessarily Λt Ä Ut and we can lift Λt to a ⇢tpΓq-invariant union rΛt

of rays in B rUt. Since ⇢tpΓq preserves both rUt and rU˚
t while rUt X ´ rU˚

t “ t0u,
it follows that rΛt Ä B rU˚

t . Therefore rUt and rU˚
t (not just their boundaries)

intersect, otherwise the intersection of their closures would span a nonzero,
⇢tpΓq-invariant proper subspace of Rk, contradicting the irreducibility of ⇢t.

The nonnegative span of rΛt projects down to a properly convex subset Ct
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of Ut X U˚
t “ Ωt, and IntpCtq ‰ ? by irreducibility of ⇢tpΓq. In particular,

Ωt ‰ ?.
To prove Lemma 6.3, it is enough to show that Σt Ä qHp,q

t and that

(6.3) IntpCtq Ä
piq

Ωt Ä
piiq

Intp⇢tpΓq ¨ Σtq Ä
piiiq

IntpCtq.

Any nonempty ⇢tpΓq-invariant convex open subset of Ut contains IntpCtq,
hence (i) holds. Next, as observed above, rU˚

t Ä
∞k

i“1
R°0ei, hence r∆tX rU˚

t Ä

rΣt, and so ∆t X U˚
t Ä Σt. Since Ωt Ä ⇢tpΓq ¨ ∆t X U˚

t is open, (ii) follows.
Before proving (iii), we make the following observation: for any rvs P

Ut r Ct, if C1
t Ä Ut denotes the smallest ⇢pΓq-invariant convex subset of Ut

containing rvs, then rvs P BC1
t. Indeed, if not, then for r ° 0 large enough

the closed uniform r-neighborhood of Ct in the Hilbert metric of IntpC1
tq

would be a closed ⇢pΓq-invariant subset which is convex [Bu, (18.12)], strictly
contained in C1

t, and contains rvs, contradicting the minimality of C1
t.

We now prove (iii). First, let us check that IntpΣtq Ä Ct. Suppose by
contradiction that there exists rvs P IntpΣtq r Ct. By the above observation,
rvs lies in the boundary of C1

t, the smallest ⇢pΓq-invariant convex subset of
Ut containing rvs. Since C1

t is ⇢pΓq-invariant, the vectors wi :“ ⇢tp�iq ¨ v “
v ´ 2xv, eiyt ei satisfy rwis P BC1

t for all i. By definition of Σt we can write
v “ ∞

i siei where si ° 0 ° xv, eiyt for all 1 § i § k. In particular, v belongs
to the positive span of the wi: indeed, by substitution,

kÿ

i“1

si

´xv, eiyt
wi “

´
2 `

kÿ

i“1

si

´xv, eiyt

¯
v,

where si
´xv,eiyt ° 0 by assumption. On the other hand, the wi span R

k since

ei “ 1

2xv,eiyt pv ´ wiq for all i. Therefore rvs belongs to the interior of C1
t.

But we showed rvs P BC1
t: contradiction. Thus, IntpΣtq Ä Ct as announced.

It follows that Σt Ä Ct, hence (iii) holds because Ct is ⇢tpΓq-invariant and
IntpCtq “ IntpCtq. All inclusions of (6.3) are equalities.

Finally, let us prove Σt Ä qHp,q
t . Any v “ ∞k

i“1
siei P rΣt “ pR`qk X r∆t

satisfies xv, vyt “ ∞k
i“1

si xv, eiyt § 0 since si • 0 • xv, eiyt by definition

of r∆t. There must exist positive coordinates sj , s` ° 0 such that mj,` “ 8,
otherwise xv, vyt>0. One of the summands sj xv, ejyt or s` xv, e`yt must be
negative, since xv, ejyt “ sj ` t

∞

mi,j“8 si § sj ` ts` and xv, e`yt “ s` `
t
∞

mi,`“8 si § s` ` tsj add up to a number § psj `s`q ` tps` `sjq † 0. Thus

in fact xv, vyt † 0, which proves Σt Ä qHp,q
t . ⇤

Remark 6.5. The region ⇢tpΓq ¨ Σt, a union of compact subsets of qHp,q
t , is

closed in qHp,q
t if Γ is word hyperbolic. Indeed, the condition that no point

of ∆t with infinite stabilizer survives in Σt can be shown to be equivalent to
Moussong’s criterion [Mo] for hyperbolicity of Γ. The action of Γ via ⇢t on
this region is proper and cocompact, and indeed the subgroup ⇢tpΓq satisfies
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a notion of convex cocompactness in qHp,q
t recently introduced in [DGK3] (see

also [DGK4, DGKLM]).

6.4. Constructing equivariant contracting maps. We now choose a

smooth family p◆t : qHp,q
t Ñ H

p,qqtPI of isometries to the standard copy of Hp,q.
This can be done for instance by writing Mt “ Pt´Qt with Pt, Qt symmetric
positive semidefinite, of respective ranks p and q ` 1, commuting with Mt;
if Ut P SOpkq takes the decomposition ImpPtq ‘ ImpQtq of Rk to R

p ‘ R
q`1,

then ◆t :“ UtpP 1{2
t ´ Q

1{2
t q takes x¨, ¨yt to the standard symmetric bilinear

form of Rp,q`1. In our case, Ut can be chosen independent of t, as all matrices
Mt share the same eigendirections.

By conjugating by ◆t, for t P I we obtain representations

⇢‚
t :“ ◆t ˝ ⇢tp¨q ˝ ◆´1

t : Γ ›Ñ Opp, q ` 1q
which now all have the same target group. Define the sets pΩ‚

t ,Σ
‚
t ,U

‚
t ,∆

‚
t q :“

p◆tpΩtq, ◆tpΣtq, ◆tpUtq, ◆tp∆tqq and the ⇢‚
t -cocycle

ut :“
d

d⌧

ˇ̌
ˇ
⌧“t

⇢‚
⌧⇢

‚
t

´1 : Γ ›Ñ opp, q ` 1q.

Since ⇢‚
t is strongly irreducible (Proposition 6.1), Theorems 1.5 and 1.7 will

be a direct consequence of Theorem 5.3 and of the following.

Proposition 6.6. For any t † s in I, the representation ⇢‚
s is coarsely

uniformly contracting in spacelike directions with respect to p⇢‚
t ,Ω

‚
t q, and

the ⇢‚
t -cocycle ut is uniformly contracting in spacelike directions with respect

to Ω
‚
t (Definition 5.1).

In order to prove Proposition 6.6, we now construct p⇢‚
t , ⇢

‚
⌧ q-equivariant

maps ft,⌧ : Ω‚
t Ñ H

p,q and p⇢‚
⌧ , u⌧ q-equivariant vector fields Z⌧ on H

p,q with
appropriate contraction properties in spacelike directions, for ⌧ P rt, ss Ä I.

Observe that xM´1
& M⌧v, wy& “ xv, wy⌧ for all v, w P R

k and ⌧, & P rt, ss,
by definition of the symmetric bilinear forms x¨, ¨y& and x¨, ¨y⌧ . In particular,
the matrix M´1

& M⌧ P GLpk,Rq takes ∆⌧ to ∆& , and the reflection wall
PpKerpx¨, eiy⌧ qq of ⇢⌧ p�iq to the reflection wall PpKerpx¨, eiy&qq of ⇢&p�iq for
any 1 § i § k. We can therefore extend the pM´1

& M⌧ q|∆⌧
to a family of

p⇢⌧ , ⇢&q-equivariant maps

Φ⌧,& : ⇢⌧ pΓq ¨ ∆⌧ ›Ñ ⇢&pΓq ¨ ∆&

for ⌧, & P rt, ss; these maps are continuous along the walls PpKerpx¨, eiy⌧ qq,
hence induce homeomorphisms U⌧ Ñ U& ; they depend smoothly on the pair
p⌧, &q and satisfy the compatibility relation Φ⌧ 1,⌧2 ˝ Φ⌧,⌧ 1 “ Φ⌧,⌧2 for all
⌧, ⌧ 1, ⌧2 P rt, ss. The maps

f⌧,& :“ ◆& ˝ Φ⌧,& |Ω⌧
˝ ◆´1

⌧ : Ω
‚
⌧ ›Ñ PpRkq

are then p⇢‚
⌧ , ⇢

‚
& q-equivariant, continuous, and by construction f⌧,⌧ “ IdΩ‚

⌧

for every ⌧ . The family pft,⌧ q⌧Prt,ss is smooth, and for every ⌧ P rt, ss the
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vector field Z⌧ defined on Ω
‚
⌧ by

Z⌧ pxq :“ d

d&

ˇ̌
ˇ
&“⌧

f⌧,&pxq

is continuous and p⇢‚
⌧ , u⌧ q-equivariant by Lemma 5.2. Moreover,

(6.4) Z⌧ pft,⌧ pxqq “ d

d&

ˇ̌
ˇ
&“⌧

ft,&pxq if ft,⌧ pxq P Ω
‚
⌧ .

By Definition 5.1 of spacelike uniform contraction, in order to prove Propo-
sition 6.6, it is enough to establish the following.

Proposition 6.7. For any t † s in I, there exists c † 0 such that

(a) Z⌧ is c-lipschitz in spacelike directions on Ω
‚
⌧ for any ⌧ P rt, ss,

(b) ft,s|Ω‚
t

takes values in H
p,q, and is coarsely ecps´tq-Lipschitz in space-

like directions on the orbit O‚
t :“ ⇢‚

t pΓq ¨ r◆tpvPFqs Ä Ω
‚
t .

6.5. Proof of Proposition 6.7. For ⌧ P rt, ss, let x¨, ¨y⌧ , x¨, ¨y0, and xx¨, ¨yy⌧
be the symmetric bilinear forms on R

k defined by the matrices M⌧ , Id, and
M´1

⌧ respectively. We have xv, wy⌧ “ xxM⌧v,M⌧wyy⌧ for all v, w P R
k, hence

the following diagram commutes:

(6.5)

`
R
p,q`1, x¨, ¨yp,q`1

˘ `
R
k, x¨, ¨yt

˘ `
R
k, xx¨, ¨yytq

˘

`
R
p,q`1, x¨, ¨yp,q`1

˘ `
R
k, x¨, ¨y⌧

˘ `
R
k, xx¨, ¨yy⌧

˘
ft,τ Φt,τ

Mt
◆t

Jt,τ

M⌧◆⌧

where Jt,⌧ :“ M⌧Φt,⌧M
´1

t satisfies by construction

(6.6) Jt,⌧ |
Mtp r∆tq “ Id

Mtp r∆tq.

The horizontal arrows of (6.5) are isometries, but not the vertical ones. The
symmetric bilinear form xx¨, ¨yy⌧ still has signature pp, q ` 1q, and we can
consider the corresponding pseudo-Riemannian hyperbolic space

«

H
p,q
⌧ :“ trvs P PpRkq | xxv, vyy⌧ † 0u “ M⌧

qHp,q
⌧ ,

with boundary B «

H
p,q
⌧ “ M⌧ B qHp,q

⌧ (we see the matrix M⌧ P GLpk,Rq as acting
both on R

k and on PpRkq). The key point is the following observation.

Lemma 6.8. For any t † s in I, there exists c † 0 such that, as ⌧ P rt, ss
increases, the boundary of

«

H
p,q
⌧ expands outwards everywhere with normal

velocity • ´c{2 ° 0, for the spherical metric (4.2) on PpRkq.

Proof. Let NullpM´1
⌧ q :“ tv P R

k | xxv, vyy⌧ “ 0u be the preimage of B «

H
p,q
⌧

and NullpM⌧ q :“ tv P R
k | xv, vy⌧ “ 0u the preimage of B qHp,q

⌧ in R
k. The

intersection of NullpM´1
⌧ q with the x¨, ¨y0-unit (Euclidean) sphere S is the

0-level set, in S, of the function v fiÑ xv,M´1
⌧ vy0. Since S is compact, the
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desired uniform expansion property for B «

H
p,q
⌧ can therefore be written simply:

(6.7)
d

d&

ˇ̌
ˇ
&“⌧

xv,M´1

& vy0 † 0 for all v P NullpM´1

⌧ q X S.

Note that (6.7) is equivalent to

(6.8)
d

d&

ˇ̌
ˇ
&“⌧

@
w,M&w

D
0

° 0 for all w P NullpM⌧ q X S.

Indeed, d

d&

ˇ̌
&“⌧

M´1
& “ ´M´1

⌧

`
d

d&

ˇ̌
&“⌧

M&

˘
M´1

⌧ , hence under the change of

variable w “ M´1
⌧ v, condition (6.7) becomes (6.8). (In other words, expan-

sion of B «

H
p,q
⌧ is equivalent to shrinking of B qHp,q

⌧ .)
But M⌧ “ Id ` ⌧N and ⌧ † ´1, and so condition (6.8) is clearly sat-

isfied: w P NullpM⌧ q means xw,Nwy0 “ ´1

⌧
xw,wy0, and therefore implies

d

d&

ˇ̌
&“⌧

xw,M&wy0 “ xw,Nwy0 ° 0. ⇤

Proof of Proposition 6.7.(a). Consider t † s in I. By Lemma 6.8, there

exists c † 0 such that, as ⌧ P rt, ss increases, the boundary B «

H
p,q
⌧ expands

outwards everywhere with normal velocity • ´c{2 ° 0. Since horizontal
arrows of (6.5) are isometries, using (6.6) and Lemma 4.5, this shows that the
vector field Z⌧ “ d

d&

ˇ̌
&“⌧

f⌧,& is c-lipschitz in spacelike directions in restriction

to (any convex subset of) ∆
‚
⌧ X H

p,q, for any ⌧ P rt, ss.
Since Z⌧ is p⇢‚

⌧ , u⌧ q-equivariant (Definition 3.4) and since the sum of a
c-lipschitz vector field and a Killing field is still c-lipschitz (Proposition 2.3),
the vector field Z⌧ is also c-lipschitz in spacelike directions in restriction to
⇢‚
⌧ p�q ¨ ∆‚

⌧ X H
p,q for any � P Γ.

From this we see that Z⌧ is c-lipschitz in spacelike directions on Ω
‚
⌧ . In-

deed, Σ‚
⌧ is a fundamental domain for the ⇢‚

t -action of Γ on the closure of
the properly convex set Ω

‚
⌧ in H

p,q, by Lemma 6.3. If x, y P Ω
‚
⌧ are on a

spacelike line, then we can find points x “ x0, x1, . . . , xm “ y in Ω
‚
⌧ , lined

up in this order, such that for any 1 § i § m there exists ⌘i P Γ with
rxi´1, xis Ä ⇢‚

⌧ p⌘iq ¨ Σ‚
⌧ . Since Z⌧ is continuous, and c-lipschitz in spacelike

directions on each ⇢‚
⌧ p⌘iq¨Σ‚

⌧ , Proposition 2.3 applied to each rxi´1, xis yields

d

dr

ˇ̌
ˇ
r“0

dHp,q

`
expxprZ⌧ pxqq, expyprZ⌧ pyqq

˘

“
mÿ

i“1

d

dr

ˇ̌
ˇ
r“0

dHp,q

`
expxi´1

prZ⌧ pxi´1qq, expxi
prZ⌧ pxiqq

˘

§ c

mÿ

i“1

dHp,qpxi´1, xiq “ c dHp,qpx, yq. ⇤

Proof of Proposition 6.7.(b). Due to (6.6), Lemma 6.8 also shows that ft,s
takes values in H

p,q on the whole set ∆
‚
t X H

p,q, hence also on U‚
t X H

p,q

by equivariance, and a fortiori on its subset Ω
‚
t . In order to prove Proposi-

tion 6.7.(b), we observe that Φt,⌧ |∆t “ M´1
⌧ Mt always fixes the point rvPFs,
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for any ⌧ P rt, ss. Therefore, x⌧ :“ ◆⌧ prvPFsq P IntpΣ‚
⌧ q Ä Ω

‚
⌧ satisfies

(6.9) ft,⌧ pxtq “ x⌧ for all ⌧ P rt, ss.
Since x⌧ P Ω

‚
⌧ for all ⌧ , by Lemma 5.4.(2), there exists a finite subset F

of Γ such that for any ⌧ P rt, ss and any � P ΓrF , the point x⌧ sees ⇢‚
⌧ p�q¨x⌧

in a spacelike direction. Then

d

d&

ˇ̌
ˇ
&“⌧

dHp,q

`
ft,&pxtq, ft,&p⇢‚

t p�q ¨ xtq
˘

“ d

dr

ˇ̌
ˇ
r“0

dHp,q

`
expx⌧

prZ⌧ px⌧ qq, exp⇢‚
⌧ p�q¨x⌧

prZ⌧ p⇢‚
⌧ p�q ¨ x⌧ qq

˘

§ c dHp,qpx⌧ , ⇢‚
⌧ p�q ¨ x⌧ qq “ c dHp,q

`
ft,⌧ pxtq, ft,⌧ p⇢‚

t p�q ¨ xtq
˘
,

where we use (6.4), Proposition 6.7.(a), and (6.9) in this order. Integrating
over ⌧ P rt, ss, we obtain

dHp,qpft,spxtq, ft,sp⇢‚
t p�q ¨ xtqq § ecps´tq dHp,qpxt, ⇢‚

t p�q ¨ xtq
for all � P Γ r F . Up to an additive constant, this is still true of all � P Γ.
In other words, ft,s is coarsely ecps´tq-Lipschitz in spacelike directions on
O‚

t “ ⇢‚
t pΓq ¨ xt. ⇤
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