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ABSTRACT. For any right-angled Coxeter group I' on k generators, we
construct proper actions of I' on O(p, ¢ + 1) by right-and-left multipli-
cation, and on the Lie algebra o(p, ¢ + 1) by affine transformations, for
some p,q € N with p+¢+1 = k. As a consequence, any virtually special
group admits proper affine actions on some R": this includes e.g. sur-
face groups, hyperbolic 3-manifold groups, examples of word hyperbolic
groups of arbitrarily large virtual cohomological dimension, etc. We
also study some examples in cohomological dimension two and four, for
which the dimension of the affine space may be substantially reduced.

1. INTRODUCTION

Tiling space with regular shapes is an old endeavor, both practical and
ornamental. It is also at the heart of crystallography, and Hilbert, prompted
by recent progress in that discipline, asked in his 18th problem for a better
understanding of regular tilings of Fuclidean space R™. In 1910, Bieberbach
[Bi] gave a partial answer by showing that a discrete group I' acting properly
by affine Euclidean isometries on R™ has a finite-index subgroup acting as a
lattice of translations on some affine subspace R”. Moreover, m = n if and
only if the quotient I'\R"™ is compact, and the number .4;, of such cocompact
examples I up to affine conjugation is finite for fixed n. Crystallographers
had known since 1891 that .45 = 17 and .43 = 219 (or 230 if chiral meshes
are counted twice), a result due independently to Schoenflies and Fedorov.

The picture for affine actions becomes much less familiar in the absence
of an invariant Euclidean metric. The Auslander conjecture [Au| states that
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if I' acts properly discontinuously and cocompactly on R™ by affine trans-
formations, then I' should be virtually (i.e. up to finite index) solvable, or
equivalently [Mi], virtually polycyclic. This conjecture has been proved up to
dimension six [FG, T2, AMS5] and in certain special cases [GoK, T1, AMS4|,
but remains wide open in general.

In 1983, Margulis [M1, M2| constructed the first examples of proper ac-
tions of nonabelian free groups T' on R3, answering a question of Milnor [Mi.
These actions do not violate the Auslander conjecture as they are not cocom-
pact. They preserve a flat Lorentzian structure on R? and the corresponding
affine 3-manifolds are now known as Margulis spacetimes. Drumm [Dr| con-
structed more examples of Margulis spacetimes by building explicit funda-
mental domains in R? bounded by polyhedral surfaces called crooked planes;
it is now known [CDG, DGK2, DGKS5| that all Margulis spacetimes are ob-
tained in this way. Full properness criteria for affine actions by free groups on
R? were given by Goldman-Labourie-Margulis [GLM] and subsequently by
the authors [DGK1, DGK2, DGK5|. In higher dimensions, Abels—-Margulis—
Soifer [AMS2, AMS3| have studied proper affine actions by free groups whose
linear part is Zariski-dense in an indefinite orthogonal group, showing that
such actions exist if and only if the signature is, up to sign, of the form
(2m,2m—1) with m > 1. In [S1], Smilga generalized Margulis’s construction
and showed that for any noncompact real semisimple Lie group G there exist
proper actions, on the Lie algebra g ~ RY™(G) | of nonabelian free discrete
subgroups of G x g acting affinely via the adjoint action, with Zariski-dense
linear part; Margulis spacetimes correspond to G = PSL(2,R) ~ SO(2,1)o.
More recently, Smilga gave a sufficient condition [S2] (also conjectured to be
necessary), given a real semisimple Lie group G and a linear representation
V of G, for the semidirect product G x V' to admit a nonabelian free discrete
subgroup acting properly on V and whose linear part is Zariski-dense in G.

1.1. New examples of proper affine actions. The existence of proper
affine actions by nonabelian free groups suggests the possibility that other
finitely generated groups which are not virtually solvable might also admit
proper affine actions. However, in the more than thirty years since Mar-
gulis’s discovery, very few examples have appeared. In particular, until now,
all known examples of word hyperbolic groups acting properly by affine trans-
formations on R" were virtually free groups. In this paper, we give many
new examples, both word hyperbolic and not, by establishing the following.

Theorem 1.1. Any right-angled Coxeter group on k generators admits proper
affine actions on RF(:=1)/2

Right-angled Coxeter groups, while simple to describe in terms of gen-
erators and relations, have a rich structure and contain many interesting
subgroups. For example, the fundamental group of any closed orientable
surface of negative Euler characteristic embeds as a finite-index subgroup
in the right-angled pentagon group. Further, since any right-angled Artin



PROPER AFFINE ACTIONS FOR RIGHT-ANGLED COXETER GROUPS 3

group embeds into a right-angled Coxeter group [DJ], we obtain the following
answer to a question of Wise [W2, Problem 13.47].

Corollary 1.2. Any right-angled Artin group admits proper affine actions
on R™ for some n > 1.

See e.g. [BB] for interesting subgroups of right-angled Artin groups, for
which Corollary 1.2 provides proper affine actions. Note that, in general,
if a group I' admits a subgroup I'" of index m with a proper affine action
on R™, then the induced action of T' on (R?)7/T" ~ R™ ig itself affine and
proper. Haglund-Wise [HW1] proved that the fundamental group of any
special nonpositively curved cube complex embeds into a right-angled Artin
group, and so we obtain the following.

Corollary 1.3. Any virtually special group admits a proper affine action
on R™ for some n > 1.

Virtually special groups include:
e all Coxeter groups (not necessarily right-angled) [HW2];
¢ all cubulated word hyperbolic groups, using Agol’s virtual specialness
theorem [Ag];
e therefore, all fundamental groups of closed hyperbolic 3-manifolds,
using [Sag, KM]: see [BW];
e the fundamental groups of many other 3-manifolds, see [W1, Li, PW].
Januszkiewicz-Swiatkowski [JS] found word hyperbolic right-angled Cox-
eter groups of arbitrarily large virtual cohomological dimension; see also [O]
for another construction. Hence another consequence of Theorem 1.1 is:

Corollary 1.4. There exist proper affine actions by word hyperbolic groups
of arbitrarily large virtual cohomological dimension.

The Auslander conjecture is equivalent to the statement that a group act-
ing properly discontinuously by affine transformations on R" is either virtu-
ally solvable, or has virtual cohomological dimension < n. In the examples
from Theorem 1.1, the dimension n = k(k — 1)/2 of the affine space grows
quadratically in the number of generators k, while the virtual cohomological
dimension of the Coxeter group acting is naively bounded above by k (and
is even much smaller in the examples above [JS, O]). Hence, Theorem 1.1 is
far from giving counterexamples to the Auslander Conjecture.

1.2. An outline: properness from contraction properties. In order
to describe our approach to proving Theorem 1.1, start with a Lie group G
acting by isometries on a complete metric space X. Consider a discrete group
' and a representation (p, p’) : I' = G x G such that I" acts properly discon-
tinuously on X via p. The action of I' on G by right-and-left multiplication

via (p, p'), given by
(1.1) veog:=p(Mgp(y) "
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is not necessarily properly discontinuous: for instance, if p’ = hp(-)h~! for
some h € GG, then h is a global fixed point. On the other hand, in some cases
the action (1.1) may be shown to be properly discontinuous by exhibiting a
map f : X — X which is uniformly contracting (i.e. with Lipschitz constant
< 1) and (p, p’)-equivariant: f o p(v) = p/(y) o f for all v € T. The basic
idea is that the (p, p’)-action of I' on G projects equivariantly down to the
p-action on X via the fized point map g — Fix(g~' o f), which is well defined
due to the contraction property. Proper discontinuity of the action on the
base X then implies proper discontinuity upstairs on G: see Section 3.1.
This principle suggests an infinitesimal analogue, as in [DGK1], for (p, p)
very close to the diagonal of G x G and f close to Idx. Let g = T.G be the
Lie algebra of G, with GG acting on g via the adjoint representation. Given a
representation (p,u) : I' - G x g, the affine action of I' on g given by

(1.2) yev:=Ad(p(7))v + u(y)

is in many cases obtained from (1.1) by a limiting and rescaling process,
thinking of G x g ~ T'G as the normal bundle to the diagonal in G x G.
Such an affine action on g will be properly discontinuous (because g will
project onto X in an equivariant way similar to the above) if we can build
a uniformly contracting vector field on X satisfying an appropriate (p,u)-
equivariance property (Sections 3.2-3.3).

The affine actions we construct for Theorem 1.1 will all be of the form (1.2)
for G = O(p,q + 1) an indefinite orthogonal group. Indeed, a right-angled
Coxeter group I' on k generators (say, infinite and irreducible) admits explicit
families of discrete embeddings p : T' — O(p, g+ 1) as a reflection group, with
p+ ¢ + 1 = k, which have long been studied by Tits, Vinberg, and others
(see Section 6.2).

The above strategy of ensuring properness from contraction works well
when ¢ = 0: in this case we take X to be the Riemannian symmetric space
of G = O(p, 1), namely the real hyperbolic space HP. For representations
p,p' : T'— G as reflection groups as above, the action of I on HP via p is by
reflections in the walls of a polytope P, of H?, and similarly for p’. Natural
(p, p')-equivariant maps f are constructed by taking P, projectively to Py,
wall to wall, and extending equivariantly by the reflections. The map f will
turn out to be uniformly contracting as soon as, roughly speaking, P, is
obtained by pushing the walls of P, closer together. See Section 3, and the
examples of Section 4.

For the general case of Theorem 1.1, we cannot consider only ¢ = 0, as
most right-angled Coxeter groups do not embed in O(p, 1). In the case ¢ > 0,
the orthogonal group G = O(p, g + 1) has higher real rank, and we are faced
with a dilemma. On the one hand, the contraction strategy, as described
above, starts with a metric G-space X, such as the Riemannian symmetric
space X¢g of G. On the other hand, a perhaps more natural space in which to
see the geometry of the Tits—Vinberg representations p : I' - G = O(p, ¢+1)
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is in a pseudo-Riemannian symmetric space, namely the pseudo-Riemannian
analogue H?? < P(R¥) of HP in signature (p, ¢). Indeed:

(i) The generators of I' naturally act via p by reflections in the walls of a
polytope P, of HPY, depending continuously on p.

(i) We may build natural (p, p’)-equivariant maps f by taking P, projec-
tively to Py, walls to walls, just as in the HP case.

(iii) Since the “distances” in HPY are computed by a simple cross-ratio
formula, similar to H? in the projective model, the “contraction” prop-
erties of our map f (for some suitable notion of contraction) are easy
to check locally in the fundamental domain P,.

By contrast, for the action on the Riemannian symmetric space X, there
are no obvious choices of fundamental domains (i) or of explicit equivariant
maps (ii) with which to work. Further, any G-invariant metric on Xg in-
volves the singular values of k x k matrices, making local contraction (iii)
potentially difficult to check. Hence, we abandon the Riemannian symmetric
space X, and prove Theorem 1.1 by employing a version of the contraction
strategy outlined above, adjusted and reinterpreted appropriately to work
in the pseudo-Riemannian space HP? (see Section 5). Despite the obvious
hurdle that HP-¢ is not a metric space, enough structure survives to apply our
approach: a key step will be to check that p(I')-orbits in HP*? escape mostly
in spacelike directions, in which their growth resembles that of actions on HP
(Lemma 5.4).

In the remainder of this introduction, we give a more precise account of
our parallel results concerning actions on GG and on g, starting with the case
of g yielding Theorem 1.1.

1.3. Proper actions on Lie algebras. Let G be a Lie group, acting on
its Lie algebra g via the adjoint action, and let I" be a discrete group. We
consider affine actions of I' on g determined, as in (1.2), by a representation
(pyu) : T' > G x g ~ TG where p: I' - G is a group homomorphism and
u: ' — g a p-cocycle, i.e. a map satisfying

(1.3) w(my2) = u(m) + Ad(p(1)) u(r2)

for all 71,72 € T'. For instance, for any smooth path (p;)ier in Hom(T', G)
(where I is an open interval) and any ¢t € I, the map u; : I' — g given by
u(7) = gel,— pr(Mpe(N) ™!
that for all vy e I,

(1.4) pr(y) = U0 g (1) as T 1.

The cocycles in this paper will all be constructed in this way. (In general
there may exist cocycles which are not integrable, i.e. not tangent to any
such deformation path: see [LM, §2|.) We prove the following.

is a pg-cocycle; it is the unique pg-cocycle such

Theorem 1.5. For any irreducible right-angled Cozeter group I' on k gen-
erators, there exist p,q € N with p + ¢+ 1 = k and a smooth path (p;)er
in Hom(T', G) of faithful and discrete representations into G := O(p,q + 1)
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(where I # & is an open interval) such that for any t € I, the affine action
of ' on g ~ RF(F=1)/2 yiq (pt, %L:t pspt_l) is properly discontinuous.

Since any right-angled Coxeter group is a direct product of irreducible
ones, we obtain Theorem 1.1 by applying Theorem 1.5 to each irreducible
factor and then taking the direct sum of the resulting affine actions.

We also use similar techniques as in Theorem 1.5 to construct, in some
specific cases, examples of proper affine actions on g = o(p,q + 1) where
p + g+ 1 is smaller than the number k of generators of I'.

Proposition 1.6. (a) For any even k = 6, the group T’ generated by reflec-
tions in the sides of a convex right-angled k-gon of H? admits proper affine
actions on g = 0(3,1) ~ RS,

(b) The group I" generated by reflections in the faces of a 4-dimensional reg-
ular right-angled 120-cell admits proper affine actions on g = 0(8,1) ~ R36.

The group I' is virtually the fundamental group of a closed surface of
genus > 2 in (a), and of a closed hyperbolic 4-manifold in (b). Both examples
follow from a general face-coloring method explained in Proposition 4.1. The
baby case of this method (involving a single color) also gives a direct way to
construct Margulis spacetimes, see Remark 4.3.(4).

Whereas the examples of proper affine actions by free groups of Margulis,
Drumm, Abels-Margulis—Soifer, and Smilga all relied to some degree on the
idea of free groups playing ping pong on R", for Theorem 1.5 and Proposi-
tion 1.6 we rather use a sufficient condition for properness based on the idea
of contraction explained in Section 1.2 (see Propositions 3.6 and 5.5). This
condition generalizes a properness criterion from [DGK1, DGK2, DGK5| for
actions on 0(2,1) ~ psl(2,R) in terms of uniformly contracting vector fields
on H?. From this properness criterion, the topology of the quotient manifolds
(Margulis spacetimes) may be read off directly. Similarly here, the proper-
ness of the affine actions of Proposition 1.6 will be derived from uniformly
contracting vector fields on HP (for p = 3,8), and again the topology of the
quotient manifolds will be clear from our methods (see Remark 3.8). How-
ever, the contraction arguments in HP¢ for the general case of Theorem 1.5
are too coarse to control the topology of the quotients.

We note that the affine actions in Theorem 1.5 preserve a nondegenerate
symmetric bilinear form on g, namely the Killing form, of signature given
by (2.6) below. This induces a flat pseudo-Riemannian metric on the quo-
tient manifolds.

1.4. Proper actions on Lie groups. Following [DGK1, DGK2|, and in
the spirit of Section 1.2, we view the proper affine actions on the Lie alge-
bra g in Theorem 1.5 as “infinitesimal analogues” of proper actions on the
corresponding Lie group G for the action of G x G by right-and-left multipli-
cation (1.1). We prove the following “macroscopic version” of Theorem 1.5.

Theorem 1.7. For any irreducible right-angled Cozeter group I' on k gen-
erators, there exist p,q € N with p + ¢ + 1 = k and a smooth path (pg)er
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in Hom(T', G) of faithful and discrete representations into G := O(p,q + 1)
(where I # & is an open interval) such that for any t # s in I, the action of
I' on G by right-and-left multiplication via (py, ps) is properly discontinuous.

In general, it is easy to obtain proper actions on GG by right-and-left multi-
plication by considering a discrete group I', a representation p € Hom(T', G)
with finite kernel and discrete image, and a representation p’ € Hom(T', G)
with bounded image (for instance the constant representation, with image
{e} = G): such proper actions are often called standard. The point of Theo-
rem 1.7 is to build nonstandard proper actions on GG, where both factors are
faithful and discrete — and in fact, can be arbitrarily close to each other.

We also construct examples of proper actions on G = O(p,q + 1) where
p+ ¢+ 1 is smaller than the number k of generators of I', in the same cases
as for Proposition 1.6.

Proposition 1.8. (a) For any even k = 6, the group I' generated by reflec-
tions in the sides of a convex right-angled k-gon in H? admits proper actions
on G = O(3,1) by right-and-left multiplication via pairs (p,p’) € Hom(T', G)?
with p, p' both faithful and discrete.

(b) The group T' generated by reflections in the faces of a 4-dimensional
regular right-angled 120-cell admits proper actions on G = O(8,1) by right-
and-left multiplication via pairs (p, p') € Hom(T', G)? with p, p' both faithful
and discrete.

Full properness criteria for proper actions on O(n, 1) via (p, p’) with p geo-
metrically finite were provided in [K2, GuK] in terms of uniform contraction
in H" (see Remark 3.9).

Remark 1.9. For p > 1, the group G = O(p, ¢+ 1) has four connected com-
ponents. The proper actions on G constructed in Theorem 1.7 and Proposi-
tion 1.8 all yield proper actions on the identity component Gj.

For p = 2 and ¢ = 0, the identity component Gy = O(2, 1) is the so-called
anti-de Sitter 3-space AdS®, a Lorentzian analogue of H°. The group of
orientation-preserving isometries of AdS® identifies with the quotient of the
four diagonal components of G x G by {(Id, Id), (—Id, —Id)}, acting on G by
right-and-left multiplication. Many examples of proper actions on AdS® were
constructed since the 1980s, see in particular [KR, Sal, K2, GuK, GKW, DT].

Examples of nonstandard cocompact proper actions on O(n, 1) by right-
and-left multiplication for n > 2 were constructed in [Gh, Ko, using defor-
mation techniques. After we announced the results of this paper, Lakeland—
Leininger |LL| found examples of nonstandard cocompact proper actions on
0(3,1) and O(4, 1) by right-angled Coxeter groups which cannot be obtained
from standard proper actions by deformation. Note that for cocompact
proper actions on O(n, 1) by right-and-left multiplication via (p, p’), one of p
or p/ has finite kernel and discrete image [K1], but not both (see [T] for n = 2
and use Mostow rigidity for n > 2). On the other hand, in the noncompact
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proper actions that we construct in Theorem 1.7 and Proposition 1.8, both
p, o' have finite kernel and discrete image.

1.5. Plan of the paper. In Section 2 we recall some background on pseudo-
Riemannian hyperbolic spaces HP'¢. In Section 3 we state and prove some
sufficient criteria for properness, expressed in terms of uniform contraction
in metric spaces (Propositions 3.2 and 3.6). In Section 4 we give examples
in H? and H®, establishing Propositions 1.6 and 1.8. In Section 5 we state
and prove analogous criteria for general HP? (Theorem 5.3). In Section 6
we prove Theorems 1.5 (hence also 1.1) and 1.7 by constructing appropriate
families of representations (p¢)ier to which Theorem 5.3 applies.
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2. NOTATION AND REMINDERS

In this section we set up some notation and recall a few definitions and
basic facts on properly convex domains in projective space, on the pseudo-
Riemannian hyperbolic spaces HP*?, and on eigenvalues and singular values
of elements of GL(RPF4T1).

2.1. Properly convex domains in projective space. Let V be a real
vector space of dimension > 2. Recall that an open subset 2 of P(V) is said
to be properly convex if it is convex and bounded in some affine chart of
P(V). There is a natural metric dg on €2, the Hilbert metric:

1
dQ(fIf, y) = 5 log [CL, z,Y, b]

for all distinct z,y € Q, where [-,-,-,-] is the P!(R)-valued cross-ratio on a
projective line, normalized so that [0,1,¢,0] = ¢, and where a,b are the
intersection points of 02 with the projective line through z and y, with
a,z,y,b in this order. The metric space (2, dgq) is proper (i.e. closed balls
are compact) and complete.

The group Aut(Q2) := {g € PGL(V) | g - Q = Q} acts on Q by isometries
for dg. As a consequence, any discrete subgroup of Aut(2) acts properly
discontinuously on 2.

Let = R* be a convex open cone lifting 2. There is a unique lift
of Aut(Q) to SLE(V) that preserves ). The dual conver cone of € is by
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definition -
O ={peV*|pv) <0 YuveQ},

where 0 is the closure of 2 in V< {0}. The image Q* of Q* in P(V*) does not
depend on the chosen lift (~2; it is a nonempty properly convex open subset of
P(V*), called the dual convex set of €2, and preserved by the dual action of
Aut(Q2) on P(V*). We can use any nondegenerate symmetric bilinear form
¢,y on V to view Q* and Q* as subsets of V and P(V) respectively:

(2.1) O ~ {fweV | (wv)y<0 Vv 66} and Q* := P(Q¥).

Remark 2.1. It follows from the definition that if ' < Q are nonempty
properly convex open subsets of P(R"™!), then the corresponding Hilbert
metrics satisfy do/(z,y) = do(x,y) for all z,y € Q. When  is an ellipsoid,
(Q,dgq) is isometric to the real hyperbolic space.

2.2. The pseudo-Riemannian space H9. For p,q € N with p > 1, let
RPH! e RPHITL endowed with a symmetric bilinear form (-, ), 441 of sig-
nature (p,q + 1). We set

HP9 = {[v] € P(RP9T1) | (v, V)pqs1 <0},

The form (:,-)p q+1 induces a pseudo-Riemannian metric g? of signature
(p,q) on HPY. Explicitly, the metric gP? at a point [v] is obtained from
the restriction of {-,-),4+1 to the tangent space at v/y/—(v,v)p 441 of the
hypersurface R
HPY = {v e RPIH | (v, 0)p g41 = —1},

a double cover of HP? with covering group {Id, —Id}. The sectional curvature
of g’ is constant negative, hence H”»¢ can be thought of as a pseudo-Rieman-
nian analogue of the real hyperbolic space HP = HP in signature (p, q).

The isometry group of the pseudo-Riemannian space HP+? is PO(p, g+1) =
O(p,q + 1)/{1d, —1d}. The point stabilizers are conjugate to O(p, q), hence
HP? ~ PO(p,q +1)/O(p, q).

The set HP = HP? is a properly convex open subset of P(RP!), and the
Hilbert metric dgr on H? coincides with the standard hyperbolic metric. On
the other hand, for ¢ > 1 the space HP? is not convex in P(RP4*1). The
boundary of HP¢ in P(RP4*1), given by

OB = {[v] € PRI | o, 0)pg0 = O},

is a quadric which, in any Euclidean chart of P(RP9*!), has p — 1 positive
and ¢ negative principal curvature dirgctions at each point.

Consider z € HP? lifting to £ € HP?. A nonzero vector V, € T,HP4
and the geodesic line £ it generates are called spacelike (resp. lightlike, resp.
timelike) if g?(V,,V,) is positive (resp. zero, resp. negative). The line £
is then the intersection of HP? with a projective line meeting ¢HP-? in two
(resp. one, resp. zero) points: see Figure 1. For instance, if V,, € T,HP? ~
T@]ﬁlpvq ~ 7+ < RPIHL gatisfies (Va, Va)pg+1 = 1, then L is spacelike, with
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unit-speed parametrization
(2.2) t —> exp, (tVy) = [cosh(t) T + sinh(t) V| € HP.

In general, the totally geodesic subspaces of HP'? are exactly the intersections
of HP with projective subspaces of P(RP41). As in [GIMo], we shall use

FIGURE 1. Left: H3 = H*® with a geodesic line ¢ (neces-
sarily spacelike). Right: H?! with three geodesic lines /5
(spacelike), ¢1 (lightlike), and ¢y (timelike).

the following convention.

Notation 2.2. If z,y € HPY are distinct points belonging to a spacelike
line, we denote by dpp.q(z,y) > 0 the pseudo-Riemannian distance between
x and y, obtained by integrating /gP over the geodesic path from x to y.
If z,y € HP? are equal or belong to a lightlike or timelike line, we set
dpp.a(x,y) = 0.

Using (2.2), we see that for any distinct points z,y € HP? lying on a
spacelike line L,

(2.3) dpp.a (z,y) = arccosh [{Z, §)pq+1] > 0

where Z,§ € HPY are respective lifts of 2, y. The following Hilbert geometry
interpretation, well-known in the HP setting, also holds in HP'¢ because L is
a copy of H': normalizing the cross-ratio [-,-, -, ] as in Section 2.1,

1
(2.4) dpp.a(z,y) = ilog [a,z,y,b] > 0

where a,b are the two intersection points of JHPY with the projective line
through = and y, with a,x,y,b in this order. The following (see Figure 2) is
a pseudo-Riemannian analogue of the first variation formula in Riemannian
geometry.

Proposition 2.3. For any x,y € HP? on a spacelike line and for any tangent
vectors Z, € T,HP? and Z, € T,,HPY,

d
a’t=0 de’q ( €XDPy (th)a eXpy(tZy)) = —gﬁ’q (Zx, V:By) — gZ’q (Zy’ Vym)7
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where VZ € THHPY is the unit vector at z pointing towards 7.

Proof. Let 7,7 € HP9 be respective lifts of 2,y with (Z,Z)pq+1 = U, Yp.g+1
= —1 and (Z,9)pg+1 < 0. We view Z, and Vi as vectors of RP4F! via
the canonical identifications T,HPY ~ Tilﬁlp’q ~ 1 < RP9H! and sim-
ilarly for Z, and V,;°. The vectors V¢ and V,/ are unit spacelike. Let
§ := dgra(x,y) > 0. By (2.2) we may write § = cosh(d)Z + sinh(§) V;/
and T = cosh(d) § + sinh(d) V", and sinh(d) = 4 /{Z,9)3 .1 — 1 by (2.3).
For t € R, the point exp,(tZ,) € HP? of (2.2) lifts to the vector coshtz +
sinh tZ, in HP? = RPH! and similarly for exp, (tZy). Then (2.3) yields

_ d
sinh(4d) e ’tZOde,q (exp,(tZs), exp,(tZ,))

d
= &L:O cosh (de,q ( exp, (tZz), eXpy(tZy)))

d ~ ) ~ .
= &L:O — (cosh(t) & + sinhtZ,, cosh(t) y + sinh(t)Z,)p.q+1
= _<Zﬂf7 :i/\> - <§3\7 Zy>p7q+1
= —(Zy,cosh(0) T + sinh(0) V) g+1 — {cosh(d) § + sinh(0) V,', Zy)p g1
= — Slnh(5)<Zx, ny>p7q+1 — Sinh(5)<Vyx, Zy>p7q+1,

and the result follows from the definition of the metric gP4. O

0 s Y

FI1GURE 2. Illustration of Proposition 2.3

Note that when ¢ > 1, the function dyr.q is not a distance function on HP9
in the usual sense: for many triples it does not satisfy the triangle inequality.
See [GIMo, § 3] for further discussion of this issue.

Remark 2.4. If (X|g) is a Hadamard manifold (i.e. a simply connected
finite-dimensional Riemannian manifold of nonpositive curvature), then for
any z,y € X and Z, € T;X and Z, € T)X, one has as in Proposition 2.3:

d
&‘t:o dX( exp, (tZz), expy(tZy)) = —8:(Zs, ny) - gy(Zzp V;f)

where VZZ, € T.X is the unit vector at z pointing towards z’. This follows
from the first variation formula, and the absence of conjugate points [KN,

Ch. VIII, Cor.2.4 & Th.5.1].

2.3. The Lie algebra o(p,q+ 1). Since PO(p,q + 1) = Isom(H?), the Lie
algebra o(p, ¢+ 1) identifies with the set of Killing fields on HPY, i.e. of vector
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fields whose flow is isometric: an element Y € o(p, g + 1) corresponds to the
Killing field

d
(2.5) Tl exp(tY) - x € T,HP,
see e.g. [De, Ex.17.9]. This identification is canonical, and we will use it
throughout Sections 5 and 6, writing e.g.

u(y)(z) € T, HP

for the value of the Killing field associated to u(y) at a point € HP¢, when
(pyu) : I' > O(p,g+ 1) x o(p,q + 1) is a representation.

The Lie algebra o(p, ¢+ 1), endowed with its Killing form &, 441, identifies
with R?? where

(2.6) W)= (plg+1), @ +d¢" —p+a)/2).

The adjoint action of O(p, ¢ + 1) on o(p, g + 1) preserves kp441. Using geo-
metric properties of actions on HP¢, we shall construct proper affine actions
on o(p,q+1) ~ RF.

2.4. Relating the pseudo-metric dygr.s with the highest eigenvalue.
For any g € GL(RPT™1) we denote by Ai(g) = -+ = Apiqt1(g) (vesp.
pi(g) = -+ = pprq+1(g)) the logarithms of the moduli of the eigenvalues
(resp. singular values) of g. If | - || denotes the operator norm associated to
the standard Euclidean norm on RP*9+! then

(2.7) p1(g) = log|g|.

An element g € GL(RPTI*L) is called prozimal in P(RPTIT1) or proi-
mal for short, if A;(g) > A2(g); equivalently, g admits a unique attract-
ing fixed point in P(RPT4*L). If g € O(p,q + 1) = GL(RPT4*L)) then
Ai(9) = —Aprgt2—i(g) and pi(g) = —piprq+2—i(g) for all i. In particular,
any proximal element g € O(p, g + 1) has, not only an attracting fixed point,
but also a repelling fixed point in P(RP+9+1); these points belong to JHP.

In Section 5.4 we shall use the following classical observations.

Lemma 2.5. Let g€ O(p,q+ 1) and let y € HPY.
1
(1) We have limsup — dgr.qa(y, g"y) < A1(g).
n

n—-+00
(2) If g is proximal, with attracting and repelling fized points 5} e OHP1,
and if y ¢ (66)* 0 (&)", then  duwaly,6"y) —> Mg).

Proof. (1) By writing the Jordan decomposition of g as the commuting prod-
uct of a hyperbolic, a unipotent, and an elliptic element, we see that [g"|
is bounded above by €19 times a polynomial function of n, hence so is

|{v, g"0)p g+1| where [v] = y. We conclude using (2.3).
(2) Again, by (2.3), it suffices to study the growth of (v, ¢"v)p 4+1 Where
[v] = y. The projective hyperplane (fgir)L is the projectivization of the
sum of the generalized eigenspaces of g for eigenvalues other than e¥*1(9).
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Therefore the assumption on y means that v, when decomposed over the gen-
eralized eigenspaces of g, has nonzero components v*, v~ along f; and &/ .
These components are not orthogonal. In the pairing (v, g"v)p 4+1, the term
W g e = @M@ vty 1y therefore dominates all the others,
and grows like ") as n — 400, We conclude using (2.3). O

We shall also use the following fact, which combines a result of Abels—
Margulis—Soifer [AMS1, Th.5.17] with a small compactness argument of
Benoist: see the two lemmas of [Be, §4.5]. Recall that a representation
into GL(RP4*1) is called strongly irreducible if its image does not preserve
any nonempty finite union of nonzero proper linear subspaces of RP:4+1,

Fact 2.6 (JAMSI1, Bel). Let ' be a discrete group and p' : T — GL(RP:4*+1)
a strongly irreducible representation such that p'(T') contains a proximal ele-
ment. Then there exist a finite set F' < I' and a constant Cy = 0 such that
for any v € T, we may find f € F such that p'(vf) is prorimal and satisfies

M (vf) = ' (7)) = Cp.

2.5. A Finsler metric on the Riemannian symmetric space. Let X =
G/(O(p) x O(g+ 1)) be the Riemannian symmetric space of G = O(p, ¢+ 1),
with basepoint xp = [e] € X. In Section 5.4 we shall use the following
G-invariant Finsler metric dx on X:

(2.8) dx(g - 20,9’ - wo) == pa(g™'g") = log[g™"g/|

for all g, ¢’ € G, where || is the Euclidean operator norm on RPT41! as above.
This is indeed a metric: dx vanishes only on the diagonal of X x X because
1] vanishes only on G N O(p+qg+1) = O(p) x O(g + 1); symmetry follows
from the equality u1(g) = u1(g~!) for g€ G = O(p,q + 1); and dx satisfies
the triangle inequality because the operator norm | - | is submultiplicative.

3. METRIC CONTRACTION AND PROPERNESS

In this section we give some sufficient conditions for the properness of
actions of discrete groups on O(p, 1) and o(p, 1); we shall use these conditions
to prove Propositions 1.6 and 1.8 in Section 4. Extensions to O(p, ¢+ 1) and
o(p,q+1) will be given in Section 5, and used to prove Theorems 1.5 and 1.7
in Section 6.

In the whole section, we consider, for a topological group G:

e the action of G x G on G by right-and-left multiplication: (g1,¢92)-g =
92991

e if G is a Lie group with Lie algebra g, the affine action of G x g on g
through the adjoint action: (g,2)-Y = Ad(9)Y + Z.

3.1. Actions on groups. Let G be a topological group acting continu-
ously by isometries on a complete metric space (X,d) which is proper (i.e.
closed balls are compact). Given a discrete group I' and a representation
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(p,p'): T — G x G, recall that a map f : X — X is called (p, p’)-equivariant
if for all y e I and = € X

(3.1) flo(y)-z) = p'(7) - f(z).

We shall use the following terminology.

Definition 3.1. Let I' be a discrete group and p : I' — G a representa-
tion defining a properly discontinuous action of I' on X. A representation
p T — G is coarsely uniformly contracting with respect to (p, X) if there
exists a quadruple (O, f,C,C") such that

e O is a nonempty closed p(I')-invariant subset of X

e C'e[0,1) and C” are real numbers,

e /: 0 —Xisa (p,p)-equivariant continuous map such that for any

xz,y € O,
A(f (@), () < Cdlw,y) + C".

In this case we say that f is coarsely C-Lipschitz. If we can take C' = 0,
then we say that f is C-Lipschitz and that p’ is uniformly contracting with
respect to (p, X).

(We use the terminology of contraction with respect to (p, X) rather than
(p, O) since O is not unique and its choice will not play any role in the paper.
It will be important to specify the ambient space X in Proposition 5.6.)

The following general statement, applied to (G, X) = (O(p, 1), HP), will let
us derive properness of certain actions on G by right-and-left multiplication
from coarse uniform contraction on X. By F(O) we will always refer to the
set of compact subsets of a complete proper metric space O, endowed with
the Hausdorff topology. Note that a properly discontinuous action of I' on
O induces a properly discontinuous action of I' on F(QO).

Proposition 3.2. Let G be a topological group acting continuously by isome-
tries on a proper complete metric space (X,d). Let T be a discrete group and
(p,p') : T — G x G a representation such that the action of T on X via p
is properly discontinuous, and such that p' is coarsely uniformly contracting
with respect to (p,X), with (O, f,C,C") as in Definition 3.1. Then the map

Inm: ¢ — F(O)
g +— {zeO|dg-z, f(z)) is minimal }

is well defined and takes any compact set to a compact set. Moreover, 11 is
equivariant with respect to the actions of I' on G by right-and-left multipli-
cation via (p, p'), and on F(O) via p. In particular, the action of T' on G by
right-and-left multiplication via (p, p') is properly discontinuous.

Proof. Choose a basepoint xg € O. For any g € G and x € O, we have

d(g -, f(z)) = d(g-z,g-x0) —d(g - xo, f(x0)) — d(f(z0), f())
(3.2) > (1—-C)d(z,x0) — (C" +d(g - w0, f(x0)))-
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Thus  — d(g - x, f(x)) is a proper function on the proper metric space
(O,d|oxo) for any g € G, and so II is well defined.

The map II takes compact sets to compact sets. Indeed, let € be a
compact subset of G. By continuity of the action, there exists R > 0 such
that for all g € ¥ we have d(g - xo, f(z0)) < R, hence II(g) is contained in
{xeOld(x,z9) < (C'"+2R)/(1—C)} by (3.2).

The equivariance of II follows from that of f: for any vy €I and x € O,

d(p'(1)gp(v) " (p(7)-2), fp(y)2)) = d(p' (Mg, p'(7)-f(2)) = d(g-z, f(z)).

By equivariance of II, since the action of I' on F(QO) via p is properly
discontinuous, so is the action of I' on G by right-and-left multiplication via
(p, p"). Indeed, if € is a compact subset of G, then I1(%) is a compact subset
of F(O). By properness of the action of I' on F(O), there is a finite subset
S < I' such that p(y) - II(€¢) nII(¢) = @ for all vy € I' \. S. By equivariance
of II, we have p'(7)€p(y) "t n € = @ for all y e ' S as well. O

3.2. Equivariance and contraction for vector fields. Suppose now that
G is a finite-dimensional Lie group, X is a Hadamard manifold, and G acts
smoothly by isometries on X.

There is a natural linear map ¥ from the Lie algebra g of G to the space
of Killing fields on X i.e. vector fields on X whose flow is isometric: it takes
Y € g to the vector field ¥(Y) := (z — exp(tY) - x) as in (2.5). For
any (g,Y,z) € G x g x X we have

(3-3) (Ad(g)Y)(g - ) = g«(T(Y)(2)).
Similarly to the notions of equivariance (3.1) and contraction (Defini-
tion 3.1) above, we shall use the following terminology.

d
E|t:0

Definition 3.3. Let (p,u) : I' > G x g be a representation. A vector field
Z on X is (p, u)-equivariant if whenever Z(z) belongs to some ¥(Y') € ¥(g),
the vector Z(p(y) - «) belongs to ¥((p,u)(y) - Y): namely, for all v € I' and
reX,

(3.4) Z(p(y) - x) = p(7)«Z(x) + ¥(u(v))(p(7) - ).

Definition 3.4. Let I' be a discrete group and p : I' — G a representation
defining a properly discontinuous action of I' on X. A p-cocycle u: I' — g is
coarsely uniformly contracting with respect to X if there exists a quadruple
(0, Z, ¢, ) such that

e O is a nonempty closed p(I')-invariant subset of X,

e ¢ <0 and ¢ are real numbers,

e Z7:0 — TXis a (p,u)-equivariant continuous vector field on O such
that for any z,y € O,

(35) S| A (t2@), 00, (20) < cdy) + ¢
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In this case we say that Z is coarsely c-lipschitz. If we can take ¢’ = 0, then

we say that Z is c-lipschitz and that u is uniformly contracting with respect
to X.

Here we use a lowercase [ in lipschitz to emphasize the infinitesimal aspect.
The left-hand side of (3.5) is linear in Z by Remark 2.4 and vanishes by
definition for Z a Killing field. The (p, u)-equivariance of Z entails that both
sides of (3.5) are invariant under replacing (z,y) with (p(7) - z, p(7y) - y).

Definitions 3.3 and 3.4 are motivated by the classical notion of equiv-
ariance (3.1) and by Definition 3.1, via the following construction. This
construction will actually produce all uniformly contracting cocycles ap-
pearing in this paper, and also lies at the heart of [DGK1| with (G,X) =
(SO(2,1),H?).

Lemma 3.5. Consider an open interval I 3 0, a smooth path (p;)rer in
Hom(T",G), and the pg-cocycle u := d% =0 pral. For any smooth family
(fr + X = X),er of maps such that fo = Idx and f; is (po, pr)-equivariant
for all T € I, the derivative Z(x) := % ——o fr(x) is (po,u)-equivariant. If
moreover there exists ¢ € R such that fr is (1 + ¢1)-Lipschitz for all T = 0,
then Z is c-lipschitz. In particular, if ¢ < 0, then u is uniformly contracting
with respect to X.

Proof. For any 7 = 0 and z € X, by equivariance of f, we have

Fr(po(y) - x) = (p-(Mpo(y) ™) po(7) - fr ().
Differentiating both sides with respect to 7 at 7 = 0 yields

Z(po(v) - ) = (Id o po(7))«(Z(2)) + T(u(¥))(po(7) - fo(=)),
hence the equivariance property (3.4).
Suppose that there exists ¢ € R such that f- is (1 + ¢7)-Lipschitz for all
72 0. For any x,y € X, we have

d(fT(:E)’fT(y)) _d(l"y) N i

T 7—0 dT ‘7‘:

cd(r,y) > ([ (@), £ )
Observe that d%‘r=0 exp,(7Z(x)) = Z(x) = % . _o fr(z) and similarly for y.
Therefore, by applying Proposition 2.3 twice, we have

d d

e d (exp,(TZ(x)),exp, (TZ(y))) = o

The desired uniform contraction property follows:

d(fr(2), f-(y))-

7=0

d
e (exp, (1Z(x)), exp, (TZ(y))) < cd(z,y),
showing that Z is c-lipschitz. 0

3.3. Actions on Lie algebras. Here is the infinitesimal counterpart of
Proposition 3.2. Again, we denote by ¥ the natural linear map from the
Lie algebra g of GG to the set of Killing fields on X.
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Proposition 3.6. Let G be a finite-dimensional Lie group acting smoothly
by isometries on a Hadamard manifold X. Let I' be a discrete group and
(p,u) : T' > G x g a representation such that I acts properly discontinuously
on X via p, and such that u is coarsely uniformly contracting with respect
to X, with (O, Z,¢,d) as in Definition 3.4. Then the map

T g — F(O)
Y +— {z€0||Z(z)— ¥(Y)(x)| is minimal}

is well defined and takes any compact set to a compact set. Moreover, T
is equivariant with respect to the affine action of T' on g via (p,u) and the
action of T' on F(O) wvia p. In particular, the affine action of T on g via
(p,u) is properly discontinuous.

Proof. Choose a basepoint g € O. For any vector field V on O and any
x € O, Remark 2.4 implies

Vo)l ~ V@) < S dlexp, (17 (@), exp, (1V (o) ;

in particular, if V' is coarsely c-lipschitz (Definition 3.4), then
(3.6) —[V(zo)| = |[V(2)] < cd(z,20) + .

By Remark 2.4, the sum of a coarsely c-lipschitz vector field and a Killing
field is still coarsely c-lipschitz. Therefore, for any Y € g, by applying (3.6)
toV =27 —9(Y) and using ¢ < 0, we find

1Z(x) = ¥(Y)(2)]| = |e| d(x, 20) = (| Z(w0) = U(Y)(wo)] + ).
Thus x — |Z(x) — ¥(Y)(z)| is a proper function on X for any Y € g, i.e.
7 is well defined. Moreover, since Y — |Z(zg) — ¥(Y)(zo)]| is bounded on
compact sets, m takes compact sets to compact sets. The equivariance of m

follows from that of Z, from the linearity of ¥, and from (3.3): for any 7y € I’
and z € O,

[(Z = @ (Ad(p(7))Y +u(7)))(p(y) - z)|
= |lp()«(Z(x)) + ¥(u())(p(7) - ) — U (Ad(p(7)Y + u(7))(p(7) - )],
=p(7)«(Z(x)) = p(7)«(¥(Y) ()| = [I(Z — ¥ (Y))(z)].

By equivariance of 7, since the action of I" on F(Q) via p is properly discon-
tinuous, so is the affine action of I' on g via (p, u). O

3.4. Fibrations. While the coarse projection arguments of Sections 3.1 and
3.3 (and, later, Section 5.3) are useful for determining proper discontinuity of
an action, such arguments seem to give little information about the topology
of the quotient manifolds. However, when the coarsely Lipschitz maps f and
lipschitz vector fields Z of Propositions 3.2 and 3.6 are well behaved, we can
deduce explicit fibrations for the quotient manifolds modeled on the group
G and its Lie algebra g. This idea already appeared in [GuK, Prop. 7.2] and
in [DGK1, Prop. 6.3].
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Proposition 3.7. (1) In the context of Proposition 3.2, suppose that f is

(2)

C-Lipschitz (i.e. C' = 0) and that O = X. Then II : G — F(O) takes
any g € G to a singleton of O = X, i.e. we have a I'-equivariant map
II: G — X, and this map is continuous. If furthermore G acts transitively
on X, with point stabilizer K, and if I is torsion-free, then the quotient
of G under the action of T' by right-and-left multiplication via (p, p’) is a
K -bundle over the manifold p(T')\X.

In the context of Proposition 3.6, suppose that Z is c-Lipschitz (i.e.
d =0) and that O = X. Then w : g — F(O) takes any Y € g to a
singleton of O = X, i.e. we have a I'-equivariant map 7w : g — X, and
this map is continuous. If furthermore G acts transitively on X, with
infinitesimal point stabilizer €, and I' is torsion-free, then the quotient of
g under the affine action of I via (p,u) is a €-bundle over the manifold

p(IN\X.

In (2), by the infinitesimal stabilizer of a point x € X we mean the set of
elements Y € g corresponding (via ¥) to Killing fields on X that vanish at z,
or equivalently the Lie algebra of the stabilizer of z in G.

Proof. (1) For any g € G the map g~ ' o f : X — X is C-Lipschitz, hence

admits a unique fixed point II(g) in X since C' < 1. The map II :
G — X is continuous: indeed, if ¢’ € G is close enough to g that
d(z,g"to f(z)) < (1 — C)e where x = II(g), then ¢! o f takes the
e-ball centered at x to itself, hence II(¢’) lies within ¢ of x = II(g).

If G acts transitively on X, then IT is surjective, and each fiber II~1(z) =

{9e G| g-x= f(x)}is a left G-translate of the stabilizer of = in G.
This gives G the structure of a I'-equivariant K-bundle over X, which
descends to the quotient manifolds if I' has no torsion; this structure is
smooth if f is.
For any Y € g the vector field Z —WU(Y') is ¢-lipschitz on X, hence inward-
pointing on any large enough sphere since ¢ < 0. By Brouwer’s fixed
point theorem, Z — U(Y") therefore admits a zero 7(Y) in X, unique
since ¢ < 0. The map 7 : g — X is continuous: indeed, if Y’ € g is
close enough to Y that |¥(Y — Y')(z)| < |c|]e where z = m(Y’), then
Z—-V(Y")=(Z-Y(Y))+¥(Y —Y’) is inward-pointing on the sphere
of radius € centered at x (for the Killing field ¥(Y — Y”’) has constant
component along any given geodesic through z), hence 7(Y”) lies within
eof x =n(Y).

If G acts transitively on X, then 7 is surjective, and each fiber 7=1(x) =
{Yeg|¥(Y)(z)=Z(x)} is a g-translate of the infinitesimal stabilizer
of x. This gives g the structure of a I'-equivariant £-bundle over X, which
descends to the quotient manifolds if I" has no torsion; this structure is
smooth if Z is. O
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Remark 3.8. In (2) above with G acting transitively on X, the quotient
(p,u)I'\g is isomorphic, as a ¢-bundle, to the quotient by p(I') of the tauto-
logical ¢-subbundle B of g x X — X whose fiber above z € X is the infini-
tesimal stabilizer of x. Indeed, by a partition-of-unity argument, 7 : g — X
admits a I'-equivariant section ¢ such that o(z)(z) = Z(z) for all z € X, and
(Y,z) — o(z) + Y then defines an equivariant bundle isomorphism B = g.

In (1), no section exists in general, but one can still describe the bun-
dle structure on G topologically as a pullback of the tautological K-bundle
over X by any (p, p')-equivariant map (not necessarily contracting).

Remark 3.9. Suppose (G, X) = (O(p, 1), HP).

(0) As in Section 2.3, the Killing form k1 on g = o(p,1) has signature
(p,p(p — 1)/2). The stabilizer K = O(p) x O(1) (resp. the infinitesimal
stabilizer ¢ = o(p)) appearing in Proposition 3.7 is a maximal negative
definite totally geodesic subspace of G (resp. linear subspace of g), for
the G-invariant pseudo-Riemannian structure induced by &) 1.

(1) When p is geometrically finite, a converse to Proposition 3.2 holds: up
to switching p and p’, the action of I on G by right-and-left multiplica-
tion via (p, p’) is properly discontinuous if and only if the action of T" on
X via p is properly discontinuous and p’ is coarsely uniformly contract-
ing with respect to (p,X). In fact in this case p’ is actually uniformly
contracting with respect to (p,X), and one can find a (p, p’)-equivariant
C-Lipschitz map (for some C' < 1) defined on O = X = HP, making
Proposition 3.7.(1) applicable. This was proved in [K2] for p = 2 and
convex cocompact p, and in [GuK] in general.

(2) For p = 2 and convex cocompact p, a similar converse to Proposi-
tion 3.6 holds up to replacing v by —u, by [DGK1, Th.1.1|; again, u
is actually uniformly contracting with respect to X, and one can find
a (p,u)-equivariant c-lipschitz vector field (for some ¢ < 0) defined on
O = X = HP, making Proposition 3.7.(2) applicable. The same state-
ment for geometrically finite p will be proved in [DGK5|. On the other
hand, this converse fails for p = 3, as 0(3,1) ~ ps((2,C) has a complex
structure and properness, unlike uniform contraction, is unaffected when
we multiply a cocycle by a nonzero complex number.

4. EXAMPLES OF PROPER ACTIONS ON O(p,1) AND o(p,1) FOR SMALL p

In this section we prove Propositions 1.6 and 1.8 by applying Proposi-
tions 3.2 and 3.6.

4.1. Uniformly contracting maps obtained by colorings. Recall that
a discrete subgroup of O(p, 1) is called convex cocompact if it acts with
compact quotient on a nonempty convex subset of the hyperbolic space HP.
The property for a representation of a discrete group to be injective and
discrete with convex cocompact image is stable under small deformations
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and under embedding into a larger O(p’,1). We shall use the word coloring
for any map to a finite set: the image of an element is then called its color.
Our proof of Propositions 1.6 and 1.8 uses the following construction.

Proposition 4.1. LetT" be a convex cocompact subgroup of O(p, 1) generated
by the orthogonal reflections {V;}1<i<k in the faces {F;}1<i<k of a right-angled
convex polyhedron of HP. For 1 < i < k, let v; = (w;,1) € RP! be a
normal vector to F;. Suppose there exist an integer m = 0 and a coloring
o:{l,...,k} = {0,...,m} such that o(i) # o(j) whenever F; intersects F.
Let ug, . .., um be the vertices of a reqular simplex inscribed in the unit sphere
of R™ (if m =0, take up = 0€ R°). For any 1 <i <k andte R, we set

ol = (cosh(t) w;, v/m sinh(t) Ug (i) 1) e RP+ml

7

Then for any t € R, the representation p; : I' — O(p + m, 1) taking ~; to the

orthogonal reflection in (vf)L c RPH™L s well defined, and for small enough

|t| it is still injective and discrete, with convex cocompact image. Moreover,
for any 0 < t < s with t small enough, there exists a (py, ps)-equivariant,
cosh(t)
cosh(s)
ft.s depending smoothly on (t,s).

-Lipschitz map fis : HPT™ — HPT™: we may take fip = Idgp+m and

Proof. Let t € R. In order to prove that p; is well defined, we only need to
check that (v!, v§>p+m71 = 0 whenever F; intersects Fj. Since (v;,vj)p1 = 0
we have (w;, wj)po = 1, and (Ug(;), Ug(j))m,0 = —1/m. Therefore

<vf, v§>p+m’1 = cosh2(t)<wi, Wi po +m Sinh2(t)<ug(i),ua(j)>m70 -1
= cosh?(t) — sinh?(t) — 1 = 0.

For small enough [t| the representation p; : I' — O(p + m, 1) is injective and
discrete with convex cocompact image, since this property is stable under
embedding O(p, 1) into O(p + m, 1) and under small deformation.

We now assume that ¢ > 0 is such that p; is faithful and discrete, and
fix s > t. Let P, ¢ P(RP*™1) be the polytope bounded by the P(v})* for
1 < i < k, so that P, n HP™™ is a fundamental domain for the action of
p(T') on HPT™  with polyhedral boundary. Define similarly Ps. We endow
the affine chart {zpimi1 = 1} ~ RPT™ of P(RPH™!) with the standard
Euclidean metric, so that HP*™ is the unit open ball centered at 0. In this
chart, the linear map zzz}ﬁg; Idrr ® Ziﬁi((i)) Idgm takes the vf to the v7. Dually,
_ cosh(?) sinh(t)
/= cosh(s) sinh(s)

must take P; to Ps. The restriction of f to P, n HP™™ can be (pq, ps)-
equivariantly extended by orthogonal reflections in the faces of P, and P,
yielding a (pt, ps)-equivariant map f; s : HPT™ — HP*™. This map is pro-
jective in restriction to any pi(I')-translate of P;, and it takes each reflection
face of P, to the corresponding reflection face of Ps, hence it is globally
continuous. If s > ¢, then f; s(HP™™) is strictly contained in HPT™.

Idrr ® Idgm
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In order to check that the continuous map f;, : HPT™ — HPT™ is Cosﬁ(t) -
) cosh(s)

Lipschitz, by the triangle inequality, it is enough to focus on the restriction

f to one fundamental domain HP*™ ~ P,. Since f(HP*™) (an ellipsoid) is
cosh(t)
cosh(s)

chart, while HP*™ is the unit ball, the result is an immediate consequence
of the following Lemma 4.2, which quantifies Remark 2.1. U

contained in the ball of radius < 1 centered at 0 in our Euclidean

Lemma 4.2. Fiz a Euclidean chart R™ of P*(R). If B, denotes the ball of
radius r in R™ centered at O, then the Hilbert metrics on B, and By satisfy
dp,(z,y) = dp, (x,y)/r for allr € (0,1) and x,y € B,.

Proof. Consider a line £ of the Euclidean chart R™ through points z,y €
By, with £ n 0By = {a,b} and a,z,y,b lying in this order on ¢. We can
parametrize ¢ at unit Euclidean velocity by (z;)wr so that (a,z,y,b) =
(x—q,x0, x5, 23) for some 0, , 3 > 0. We have

1 d+a /0+a a~t+ 571
d&@wﬂ—2kg<5_5 0—6)6:052'
By

The factor v,! := (o™ + 87!)/2 expresses the Finsler norm associated to
the Hilbert metric dp, near x, in the direction of ¢, in terms of the ambient
Euclidean norm. If we replace B with a scaled ball B;_, for some 7 > 0,

then the new endpoints of £ N Bi_; lie at linear coordinates —a, and 3.
such that di| __ac< —1and di‘ __ B¢ < —1. Therefore
Slg=T1 SIC=T

d

Bi—¢
- 14 — _
dgle= bz >C¥72+,372:Oé7/,37+57/047.> 1
I/BI—T Ct;1+,8;1 OéT'i'BT 1_7_7

lx
where we use a; + B < 2 — 27 for the last inequality. Integrating this
logarithmic derivative over 7 € [0,1 —r], we find v,7 > I/ele/’l“. This is valid
for all ¢ and x, hence dp, = dp, /r. O

Remarks 4.3. (1) The (pt, ps)-equivariant maps f; s of Proposition 4.1 are
not smooth, but continuous and piecewise projective. Similarly, setting
Up = %L:t pspp t i T — o(p+m, 1), the (py, us)-equivariant vector fields
Zy = % < /s, which are uniformly contracting by Lemma 3.5, are not
smooth. However, they can be made smooth while remaining uniformly
contracting, e.g. using the equivariant convolution procedure described
in [DGK1, §5.5].

(2) Groups I' as in Proposition 4.1 are finitely generated, hence admit a
torsion-free subgroup I'; of finite index by Selberg’s lemma [Se, Lem. 8|.
Propositions 3.2, 3.6, and 3.7 apply in this setting, yielding:

e quotient manifolds (p¢, ps)(I'1)\O(p + m, 1) with the structure of an
(O(p + m) x O(1))-bundle over the hyperbolic manifold p;(T';)\HP,

e quotient affine manifolds (p¢, ut)(I'1)\o(p + m, 1) with the structure
of an o(p + m, 1)-bundle over the hyperbolic manifold p;(I'y)\HP.
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(3) The case m = 0 (a single color) of Proposition 4.1 is valid: it applies
to groups I freely generated by k involutions, and acting by reflections
on HP. For p = 2, applying Proposition 3.6 to an index-two torsion-
free subgroup I'y of I', we obtain examples of proper affine actions of
free groups on 0(2,1) ~ R%*!; the corresponding affine 3-manifolds are
Margulis spacetimes.

4.2. Proof of Propositions 1.6 and 1.8. Let I" be the discrete subgroup of
0(2,1) generated by the reflections in the faces of a convex right-angled k-gon
in H? = H?, for k > 6 even. Color the sides of the k-gon, alternatingly, with
labels 0 and 1. Applying Proposition 4.1 with m = 1 yields, for small enough

0 < t < s, faithful and discrete representations ps, ps : I' = O(3,1) and

(pt, ps)-equivariant, Eg:ﬁ((?)—Lipschitz maps fis : H® — H? (Figure 3 shows

a fundamental polyhedron). In particular, ps is uniformly contracting with
respect to (pg, H3) (Definition 3.1), and by Lemma 3.5 the ps-cocycle u; :=

% |S: . PsPy !is uniformly contracting with respect to H* (Definition 3.4) since

% ot 2221}118 = —tanh(t) < 0. Applying Propositions 3.2 and 3.6, we obtain

Propositions 1.8.(a) and 1.6.(a).

FIGURE 3. A fundamental domain P, nH3
for the action of p;(I') on H?, bounded by

/N planes F! = (v!)! for 1 < i < k (here

3 k = 6, i.e. I' is a right-angled hexagon

group). The hexahedron P, becomes ver-

' N tically more elongated as t — 0. The faces
F}, F}, F} are at the back; the ellipsoid H?

is shaded.
P

Similarly, in order to prove Propositions 1.8.(b) and 1.6.(b), it is enough
to color the faces of the regular 120-cell of R* with m + 1 = 5 colors so
that adjacent faces receive different colors. This is a well-known construction
which we briefly recall below; it is contained e.g. in Coxeter’s study of regular
4-dimensional compounds [C, §14.3]. See Figure 4.

The 120-cell can be described as follows. Let ¢ = @ = 1.618... be

the golden ratio. Let wy ..., w120 € R* be the unit vectors obtained from the
rows of the matrix

1 0 0 0 2
(4.1) o1 11
0 o 1 o

by sign changes and even permutations of the four coordinates. We endow
R* with its standard Euclidean inner product (-, -)4 9. The affine hyperplanes
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wi—l—wil, for 1 <4 < 120, cut out a regular 120-cell in R*. Cells of the 120-cell
are regular dodecahedra, four of which meet at each vertex, and two cells
share a (pentagonal) face if and only if the dual vectors w;, w; are neighbors,
which means by definition that (w;, w;)4,0 = ¢/2. Each w; has 12 neighbors.

- B4 W

FIGURE 4. The five-coloring of the faces of the 120-cell, stere-
ographically projected to R®. Shown are five (out of nine) lay-
ers of dodecahedral cells surrounding a single red cell. The
cells are pulled apart from each other a small amount to ex-
pose the internal layers.

We now explain how to color the 120 vectors w; (i.e. the corresponding
cells) with 5 colors so that no two neighbors have the same color. We view the
w; as elements of S?, the sphere of unit quaternions, and denote by U the 3-
space of pure imaginary quaternions. The map ¢ : S* — Isomg(U) ~ SO(3),
taking a quaternion w to the conjugation u — wuw™', is a double cover,
with kernel {1, 1} = S3: for w € S3 \ Ker(), the isometry ¥(w) is a ro-
tation of angle 2arccos(Re(w)) around the line R(w — Re(w)) < U. The
image ¥ ({wi}1<i<i20) < SO(3) is a 60-clement group, known as the icosahe-
dron group. The latter can famously be identified with 25, the group of even
permutations on 5 symbols {0, 1,2, 3,4}, via a group isomorphism ¢, see Fig-
ure 5. We define a coloring o : {w;}1<i<120 — {0, ..., 4} by associating to w;
the value that the permutation o (w;) € 25 takes at the symbol 0. In other
words, the fibers of o are the left cosets of the subgroup (:0v)~!(2(4), where
Ay < As is the tetrahedron group corresponding to the first two lines of (4.1).
Any neighbors w;, w; have different colors: indeed, the corresponding permu-
tations differ by a 5-cycle, since Re(w; 'w;) = (wi, w;dao = /2 = cos(m/5)
and so ¢ 0 1(w;  w;) has order 5 in As. Propositions 1.8.(b) and 1.6.(b) are
proved.

Remark 4.4. As in Remark 4.3.(2), if T is one of the reflection groups in
Propositions 1.6 and 1.8, then I admits a finite-index, torsion-free subgroup
I'1, which is either a surface group (case (a)) or a 4-manifold group (case (b)).

In case (a), Proposition 1.6 gives proper affine actions of the surface
group I'; on R® ~ 0(3,1). The linear part of each such affine action is the
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FIGURE 5. The orientation-preserving symmetries
of a regular icosahedron in Euclidean 3-space per-
mute five collections of six edges each, giving an

( isomorphism ¢ to the alternating group 2As. Each
\ V4 color is preserved by a copy of 24, the tetrahedron
group.

composition of a certain quasi-Fuchsian representation I'y — SO(3,1)p ~
PSL(2,C) with the adjoint representation SO(3,1)g — SL(0(3,1)).

By contrast, for any dimension n > 2, an affine action on R™ whose linear
part is the composition of a Fuchsian (i.e. faithful and discrete) representa-
tion pp : I't — SL(2,R) with an irreducible representation 7, : SL(2,R) —
SL(n,R) is never properly discontinuous. This was proved by Mess [Me| and
Goldman-Margulis [GoMa] in the case n = 3 (for which 73 is the adjoint rep-
resentation, with image SO(2, 1)) and in general by Labourie [La|. Recently,
it was shown further [DZ] that a continuous deformation of 7, o pg is never
the linear part of a proper affine action, either. Such representations make
up what is known as a Hitchin component of Hom(I'1, SL(n,R)). It would be
interesting to determine which connected components of Hom(I';, SL(n,R))
contain the linear part of a proper affine action by a surface group I';.

4.3. A variant of Lemma 4.2. In order to prove Theorems 1.5 and 1.7 in
Section 6.4, we will need the following variant of Lemma 4.2, in which we
replace the Euclidean metric on an affine chart of P"(R) with the standard
spherical metric of P*(R) given, for all v,w € R"*! \ {0}, by

. w
(4.2) dpn (r) ([v], [w]) = min (£(v,w), £ (v, —w)) € [0, 5],
where by convention angles between vectors take values in [0, 7].

Lemma 4.5. Let (H;);>0 be a smooth family of connected open subsets of
P™"(R) with smooth boundaries 0H.. Let £ < P™"(R) be an open projective
segment intersecting 0Hy twice, transversely. For small T = 0, let (a;,b;)
be the open segment £ N Hy, endowed with its Hilbert metric d(q, p,). If 0H7
expands outwards everywhere with normal velocity = 1 (for dpn(w)) at T = 0,
then for all x,y € (ag, by),

4
dtlr=0

Proof. Let ag,x,y,by € ¢ n Hg be lined up in this order. Let s — x4 be a
unit-speed (for dpn(g)) parametrization of £ such that x = xg and y = w5 for

d(a, ) (T, Y) < =2d(qp0) (T, Y)-

some 6 > 0. For any small 7 > 0, we have (ar,%,y,b;) = (T—a,, %0, %5, 2g,)
for some a;, 5, € (0,7) with a; + B, < m. If 0H, expands outwards with
normal velocity > 1, then (%]T:O ar =1 and (%}tzo Br = 1. Then

d (z.7) 1 1 tand + tanco, /0 + tana. 5 cot o + cot B,
z,y) = = lo ~ f—.
(ar b)WY= 5798 \ Tan'd — tan Br/ 0—tanp; ) 60 2
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The factor vy, := (cota, + cot 3;)/2 expresses the Hilbert metric d(,, )
near z in terms of the ambient spherical metric, in the ¢ direction. Since

cot’ = —sin~2, its logarithmic derivative at 7 = 0 satisfies
d T
Ghoo e (], yar)sin2ag — (], o 5)sin 2o
Vgx cot ag + cot By
- sin~2 ag + sin 2 By _ :ﬁ% % <_9
cot ag + cot By sin(ag + Bo)

Thus (dvy,/d7)|-=0 < 2”(2 for all z € £ n Hy. Integrating v7, for z in a
subsegment o < £~ H; returns the Hilbert length of ¢ in £ n HT, the result
follows by exchanging the integration and differentiation. ([

5. PSEUDO-RIEMANNIAN CONTRACTION AND PROPERNESS

In Propositions 3.2 and 3.6 we established sufficient properness conditions
for actions of a discrete group I' on a topological group G by right-and-left
multiplication, and on a finite-dimensional Lie algebra g by affine transfor-
mations through the adjoint action. These conditions involved a notion of
coarse uniform contraction in a metric G-space (X, d).

Fixing integers p,q € N with p + ¢ > 1, we shall now state and prove
sufficient properness conditions (Theorem 5.3) for similar actions on G =
O(p,q+1) and on g = o(p,q + 1) ~ RP+a+DE+9)/2 " This will be used in
Section 6 to prove Theorems 1.5 and 1.7.

5.1. Uniform spacelike contraction in HP”¢ and proper actions. In
order to state Theorem 5.3, we first introduce a notion of spacelike coarse
uniform contraction in the pseudo-Riemannian space HP, endowed with the
pseudo-metric dgp.a of Notation 2.2.

Let G = O(p,q + 1). Given (p,u) : I' > G x g, we say that a vector
field Z defined on a p(I')-invariant subset O of HPY is (p, u)-equivariant if Z
satisfies (3.4) for all v € I and « € O. From now on, we will drop the map ¥
of (3.4) from the notation, as it is a canonical isomorphism between the Lie
algebra g = o(p, ¢ + 1) and the space of Killing fields on HP?. We introduce
the following terminology extending Definitions 3.1 and 3.4.

Definition 5.1. Let I' be a discrete group and p: I' - G = O(p,q+ 1) a
representation with finite kernel and discrete image, preserving a nonempty
properly convex open subset {2 of HP»4.

(1) A representation p’ : T' — G is coarsely uniformly contracting in
spacelike directions with respect to (p, ) if there exists a quadruple
(O, f,C,C") such that

¢ O is a nonempty closed p(I')-invariant subset of Q (e.g. €2 itself,
or a single p(T')-orbit),
e C'€[0,1) and C” are real numbers,
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e [: O — HPYis a continuous, (p, p')-equivariant map such that
for any x,y € O on a spacelike line,

dir.a (f(2), f(y)) < C dppa(a,y) + C".

In this case we say that f is coarsely C-Lipschitz in spacelike direc-
tions. If we can take C' = 0, then we say that f is C-Lipschitz in
spacelike directions and that p’ is uniformly contracting in spacelike
directions with respect to (p, (2).

(2) A p-cocycle u : T' — g is coarsely uniformly contracting in spacelike
directions with respect to € if there exists a quadruple (O, Z, ¢, )
such that

e O is a nonempty closed p(I')-invariant subset of €2,

e ¢ <0 and ¢ are real numbers,

e 7 : O — THPY is a continuous, (p,u)-equivariant vector field
on O such that for any x,y € O on a spacelike line,

d
&’t—o dpp.a (epr(tZ(aj)), eXPy(tZ(y))) < cdyp.a (1’, y) +c.

In this case we say that Z is coarsely c-lipschitz in spacelike directions.
If we can take ¢ = 0, then we say that Z is c-lipschitz in spacelike
directions and that u is uniformly contracting in spacelike directions
with respect to €.

Of course there are always two projective segments between any given
pair (z,y) of points of P(RPT9t1). For x,y € HP, if one of these segments
is a spacelike geodesic segment of HP9, then the other projective segment
exits HP4. In Definition 5.1, for x,y € O < 2 < HP? on a spacelike line, the
segment between x and y that remains in HP? also remains in the properly
convex set 2.

The following statement is similar to Lemma 3.5 and its proof is identical,
restricted to pairs of points in spacelike position.

Lemma 5.2. Consider an open interval I 5 0, a smooth path (p;)rer in
Hom(T",O(p,q + 1)), and the py-cocycle u := %’7:0 ,oTpo_l. For any smooth
family (fr : Q — HPY9),c; of maps such that fo = Idq and fr is (po, pr)-
equivariant for all T € I, the derivative Z(x) := d% —_ofr(@) is (po,u)-
equivariant. If moreover there ezists c € R such that fr is (1+cT)-Lipschitz in
spacelike directions for all T = 0, then Z is c-lipschitz in spacelike directions.

Here is the main result of this section, generalizing Propositions 3.2 and 3.6.

Theorem 5.3. Let G = O(p,q+ 1) for p,ge N withp+q > 1. Let T be a
discrete group and p : I' — G a representation with finite kernel and discrete
image, preserving a nonempty properly convex open subset Q0 of HP4.

(1) Let p' : T — G be a strongly irreducible representation such that p'(T")
contains a proximal element. If p' is coarsely uniformly contracting
in spacelike directions with respect to (p,2), then the action of T' on
G by right-and-left multiplication via (p, p') is properly discontinuous.
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(2) Let u : T — g be a p-cocycle. If u is coarsely uniformly contracting
in spacelike directions with respect to ), then the affine action of T’
on g ~ RPHa+D@+90/2 yig (p u) is properly discontinuous.

See Section 2.4 for the notions of proximality and strong irreducibility.
We shall prove the infinitesimal statement (2) in Section 5.3 and the state-
ment (1) in Section 5.4.

5.2. A preliminary lemma: actions on convex subsets of HPY. For
x € HP4, we denote by T, 1HP* the set of unit spacelike tangent vectors at x;
it is isometric to the quadric {v € RP? | (v,v)p 4 = +1}.

Lemma 5.4. Let T' be a discrete group and p : T'— O(p,q + 1) a represen-
tation with finite kernel and discrete image, preserving a nonempty properly
conver open subset Q of HP4 = P(RP4HL). For any compact subset D of ,

(1) all accumulation points of the p(I')-orbit of D are contained in JHP1;
(2) there exists a bounded family of compact sets K, < T, 'HPY, for x
ranging over D, such that for all but finitely many v €T,

p(7) D < [ exp,(RTK,);
zeD
(8) in particular, if (Yn)nen goes to infinity in T (i.e. leaves every finite
subset of T'), then for any sequences (xpn)neN, (Zh)nen of D we have
dpp.a (T, p(n) - T3,) — +00.

Proof. (1) Suppose by contradiction that there are sequences (zy,)nen of D
and (75 )nen of ' such that the v, are pairwise distinct and for y,, := p(yn) Zn
the sequence (yp)nen converges to some y € HPY. We can lift the x,, € HP?

~

to vectors Z,, € HP? = RPITL ie. (Z,,,Zn)pq+1 = —1. Both the 7, and the
p(Vn) - T stay in a compact subset of RP4F and (p(7y) - Zn)nen converges
to a unit timelike vector Z. On the other hand, since p has finite kernel
and discrete image, there exists a vector v € R4+ such that (p(7,) - ¥)nen
is unbounded in RP4*1. (Indeed, at least one vector of any given basis of
RP9*+1 must satisfy this property.) Up to passing to a subsequence, we may
assume that the direction of p(v,) - v converges to some null direction /.
There exists € > 0 such that all segments [Z,, — v, Z,, + ev] = RPITL < {0}
project to segments o, contained in 2. The images p(7,,)-0y, which are again
contained in €2, converge to the full projective line spanned by T and ¢. This
contradicts the proper convexity of Q. Thus the p(I')-orbit of D does not
have any accumulation point in HP4.

(2) Let y be an accumulation point of the orbit p(I') - D, and consider
x € D. By (1) we have y € JHP?, and so y cannot be seen from x in a
timelike direction since timelike geodesics do not meet JHPY. It cannot be
seen in a lightlike direction either: otherwise, the tangent plane to JHP? at
y contains the interval [z, y) < Q, and any small perturbation [2/, y) still lies
in Q — but 2’ can be chosen so that near y this perturbation crosses JHPY,
which would contradict Q@ < HP'Y. Therefore y € JHP is seen from x in a
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spacelike direction. We conclude using the compactness of the accumulation
set of the p(I")-orbit of D.
(3) This is a direct consequence of (1) and (2). O

5.3. Properness for affine actions on g = o(p,q + 1). We now prove
Theorem 5.3.(2). As in Sections 2.3 and 5.1, we view g = o(p,q + 1) as
the space of Killing fields on HPY. As in Section 3, we denote by F(O)
the set of compact subsets of O < 2, endowed with the Hausdorff topology
for the restriction of the Hilbert metric do of Section 2.1. Note that in
Definition 5.1.(2), up to restricting the set O < Q we may always choose
it to be compact modulo p(I'). Theorem 5.3.(2) therefore reduces to the
following.

Proposition 5.5. Let I' be a discrete group, p : I' - G = O(p,q + 1) a
representation with finite kernel and discrete image, preserving a properly
convex open subset ) of HPY and u : I' — g a p-cocycle. Suppose that u is
coarsely uniformly contracting in spacelike directions with respect to (p, ),
with (O, Z,¢,c) as in Definition 5.1.(2) and p(T)\O compact. Choose a
continuous family of norms (|| - |z)zeo on T,HPY which is p-invariant in the
sense that [|p(7)«vllpy).e = [vlz for ally €T, all x € O, and all v € T,HP.
Then the map

T g — F(O)
Y — {2€0]|(Z-Y)(z)|, is minimal}

is well defined and takes any compact subset of g to a compact subset of
F(O). Moreover, m is equivariant with respect to the affine action of ' on g
via (p,u) and the action of T' on F(O) via p. In particular, the affine action
of T' on g via (p,u) is properly discontinuous.

The proof follows closely that of Proposition 3.6.

Proof. Let D < HPY be a compact fundamental domain for the action of
I' on O via p. By Lemma 5.4.(2), there is a compact set D' < O such
that any x € D sees any point of O ~\. D’ in a spacelike direction belonging
to K, < T}'HP4, for some compact set K, staying away from the null
directions. By compactness, there exists R > 0 such that

g2 (w, )] < R|wls

for all w € T,HP? and v € K, with z € D, where gP? is the pseudo-
Riemannian metric of HP? from Section 2.2. Consider y € O \.D': it belongs
to p(v)- D for some v € T'. By equivariance, for any x € D, the point y sees z
in a spacelike direction in K0 := p(7)«Kp(y)-1., and |gy?(w,v)] < R|w],
for all w € T,HP? and v € K. Applying Proposition 2.3 to the pair (z,y),
we obtain that for any vector field V' defined at both x and y,

%Lzo digra (exp, (tV (2)), expy (tV(y)) = =RV (2)]e = BRIV (¥)]y;
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in particular, if V' is coarsely c-lipschitz in spacelike directions (Definition 5.1.(2)),
then

(5.1) cdppa(z,y) + ¢ = =R[V(2)|s = RV (y)]y-

A vector field is coarsely c-lipschitz in spacelike directions if and only if its
sum with any Killing field is. Therefore, for any Y € g, by applying (5.1) to
V =7 —Y and using ¢ < 0, we find

R|(Z =Y)®)ly = leldupa(z,y) = (¢ + R|(Z = Y)(2)]z)-

The term ¢ + R|(Z — Y)(z)|s is independent of y and remains bounded
as Y varies in a compact set, while the term |c|dpp.q(x,y) is independent
of Y and goes to +00 as y goes to infinity in O, by Lemma 5.4.(3). Since
Z is continuous, this shows that 7 is well defined and takes compact sets to
compact sets.

The equivariance of 7 follows from that of Z: for any v € I' and x € O,

[(Z = (Ad(p())Y + (1)) (p(7) ) pr)2
=lp(1)«(Z(2)) + u()(p(7) - ) = (Ad(p(M))Y + u())(P(V) - )] 54
=lp()«((Z =Y)(@)pr)a = [(Z = Y)(@)]a-

By equivariance of 7, since the action of T" on F(Q) via p is properly discon-
tinuous, so is the affine action of I" on g via (p, u). O

5.4. Properness for actions on G = O(p, ¢g+1) by right-and-left multi-
plication. Theorem 5.3.(1) is an immediate consequence of Proposition 3.2
and of the following.

Proposition 5.6. Let " be a discrete group and p : I' — G = O(p,q + 1)
a representation with finite kernel and discrete image, preserving a properly
convex open subset Q # @ of HPY. Let p' : T' — G be a strongly irreducible
representation such that p'(T') contains a proximal element. If p' is coarsely
uniformly contracting in spacelike directions with respect to (p,Q) (Defini-
tion 5.1.(1)), then p' is coarsely uniformly contracting with respect to (p,X)
(Definition 3.1), where X := G/(O(p) x O(q + 1)) is the Riemannian sym-
metric space of G endowed with the G-invariant metric dx of (2.8).

See Section 2.4 for the notions of proximality and strong irreducibility. In
the proof we shall also use the notation A\; and p; from Section 2.4 (loga-
rithms of the dominant eigenvalue and singular value).

Proof. By Definition 5.1.(1) of coarse uniform spacelike contraction, there
exist a p(T')-invariant subset O # @ of Q and a (p, p’)-equivariant map
f O — HPY that is coarsely C-Lipschitz in spacelike directions, for some
C <1

Let z € X be a point which is not fixed by any element p(vy) # +Id
for v € I'. This exists since the set of fixed points in X of any element
g € G~ {£Id} is a submanifold of positive codimension.
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Consider the orbit Ox := p(I') - z < X, in natural bijection with T
Let us check that the (p,p’)-equivariant map fx : Ox — X taking every
p(7) -z to p'(7y) - x is coarsely C-Lipschitz. If xg = [e] € X is the basepoint
used in Section 2.5, then the triangle inequality implies |dx (g1 - x, g2 - ) —
dx (g1 -0, g2-x0)| < 2dx(x,x) for all g1, g2 € G. Therefore, in order to show
that fx is coarsely C-Lipschitz, we only need to find C’ € R such that for all

7,72 €T,
dx (0’ (11) - @0, p'(v2) - 20) < Cdx(p(11) - w0, p(72) - o) + C".

By the definition (2.8) of dx, this means finding C’ € R such that for all
vel,

(5:2) (' (7)) < Calp(y)) + C".
We first check that for any v € I" with p/(y) proximal,
(5.3) AP (1) < C Aalp())-

For such an element v € T, let f;f,(w) € JHP? be the attracting and repelling
fixed points of p/(7y). Suppose by contradiction that f(O) c (glj(y))L v
({;(V))L. Since f(O) is p/(T')-invariant, so is the Zariski closure Z of f(O) in
P(RP:4*+1). Any irreducible component Z; of Z is contained either in ( ;(W)H
or in ('5,;(7))L’ hence spans a proper subspace of RP*1. The union of these

subspaces is preserved by p/(T'), contradicting strong irreducibility. Therefore
there exists © € O such that f(z) ¢ (5;(7))L v, (5;(7)){ and Lemma 2.5.(2)
gives

lim L dgea(F(2), 0/ ()" - £(2)) = M (0 ().

n—+w n
On the other hand, by Lemma 5.4, for any large enough n € N the points z
and p(y™) - x are on a spacelike line, hence

dura(f(2), ' (7)™ - f(2)) < Cdppa (@, p(7)" - 2) + C”
by assumption on f, for some C” € R independent of n. Using Lemma 2.5.(1),
we obtain A1 (p'(7)) < C M (p(7)), i-e. (5.3) holds.
Let us now find C’ € R such that (5.2) holds for all y € I'. Let F c T
and Cy = 0 be given by Fact 2.6, and let

C' = Cy + Cmaxu(p(f)) € R.

For any v € ', we can find f € F such that p/(vf) is proximal and u1 (o' (7)) <
)

M (vf))+Cy. By (5.3), we have A (p'(vf)) < CAi(p(vf)). Forany ge G

we have p1(g) = log |g[, hence p1(g) = Ai(g) and p1(gg’) < pi(g) + pa(g’)
for all g, ¢’ € G. We deduce

1(f (1) < CMlp(vf) + Cp < Cra(p(vf)) + Cp < Cpa(p(v)) + C'. O

Remark 5.7. At the level of proofs, the parallel between g and G broke down
to some extent between Sections 5.3 and 5.4. In Section 5.3, we were not
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able to use the spacelike-contracting vector fields on O < Q < HP? to pro-
duce contracting vector fields on a Hadamard (or even Finsler) manifold X,
to which we might have applied Proposition 3.6; but we could mimic Propo-
sition 3.6 by building an equivariant projection to F(O) using the pseudo-
distance dyp.e on HPY. In Section 5.4, starting from spacelike contracting
maps from O < Q) < HP? to HP?, we were not able to mimic Proposition 3.2
and build a well-behaved projection to F(QO); but we could produce coarsely
contracting maps in the symmetric space X = G/(O(p) x O(¢+1)), endowed
with an appropriate G-invariant Finsler metric, and apply Proposition 3.2
directly. It is unclear to us whether or how the two arguments could be
unified.

6. UNIFORM SPACELIKE CONTRACTION FOR RIGHT-ANGLED COXETER
GROUPS

In this section we prove Theorems 1.5 and 1.7 using the sufficient condi-
tions for properness provided by Theorem 5.3.

Here is an outline of the argument: for a right-angled Coxeter group I' on k
generators, we consider a certain natural one-parameter family (Pt)te(—oo,—l]
of deformations of the Tits canonical representation of I" into GL(k, R). Vin-
berg’s theory [V] gives a natural properly convex domain U; of P(R¥) on
which I' acts properly discontinuously via p;. We truncate U4; to get a smaller
properly convex p;(T)-invariant domain €; of P(RF) that lives in a copy ]ﬁlf 4
of HPY for some p,q € N with p+ ¢+ 1 = k. We may assume that the
signature (p, q) stays constant for ¢ in a certain open interval in (—o0, —1).
Up to conjugating everything to the standard copy of HP*4, we may therefore
meaningfully ask if certain equivariant maps between these domains €2; are
uniformly contracting in spacelike directions: we show that this is indeed the
case (Proposition 6.6) for some explicit piecewise projective maps, and we
also prove a vector-field counterpart. This allows us to apply Theorem 5.3
to prove Theorems 1.5 (hence 1.1) and 1.7.

6.1. Basic setting. We fix a right-angled Coxeter group

(61) F:FS:<717-"7’7/€ ’ (VlVJ)mZJ =1 V7'7.7>7

where m;; = 1 and m;; = mj; € {2,00} for all ¢ # j. Any subset S’
of the generating set S = {v1,...,7x} defines a subgroup I'ss of I, with a
presentation obtained from (6.1) by restricting to 4, j such that ~;,v; € S’
We assume I' to be irreducible, which means that S cannot be written as a
nontrivial disjoint union S = S’ L1 S” such that I'g and I"g» commute.

If the number k of generators is 1, then I' ~ Z/27Z and Theorems 1.5
and 1.7 are trivial. If k = 2, then I' is an infinite dihedral group; it admits
properly discontinuous actions on the line H!, to which we can apply Propo-
sition 4.1 with (m,p) = (0,1) and conclude using Propositions 3.2 and 3.6
just as in Section 4. (The actions on O(1,1)p and on o(1, 1) thus produced
are conjugate to the standard I'-action on the line.)
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From now on, we will assume k > 3. In particular, I' is infinite.

6.2. The canonical representation and its deformations. The matrix
M_y := (—cos(m/m;;))1<ij<k, With the convention m/c0 = 0, is called the
Gram matriz of . It defines a (possibly degenerate) symmetric bilinear form
(-,>_1onRF. Let (e1,...,ex) be the standard basis of R¥. The canonical (or
geometric) representation p_; : I' — Aut(R¥, (-, -5 1) < GL(k,R), studied
by Tits and others, is given by

p-1(vi) v v =2, €)1 € I<i<k.

Note that M_; := Idy, — N, where N = (N; j)1<i j<k satisfies N; j = 1 if
m; j = 00, and 0 otherwise. This matrix N is irreducible with nonnegative
entries. By the Perron—Frobenius theorem, there is a unique (up to scale)
eigenvector vpr of N with positive coordinates, corresponding to the highest
eigenvalue A\pp > 0. In fact App > /2 since, by irreducibility, N contains a

.. . 010 011
principal submatrix ((1) ? [1)> or (% (1) é)

One way to deform the canonical representation is to consider, for any
t € (—oo, —1], the matrix M; := Idgr + tN, i.e. My = ((My)i;)1<i j<k With

1 if m; g = 1, ie. 1= j,
(Mi)ij=+4 0 it m;j =2,
t< -1 if m;j = 0.

This matrix M; still defines a symmetric bilinear form ¢-,-) on R¥, and one
can define a representation p; : I' — Aut(R* (-, -)) by
pt(fyl) :U'—)U_2<Uvei>t€i7 I<i<k.
Similar deformations were studied e.g. in [Kr].
Note that det(M;) is a polynomial in ¢ which is not identically zero (con-
sider ¢ = 0), hence it is nonzero outside some finite set E of exceptional
values of t. For any t € (—o0, —1] \ E, the form (-, -); is nondegenerate.

The general theory of reflection groups developed by Vinberg applies to
the representations p;. For any t € (—oo, —1] \\ E, the orthant

Ar={veRF | (ve) <0 V1 <i<k}

satisfies vpp € Int(ﬁt): for any i we have (vpg, €;); < 0 since this is the i-th
coordinate of M;(vpr) = (1 + tApp)vpr and tApp < —/2. Each generator 7;
of I' acts via p; by reflection in the hyperplane Ker({:, e;)), called the i-th
wall of A, By [V, Th.2 & 5|, the representation p; is faithful and discrete,
and the open cone N N

U, = Int (pt(F) . At)

is convex. The action of I' on U, via p¢ is properly discontinuous, with
fundamental domain ﬁt N Z/N{t. The image U; of th in the projective space
P(R*) is an open convex subset of P(R¥), and the action of p; on U; is
properly discontinuous with fundamental domain A; N Uy, where A; is the
image of A, in P(RF). We shall call U, the Tits—Vinberg domain of py(T).
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By [V, Prop. 19|, the representation p; is irreducible, hence U; is properly
convex, i.e. its closure contains no projective line. In fact the following holds
(see also [Ma, Th.2.18] or [ DGKLM]).

Proposition 6.1. For any t € (—o0, —1] \ E, the representation p; : I' —
GL(k,R) is strongly irreducible.

Proof. Since I' is an irreducible right-angled Coxeter group on k > 3 genera-
tors, its Gram matrix contains a principal submatrix (i % i‘l) or (é % -(% )
The corresponding 3-generator subgroup of I' is isomorphic to the group
generated by the reflections in the sides of a triangle of H? with three ideal
vertices (resp. two ideal vertices and one right angle). In particular, I" con-
tains a nonabelian free group on two generators.

For t € (—o0, —1] \ E, suppose by contradiction that p; preserves a finite
collection V = {Vi,...,V;,} of subspaces 0 € V; € R¥. We may assume that
each intersection V; n Vj is either {0} or another V. The action of I' on RF
via p; permutes the V; let I'; be the finite-index subgroup of I' preserving
each V;.

We claim that dim(V;) > 2 for all i. Indeed, if V; were a line Ro, then
p¢(T) - v would span R” (since p; is irreducible), hence would contain a basis
of R¥, which would be a simultaneous eigenbasis for all elements of p;(I'),
making I'y abelian. But I' contains a nonabelian free group, hence cannot
be virtually abelian: this shows that dim(V;) > 2 for all i.

Up to reordering we may assume r := dim V; = miny,cp dimV; > 2. For
any 1 < j < k we have pi(v;) - Vi € V. If pi(y;) - Vi # Vi, since pi(v;) is a
reflection in a hyperplane, we get that Vi npi(7;)- V1 € VU {0} has dimension
r — 1 > 0, contradicting the minimality of r. Thus p(vy;) - V1 = V; for all j,
contradicting the irreducibility of p;. O

Remark 6.2. For t € (—o0, —1] . E, the convex cone A, is the nonnegative
span of the vectors €} (t), ..., €} (t) given by the columns of the matrix —M; !,
ie. (€}(t),ejyr = —d;; for all 1 < i,j < k. Its projectivization A; is a simplex
with vertices [e](¢)],..., [e}(t)].

6.3. Construction of convex sets {2; in pseudo-Riemannian hyper-
bolic spaces. We now fix an open interval I ¢ (—o0, —1)\ E. For t € I the
symmetric bilinear form ¢, -); is nondegenerate of constant signature; since
I is infinite this signature has the form (p,q + 1) for some p > 1 and ¢ > 0.
The group Aut(R¥, (-, -)) identifies with O(p, ¢+ 1) and we can consider the
pseudo-Riemannian hyperbolic space

HP = {[o] € BR") | (0,0} < 0},

defined like HP? in Section 2.2. The Tits-Vinberg domain U < P(R¥) is

properly convex, but not contained in ]ﬁlf ?in general. With the eventual
goal of applying Theorem 5.3, we now look for a p;(I')-invariant properly

convex open subset Q; < U; contained in HE"?.



34 JEFFREY DANCIGER, FRANCOIS GUERITAUD, AND FANNY KASSEL

As in (2.1), using the nondegenerate symmetric bilinear form (5 we
view the dual convex cone L{t of Uy as a subset of RF (rather than of the
dual vector space of R¥):

uy = {xeRF | (2,00 <0 Vv Eﬁt}
We also set N L
Qt = Z/{t M Z/{t*,
and denote by U and € the respective images of U and €, in P(R¥). For

e\ (t),...,e,(t) € RF as in Remark 6.2, let us consider the polyhedral cone
Sii= A {veRF [, ei(t) <0 Vi) = A n 3 Rte;
(6.2) ={ve Yl Rte; | {(v,e) <0 Vi}.

The image 3; of 5 in P(R¥) is obtained from the simplex A; by truncating
each vertex [e}(t)] by the hyperplane dual to [e}(t)]. We observe that ¥; is
nonempty: for instance, [vpr]| € Int(3;) since vpr has positive entries.

Lemma 6.3. For any t € I, the set 4 is nonempty and properly conver.
It is the intersection of all nonempty, pi(I')-invariant properly convex open

subsets of Uy, and satisfies Q; = Int(pe(T") - X4) < ]ﬁ[f’q. Moreover, ¥y C ]T-/]If’q.

Remark 6.4. Similar convex domains for reflection groups in pseudo-Rie-
mannian hyperbolic spaces HP'? were previously investigated, in somewhat
different language, by Dyer [Dy| and Dyer-Hohlweg—Ripoll [DHR|, moti-
vated by the study of Kac—Moody algebras.

Proof of Lemma 6.3. Let us first show that U Z/NIt = @. By p(I)-
invariance, it is enough to check Ay Z/lt = @&. Points of L{t pair positively
with the € € (%{t, i.e. can be written Zi:l s;e; with s; < 0. If x is such a
point and |s;| = min; << |s;|, then (x, e;); = s; +t2mm-=oo sy > 0, showing
Té¢ &t. Thus ﬁt N —at* = .

It follows that 4, N —Z/NIt* spans a p;(I')-invariant linear subspace of R of
dimension < k, hence reduces to {0} by irreducibility of p;. It also follows
that Qt = Z/[t M L{t*.

Let us check that ; # @. The group p;(I') contains elements which are
proximal in P(RF), for instance p;(7;;) for any i # j with m;; = co: this
is seen by a direct computation, as in the basis (ey,...,ex) the matrix of
pt(7;) is the identity minus twice the i-th row of M;. Let A; = P(R*) be
the closure of the set of attracting fixed points of all proximal elements of
p¢(D); necessarily A; < Uy and we can lift A; to a py(I')-invariant union ./NXt
of rays in ol;. Since py(T') preserves both U, and U while U, n —U* = {0},
it follows that A; ¢ dUfF. Therefore U; and U (not just their boundaries)
intersect, otherwise the intersection of their closures would span a nonzero,
pt(T)-invariant proper subspace of R¥, contradicting the irreducibility of p;.
The nonnegative span of 1~\t projects down to a properly convex subset C;
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of Uy nUF = 4, and Int(C;) # @ by irreducibility of p¢(T'). In particular,
Q; # 2. 3
To prove Lemma 6.3, it is enough to show that 3; ¢ HY"? and that

(6.3) Int(Cy) (Cl) O (%) Int(p¢(T) - ) (E) Int(Cy).

Any nonempty py(I')-invariant convex open subset of f; contains Int(Ct)
hence (i) holds. Next, as observed above, U* Zl 1 R pe;, hence A nlf
S, and so Ap " UF < 5. Since Q; < py(T) - Ay A UF is open, (ii) follows.

Before proving (iii), we make the following observation: for any [v] €
Uy N Cy, if C; < Uy denotes the smallest p(T')-invariant convex subset of U;
containing [v], then [v] € 0C;. Indeed, if not, then for r > 0 large enough
the closed uniform r-neighborhood of C; in the Hilbert metric of Int(C;)
would be a closed p(T')-invariant subset which is convex [Bu, (18.12)], strictly
contained in C{, and contains [v], contradicting the minimality of C;.

We now prove (iii). First, let us check that Int(3;) < C;. Suppose by
contradiction that there exists [v] € Int(X;) \ C;. By the above observation,
[v] lies in the boundary of C;, the smallest p(I')-invariant convex subset of
U, containing [v]. Since C; is p(I')-invariant, the vectors w; := pi(7;) - v =
v — v, ey e; satisty [w;] € 0C; for all i. By definition of ¥; we can write
v =), sie; where s; > 0 > (v, ez>t for all 1 < i < k. In particular, v belongs
to the positive span of the w;: indeed, by substitution,

k .
Z <U €z>t (2+Z—<Tzei>t>v

where <U o > 0 by assumption. On the other hand, the w; span R¥ since

e = 2<v}ei>t (v — w;) for all i. Therefore [v] belongs to the interior of Cj.
But we showed [v] € 0C}: contradiction. Thus, Int(X;) < C; as announced.
It follows that ¥; < Cy, hence (iii) holds because C; is p;(I')-invariant and
Int(C;) = Int(C;). All inclusions of (6.3) are equalities.

Finally, let us prove ¥ < ﬁf’q. Any v = Zle sie; € 5y = Rk A A
satisfies (v, v) = S 5 (v,ei) < 0 since s; = 0 = (v,e;) by definition
of At. There must exist positive coordinates s;, sy > 0 such that m;, = o,
otherwise (v,v);>0. One of the summands s; (v, e;): or s¢{v, e); must be
negative, since (v,ej) = s; + tzmi’j:oo si < 85+ tsp and (v, ey = sp +
tzmi,[:w 5; < sg+tsj add up to a number < (sj +s¢) +t(s;+s;) < 0. Thus
in fact (v,v); < 0, which proves ¥; H\i/lf’q. O

Remark 6.5. The region p(T") - 3, a union of compact subsets of Iﬁlf s
closed in ]ﬁlf 4 if T is word hyperbolic. Indeed, the condition that no point
of Ay with infinite stabilizer survives in ¥; can be shown to be equivalent to
Moussong’s criterion [Mo] for hyperbolicity of I". The action of I' via p; on
this region is proper and cocompact, and indeed the subgroup p;(I") satisfies
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a notion of convex cocompactness in I\P/]If " recently introduced in [DGK3| (see
also [DGK4, DGKLM]).

6.4. Constructing equivariant contracting maps. We now choose a
smooth family (¢ : ]ﬁlﬁ 4 — HP4) s of isometries to the standard copy of HP.
This can be done for instance by writing M; = P;—Q; with P;, Q; symmetric
positive semidefinite, of respective ranks p and ¢ + 1, commuting with M;;
if U; € SO(k) takes the decomposition Im(P;) @ Im(Q;) of R* to R? @RI+,
then ¢ := Ut(Ptl/2 - ,51/2) takes (-, )¢ to the standard symmetric bilinear
form of RP4*1. In our case, U; can be chosen independent of ¢, as all matrices
M; share the same eigendirections.
By conjugating by ¢;, for ¢ € I we obtain representations

pr =1 opi()ou T — O(p,q+1)
which now all have the same target group. Define the sets (QF, X8, U, A7) :=
(1e(Q¢), 0e(34), we(Usp), 1e(A¢)) and the pf-cocycle
. d . oe
Ut =g _, PrPe
Since p; is strongly irreducible (Proposition 6.1), Theorems 1.5 and 1.7 will
be a direct consequence of Theorem 5.3 and of the following.

LD —oo(p,g+1).

Proposition 6.6. For any t < s in I, the representation p; is coarsely
uniformly contracting in spacelike directions with respect to (pf,€}), and

the pf-cocycle ug is uniformly contracting in spacelike directions with respect
to Q (Definition 5.1).

In order to prove Proposition 6.6, we now construct (pg, p3)-equivariant
maps fir: Qf — HP? and (p?, u,)-equivariant vector fields Z, on HPY with
appropriate contraction properties in spacelike directions, for 7 € [t, s] < I.

Observe that (M1 M,v,w)e = (v, w), for all v,w € R* and 7,5 € [t, s],
by definition of the symmetric bilinear forms (-, -)c and (-, ). In particular,
the matrix M_'M. € GL(k,R) takes A; to A, and the reflection wall
P(Ker({-,ei)r)) of pr(vi) to the reflection wall P(Ker({-,e;)¢)) of pc(7;) for
any 1 < i < k. We can therefore extend the (M 'M;)|a, to a family of
(pr, pc)-equivariant maps

Prc i pr(l) - Ar — pe(D) - Ag

for 7,¢ € [t,s]; these maps are continuous along the walls P(Ker({-, e;);)),
hence induce homeomorphisms U, — U; they depend smoothly on the pair
(7,5) and satisfy the compatibility relation ®./ v o &, = &, v for all
7,7, 7" € [t, s]. The maps

frs =10 Prilq, © L;l D — P(Rk)

are then (p}, p?)-equivariant, continuous, and by construction f,; = Idg.
for every 7. The family (fi)re[,s is smooth, and for every 7 € [t, s] the



PROPER AFFINE ACTIONS FOR RIGHT-ANGLED COXETER GROUPS 37

vector field Z; defined on €23 by

d
Zr = T
(@)= 3] frel@)
is continuous and (p?, u,)-equivariant by Lemma 5.2. Moreover,
d i .
(6.4) Zr(for(@) = | Fusl@) i fure) € O3

By Definition 5.1 of spacelike uniform contraction, in order to prove Propo-
sition 6.6, it is enough to establish the following.

Proposition 6.7. For anyt < s in I, there exists ¢ < 0 such that

(a) Z; is c-lipschitz in spacelike directions on Q2 for any T € [t, s],
(b) fislas takes values in HP9, and is coarsely =1 _Lipschitz in space-
like directions on the orbit Op = p?(T') - [te(ver)] < QF.

6.5. Proof of Proposition 6.7. For 7 € [t,s], let (-, ), (-, >0, and (-, - )r
be the symmetric bilinear forms on R* defined by the matrices M,, Id, and
M1 respectively. We have (v, w), = (M v, Myw), for all v,w € R* hence
the following diagram commutes:

(RPHE, G D) s (REGon) = (RECo0))

(6.5) fml (I’t’Tl lJt,T
(RPAFL (5, ) 2 (RE (), M, (RF, -, -)7)
where J; ;. 1= MTq)t’TMt*l satisfies by construction

(6.6) Jt’T‘Mt(At) - Ith(At)’

The horizontal arrows of (6.5) are isometries, but not the vertical ones. The
symmetric bilinear form (,-)», still has signature (p,q + 1), and we can
consider the corresponding pseudo-Riemannian hyperbolic space

2 = {[v] € P(R) | v, v)r < 0} = M, TP4,

with boundary oHZY = M, 024 (we see the matrix M, € GL(k,R) as acting
both on R*¥ and on P(R¥)). The key point is the following observation.

Lemma 6.8. For any t < s in I, there exists ¢ < 0 such that, as T € [t, 5]

increases, the boundary of ﬁ?’q expands outwards everywhere with normal
velocity = —c/2 > 0, for the spherical metric (4.2) on P(RF).

Proof. Let Null(M:1) := {v € R¥|{v,v), = 0} be the preimage of JHP4
and Null(M,) := {v € R¥|{v,v); = 0} the preimage of {HZ? in RF. The
intersection of Null(M!) with the {-,-)o-unit (Euclidean) sphere S is the
0-level set, in S, of the function v — (v, M~'v)y. Since S is compact, the
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desired uniform expansion property for 8ﬁ§’q can therefore be written simply:

d
(6.7) @M < 0 for all ve Nul(M; ) 'S,
c=T

Note that (6.7) is equivalent to

d
(6.8) = (w, Mcw), > 0 for all we Null(M;) n'S.
Sle=T1
Indeed, 4 acle M;l = —-M~ (dg o TM<)M;1, hence under the change of

variable w = M; Ly, condition (6.7) becomes (6.8). (In other words, expan-

sion of AHPY is equivalent to shrinking of G]IT]IQ’Q.)

But M; = Id + 7N and 7 < —1, and so condition (6.8) is clearly sat-
isﬁed w € Null(M;) means {w, Nwyy = =t(w, w), and therefore implies
{w, Mcw)y = {w, Nw)y > 0. O

dch

Proof of Proposition 6.7.(a). Consider t < s in I. By Lemma 6.8, there

exists ¢ < 0 such that, as 7 € [t, s] increases, the boundary 01?]15"1 expands
outwards everywhere with normal velocity > —¢/2 > 0. Since horizontal
arrows of (6. 5) are isometries using (6.6) and Lemma 4.5, this shows that the
vector field Z- 7 1s c-lipschitz in spacelike directions in restriction
to (any convex subset of) A2 nHP9, for any T € [t, s].

Since Z; is (p;,uT)—equivariant (Deﬁnition 3.4) and since the sum of a
c-lipschitz vector field and a Killing field is still ¢-lipschitz (Proposition 2.3),
the vector field Z; is also c-lipschitz in spacelike directions in restriction to
pr(7y) - AL " HPY for any ye T

From this we see that Z, is c-lipschitz in spacelike directions on 27. In-
deed, X7 is a fundamental domain for the py-action of I' on the closure of
the properly convex set 27 in HPY, by Lemma 6.3. If z,y € 1} are on a
spacelike line, then we can find points z = zg,z1,...,zy = y in QF, lined
up in this order, such that for any 1 < ¢ < m there exists n; € I' with
[zi—1, ;] < pt(n;) - X2. Since Z, is continuous, and c-lipschitz in spacelike
directions on each p$(n;)- X2, Proposition 2.3 applied to each [z;_1, x;] yields

| i (0, (122 (2), 050, (125 (1))
Edi v (exy,_ (170 1)), 05D, (171 (1)
=1
Z o (Ti—1, ;) = cdup.a(x,y). O

=1

Proof of Proposition 6.7.(b). Due to (6.6), Lemma 6.8 also shows that f; s
takes values in HP¢ on the whole set A} n HPY, hence also on U n HPY
by equivariance, and a fortiori on its subset €27. In order to prove Proposi-
tion 6.7.(b), we observe that ®; -|a, = M- 1M, always fixes the point [vpg],
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for any 7 € [t, s]. Therefore, x; := t([vpr]) € Int(X3) < Q2 satisfies
(6.9) fer(x) =z, forall 7€t s].
Since z, € QF for all 7, by Lemma 5.4.(2), there exists a finite subset F'

of I such that for any 7 € [¢, s] and any v € I'\ F', the point =, sees p3(7v) -z,
in a spacelike direction. Then

d .
I dpp.a (ft,c(xt)a ft,c(pt () - xt))
Sle=7
d
drlr=0
< Cd]HIP’q (x7'7 P;(’Y) : x’r)) = CdHqu (ft,T(xt)7 ft,T(p; (’7) ' Ilft)),

where we use (6.4), Proposition 6.7.(a), and (6.9) in this order. Integrating
over T € [t, s], we obtain

daava (fros(22), frs(08 (1) - 1)) < e dygwa (s, p} (7) - 1)
for all y € I' \ F'. Up to an additive constant, this is still true of all v e I.

In other words, f;s is coarsely e“(5=t)_Lipschitz in spacelike directions on
P =pi(0) -z O

dip.a ( €XPg, (TZT (1'7—)), CXPpe (v)-z~ (TZT (P:— (7) : xT)))
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