Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)₂-

Catalyzed Aerobic Allylic Acetoxylation in the Absence and

Presence of a Co(salophen) Cocatalyst

Caitlin V. Kozack, Stephen J. Tereniak, Jonathan N. Jaworski, Bao Li, David L. Bruns, Spring

M. M. Knapp, Clark R. Landis, and Shannon S. Stahl*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue

Madison, WI, 53706, United States

RECEIVED DATE

Keywords: allylic acetoxylation, catalysis, palladium, oxidation, benzoquinone

Abstract: Palladium(II)-catalyzed allylic acetoxylation has been the focus of extensive

development and investigation. Methods that use molecular oxygen (O₂) as the terminal oxidant

typically benefit from the use of benzoquinone (BQ) and a transition-metal (TM) cocatalyst, such

as Co(salophen), to support oxidation of Pd⁰ during catalytic turnover. We previously showed that

Pd(OAc)₂ and 4,5-diazafluoren-9-one (DAF) as an ancillary ligand catalyze allylic oxidation with

O₂ in the absence of cocatalysts. Herein, we show that BQ enhances DAF/Pd(OAc)₂ catalytic

activity, nearly matching the performance of reactions that include both BQ and Co(salophen).

These observations are complemented by mechanistic studies of DAF/Pd(OAc)₂ catalyst systems

under three different oxidation conditions: (1) O₂ alone, (2) O₂ with cocatalytic BQ, and (3) O₂

with cocatalytic BQ and Co(salophen). The beneficial effect of BQ in the absence of Co(salophen)

is traced to synergistic roles of O₂ and BQ, both of which are capable of oxidizing Pd⁰ to Pd^{II}. The

1

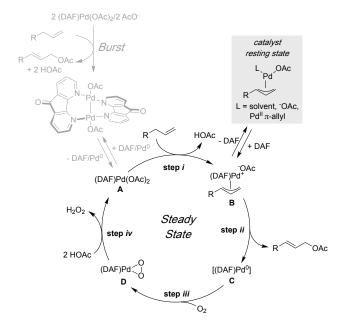
reaction of O₂ generates H₂O₂ as a byproduct, which can oxidize hydroquinone to quinone in the presence of Pd^{II}. NMR spectroscopic studies, however, show that hydroquinone is the predominant redox state of the quinone cocatalyst in the absence of Co(salophen), while inclusion of Co(salophen) maintains oxidized quinone throughout the reaction, resulting in better reaction performance.

Introduction

Palladium(II)-mediated allylic C–H acetoxylation was first reported nearly 60 years ago. Since then, many other catalytic applications of this method have been reported that employ various stoichiometric oxidants, including benzoquinone derivatives, 1,2-10 peroxides, 11-14 copper salts, 15,16 and hypervalent iodine reagents 17,18 (Scheme 1). Benzoquinone (BQ) is commonly used in cocatalytic quantities with a stoichiometric oxidant, such as MnO₂ 19-21 or a peroxide. 11,14,22 Molecular oxygen (O₂) has been used effectively, typically in combination with BQ and a transition-metal (TM) complex, such as iron phthalocyanine or Co(salophen), as a cocatalyst to support catalytic turnover (Scheme 2). 20,21,23-30 In rare cases, O₂ is an effective oxidant for Pd-catalyzed allylic acetoxylation without any cocatalysts. 31,32

Scheme 1. Pd-catalyzed allylic acetoxylation with various oxidants

Scheme 2. Proposed mechanism for aerobic allylic acetoxylation with multicomponent catalyst systems (ETM = electron-transfer mediator)


Pd(OAc)₂

$$+ AcOH$$

Our initial studies of Pd-catalyzed allylic acetoxylation were motivated by an interest in developing a ligand-based strategy to support the use of O_2 as an oxidant and led to the discovery of 4,5-diazafluoren-9-one (DAF) as an effective ancillary ligand for these reactions.^{30,32-35} Subsequent mechanistic studies revealed that these reactions exhibit a kinetic "burst" of product formation at the start of the reaction, coinciding with the formation of a Pd^I dimer,³⁶ followed by steady-state catalytic turnover in which the catalyst resting state consists of an allyl-Pd^{II} species (Scheme 3).³⁷ The catalytic rate exhibits a dependence on pO_2 during steady-state turnover, implicating catalyst reoxidation by O_2 as the turnover-limiting step. Recognizing that BQ is

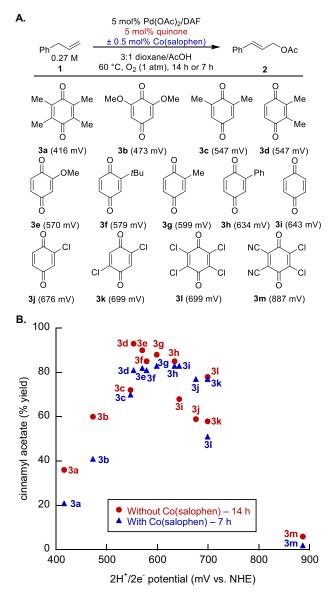
capable of promoting both C–O bond-formation (formally, reductive elimination) from allyl-Pd^{II} species and reoxidation of Pd⁰,³⁸ we evaluated BQ derivatives as additives in a recent study of allylic acyloxylation with diverse carboxylic acids.³⁰ In the course of this work, we found that use of 5 mol% 2,6-dimethylbenzoquinone (Me₂BQ) in the absence of a TM cocatalyst more than doubled the yield relative to a reaction with O₂ in the absence of quinone. This result is not readily understood from prior studies, which suggest that the cocatalyst is needed to reoxidize hydroquinone (H₂Q).^{23-30,39}

Scheme 3. Mechanistic steps in DAF/Pd(OAc)₂-catalyzed aerobic allylic acetoxylation

The mechanistic model commonly invoked for multicomponent catalyst systems of this type features a redox cascade in which O₂ oxidizes the TM cocatalyst, the TM cocatalyst oxidizes H₂Q, BQ oxidizes Pd⁰, and Pd^{II} oxidizes the organic substrate (Scheme 2).^{23,24,40} This cascade sequence is widely invoked, but few studies have interrogated mechanistic features of the cocatalyst system^{40,41} and prior studies do not provide a rationale for the beneficial role of BQ in the absence of a TM cocatalyst. Two recent studies seemed to offer possible insights. DAF/Pd(OAc)₂ was

found to undergo redox equilibration with H₂Q, generating BQ and reduced Pd species;³⁹ however, this reactivity doesn't provide a clear basis for improved catalyst performance. A separate study showed that Pd^{II} salts catalyze oxidation of H₂Q to BQ derivatives using *t*BuOOH as the oxidant.⁴² This reactivity contributes to the Pd/BQ-cocatalyzed 1,4-diacyloxylation of cyclohexadiene with *t*BuOOH, complementing other Pd/BQ cocatalyst systems that use peroxides as the stoichiometric oxidant,¹¹ including one case using DAF/Pd(OAc)₂ as the Pd catalyst.¹⁴ The relevance of these insights is apparent upon recognizing that oxidation of Pd⁰ by O₂ in the presence of AcOH generates H₂O₂ (Scheme 4),^{35,43-45} and we postulated that this in situ-generated H₂O₂ could promote oxidation of H₂Q to BQ, thereby accounting for the beneficial effect of BQ on Pd-catalyzed aerobic allylic oxidation, even in the absence of a TM cocatalyst.

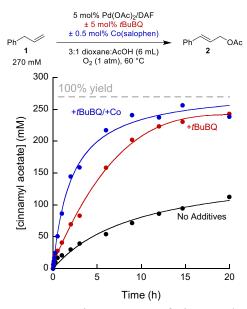
Scheme 4. Reaction of Pd⁰ with O₂ resulting in the formation of H₂O₂

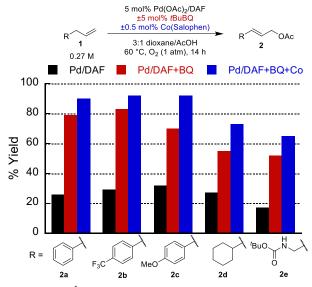

The present study surveys the influence of various quinones on Pd-catalyzed aerobic allylic acetoxylation in the absence and presence of Co(salophen) as a cocatalyst. We then investigate the relative rates of H₂Q oxidation by O₂ in the presence of different components of the catalyst system and employ NMR spectroscopy to probe the quinone speciation in the absence and presence of cocatalytic Co(salophen). Collectively, the results provide unique mechanistic insights into commonly used multicomponent catalyst systems in Pd-catalyzed oxidation reactions.

Results and Discussion

Influence of quinones on Pd-catalyzed allylic oxidation. We initiated our study by investigating Pd-catalyzed acetoxylation of allylbenzene (1) with 5 mol% loading of quinones 3a-3m, which have different steric properties and redox potentials (Figure 1A). Reactions carried out

in the absence and presence of 0.5 mol% Co(salophen) show a "volcano"-like dependence of the cinnamyl acetate (2) yield on the quinone 2e⁻/2H⁺ redox potential (Figure 1B). ⁴⁶ Reaction times were shortened from 14 to 7 h when using Co(salophen) in order to enhance the contrast among different quinones. The variations in yields among the best quinones probably reflect the superposition of steric and electronic contributions to the outcome. But, optimal yields of 2 were generally obtained with BQs with redox potentials ranging from ~ 550-635 mV (3d–3h) in the absence of Co(salophen). The range of optimal quinone redox potentials expands for reactions conducted in the presence of Co(salophen), accommodating quinones with potentials of ~ 550-700 mV (3d–3k).


The poor performance of low and high potential quinones in both cases is rationalized by offsetting electronic effects on the redox processes involving quinones: (a) BQ promotion of Pd-catalyzed substrate oxidation, including C–O bond formation from allyl-Pd^{II} species and reoxidation of Pd⁰, is expected to benefit from high-potential quinones, while (b) reoxidation of H₂Q will be more facile for low-potential quinones. The positive shift in quinone redox potentials for reactions with Co(salophen) is consistent with the ability of this cocatalyst to promote H_2Q oxidation (see below).


Figure 1. Allylic acetoxylation of allylbenzene with different benzoquinone derivatives. (A) Benzoquinone additives and their redox potentials. (B) Observed yields relative to the 2H⁺/2e⁻ redox potential of the quinone for conditions without Co(salophen) (14 h) and with Co(salophen) (7h).

The effect of quinone on DAF/Pd(OAc)₂-catalyzed acetoxylation of **1** was evaluated further by monitoring the reaction time course under three different aerobic oxidation conditions: (1) with 1 atm O₂ in the absence of cocatalysts, (2) with 1 atm O₂ and 5 mol% 2-tert-butyl-1,4-benzoquinone (tBuBQ) as a cocatalyst, and (3) with 1 atm O₂, 5 mol% tBuBQ, and 0.5 mol%

Co(salophen) as cocatalysts (Figure 2). The reaction conducted under O_2 in the absence of cocatalysts exhibits a rapid burst of product formation during the first ~10 min followed by slower steady state turnover, consistent with previous reports. Both reactions with tBuBQ exhibit higher rates and lead to high yields of 2 after 15 h, at which time the O_2 -alone reaction has reached only ~40% yield. The presence of both tBuBQ and Co(salophen) leads to the best performance, as expected, but the good results observed with tBuBQ in the absence of Co(salophen) is noteworthy. Similar results were obtained with a series of other substrates, including electronically differentiated allylbenzene derivatives (1a-1c) and aliphatic substrates (1d, 1e). In each case, addition of tBuBQ to the reaction substantially improves the yield, and further improvements are evident when both tBuBQ and Co(salophen) are included as cocatalysts in the reaction mixture (Figure 3).

Figure 2. Time course of cinnamyl acetate formation during the aerobic allylic acetoxylation of allylbenzene without additives, with 5 mol% *t*BuBQ, and with 5 mol% *t*BuBQ and 0.5 mol% Co(salophen). Trendlines reflect empirical fits to guide the eye (see Supporting Information for details).

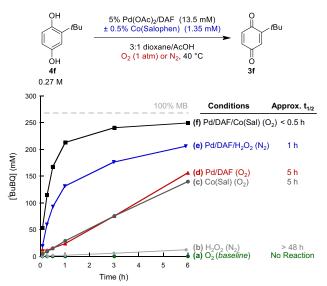


Figure 3. ¹H NMR yields of allylic acetates **2a-2e** obtained from substrates **1a-1e** under three different aerobic reaction conditions: without cocatalysts (black), with 5 mol% *t*BuBQ (red), and with 5 mol% *t*BuBQ and 0.5 mol% Co(salophen) (blue).

Analysis of H₂Q oxidation and quinone speciation under catalytic conditions. BQ cocatalysts can play at least two roles in these reactions: (a) promote C–O bond formation/reductive elimination from allyl-Pd^{II} species^{5,38,47-49} and (b) promote reoxidation of Pd⁰ to Pd^{II}. The first role does not alter the redox state of the BQ,⁵¹ while the second will generate H₂Q, which must be reoxidized to BQ in order to continue serving as a cocatalyst. The latter process is typically thought to require Co(salophen) or a related cocatalyst,^{23,24} raising questions about the beneficial effect of BQ in the absence of a TM cocatalyst.

Experiments were undertaken to probe methods for oxidation of $tBuH_2Q$ to tBuBQ that could be operative under the Pd-catalyzed oxidation conditions (Figure 4). The reaction temperature for these studies was lowered to 40 °C to facilitate data collection at early time points for some of the rapid reactions. O₂ alone does not promote oxidation of $tBuH_2Q$ to tBuBQ (Figure 4a) and only minor oxidation was observed with H_2O_2 in the absence of metal (co)catalysts (4% yield after 6 h, Figures 4b). Similar moderate rates of $tBuH_2Q$ oxidation were observed with Co(salophen) under

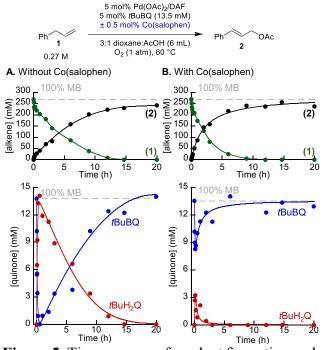
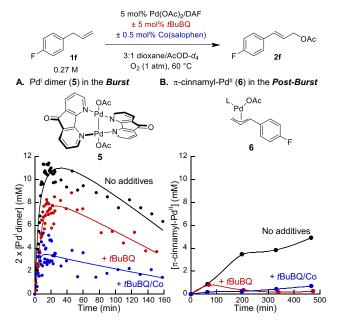

O₂ and DAF/Pd(OAc)₂ under O₂ (52% and 55% yields after 6 h, Figure 4c and 4d, respectively). The DAF/Pd(OAc)₂/O₂ outcome is somewhat unexpected considering BQ derivatives are typically used to oxidize Pd⁰; however, it aligns with the recent observation of redox equilibria between DAF/Pd(OAc)₂ and H₂Q derivatives³⁹ and indicates that net O₂ reduction to H₂O drives *t*BuH₂Q oxidation under these conditions. In this context, DAF/Pd(OAc)₂ mediates rapid oxidation of *t*BuH₂Q by H₂O₂ under anaerobic conditions (75% yield after 6 h, Figure 4e). Oxidation of *t*BuH₂Q is most rapid when both DAF/Pd(OAc)₂ and Co(salophen) are used as cocatalysts under an O₂ atmosphere (Figure 4f).

Figure 4. Time course plots obtained from the oxidation of *t*BuH₂Q to *t*BuBQ under a series of different conditions.

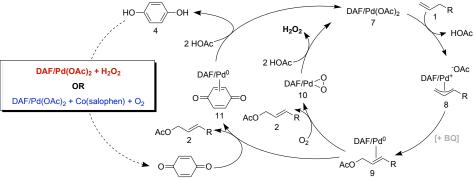

The redox state of the quinone cocatalyst during the catalytic acetoxylation reaction was then interrogated for reactions conducted in the absence and presence of the Co(salophen) cocatalyst. The quinone speciation was determined by analyzing aliquots of the reaction mixture throughout the reaction time course by ¹H NMR spectroscopy (samples were quenched with pyridine and diluted in CDCl₃ for analysis; see Supporting Information for details). In the absence of Co(salophen), *t*BuBQ is completely consumed during the first 30 min with concomitant formation

of $tBuH_2Q$. Then, $tBuH_2Q$ is slowly oxidized to tBuBQ as the allylic oxidation reaction proceeds to completion over the next 15-20 h (Figure 5A). The reaction conducted in the presence of Co(salophen) also shows an initial reduction of tBuBQ to $tBuH_2Q$; however, this progression is reversed after 25-30% conversion to $tBuH_2Q$, and tBuBQ is present in a high steady-state concentration throughout most of the reaction (Figure 5B).

Figure 5. Time courses of product formation and starting material depletion (top plot) and *t*BuBQ speciation (bottom plot) during the aerobic allylic acetoxylation of allylbenzene (A) without Co(salophen) and (B) with 0.5% Co(salophen). Trendlines reflect empirical fits to guide the eye based on functions described in the Supporting Information.

We then used the Wisconsin High-Pressure NMR Reactor (WiHP-NMRR)⁵² to conduct operando analysis of the reactions. This apparatus enables reactions to be run under a continuous supply of a gaseous reagent while recording NMR spectra,^{37,53-55} and it enabled us to probe the Pd catalyst under three different reaction conditions: (1) O_2 alone, (2) O_2 + 5 mol% tBuBQ, and (3) O_2 + 5 mol% tBuBQ + 0.5 mol% tBuBQ + 0.

Figure 6. Palladium speciation monitored by operando WiHP-NMRR during the acetoxylation of 4-fluoroallylbenzene **1f** to the allyl acetate **2f**. (A) Formation/decay of [Pd^I dimer **5**] analyzed by 1 H NMR spectroscopy, and (B) appearance of [π-cinnamyl-Pd^{II} **6**] (or lack thereof) determined by 19 F NMR analysis. Trendlines reflect empirical fits to guide the eye (see Supporting Information for details).


Previous investigation of DAF/Pd(OAc)₂-catalyzed allylic oxidation under aerobic conditions (i.e., in the absence of cocatalysts) revealed formation of the dimeric Pd^I species **5** at early stages of the reaction, arising from comproportionation of Pd⁰ and Pd^{II} species present in the reaction mixture (cf. Scheme 3).³⁷ These observations were reproduced under the O₂-alone conditions (black data, Figure 6A). Inclusion of *t*BuBQ leads to reduced build-up of the Pd^I dimer intermediate early in the reaction (red data, Figure 6A) and even less formation of Pd^I when both *t*BuBQ and Co(salophen) are included in the reaction (blue data, Figure 6A). As the reaction progresses, π-cinnamyl-Pd^{II} species (**6**) become evident in the reaction mixture lacking cocatalysts (Figure 6B, black data), implicating an allyl-Pd^{II} resting state during steady-state turnover. This species is not evident, however, in both reaction mixtures containing cocatalysts (Figure 6B, red and blue data, respectively).

The reduced formation of the Pd^I dimer in the presence of *t*BuBQ (Figure 6A) is rationalized by the ability of *t*BuBQ to coordinate to Pd⁰ and reoxidize it to Pd^{II}, ⁵⁰ thereby minimizing Pd⁰/Pd^{II} comproportionation to form the Pd^I dimer. The lack of allyl-Pd^{II} species when cocatalysts are present (Figure 6B) is consistent with the ability of BQ cocatalysts to promote C–O bond formation from allyl-Pd^{II}. ^{5,38,47-49} These data provide direct operando evidence for the two commonly invoked roles of quinones in Pd-catalyzed allylic oxidation reactions.

Summary and catalytic mechanism. The data presented herein illuminate a number of features that have not been characterized previously for multicomponent Pd/cocatalyst systems for aerobic oxidation. The results show a synergistic role of O₂ and BQ, in which the H₂O₂ byproduct of Pd⁰ aerobic oxidation supports oxidation of the H₂Q species. This feature allows BQ to be an effective cocatalyst, even in the absence of a Co(salophen) cocatalyst (cf. Figure 2). Nonetheless, the catalytic reaction is more effective when both quinone and Co(salophen) are included in the reaction. This mutual benefit reflects improved rates of H₂Q oxidation when Co(salophen) is present (cf. Figure 4), resulting in oxidized BQ species being available throughout the catalytic reaction (cf. Figure 5) to support C–O bond formation and reoxidation of the Pd catalyst.

The catalytic mechanism in Scheme 5 accounts for many of the observations described herein. In the absence of cocatalysts, DAF/Pd(OAc)₂ activates the allylic C–H bond of the olefin substrate, leading to the formation of an allyl-Pd^{II} intermediate that can undergo (reversible³²) C–O bond formation to afford a DAF/Pd⁰ species that can be reoxidized by O₂ via a peroxo-Pd^{II} intermediate (right catalytic cycle, Figure 5). The presence of BQ promotes C–O bond formation from the allyl-Pd^{II} species and provides an alternative pathway for reoxidation of Pd⁰ via a DAF/Pd⁰-BQ adduct. The latter step will generate H₂Q, which can undergo reoxidation to BQ, using H₂O₂ from the aerobic pathway or a cocatalytic process involving DAF/Pd/Co(salophen)/O₂ (cf. Figure 4).

Scheme 5. Proposed catalytic mechanism for Pd-catalyzed aerobic allylic acetoxylation.

Conclusion.

This study provides new insights into the cooperative contributions of O₂, BQ, and Co(salophen) in promoting Pd catalyst reoxidation in allylic acetoxylation reactions. O₂ can reoxidize the Pd catalyst directly when a suitable ancillary ligand, such as DAF, is present to ensure catalyst stability and promote the reaction with O₂. The beneficial effect of BQ reflects its ability to promote both C–O bond formation in the substrate oxidation half-reaction and its ability to oxidize Pd⁰ under acidic reaction conditions. But, a method is needed to ensure reoxidation of H₂Q after each catalytic cycle. Hydroquinone does not react readily with O₂, but we show that O₂/BQ are effective together in the Pd-catalyzed conditions. Under these conditions, O₂ reduction generates H₂O₂, which then supports efficient oxidation of H₂Q in the presence of the Pd catalyst. The best conditions feature a combination of quinone and Co(salophen) cocatalysts, reflecting the ability of the Co(salophen) to promote rapid oxidation of the H₂Q species, maximizing the steady-state quantity of quinone available to support substrate and catalyst oxidation steps. The results described herein provide new insights and direct evidence for previous mechanistic proposals.

ASSOCIATED CONTENT AUTHOR INFORMATION

Corresponding Author

*stahl@chem.wisc.edu

Notes

The authors declare no competing financial interests.

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website. Experimental details and NMR data.

ACKNOWLEDGMENT

This work was funded by the NSF (CHE-1665120 and CHE-1953926). NMR instrumentation was supported by NSF CHE-1048642, NIH S10 OD012245 and a generous gift from Paul J. and Margaret M. Bender. The WiHP-NMRR was supported by the Dow Chemical Company. C.V.K. was supported in part by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256259. S.J.T. was funded by the NIH (NRSA Fellowship Award F32GM119214). Support was also provided by the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation.

References.

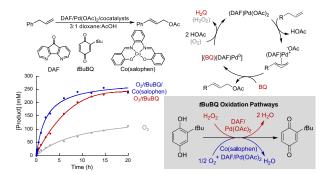
Vargaftik, M. N.; Moiseev, I. I.; Syrkin, Ya. K. Formation of Mixed Allyl Esters During Reaction of Higher Olefins with Palladium Chloride in Anhydrous Carboxylic Acid Solutions. *Izv. Akad. Nauk SSSR* 1962, 5, 930-931.

^{2.} McMurry, J. E.; Kočovsky, P. A Method for the Palladium-Catalyzed Allylic Oxidation of Olefins. *Tet. Lett.* **1984**, *25*, 4187-4190.

- 3. Åkermark, B.; Hansson, S. Rein, T.; Vågberg, J.; Heumann, A.; Bäckvall, J.-E. Palladium-Catalyzed Allylic Acetoxylation: an Exploratory Study of the Influence of Added Acids *J. Org. Chem.* **1989**, *369*, 433-444.
- 4. Chen, M. S.; White, M. C. A Sulfoxide-Promoted, Catalytic Method for the Regioselective Synthesis of Allylic Acetates from Monosubstituted Olefins via C–H Oxidation. *J. Am. Chem. Soc.* **2004**, *126*, 1346-1347.
- 5. Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. Serial Ligand Catalysis: A Highly Selective Allylic C–H Oxidation. *J. Am. Chem. Soc.* **2005**, *127*, 6970-6971.
- 6. Covell, D. J.; White, M. C. A Chiral Lewis Acid Strategy for Enantioselective Allylic C–H Oxidation. *Angew. Chem. Int. Ed.* **2008**, *47*, 6448-6451.
- 7. Lin, B.-L.; Labinger, J. A.; Bercaw, J. E. Mechanistic Investigations of Bipyrimidine-Promoted Palladium-Catalyzed Allylic Acetoxylation of Olefins. *Can. J. Chem.* **2009**, *87*, 264-271.
- 8. Thiery, E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras, J.; Muzart, J. Palladium-Catalyzed Allylic Acyloxylation of Terminal Alkenes in the Presence of a Base. *J. Org. Chem.* **2009**, *75*, 1771-1774.
- 9. Kondo, H.; Yu, F.; Yamaguchi, J.; Liu, G.; Itami, K. Branch-Selective Allylic C–H Carboxylation of Terminal Alkenes by Pd/sox Catalyst. *Org. Lett.* **2014**, *16*, 4212-4215.
- Malik, H. A.; Taylor, B. L. H.; Kerrigan, J. R.; Grob, J. E.; Houk, K. N.; Du Bois, J.;
 Hamann, L. G.; Patterson, A. W. Non-Directed Allylic C–H Acetoxylation in the Presence of Lewis Basic Heterocycles. *Chem. Sci.* 2014, 5, 2352-2361.

- 11. Jia, C.; Müller, P.; Mimoun, H. Palladium-Catalyzed Allylic Acetoxylation of Olefins Using Hydrogen Peroxide as Oxidant. *J. Mol. Catal. A: Chem.* **1995**, *101*, 127-136.
- Pilarski L. T.; Janson, P. G.; Szabó, K. J. Palladium-Catalyzed Selective Acyloxylation
 Using Sodium Perborate as Oxidant. J. Org. Chem. 2011, 76, 1503-1506.
- 13. Xing, X.; O'Connor, N. R.; Stoltz, B. M. Palladium(II)-Catalyzed Allylic C–H Oxidation of Hindered Substrates Featuring Tunable Selectivity Over Extent of Oxidation. *Angew. Chem. Int. Ed.* **2015**, *54*, 11186-11190.
- Litman, Z. C.; Sharma, A.; Hartwig, J. F. Oxidation of Hindered Allylic C–H Bonds with Applications to the Functionalization of Complex Molecules. *ACS Catal.* 2017, 7, 1998-2001.
- 15. Heumann, A.; Reglier, M.; Waegell, B. Oxidation with Palladium Salts: Stereo- and Regiospecific Acetoxylation of 4-Vinylcyclohexene Derivatives. *Angew. Chem. Int. Ed. Engl.* **1982**, *21*, 366-367.
- Firdoussi, L. E.; Baqqa, A.; Allaoud, S.; Allal, B. A.; Karim, A.; Catanet, Y.; Mortreux, A.
 Selective Palladium-Catalysed Functionalization of Limonene: Synthetic and Mechanistic
 Aspects. J. Mol. Catal. A: Chem. 1998, 135, 11-22.
- Pilarski L. T.; Selander, N.; Bose, D.; Szabó, K. J. Catalytic Allylic C–H Acetoxylation and Benzoyloxylation via Suggested (η³-Allyl)palladium(IV) Intermediates. *Org. Lett.* 2009, 11, 5518-5521.
- Alam, R.; Pilarski L. T.; Pershagen, E.; Szabó, K. J. Stereoselective Intermolecular Allylic
 C–H Trifluoroacetoxylation of Functionalized Alkenes. *J. Am. Chem. Soc.* 2012, *134*, 8778-8781.

- Heumann, A.; Åkermark, B. Oxidation with Palladium Salts: Catalytic Preparation of Allyl Acetates from Monoolefins Using a Three-Component Oxidation System. *Angew. Chem.* Int. Ed. 1984, 23, 453-454.
- 20. Hansson, S.; Heumann, A.; Rein, T. Åkermark, B. Preparation of Allylic Acetates from Simple Alkenes by Palladium(II)-Catalyzed Acetoxylation. *J. Org. Chem.* **1990**, *55*, 975-984.
- 21. Thiery, E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras, J.; Muzart, J. Palladium-Catalyzed Allylic Acyloxylation of Terminal Alkenes in the Presence of a Base. *J. Org. Chem.* **2010**, *75*, 1771-1774.
- 22. Åkermark, B.; Larsson, E. M.; Oslob, J. D. Allylic Carboxylations and Lactonization Using Benzoquinone and Hydrogen Peroxide or *tert*-Butyl Hydroperoxide as Oxidants. *J. Org. Chem.* **1994**, *59*, 5729-5733.
- 23. Piera, J.; Bäckvall, J.-E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer A Biomimetic Approach. *Angew. Chem. Int. Ed.* **2008**, *47*, 3506-3523.
- 24. Liu, J.; Guðmundsson, A.; Bäckvall, J.-E. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. *Angew. Chem. Int. Ed.* 2021, Accepted Article. DOI: 10.1002/anie.202012707
- 25. Bäckvall, J. E.; Hopkins, R. B.; Grennberg, H.; Mader, M. M.; Awasthi, A. K. Multistep Electron Transfer in Palladium-Catalyzed Aerobic Oxidations via a Metal Macrocycle-Quinone System. *J. Am. Chem. Soc.* **1990**, *112*, 5160-5166.


- Larsson, E. M.; Åkermark, B. A Catalytic System for Allylic Acetoxylation Consisting of Palladium(II) and Nitrate and Using Oxygen as Final Oxidant. *Tet. Lett.* 1993, 34, 2523-2526.
- 27. Principato, B.; Maffei, M.; Siv, C.; Buono, G.; Peiffer, B. Palladium Catalysed Allylic Acetoxylation of Dialkyl Allyl Phosphonates. *Tetrahdron*, **1996**, *52*, 2087-2096.
- 28. Gusevskaya, E.; Gonsalves, J. A. Palladium(II) Catalyzed Oxidation of Naturally Occurring Terpenes with Dioxygen. *J. Mol. Catal. A: Chem.* **1997**, *121*, 131-137.
- 29. Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Allylic Oxidations of Terminal Olefins Using a Palladium Thioether Catalyst. *Org. Lett.* **2010**, *12*, 824-827.
- 30. Kozack, C. V.; Sowin, J. A.; Jaworski, J. N.; Iosub, A. V.; Stahl, S. S. Aerobic Acyloxylation of Allylic C–H Bonds Initiated by a Pd⁰ Precatalyst with 4,5-Diazafluoren-9-one as an Ancillary Ligand. *ChemSusChem*, **2019**, 3003-3007.
- 31. Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Convenient and Efficient Pd-Catalyzed Regioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as Sole Reoxidant. *Angew. Chem. Int. Ed.* **2006**, *45*, 481-485.
- 32. Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl S. S. Allylic C–H Acetoxylation with a 4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-Based Strategy To Achieve Aerobic Catalytic Turnover. *J. Am. Chem. Soc.* **2010**, *132*, 15116-15119.
- 33. White, P. B.; Jaworski, J. N.; Fry, C. G.; Dolinar, B. S.; Guzei, I. A.; Stahl, S. S. Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions. *J. Am. Chem. Soc.* **2016**, *138*, 4869-4880.

- 34. White, P. B.; Jaworski, J. N.; Geyunjian, H. Z.; Stahl. S. S. Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions. *ACS Catal.* **2016**, *6*, 3340-3348.
- 35. Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. *Chem. Rev.* **2018**, *118*, 2636-2679.
- 36. Jaworski, J. N.; McCann, S. D.; Guzei, I. A.; Stahl, S. S. Detection of Palladium(I) in Aerobic Oxidation Catalysis. *Angew. Chem. Int. Ed.* **2017**, *56*, 3605-3610.
- 37. Jaworski, J. N.; Kozack, C. V.; Tereniak, S. J.; Knapp, S. M. M.; Landis, C. R.; Miller J. T.; Stahl, S. S. Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc)₂/4,5-Diazafluoren-9-one. *J. Am. Chem. Soc.* **2019**, 10462-10474.
- 38. Diao, T.; Stahl, S. S. O₂-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" Versus "Pull" Mechanisms and Comparison Between O₂ and Benzoquinone. *Polyhedron*, **2014**, *84*, 96-102.
- 39. For additional context, see: Bruns, D. L.; Musaev, D. G.; Stahl, S. S. Can Donor Ligands Make Pd(OAc)₂ a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. *J. Am. Chem. Soc.* **2020**, *142*, 19678-19688.
- 40. Anson, C. W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S. S. Co(salophen)-Catalyzed Aerobic Oxidation of *p*-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. *J. Am. Chem. Soc.* **2016**, *138*, 4186-4193.

- 41. Anson, C. W.; Stahl, S. S. Cooperative electrocatalytic O₂ Reduction Involving Co(salophen) with *p*-Hydroquinone as an Electron-Proton Transfer Mediator. *J. Am. Chem. Soc.* **2017**, *139*, 18472-18475.
- 42. Zheng, B.; Schmidt, M. A.; Eastgate, M. D. Synergistic Catalysis: Pd(II) Catalyzed Oxidation of 1,4-Dihydroquinones in the Pd(II) Catalyzed 1,4-Oxidation of 1,3-Dienes. *J. Org. Chem.* **2016**, *81*, 3112-3118.
- 43. Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. Oxygenation of Nitrogen-Coordinated Palladium(0): Synthetic, Structural, and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis. *J. Am. Chem. Soc.* **2001**, *123*, 7188-7189.
- 44. Konnick, M. M.; Guzei, I. A.; Stahl, S. S. Characterization of Peroxo and Hydroperoxo Intermediates in the Aerobic Oxidation of *N*-Heterocyclic-Carbene-Coordinated Palladium(0). *J. Am. Chem. Soc.* **2004**, *126*,10212-10213.
- 45. Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.; Stahl, S. S. Reaction of Molecular Oxygen with a Pd^{II}–Hydride To Produce a Pd^{II}–Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. *Angew. Chem. Int. Ed.* **2006**, *45*, 2904-2907.
- 46. Huynh, M. T.; Anson, C. W.; Cavell, A. C.; Stahl, S. S.; Hammes-Schiffer, S. Quinone 1e⁻ and 2 e⁻/2 H⁺ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. *J. Am. Chem. Soc.* **2016**, *138*, 15903-15910.
- 47. Grennberg, H.; Gogoll, A.; Bäckvall, J.-E. Use of Sulfoxides in the Palladium-Quinone-Catalyzed 1,4-Diacetoxylation of 1,3-Dienes. An Example of Ligand-Accelerated Catalysis. *J. Org. Chem.* **1991**, *56*, 5808-5811.

- 48. Bäckvall, J.-E.; Gogoll, A. Evidence for (π-allyl)Palladium(II)(quinone) Complexes in the Palladium-Catalyzed 1,4-Diacetoxylation of Conjugated Dienes. *Tetrahedron Lett.* **1988**, *29*, 2243-2246.
- 49. Bäckvall, J.-E.; Byström, S. E.; Nordberg, R. E. Stereo- and Regioselective Palladium-Catalyzed 1,4-Diacetoxylation of 1,3-Dienes. *J. Org. Chem.* **1984**, *49*, 4619-4631.
- 50. Grennberg, H.; Gogoll, A.; Bäckvall, J.-E. Acid-Induced Transformation of Palladium(0)-Benzoquinone Complexes to Palladium(II) and Hydroquinone. *Organometallics* **1993**, *12*, 1790-1793.
- 51. For an example of the redox-neutral role of BQ in Pd-catalyzed aerobic oxidation reactions, see: Salazar, C. A.; Flesch, K. N.; Haines, B. E.; Zhou, P. S.; Musaev, D. G.; Stahl, S. S. Tailored Quinones Support High-Turnover Pd Catalysts for Oxidative C–H Arylation with O₂. Science **2020**, *370*, 1454-1460.
- 52. Beach, N. J.; Knapp, S. M. M.; Landis, C. R. A Reactor for High-Throughput High-Pressure Nuclear Magnetic Resonance Spectroscopy. *Rev. Sci. Instrum.* **2015**, *86*, 104101.
- 53. Chotchatchawankul, S., Mechanistic Studies of Rh(diphosphine)-Catalyzed Methanol Reductive Carbonylation, Dissertation, University of Wisconsin Madison, WI, 2015.
- 54. Brezny, A. C.; Landis, C. R. Unexpected CO Dependencies, Catalyst Speciation, and Single Turnover Hydrogenolysis Studies of Hydroformylation via High Pressure NMR Spectroscopy. *J. Am. Chem. Soc.* **2017**, *139*, 2778-2785.
- 55. Tereniak, S. J.; Landis, C. R.; Stahl, S. S. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions. *ACS Catal.* **2018**, *8*, 3708-3714.

TOC Graphic

