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Abstract. Anosov representations of word hyperbolic groups into
higher-rank semisimple Lie groups are representations with finite kernel
and discrete image that have strong analogies with convex cocompact
representations into rank-one Lie groups. However, the most naive anal-
ogy fails: generically, Anosov representations do not act properly and
cocompactly on a convex set in the associated Riemannian symmetric
space. We study representations into projective indefinite orthogonal
groups PO(p, q) by considering their action on the associated pseudo-
Riemannian hyperbolic space H

p,q−1 in place of the Riemannian sym-
metric space. Following work of Barbot and Mérigot in anti-de Sitter
geometry, we find an intimate connection between Anosov representa-
tions and a natural notion of convex cocompactness in this setting.

1. Introduction

Convex cocompact subgroups of rank-one semisimple Lie groups are an im-
portant class of discrete groups whose actions on the associated Riemannian
symmetric space (and its visual boundary at infinity) exhibit many desir-
able geometric and dynamical properties. Their study has been particularly
important in the setting of Kleinian groups and hyperbolic geometry. This
paper studies a generalized notion of convex cocompactness in the higher-
rank setting of projective indefinite orthogonal groups PO(p, q), described
in terms of the action on the projective space P(Rp,q) and on the associ-
ated pseudo-Riemannian hyperbolic space Hp,q−1. Our forthcoming papers
[DGK2, DGK3] will extend many of these ideas to the setting of discrete
subgroups of the projective general linear group PGL(Rn) which do not nec-
essarily preserve any nonzero quadratic form.
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1.1. Convex cocompactness in projective orthogonal groups. In the
whole paper, we fix integers p, q ≥ 1 and let G = PO(p, q) be the orthogonal
group, modulo its center {±I}, of a nondegenerate symmetric bilinear form
〈·, ·〉p,q of signature (p, q) on Rp+q. We denote by Rp,q the space Rp+q en-
dowed with the symmetric bilinear form 〈·, ·〉p,q. For any linear subspace W
of Rp,q, we denote by W⊥ the orthogonal of W for 〈·, ·〉p,q. We use similar
notation in P(Rp,q): in particular, for z ∈ P(Rp,q) the set z⊥ is a projective
hyperplane of P(Rp,q), which contains z if and only if 〈z, z〉p,q = 0.

When q = 1, the group G is the group of isometries of the real hyperbolic
space

H
p =

{
[x] ∈ P(Rp,1) | 〈x, x〉p,1 < 0

}
,

which is also the Riemannian symmetric space G/K associated with G. Re-
call that a discrete subgroup Γ of G = PO(p, 1) is said to be convex co-
compact if it acts cocompactly on some nonempty closed convex subset C
of Hp. Note that since Γ is discrete and Hp is Riemannian, the action is au-
tomatically properly discontinuous, and so the quotient Γ\C is a hyperbolic
orbifold, or a manifold if the action is free, with convex boundary. Basic
examples of convex cocompact subgroups include uniform lattices of G and
Schottky subgroups of G. In the case p = 3, for which the accidental iso-
morphism PO(3, 1)0 ≃ PSL2(C) makes G a complex group, the realm of
Kleinian groups gives an abundance of interesting examples coming both
from complex analysis à la Ahlfors and Bers and from 3-manifold topology
and Thurston’s geometrization program. Notable are the quasi-Fuchsian
groups (isomorphic to closed surface groups) which are deformations of Fuch-
sian subgroups of PO(2, 1) ⊂ PO(3, 1).

Assume that G = PO(p, q) has real rank ≥ 2, i.e. min(p, q) ≥ 2, and let
K = P(O(p) × O(q)) be a maximal compact subgroup of G. The group G
is the isometry group of the Riemannian symmetric space G/K, and it is
natural to study the discrete subgroups Γ of G that act cocompactly on some
convex subset of G/K. This naive generalization of convex cocompactness
turns out to be quite restrictive due to the following general result proved
independently by Kleiner–Leeb [KL] and Quint [Q].

Fact 1.1 ([KL, Q]). Let G be a real semisimple Lie group of real rank ≥ 2 and
K a maximal compact subgroup of G. Any Zariski-dense discrete subgroup
of G acting cocompactly on some nonempty closed convex subset C of the
Riemannian symmetric space G/K is a uniform lattice in G.

In this paper, we propose instead a notion of convex cocompactness in
G = PO(p, q) in terms of the action on the real projective space P(Rp,q), and
in particular on the invariant open domain

H
p,q−1 =

{
[x] ∈ P(Rp,q) | 〈x, x〉p,q < 0

}
≃ G/O(p, q − 1)

which is the projective model for a pseudo-Riemannian symmetric space
associated to G. Indeed, Hp,q−1 has a natural pseudo-Riemannian structure
of signature (p, q − 1) with isometry group G, induced by the symmetric
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bilinear form 〈·, ·〉p,q (see Section 2.1). Geodesics of Hp,q−1 are intersections
of Hp,q−1 with straight lines of P(Rp,q). For q = 1, the space Hp,q−1 is the
real hyperbolic space Hp, in its projective model. In general, Hp,q−1 is a
pseudo-Riemannian analogue of Hp of signature (p, q − 1), with constant
negative sectional curvature.

Recall that a subset of projective space is said to be convex if it is contained
and convex in some affine chart; in other words, any two points of the subset
are connected inside the subset by a unique projective segment. A subset of
projective space is said to be properly convex if its closure is convex. Unlike
real hyperbolic space, for q > 1 the space Hp,q−1 is not a convex subset of
the projective space P(Rp,q), and the basic operation of taking convex hulls
is not well defined. Nonetheless, the notion of convexity in Hp,q−1 makes
sense: we shall say that a subset C of Hp,q−1 is convex if it is convex as a
subset of P(Rp,q) or, from an intrinsic point of view, if any two points of C
are connected inside C by a unique segment which is geodesic for the pseudo-
Riemannian structure. We shall say that C is properly convex if its closure
in P(Rp,q) is convex.

For q = 2, the Lorentzian space Hp,q−1 is the (p+ 1)-dimensional anti-de
Sitter space AdSp+1, for which a notion of AdS quasi-Fuchsian group has
been studied by Mess [Me] (for p = 2) and Barbot–Mérigot [BM, Ba] (for
p ≥ 3). Inspired by this notion, we make the following definition.

Definition 1.2. A discrete subgroup Γ of G = PO(p, q) is Hp,q−1-convex co-
compact if it acts properly discontinuously and cocompactly on some prop-
erly convex closed subset C of Hp,q−1 with nonempty interior whose ideal
boundary ∂iC := C r C does not contain any nontrivial projective segment.

Here C denotes the closure of C in P(Rp,q). We note that an Hp,q−1-convex
cocompact group is always finitely generated.

Remark 1.3. We shall say that a subgroup Γ of G = PO(p, q) is irreducible
if it does not preserve any projective subspace of P(Rp,q) of positive codi-
mension. In that case, any nonempty Γ-invariant convex subset of P(Rp,q)
has nonempty interior, and so “C with nonempty interior” may be replaced
by “C nonempty” in Definition 1.2.

Note that a discrete subgroup Γ of PO(p, q) need not act properly discon-
tinuously on Hp,q−1, since the stabilizer O(p, q−1) of a point is noncompact.
When Γ preserves a properly convex subset C ⊂ Hp,q−1, the action on the
interior of C is always properly discontinuous (see Section 2.3), but the ac-
tion on the whole of C need not be. The requirement of proper discontinuity
in Definition 1.2 guarantees that the accumulation points of any Γ-orbit are
contained in the ideal boundary ∂iC. Since C is assumed to be closed in
Hp,q−1, the set ∂iC is contained in the boundary

∂PH
p,q−1 :=

{
[x] ∈ P(Rp,q) | 〈x, x〉p,q = 0

}
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of Hp,q−1. The condition that ∂iC not contain any nontrivial projective
segment is equivalent to the condition that ∂iC be transverse, i.e. y /∈ z⊥ for
all y 6= z in ∂iC.

Remark 1.4. When Γ is a discrete subgroup of PO(p, q) which is not irre-
ducible, it is possible that Γ act properly discontinuously and cocompactly
on some closed convex subset C of Hp,q−1 with nonempty interior but that
∂iC contain nontrivial projective segments, as the following example shows.
It is not clear whether this is possible for irreducible Γ.

Example 1.5. Let γ be an element of PO(p, q) whose top eigenvalue λ > 1
has multiplicity larger than one. The cyclic group Γ = 〈γ〉 acts properly dis-
continuously and cocompactly on a closed convex neighborhood C in Hp,q−1

of a line connecting two points of ∂PH
p,q−1 corresponding to eigenvectors of

eigenvalue λ and λ−1 respectively. However, the ideal boundary ∂iC must
contain a nontrivial segment of the projectivization of the highest eigenspace.
Thus Γ is not Hp,q−1-convex cocompact in the sense of Definition 1.2.

In contrast to the situation of Example 1.5, it is well known that an ir-
reducible discrete subgroup Γ of PGL(Rn) preserving a nonempty properly
convex subset C of P(Rn) always contains a proximal element, i.e. an ele-
ment γ with a unique attracting fixed point in P(Rn) (see [B2, Prop. 3.1]).
We shall call proximal limit set of Γ in P(Rn) the closure ΛΓ ⊂ P(Rn) of the
set of attracting fixed points of proximal elements of Γ (Definition 2.3). If
the action of Γ on C is properly discontinuous, then the proximal limit set
ΛΓ is contained in the ideal boundary ∂iC: indeed, for any proximal element
γ ∈ Γ and any point y in the interior of C, the sequence (γm ·y)m∈N converges
to the attracting fixed point of γ in P(Rn), which belongs to ∂iC since the
action is properly discontinuous. For Γ and C as in Definition 1.2, we shall
see (Theorem 1.7) that in fact ΛΓ = ∂iC.

Remark 1.6. The boundary ∂PH
p,q−1 divides P(Rp,q) into two connected

components. One component is Hp,q−1 and the other is

S
p−1,q =

{
[x] ∈ P(Rp,q) | 〈x, x〉p,q > 0

}
,

which inherits from 〈·, ·〉p,q a pseudo-Riemannian metric of positive curva-
ture. However, multiplication by −1 transforms 〈·, ·〉p,q into a form of signa-
ture (q, p), and Sp−1,q into the copy of Hq,p−1 defined by −〈·, ·〉p,q. Rather
than study two very similar notions of convex cocompactness in pseudo-
Riemannian hyperbolic spaces Hp,q−1 and pseudo-Riemannian “spheres”
Sp−1,q, we will use the isomorphism PO(〈·, ·〉p,q) = PO(−〈·, ·〉p,q) ≃ PO(q, p)
to switch Sp−1,q with Hq,p−1 when convenient.

1.2. Goals of the paper. There are three main goals. First, we show that
the notion of convex cocompactness introduced above is closely related to the
notion of Anosov representation — a notion that has become fundamental in
the study of higher Teichmüller theory. Second, we show that in the setting
of discrete irreducible subgroups of PO(p, q), our notion of Hp,q−1-convex
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cocompactness is equivalent to a notion of strong convex cocompactness in
P(Rn) introduced by Crampon–Marquis [CM], for n = p+q. Third, we show
that a natural construction of Coxeter groups in projective orthogonal groups
going back to Tits gives rise to many examples of Hp,q−1-convex cocompact
groups, hence to many new examples of Anosov representations into PO(p, q)
and of groups that are strongly convex cocompact in P(Rp+q).

1.3. Link with Anosov representations. The main result that we estab-
lish in this paper is a close connection between convex cocompactness in
Hp,q−1 ⊂ P(Rp+q) and Anosov representations.

Anosov representations of word hyperbolic groups into real semisimple Lie
groups are representations with finite kernel and discrete image, defined by
the dynamics of their action on some flag varieties. They were introduced by
Labourie [L] for fundamental groups of closed negatively-curved manifolds,
and generalized by Guichard–Wienhard [GW] to arbitrary word hyperbolic
groups. They have been extensively studied recently by many authors (see
e.g. [BCLS, KLPb, GGKW, BPS] to just name a few) and now play a crucial
role in higher Teichmüller theory (see e.g. [BIW2]); they share many dynam-
ical properties with classical convex cocompact subgroups of rank-one simple
Lie groups (see in particular [L, GW, KLPa, KLPb]).

Let P p,q
1 be the stabilizer in G = PO(p, q) of an isotropic line of Rp,q;

it is a parabolic subgroup of G, and G/P p,q
1 identifies with the boundary

∂PH
p,q−1 of Hp,q−1. By definition, a P p,q

1 -Anosov representation of a word
hyperbolic group Γ into G is a representation ρ : Γ → G for which there
exists a continuous, ρ-equivariant boundary map ξ : ∂∞Γ → ∂PH

p,q−1 which

(i) is transverse (a strengthening of injectivity), meaning that ξ(η) /∈
ξ(η′)⊥ for any η 6= η′ in ∂∞Γ,

(ii) has an associated flow with some uniform contraction/expansion prop-
erties described in [L, GW].

Here ∂∞Γ denotes the Gromov boundary of Γ. A consequence of (ii) is that
ξ is dynamics-preserving : for any infinite-order element γ ∈ Γ, the element
ρ(γ) ∈ G is proximal in ∂PH

p,q−1, and ξ sends the attracting fixed point of
γ in ∂∞Γ to the attracting fixed point of ρ(γ) in ∂PH

p,q−1. In particular, by
a density argument, the continuous map ξ is unique, and the image ξ(∂∞Γ)
is the proximal limit set Λρ(Γ) of ρ(Γ) in ∂PH

p,q−1 (Definition 2.3 and Re-
mark 2.4). By [GW, Prop. 4.10], if ρ(Γ) is irreducible, then condition (ii) is
automatically satisfied as soon as (i) is. If Γ is finite, then ∂∞Γ is empty and
any representation ρ : Γ → G is P p,q

1 -Anosov.
In real rank 1, it is easy to see [GW, Th. 5.15] that a discrete subgroup

Γ of G = PO(p, 1) is convex cocompact if and only if Γ is word hyperbolic
and the natural inclusion Γ →֒ G is P p,1

1 -Anosov. In this paper, we prove
the following generalization to higher real rank.

Theorem 1.7. For p, q ∈ N∗, let Γ be an irreducible discrete subgroup of
G = PO(p, q).
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(1) If Γ is Hp,q−1-convex cocompact, then it is word hyperbolic and the nat-
ural inclusion Γ →֒ G is P p,q

1 -Anosov.
(2) Conversely, if Γ is word hyperbolic with connected boundary ∂∞Γ and if

the natural inclusion Γ →֒ G is P p,q
1 -Anosov, then Γ is Hp,q−1-convex

cocompact or Hq,p−1-convex cocompact (after identifying PO(p, q) with
PO(q, p), see Remark 1.6).

If these conditions are satisfied, then for any nonempty properly convex closed
subset C of Hp,q−1 on which Γ acts properly discontinuously and cocompactly,
the ideal boundary ∂iC is the proximal limit set ΛΓ ⊂ ∂PH

p,q−1.

Remark 1.8. The special case when q = 2 and Γ is the fundamental group
of a closed hyperbolic p-manifold follows from work of Mess [Me] for p = 2
and work of Barbot–Mérigot [BM] for p ≥ 3. In that case, if Ωmax de-
notes a maximal Γ-invariant properly convex open subset of P(Rp,q) (see
Proposition 3.7), then the manifold Γ\Ωmax is a GHMC spacetime (globally
hyperbolic maximal Cauchy-compact) [BM, Th. 4.3 & Prop. 4.5].

1.4. Anosov representations with negative or positive limit set. We
may replace the connectedness assumption of Theorem 1.7.(2) with the fol-
lowing simple consistency condition on the image of the boundary map.

Definition 1.9. A subset Λ of ∂PH
p,q−1 is negative (resp. positive) if it lifts to

a cone of Rp,qr{0} on which all inner products 〈·, ·〉p,q of noncollinear points
are negative (resp. positive). Equivalently (Lemma 3.2 and Remark 3.4.(1)),
every triple of distinct points of Λ spans a triangle fully contained in Hp,q−1

(resp. Sp−1,q) outside of the vertices.

By a cone we mean a subset of Rp,q r {0} which is invariant under multi-
plication by positive scalars. Recall from Remark 1.6 that Hp,q−1 and Sp−1,q

are the two connected components of P(Rp,q)r ∂PH
p,q−1. In the Lorentzian

setting (i.e. q = 2), a negative subset of ∂PH
p,q−1 is also called an acausal

subset.
Since the connectedness of Λ implies the connectedness of the set of un-

ordered distinct triples of Λ (Fact A.1), the following holds (see Section 3.2).

Proposition 1.10. If a closed subset Λ of ∂PH
p,q−1 is connected and trans-

verse, then it is negative or positive.

As above, we say that Λ is transverse if for any y 6= z in Λ we have y /∈ z⊥.
Theorem 1.7 is an immediate consequence of Proposition 1.10 and of the

following, which is the main result of the paper.

Theorem 1.11. For any p, q ∈ N∗ and any irreducible discrete subgroup Γ
of G = PO(p, q), the following two conditions are equivalent:

(i) Γ is Hp,q−1-convex cocompact,
(ii) Γ is word hyperbolic, the natural inclusion Γ →֒ G is P p,q

1 -Anosov, and
the proximal limit set ΛΓ ⊂ ∂PH

p,q−1 is negative.

Similarly, the following two conditions are equivalent:
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(iii) Γ is Hq,p−1-convex cocompact (after identifying PO(p, q) with PO(q, p)),
(iv) Γ is word hyperbolic, the natural inclusion Γ →֒ G is P p,q

1 -Anosov, and
the proximal limit set ΛΓ ⊂ ∂PH

p,q−1 is positive.

If (i) (resp. (iii)) holds, then for any nonempty properly convex closed sub-
set C of Hp,q−1 (resp. Hq,p−1) on which Γ acts properly discontinuously and
cocompactly, the ideal boundary ∂iC is the proximal limit set ΛΓ ⊂ ∂PH

p,q−1.

By [L, GW], the space of P p,q
1 -Anosov representations is open in Hom(Γ, G).

In fact, the space of P p,q
1 -Anosov representations with negative proximal

limit set is also open (Proposition 3.5). Moreover, the space of irreducible
representations is open. Therefore Theorem 1.11 implies the following.

Corollary 1.12. For any p, q ∈ N∗ and any finitely generated group Γ, the
set of irreducible injective representations Γ → G = PO(p, q) whose image is
Hp,q−1-convex cocompact is open in Hom(Γ, G).

Remark 1.13. In the special case when p ≥ q = 2 (i.e. Hp,q−1 is the
Lorentzian anti-de Sitter space Hp,1 = AdSp+1) and Γ is isomorphic to the
fundamental group of a closed, negatively-curved Riemannian p-manifold,
the following strengthening of Theorem 1.11 holds by work of Barbot [Ba]:
Γ is Hp,1-convex cocompact if and only if its proximal limit set ΛΓ is a topo-
logical (p − 1)-sphere which is negative (Definition 1.9), if and only if ΛΓ

is a topological (p − 1)-sphere which is nonpositive (i.e. it lifts to a cone
of Rp,2 r {0} on which 〈·, ·〉p,2 is nonpositive); this property is called GH-

regularity [Ba, § 1.3]. Using this, Barbot shows that the space of P p,2
1 -Anosov

representations of Γ into G = PO(p, 2) is not only open but also closed
in Hom(Γ, G), hence it is a union of connected components of Hom(Γ, G)
[Ba, Th. 1.2]. This becomes false when Γ has virtual cohomological dimen-
sion < p: for instance, when Γ is a finitely generated free group the space
Hom(Γ,PO(p, q)0) is connected but contains both Anosov and non-Anosov
representations.

Remark 1.14. For rankR(G) := min(p, q) ≥ 2, there are examples of ir-
reducible P p,q

1 -Anosov representations ρ : Γ → G = PO(p, q) for which the
proximal limit set Λρ(Γ) ⊂ ∂PH

p,q−1 is neither negative nor positive: see
Section 5.2. By Theorem 1.11 the group ρ(Γ) is neither Hp,q−1-convex co-
compact nor Hq,p−1-convex cocompact in this case. In such examples ∂∞Γ
is always disconnected. Thus one cannot remove the connectedness assump-
tion in Theorem 1.7.(2). This subtlety should be kept in mind when reading
[BM, § 8.2].

Remark 1.15. The irreducibility assumption in this paper makes properly
discontinuous actions on properly convex sets more tractable (see Fact 2.8
below) and the notion of Anosov representation simpler (condition (ii) of
Section 1.3 is automatically satisfied). However, Theorems 1.7 and 1.11 and
Corollary 1.12 hold even when Γ is not irreducible, as we shall prove in [DGK2].
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1.5. Link with strong projective convex cocompactness. Let n ≥ 2.
A properly convex open subset Ω of P(Rn) is said to be strictly convex if
its boundary does not contain any nontrivial segment. It is said to have C1

boundary if every point of the boundary of Ω has a unique supporting hy-
perplane. In [CM], Crampon–Marquis introduced a notion of geometrically
finite subgroup Γ of PGL(Rn), requiring Γ to preserve and act with various
nice properties on a strictly convex open subset of P(Rn) with C1 boundary.
If cusps are not allowed, the notion reduces to a natural notion of convex co-
compactness. We will refer to this notion as strong convex cocompactness to
distinguish it from Definition 1.2 and from a more general notion of convex
cocompactness that we study in [DGK2].

Definition 1.16 ([CM]). A discrete subgroup Γ of PGL(Rn) is strongly
convex cocompact in P(Rn) if it preserves a nonempty strictly convex open
subset Ω of P(Rn) with C1 boundary and if the convex hull of the orbital
limit set Λorb

Ω (Γ) in Ω has compact quotient by Γ.

Here we call orbital limit set the set Λorb

Ω (Γ) of accumulation points in ∂PΩ
of a Γ-orbit of Ω; it does not depend on the orbit since Ω is strictly convex
(Lemma 2.10). For strongly convex cocompact groups, this set coincides
with the proximal limit set ΛΓ (Lemma 2.11). When Γ is finite, Λorb

Ω (Γ) = ∅.
In the setting of Definition 1.16, the action of Γ on Ω is automatically

properly discontinuous (see Section 2.3), and so for torsion-free Γ the quo-
tient Γ\Ω is a real projective manifold. The image in Γ\Ω of the convex
hull of Λorb

Ω (Γ) in Ω is a compact convex core for this manifold. Such convex
cocompact real projective manifolds Γ\Ω provide a natural generalization
of the compact real projective manifolds which have been parametrized by
Goldman [Go] in dimension 2 and investigated by Benoist [B3, B4, B5, B6]
in higher dimension.

We make the following link between Definitions 1.2 and 1.16.

Proposition 1.17. Let p, q ∈ N∗ and let Γ be an irreducible discrete subgroup
of G = PO(p, q).

(1) If Γ is Hp,q−1-convex cocompact, then it is strongly convex cocompact
in P(Rp+q). Moreover, the set Ω of Definition 1.16 may be taken to be
contained in Hp,q−1.

(2) Conversely, if Γ is strongly convex cocompact in P(Rp+q), then it is
Hp,q−1-convex cocompact or Hq,p−1-convex cocompact (after identifying
PO(p, q) with PO(q, p)).

The following observation is an easy consequence of the definitions. We
refer to [GW] for the notion of P1-Anosov representation into PGL(Rn),
sometimes also known as projective Anosov representation.

Fact 1.18 ([GW, Th. 4.3]). Let p, q ∈ N∗ with p + q = n. A representation
with values in PO(p, q) is P p,q

1 -Anosov if and only if it is P1-Anosov as a
representation into PGL(Rn), where P1 is the stabilizer of a line of Rn.
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Therefore, Theorems 1.7 and 1.11 and Proposition 1.17 give an intimate
relationship between P1-Anosov representations into PGL(Rn) and discrete
subgroups of PGL(Rn) which are strongly convex cocompact in P(Rn), in the
context where there is a nonzero invariant quadratic form on Rn. In [DGK2],
we shall generalize this relationship to the setting of subgroups of PGL(Rn)
which do not necessarily preserve any nonzero quadratic form: indeed, the
arguments in the proofs of Theorems 1.7 and 1.11 take place in projective
geometry, and with some work we will be able to remove the use of the
quadratic form.

1.6. Examples of Hp,q−1-convex cocompact subgroups coming from
Anosov representations. Theorems 1.7 and 1.11 imply that many well-
known examples of Anosov representations yield Hp,q−1-convex cocompact
groups. In Section 7 we describe examples, generalizing quasi-Fuchsian rep-
resentations, that come from deformations of a convex cocompact subgroup
of a rank-one Lie subgroup H of G. These include certain maximal repre-
sentations of surface groups and Hitchin representations. Applying Propo-
sition 1.17, all of these examples are new examples of discrete subgroups of
PGL(Rn) which are strongly convex cocompact in P(Rn).

Here is a sample result from Section 7.2.

Proposition 1.19. Let Γ be the fundamental group of a closed orientable
hyperbolic surface, and let m ≥ 1 and ℓ ∈ {m,m+ 1}.

If m is odd (resp. even), then the group ρ(Γ) is Hm+1,ℓ−1-convex cocompact
(resp. Hℓ,m-convex cocompact) for any irreducible representation ρ in the
Hitchin component of Hom(Γ,PO(m+ 1, ℓ)).

The result is true also for nonirreducible representations: see [DGK2].

1.7. New examples of Anosov representations. Conversely, Theorem 1.7
also enables us to give new examples of Anosov representations into higher-
rank semisimple Lie groups. While Anosov representations of free groups
and surface groups are abundant in the literature, the same is not true for
Anosov representations of more complicated hyperbolic groups outside the
realm of Kleinian groups. We show that certain natural and explicit repre-
sentations of hyperbolic right-angled Coxeter groups, namely deformations of
the Tits canonical representation studied by Krammer [Kr] and others (see
e.g. Dyer–Hohlweg–Ripoll [DHR]), are Hp,q−1-convex cocompact for some
appropriate pair (p, q); therefore, by Theorem 1.7, they are P p,q

1 -Anosov.

Theorem 1.20. Let W be an infinite word hyperbolic right-angled Coxeter
group in n generators. Then W admits a P p,q

1 -Anosov representation into
PO(p, q) for some p, q ∈ N∗ with p + q = n. Composing with the inclusion
PO(p, q) →֒ PGL(Rn) gives a P1-Anosov representation of W into PGL(Rn)
(Fact 1.18).

The class of infinite hyperbolic right-angled Coxeter groups is quite large.
It includes groups of arbitrarily large virtual cohomological dimension [JS,
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H, O], which can have exotic Gromov boundaries such as the Menger curve,
Pontryagin surfaces, Menger compacta, or the Sierpiński carpet [Be, D1, D2,
Sw].

Theorem 1.20 also provides (by restriction to a subgroup or induction to a
finite-index overgroup) Anosov representations for all groups commensurable
to hyperbolic right-angled Coxeter groups, as well as for all their quasi-
isometrically embedded subgroups.

1.8. Organization of the paper. In Section 2 we recall some well-known
facts about the space Hp,q−1 and properly convex domains in projective
space. In Section 3 we give a characterization of negative subsets of ∂PH

p,q−1,
from which we deduce Proposition 1.10 and Corollary 1.12, and we establish
some general properties of properly convex domains of P(Rp,q) preserved by
discrete subgroups of PO(p, q). Sections 4 and 5 are devoted to the proofs of
implications (i) ⇒ (ii) and (ii) ⇒ (i) of Theorem 1.11, respectively. In Sec-
tion 6 we prove Proposition 1.17, which makes the link between our notion of
Hp,q−1-convex cocompactness and strong convex cocompactness in P(Rp+q)
(Definition 1.16). In Section 7 we give examples of Hp,q−1-convex cocompact
representations coming from well-known families of Anosov representations.
Finally, in Section 8 we construct Hp,q−1-convex cocompact representations
of right-angled Coxeter groups and prove Theorem 1.20. In Appendix A we
provide a proof of a (surely well known) basic result in point-set topology.

Acknowledgements. We are grateful to Yves Benoist and Anna Wienhard
for motivating comments and questions, and for their encouragement. We
also thank Vivien Ripoll for interesting discussions on limit sets of Coxeter
groups, the referee for useful suggestions, and Jean-Philippe Burelle, Virginie
Charette and Son Lam Ho for pointing out a subtlety in Section 4. The main
results, examples, and ideas of proofs in this paper were presented by the
third-named author in June 2016 at the conference Geometries, Surfaces and
Representations of Fundamental Groups in honor of Bill Goldman; we would
like to thank the organizers for a very interesting and enjoyable conference.
Finally, we thank Bill Goldman for being a constant source of inspiration
and encouragement to us and many others in the field.

2. Reminders and basic facts

2.1. Pseudo-Riemannian hyperbolic spaces. Fix two integers p, q ≥ 1.
Let G = PO(p, q) and let P p,q

1 be the stabilizer in G of an isotropic line
of Rp,q. The projective space P(Rp,q) is the disjoint union of

H
p,q−1 =

{
[x] ∈ P(Rp,q) | 〈x, x〉p,q < 0

}
,

of
S
p−1,q =

{
[x] ∈ P(Rp,q) | 〈x, x〉p,q > 0

}
,

and of

∂PH
p,q−1 = ∂PS

p−1,q =
{
[x] ∈ P(Rp,q) | 〈x, x〉p,q = 0

}
≃ G/P p,q

1 .
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For instance, Figure 1 shows

P(R4) = H
3,0 ⊔

(
∂PH

3,0 = ∂PS
2,1

)
⊔ S

2,1

and
P(R4) = H

2,1 ⊔
(
∂PH

2,1 = ∂PS
1,2

)
⊔ S

1,2.

The space Hp,q−1 is homeomorphic to Rp × P(Rq). It has a natural pseudo-

S1,2S2,1

H3,0 H2,1

ℓ

ℓ2

ℓ0ℓ1

Figure 1. Left: H3,0 with a geodesic line ℓ (necessarily
spacelike), and S2,1. Right: H2,1 with three geodesic lines
ℓ2 (spacelike), ℓ1 (lightlike), and ℓ0 (timelike), and S1,2.

Riemannian structure of signature (p, q − 1) with isometry group G. To see
this, consider the double covering

Ĥ
p,q−1 =

{
x ∈ R

p,q | 〈x, x〉p,q = −1
}
.

The restriction of 〈·, ·〉p,q to any tangent space to Ĥp,q−1 in Rp,q has signature
(p, q − 1) and defines a pseudo-Riemannian structure on Ĥp,q−1 with isom-
etry group O(p, q), descending to a pseudo-Riemannian structure on Hp,q−1

with isometry group PO(p, q). The sectional curvature is constant negative
for this pseudo-Riemannian structure. The geodesic lines of the pseudo-
Riemannian space Hp,q−1 are the intersections of Hp,q−1 with projective lines
in P(Rp,q). Such a line is called spacelike (resp. lightlike, resp. timelike) if it
meets ∂PH

p,q−1 in two (resp. one, resp. zero) points: see Figure 1.
Similarly, Sp−1,q is homeomorphic to P(Rp)×Rq and has a natural pseudo-

Riemannian structure of signature (p− 1, q) with isometry group G, of con-
stant positive curvature. It identifies with Hq,p−1 as in Remark 1.6.

Remark 2.1. For (p, q) /∈ {(1, 1), (2, 2)}, the group G = PO(p, q) is simple
and P p,q

1 is a maximal proper parabolic subgroup of G. On the other hand,
for (p, q) = (1, 1), the group PO(1, 1)0 is isomorphic to R>0 (hence reduc-
tive but not simple) and P 1,1

1 = PO(1, 1)0. For (p, q) = (2, 2), the group
PO(2, 2)0 is isomorphic to PSL2(R) × PSL2(R) (hence semisimple but not
simple) and its subgroup P 2,2

1 ∩ PO(2, 2)0 is B ×B where B is a Borel sub-
group of PSL2(R). To see this, observe that the space M2(R) of (2× 2) real
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matrices is endowed with a natural nondegenerate quadratic form of signa-
ture (2, 2), namely the determinant; it thus identifies with R2,2. The group
PO(2, 2)0 acting on P(R2,2) identifies with the group PSL2(R)×PSL2(R) act-
ing on P(M2(R)) by right and left multiplication. The space ∂PH

2,1 = ∂PS
1,2

identifies with the image in P(M2(R)) of the rank-one matrices in M2(R),
which identifies with P1R× P1R by taking the kernel and the image.

The following notation, used in the introduction, will remain valid through-
out the paper.

Notation 2.2. For a subset X of P(Rp,q) (e.g. a subset of Hp,q−1), we denote
by

• X the closure of X in P(Rp,q);
• Int(X) the interior of X in P(Rp,q) (or equivalently in Hp,q−1 if
X ⊂ Hp,q−1).

We set ∂PX := X r Int(X) and, when X ⊂ Hp,q−1, we denote by

• ∂HX := ∂PX ∩Hp,q−1 the boundary of X in Hp,q−1;
• ∂iX := ∂PX ∩∂PH

p,q−1 the boundary of X in ∂PH
p,q−1; if X is closed

in Hp,q−1, this coincides with the ideal boundary of X, namely XrX.

We also denote by ∂∞Γ the Gromov boundary of a word hyperbolic group Γ.

2.2. Limit sets in projective space. Let V be a finite-dimensional real
vector space of dimension ≥ 2. Recall that an element g ∈ PGL(V ) is said to
be proximal in P(V ) if it admits a unique attracting fixed point ξ+g in P(V ).
Equivalently, g has a unique complex eigenvalue of maximal modulus.

If g is proximal in P(V ), then g−1 is proximal in the dual projective
space P(V ∗), for the dual action given by g−1 · ℓ := ℓ ◦ g for a linear form
ℓ ∈ V ∗; the unique attracting fixed point of g−1 in P(V ∗) corresponds to the
projective hyperplane H−

g ⊂ P(V ) which is the projectivization of the sum
of the generalized eigenspaces of g for eigenvalues of nonmaximal modulus;
we have gn · y → ξ+g for all y ∈ P(V )rH−

g as n→ +∞.
We shall use the following terminology.

Definition 2.3. Let Γ be a discrete subgroup of PGL(V ). The proximal
limit set of Γ in P(V ) is the closure ΛΓ of the set of attracting fixed points
of elements of Γ which are proximal in P(V ).

This set is a closed, Γ-invariant subset of P(V ). When Γ is irreducible and
contains at least one proximal element, it was studied in [Gu, B1]. In that
setting, by [B1], the action of Γ on ΛΓ is minimal, i.e. all Γ-orbits are dense;
moreover, any nonempty, closed, Γ-invariant subset of P(V ) contains ΛΓ.

Remark 2.4. For p, q ∈ N∗, an element g ∈ G = PO(p, q) is proximal in
P(Rp,q) if and only if it is proximal in ∂PH

p,q−1, in the sense that g admits
a unique attracting fixed point ξ+g in ∂PH

p,q−1. In this case, g−1 is auto-
matically proximal too, and its unique attracting fixed point ξ−g satisfies
〈ξ+g , ξ

−
g 〉p,q 6= 0. In particular, for a discrete subgroup Γ of G = PO(p, q),
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the proximal limit set ΛΓ of Γ in P(Rp,q) is contained in ∂PH
p,q−1, and called

the proximal limit set of Γ in ∂PH
p,q−1.

2.3. Properly convex domains in projective space. Let Ω be a properly
convex open subset of P(V ), with boundary ∂PΩ. Recall the Hilbert metric
dΩ on Ω:

dΩ(y, z) :=
1

2
log [a, y, z, b]

for all distinct y, z ∈ Ω, where a, b are the intersection points of ∂PΩ with the
projective line through y and z, with a, y, z, b in this order. Here [·, ·, ·, ·] de-
notes the cross-ratio on P1R, normalized so that [0, 1, t,∞] = t for all t. The
metric space (Ω, dΩ) is complete and proper (i.e. closed balls are compact),
and the automorphism group

Aut(Ω) := {g ∈ PGL(V ) | g · Ω = Ω}

acts on Ω by isometries for dΩ. As a consequence, any discrete subgroup of
Aut(Ω) acts properly discontinuously on Ω.

Let V ∗ be the dual vector space of V . By definition, the dual convex set
of Ω is

Ω∗ := P
({
ℓ ∈ V ∗ | ℓ(x) < 0 ∀x ∈ Ω̃

})
,

where Ω̃ is the closure in V r {0} of an open convex cone Ω̃ of V r {0}
lifting Ω. The set Ω∗ is a properly convex open subset of P(V ∗) which is
preserved by the dual action of Aut(Ω) on P(V ∗).

Straight lines (contained in projective lines) are always geodesics for the
Hilbert metric dΩ. When Ω is not strictly convex, there can be other
geodesics as well, by the following well-known and easy fact.

Fact 2.5. For pairwise distinct points w1, w2, w3 ∈ Ω, we have dΩ(w1, w2) =
dΩ(w1, w3)+ dΩ(w3, w2) if and only if there are segments [y, y′] and [z, z′] in
the boundary of Ω such that y, w1, w3, z on the one hand, and y′, w3, w2, z

′

on the other hand, are aligned in this order. In this case, there exist points
y′′ ∈ [y, y′] and z′′ ∈ [z, z′] such that y′′, w1, w2, z

′′ are aligned in this order.

(For an illustration, we refer to the left panel of Figure 2, where w1, w2, w3

correspond to G(s),G(t),G(u).)
However, the following fact is always true, and will be used in Section 4.3.

It is proved by Foertsch–Karlsson [FK, Th. 3], as was pointed out to us
by Constantin Vernicos. Here we provide a short proof for the reader’s
convenience.

Lemma 2.6. (1) Any geodesic ray of (Ω, dΩ) has a well-defined endpoint
in the boundary ∂PΩ.

(2) Any biinfinite geodesic of (Ω, dΩ) has two distinct endpoints in ∂PΩ.

Proof. We work in an affine Euclidean chart where Ω is bounded. Let I be
R≥0 or R and let G = (G(t))t∈I be a geodesic ray or biinfinite geodesic of
(Ω, dΩ). For any s < t in I, let ys,t ∈ ∂PΩ and zs,t ∈ ∂PΩ be such that
ys,t,G(s),G(t), zs,t are aligned in this order.
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Recall that for any y ∈ ∂PΩ, the face of ∂PΩ at y is by definition the
intersection of ∂PΩ with all supporting hyperplanes to Ω at y.

We claim that all points ys,t for s < t in I are contained in a common
face P of ∂PΩ (of arbitrary dimension). Indeed, for any s < t, let Ps,t be the
face of ∂PΩ at ys,t; it is a nonempty compact convex subset of ∂PΩ. For any
s < u < t, observe that by Fact 2.5 we have ys,t ∈ [ys,u, yu,t] (see Figure 2,
left), hence any supporting hyperplane to Ω at ys,t is also a supporting
hyperplane to Ω at ys,u and yu,t, i.e. Ps,u and Pu,t are contained in Ps,t. For
any four points s < u < v < t, we apply the previous statement to the
triples (u, v, t) and (s, u, t) to obtain Pu,v ⊂ Pu,t ⊂ Ps,t. Thus the sequence
(P0,m)m≥1 (if I = R≥0) or (P−m,m)m≥1 (if I = R) of nonempty compact
convex subsets of ∂PΩ is nondecreasing for inclusion; it must have a limit P .

Similarly, all points zs,t for s < t are contained in a common face Q of ∂PΩ.
Any forward accumulation point a of G in the boundary of Ω is an accu-

mulation point of the z0,t as t → +∞, and therefore belongs to Q. In the
Euclidean metric, z0,t for t > 0 is further away from the span of P than G(0)
is: therefore a belongs in fact to Q r P . (In particular P 6= Q.) Similarly,
in the case I = R, all backward accumulation points of G are in P rQ.

Suppose by contradiction that there are two sequences (sm)m∈N and (tm)m∈N

of positive numbers tending to +∞ such that G(sm) and G(tm) converge re-
spectively to some points a 6= b in Q r P . Up to taking subsequences, we
may assume that sm < tm < sm+1 for all m.

Consider the triangle Tm spanned by ysm,tm , G(tm), and ytm,sm+1
(see

Figure 2, right). Its angle at G(tm) goes to π in the chosen chart as m →
+∞, because G(sm),G(sm+1) → a and G(tm) → b. The opposite edge
[ysm,tm , ytm,sm+1

] of Tm converges to a segment of P as m→ +∞: therefore
limm G(tm) ∈ P . But G(tm) → b /∈ P : contradiction. Thus G has a unique
forward endpoint a in the boundary of Ω, belonging to Qr P . Similarly, in
the case I = R, it has a unique backward endpoint a′ 6= a in P rQ. �

yu,t

ys,t

ys,u

zs,u

zs,t

zu,t
G(s)

G(u)

G(t)

(P2R)

ysm,tm

ytm,sm+1

Tm

G(0)

ab

P

Q

Ω G(sm)

G(sm+1)G(tm)

(P3R)

Figure 2. Illustration for the proof of Lemma 2.6. Left:
definition of the points ys,t and zs,t. Right: absurd situation
where G would have two forward accumulation points a 6= b.

In Section 6.3 we shall also use the following elementary observation.
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Lemma 2.7. Let O,O1, . . . ,Ok be properly convex open subsets of P(V )
such that O is the convex hull of the Oi in some affine chart of P(V ). If the
boundary ∂POi is C1 for every i, then so is the boundary ∂PO.

Proof. For any i, the boundary ∂POi is C1 if and only if the dual convex set
O∗

i is strictly convex. In this case, the intersection
⋂k

i=1O
∗
i is also strictly

convex. But this intersection is the dual O∗ of O. Therefore, ∂PO is C1. �

2.4. Irreducible groups preserving properly convex domains. We
shall use the following general properties due to Benoist [B2, Prop. 3.1]. We
denote by Λ∗

Γ the proximal limit set of Γ in P(V ∗).

Fact 2.8 ([B2]). An irreducible discrete subgroup Γ of PGL(V ) preserves
a nonempty properly convex subset of P(V ) if and only if the following two
conditions are satisfied:

(i) Γ contains an element of PGL(V ) which is proximal both in P(V ) and
in P(V ∗),

(ii) ΛΓ and Λ∗
Γ lift respectively to cones Λ̃Γ of V r {0} and Λ̃∗

Γ of V ∗ r {0}

such that ℓ(x) ≤ 0 for all x ∈ Λ̃Γ and ℓ ∈ Λ̃∗
Γ.

In this case, for any Γ-invariant properly convex open subset Ω 6= ∅ of P(V ),

(1) the proximal limit set ΛΓ (resp. Λ∗
Γ) is contained in the boundary of

Ω (resp. Ω∗) in P(V ) (resp. P(V ∗));

(2) more specifically, Ω and ΛΓ lift to cones Ω̃ and Λ̃Γ of V r {0} with

Ω̃ properly convex containing Λ̃Γ in its boundary, and Ω∗ and Λ∗
Γ lift

to cones Ω̃∗ and Λ̃∗
Γ of V ∗ r {0} with Ω̃∗ properly convex containing

Λ̃∗
Γ in its boundary, such that ℓ(x) ≤ 0 for all x ∈ Λ̃Γ and ℓ ∈ Λ̃∗

Γ;
(3) there is a unique smallest nonempty Γ-invariant properly convex open

subset Ωmin of P(V ) contained in Ω, namely the projectivization of

the interior of the R+-span of Λ̃Γ for Λ̃Γ as in (2); it is the interior
of the convex hull of ΛΓ in Ω;

(4) there is a unique largest Γ-invariant properly convex open subset Ωmax

of P(V ) containing Ω, namely the dual convex set to the projectiviza-

tion of the interior of the R+-span of Λ̃∗
Γ for Λ̃∗

Γ as in (2).

Remark 2.9. When V = Rp,q and Γ is contained in PO(p, q) for some
p, q ∈ N∗, the map x 7→ 〈x, ·〉p,q from V to V ∗ induces a homeomorphism
ΛΓ ≃ Λ∗

Γ and Ωmax is a connected component of the complement in V of the
union of the projective hyperplanes z⊥ for z ∈ ΛΓ. In the Lorentzian case
(i.e. q = 2), the terminology invisible domain of ΛΓ is often used for Ωmax.

2.5. Strictly convex open domains. We now make two elementary ob-
servations about strictly convex domains.

Lemma 2.10. Let Γ be a discrete subgroup of PGL(V ) preserving a nonempty
strictly convex open subset Ω of P(V ). The set Λorb

Ω (Γ) of accumulation points
in ∂PΩ of a Γ-orbit of Ω does not depend on the Γ-orbit.
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We call this set the orbital limit set of Γ in Ω.

Proof. We may assume that Γ is infinite, otherwise Λorb

Ω (Γ) = ∅. Consider
two points y 6= z in Ω and a sequence (γm) ∈ ΓN of pairwise distinct elements
such that γm ·y → y∞ ∈ ∂PΩ and γm ·z → z∞ ∈ ∂PΩ. By proper discontinuity
of the action of Γ on Ω (see Section 2.3), the Hilbert distance dΩ from a given
point of Ω to any point of the segment γm · [y, z] tends to infinity with m.
Therefore the segment [y∞, z∞] = limm γm · [y, z] is fully contained in ∂PΩ.
Since Ω is strictly convex, y∞ = z∞. �

Lemma 2.11. Let Γ be a discrete subgroup of PGL(V ) preserving a nonempty
strictly convex open subset Ω of P(V ). If the proximal limit set ΛΓ of Γ in
P(V ) contains at least two points, then it coincides with the orbital limit set
Λorb

Ω (Γ).

Proof. For any element γ ∈ Γ which is proximal in P(V ), the element γ−1

is proximal in P(V ∗), and its attracting fixed point is contained in ∂Ω∗ by
Fact 2.8. Thus the projective hyperplane H−

γ ⊂ P(V ) from Section 2.2 does
not meet Ω, and for any y ∈ Ω the sequence (γm · y)m∈N converges to the
attracting fixed point ξ+γ of γ in P(V ). This shows that ΛΓ ⊂ Λorb

Ω (Γ).
For the reverse inclusion, suppose that ΛΓ contains two points a 6= b.

In particular, Γ is infinite. Consider a point y ∈ Ω on the open segment
(a, b) and a sequence (γm) ∈ ΓN of pairwise distinct elements such that
γm · y → y∞ ∈ ∂PΩ. Up to passing to a subsequence, we may assume that
γm · a → a∞ and γm · b → b∞ for some a∞, b∞ ∈ ΛΓ, with y∞ ∈ [a∞, b∞].
Since Ω is strictly convex, y∞ ∈ {a∞, b∞} ⊂ ΛΓ. Thus Λorb

Ω (Γ) ⊂ ΛΓ. �

If Γ is irreducible, then ΛΓ always contains at least two points since it is
nonempty (Fact 2.8) and not contained in a projective subspace of P(V ) of
positive codimension.

3. Nonpositive subsets of ∂PH
p,q−1

We shall use the following terminology which extends Definition 1.9.

Definition 3.1. For p, q ∈ N∗, a subset Λ of ∂PH
p,q−1 is negative (resp.

nonpositive, nonnegative, positive) if it lifts to a cone of Rp,qr{0} on which all
inner products 〈·, ·〉p,q of noncollinear points are negative (resp. nonpositive,
nonnegative, positive).

In the Lorentzian case (q = 2), the usual terminology for a negative (resp.
nonpositive) subset of ∂PH

p,q−1 is acausal (resp. achronal).

3.1. Reading the sign on triples. The following characterization will be
used only to prove Proposition 1.10 and Corollary 1.12, in Section 3.2 below.

Lemma 3.2. Let Λ be a subset of ∂PH
p,q−1 with at least three points. Then

the following are equivalent:

(i) Λ is negative,
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(ii) every triple of distinct points of Λ is negative,
(iii) every triple of distinct points of Λ spans a triangle fully contained in

Hp,q−1 outside of the vertices.

The equivalence (ii) ⇔ (iii) is contained in the following immediate remark.

Remark 3.3. For any pairwise distinct points y1, y2, y3 of ∂PH
p,q−1, the

following are equivalent:
• there exist lifts xi ∈ Rp,q r {0} of the yi such that 〈xi, xj〉p,q < 0 for

all i 6= j,
• for any lifts xi ∈ Rp,q r {0} of the yi, we have

〈x1, x2〉p,q 〈x1, x3〉p,q 〈x2, x3〉p,q < 0,

• there exist lifts xi ∈ Rp,q r {0} of the yi such that for any ti ≥ 0, if
at least two of the ti are nonzero, then

〈 3∑

i=1

tixi,

3∑

i=1

tixi

〉
p,q

=
∑

1≤i<j≤3

2titj〈xi, xj〉p,q < 0,

• (y1, y2, y3) spans a triangle fully contained in Hp,q−1 outside of the
vertices.

Proof of Lemma 3.2. If Λ is negative, then any subset of Λ is as well, and so
(i) ⇒ (ii) holds. We now check (ii) ⇒ (i).

Suppose that every triple of distinct points of Λ is negative. Choose
two distinct points y1, y2 ∈ Λ and respective lifts x1, x2 ∈ Rp,q r {0} with
〈x1, x2〉p,q < 0. We now define a map f : Λ → Rp,q r {0} as follows. We
set f(yi) := xi for i ∈ {1, 2}. For each y ∈ Λ r {y1, y2}, we choose a lift
x ∈ Rp,qr{0} of y; by Remark 3.3, we have 〈x1, x2〉p,q 〈x1, x〉p,q 〈x2, x〉p,q < 0,
and so 〈x1, x〉p,q and 〈x2, x〉p,q are both nonzero of the same sign; we set
f(y) := x if this sign is negative, and f(y) := −x otherwise. We claim that
〈f(y), f(y′)〉p,q < 0 for any y 6= y′ in Λ. Indeed, this is true by construction
if y or y′ is equal to y1, so we assume this is not the case. By Remark 3.3,
we have 〈x1, f(y)〉p,q 〈x1, f(y

′)〉p,q 〈f(y), f(y
′)〉p,q < 0. Since 〈x1, f(y)〉p,q < 0

and 〈x1, f(y
′)〉p,q < 0 by construction, we have 〈f(y), f(y′)〉p,q < 0. Thus

{tf(y) | t > 0 and y ∈ Λ} is a cone of Rp,q r {0} lifting Λ on which all inner
products 〈·, ·〉p,q of noncollinear points are negative, and so Λ is negative. �

Remarks 3.4. (1) Similar equivalences to Lemma 3.2 hold after replac-
ing negative with positive in conditions (i) and (ii), and Hp,q−1 with
Sp−1,q in condition (iii).

(2) It follows from Remark 3.3 that a triple of distinct points of ∂PH
p,q−1

cannot be both negative and positive. Therefore, by Lemma 3.2, an
arbitrary subset of ∂PH

p,q−1 with at least three points cannot be both
negative and positive.

(3) Our notion of positivity should not be confused with that of [B2].
For V = Rp,q, consider a subset of P(V ) × P(V ∗) of the form Λ =
{(z, z⊥) | z ∈ Λ} where Λ ⊂ ∂PH

p,q−1. The set Λ is positive in the
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sense of [B2] if and only if Λ is nonnegative or nonpositive in the sense
of Definition 3.1. The set Λ is 3-by-3 positive in the sense of [B2] if
and only if every triple of points of Λ is nonnegative or every triple
of distinct points of Λ is nonpositive in the sense of Definition 3.1.
We shall not use the terminology of [B2] in this paper.

3.2. Consequences of Lemma 3.2.

Proof of Proposition 1.10. Let Λ be a closed, connected, transverse subset
of ∂PH

p,q−1, and let Λ(3) be the set of unordered triples of distinct points
of Λ. By Remark 3.3, we may define a function Λ(3) → {±1} by sending
(y1, y2, y3) ∈ Λ(3) to the sign of 〈x1, x2〉p,q 〈x1, x3〉p,q 〈x2, x3〉p,q, where xi ∈
Rp,q r {0} is an arbitrary lift of yi. This function is continuous and Λ(3) is
connected by Fact A.1, hence the function is constant. In other words, every
triple of distinct points of Λ is negative or every triple of distinct points
of Λ is positive. By Lemma 3.2 and Remark 3.4.(1), the set Λ is negative or
positive. �

Here is another consequence of Lemma 3.2.

Proposition 3.5. Let Γ be a word hyperbolic group and T a connected open
set in the space of P p,q

1 -Anosov representations of Γ into G = PO(p, q). If
the proximal limit set Λρ(Γ) is negative (resp. positive) for some ρ ∈ T , then
it is negative (resp. positive) for all ρ ∈ T .

Proof. We may assume #∂∞Γ ≥ 3, otherwise for any P p,q
1 -Anosov represen-

tation ρ : Γ → G the proximal limit set Λρ(Γ) is both negative and positive.
Note that the set T is path-connected.

Suppose Λρ0(Γ) is negative for some ρ0 ∈ T , and let (ρt)t∈[0,1] be a contin-
uous path in T . For t ∈ [0, 1], let ξt : ∂∞Γ → ∂PH

p,q−1 be the boundary map
of the Anosov representation ρt. For any triple {η1, η2, η3} of distinct points
of ∂∞Γ and any t ∈ [0, 1], the triple {ξt(η1), ξt(η2), ξt(η3)} ⊂ Λρt(Γ) is either
negative or positive, by transversality of ξt. Since {ξ0(η1), ξ0(η2), ξ0(η3)} is
negative and t 7→ ξt(ηi) is continuous for all i (see [GW, Th. 5.13]), we deduce
as in the proof of Proposition 1.10 that {ξt(η1), ξt(η2), ξt(η3)} is negative for
all t ∈ [0, 1]. By Lemma 3.2, the set Λρt(Γ) is negative for all t ∈ [0, 1].

The case that Λρ0(Γ) is positive is similar. �

3.3. Boundaries of convex subsets of Hp,q−1. The following lemma makes
a link between convexity in Hp,q−1 and nonpositivity in ∂PH

p,q−1.

Lemma 3.6. (1) Let Λ0 be a closed nonpositive (resp. nonnegative) subset
of ∂PH

p,q−1 which is not contained in a projective hyperplane. Then Λ0

spans a nonempty convex open subset Ω of P(Rp,q) which is contained
in Hp,q−1 (resp. in Sp−1,q). Moreover, if Λ1 ⊃ Λ0 is the intersection
of ∂PH

p,q−1 with the closure of Ω, then Λ1 is still nonpositive (resp.
nonnegative), and it is equal to Λ0 if Λ0 is negative (resp. positive).
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(2) Conversely, for any nonempty properly convex open subset Ω of Hp,q−1

(resp. Sp−1,q), the intersection of ∂PH
p,q−1 with the closure of Ω is non-

positive (resp. nonnegative).

Proof. (1) Let Λ̃0 be a cone of Rp,qr{0} on which 〈·, ·〉p,q is nonpositive (the
nonnegative case is similar). Using the equality

(3.1)
〈∑

i

tixi,
∑

i

tixi

〉
p,q

=
∑

i,j

titj〈xi, xj〉p,q

for ti ∈ R+ and xi ∈ Λ̃0, we see that 〈·, ·〉p,q is still nonpositive on the
R+-span of Λ̃0. In particular, Λ1 is nonpositive since it is contained in the
projectivization of the R+-span of Λ̃0. Let Ω be the projectivization of the
interior of this R+-span. Then Ω is convex, contained in Hp,q−1∪∂PH

p,q−1 and
open, hence contained in Hp,q−1 (since ∂PH

p,q−1 is a hypersurface of P(Rp,q)).
Suppose Λ0 is negative, i.e. all inner products 〈·, ·〉p,q of noncollinear points
of Λ̃0 are negative. Any point z ∈ Λ1 admits a lift to Rp,q r {0} of the form∑k

i=1 tixi where x1, . . . , xk ∈ Λ̃0 are pairwise noncollinear and t1, . . . , tk ≥ 0.
Since z ∈ ∂PH

p,q−1, we see from (3.1) that 〈xi, xj〉p,q = 0 for all 1 ≤ i < j ≤ k,
hence k = 1 and z ∈ Λ0. This shows that the inclusion Λ1 ⊃ Λ0 is an equality
when Λ0 is negative.

(2) Let Ω be a nonempty properly convex open subset of Hp,q−1 (the Sp−1,q

case is similar). We can lift it to a properly convex open cone Ω̃ of Rp,qr{0}

such that 〈x, x〉p,q < 0 for all x ∈ Ω̃. Let Λ1 be the intersection of ∂PH
p,q−1

with the closure of Ω, and let Λ̃1 be a cone of Rp,qr{0} lifting Λ1, contained
in the closure of Ω̃. Using the equality (3.1) for ti ∈ R+ and xi ∈ Λ̃1, we see
that 〈·, ·〉p,q is nonpositive on Λ̃1. Thus Λ1 is nonpositive. �

3.4. Irreducible subgroups of PO(p, q) preserving properly convex
domains. Here is a consequence of Fact 2.8 (see Figure 3).

Proposition 3.7. For p, q ∈ N∗, an irreducible discrete subgroup Γ of G =
PO(p, q) preserves a nonempty properly convex subset of P(Rp,q) if and only
if the following two conditions are satisfied:

(i) Γ contains an element of G which is proximal in ∂PH
p,q−1,

(ii) ΛΓ is nonpositive or nonnegative (Definition 3.1).

In this case, let Ω be a nonempty Γ-invariant properly convex open subset

of P(Rp,q) and Ω̃ a properly convex cone of Rp,q r {0} lifting Ω. If ΛΓ is

nonpositive (resp. nonnegative), then ΛΓ lifts to a cone Λ̃Γ in the boundary

of Ω̃ on which 〈·, ·〉p,q is nonpositive (resp. nonnegative). There is a unique
smallest nonempty Γ-invariant properly convex open subset Ωmin of P(Rp,q)
contained in Ω, namely the interior of the convex hull of ΛΓ in Ω. There
is a unique largest Γ-invariant properly convex open subset Ωmax of P(Rp,q)
containing Ω, namely the projectivization of the interior of the set of x′ ∈ Rp,q

such that 〈x, x′〉p,q ≤ 0 for all x ∈ Λ̃Γ (resp. 〈x, x′〉p,q ≥ 0 for all x ∈ Λ̃Γ).
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Figure 3. The sets Ωmin ⊂ Hp,q−1 (light gray) and Ωmax ⊂
P(Rp,q) (dark gray), for a negative proximal limit set ΛΓ. On
the left (p, q) = (2, 1), and on the right (p, q) = (2, 2).

Proof. Taking V = Rp,q, we only need to check that condition (i) of Propo-
sition 3.7 is equivalent to condition (i) of Fact 2.8, that condition (ii) of
Proposition 3.7 implies condition (ii) of Fact 2.8, and that the existence
of a nonempty Γ-invariant properly convex open subset of P(Rp,q) implies
condition (ii) of Proposition 3.7.

An element g ∈ G = PO(p, q) is proximal in P(Rp,q) if and only if g−1 is
proximal in P(Rp,q), because the set of eigenvalues of g is stable under taking
inverses, and so g has a unique eigenvalue of maximal modulus if and only
if g−1 has. On the other hand, g−1 is proximal in P(Rp,q) if and only if g
is proximal in P((Rp,q)∗) (see Section 2.2). Using Remark 2.4, we see that
condition (i) of Fact 2.8 is equivalent to condition (i) of Proposition 3.7 for
Γ ⊂ G = PO(p, q).

Suppose that ΛΓ is nonpositive (resp. nonnegative), i.e. we can lift it to
a cone Λ̃Γ of Rp,q r {0} on which 〈·, ·〉p,q is nonpositive (resp. nonnegative).
Recall from Remark 2.9 that the map ψ : x 7→ 〈x, ·〉p,q identifies Rp,q with
(Rp,q)∗ and ΛΓ ⊂ P(Rp,q) with Λ∗

Γ ⊂ P((Rp,q)∗). The set Λ̃∗
Γ := ψ(Λ̃Γ) (resp.

Λ̃∗
Γ := −ψ(Λ̃Γ)) is a cone of (Rp,q)∗ r {0} lifting Λ∗

Γ, and by construction
ℓ(x) ≤ 0 for all x ∈ Λ̃Γ and ℓ ∈ Λ̃∗

Γ. Thus condition (ii) of Proposition 3.7
implies condition (ii) of Fact 2.8 for Γ ⊂ G = PO(p, q).

Suppose that there exists a nonempty Γ-invariant properly convex open
subset Ω of P(Rp,q). It lifts to a properly convex cone Ω̃ of Rp,q r {0}, and
ΛΓ lifts to a cone Λ̃Γ of Rp,q r {0} contained in the boundary of Ω̃. Let

Ω̃∗ :=
{
ℓ ∈ (Rp,q)∗ | ℓ(x) < 0 ∀x ∈ Ω̃

}
,

where Ω̃ is the closure of Ω̃ in Rp,q r {0}. The set Ω̃∗ is a properly convex
cone of (Rp,q)∗r{0} lifting Ω∗. The set Λ∗

Γ lifts to a cone Λ̃∗
Γ of (Rp,q)∗r{0}

contained in the boundary of Ω̃∗. By construction, ℓ(x) ≤ 0 for all x ∈ Λ̃Γ
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and ℓ ∈ Λ̃∗
Γ. Let Γ̂ ⊂ O(p, q) be the lift of Γ leaving invariant Ω̃ (hence also

Ω̃∗, Λ̃Γ, and Λ̃∗
Γ). Since ψ induces an identification between ΛΓ and Λ∗

Γ, we
have ψ(x) ∈ Λ̃∗

Γ ∪−Λ̃∗
Γ for all x ∈ Λ̃Γ. Let F− (resp. F+) be the subcone of

Λ̃Γ consisting of those vectors x such that ψ(x) ∈ Λ̃∗
Γ (resp. ψ(x) ∈ −Λ̃∗

Γ).
By construction, we have x ∈ F− if and only if 〈x, x′〉p,q ≤ 0 for all x′ ∈ Λ̃Γ;
in particular, F− is closed in Λ̃Γ and Γ̂-invariant. Similarly, F+ is closed
and Γ̂-invariant. The sets F− and F+ are disjoint since no x ∈ Rp,q r {0}

can satisfy 〈x, x′〉p,q = 0 for all x′ ∈ Λ̃Γ, otherwise the Γ-invariant subset
ΛΓ of P(Rp,q) would be contained in the hyperplane P(x⊥), contradicting
the irreducibility of Γ. Thus F− and F+ are disjoint, Γ̂-invariant, closed
subcones of Λ̃Γ, whose projections to P(Rp,q) are disjoint, Γ-invariant, closed
subsets of ΛΓ. Since Γ is irreducible, ΛΓ is the smallest nonempty Γ-invariant
closed subset of P(Rp,q) (see Section 2.2), and so Λ̃Γ = F− or Λ̃Γ = F+. In
the first case ΛΓ is nonpositive, and in the second case it is nonnegative. �

In the setting of Proposition 3.7, if ΛΓ ⊂ ∂PH
p,q−1 is nonpositive (resp.

nonnegative), then Ωmin is contained in Hp,q−1 (resp. Sp−1,q) by Lemma 3.6.(1).
We shall use the following in the stronger situation that ΛΓ is negative (resp.
positive).

Lemma 3.8. In the setting of Proposition 3.7, if ΛΓ ⊂ ∂PH
p,q−1 is negative

(resp. positive), then the closure Cmin of Ωmin in Hp,q−1 (resp. Sp−1,q) is
contained in Ωmax.

Proof. Suppose ΛΓ is negative. For any x ∈ Λ̃Γ, using the equality〈
x,

∑

i

tixi

〉
p,q

=
∑

i

ti〈x, xi〉p,q

for ti ∈ R+ and xi ∈ Λ̃Γ, we see that 〈x, ·〉p,q is negative on the R+-span
of Λ̃Γ minus {0}. In particular, the set Cmin, which is the projectivization of
this R+-span minus {0}, is contained in Ωmax, which is the projectivization
of the interior of the set of x′ ∈ Rp,q such that 〈x, x′〉p,q ≤ 0 for all x ∈ Λ̃Γ.

The case that ΛΓ is positive is analogous. �

4. Hp,q−1-convex cocompact groups are Anosov

The goal of this section is to prove the implications (i) ⇒ (ii) and (iii) ⇒ (iv)
of Theorem 1.11, which contain Theorem 1.7.(1). By the following obser-
vation, which is immediate from the definitions, we can focus on (i) ⇒ (ii)
only.

Remark 4.1. A representation ρ : Γ → PO(p, q) is P p,q
1 -Anosov if and only

if it is P q,p
1 -Anosov under the identification PO(p, q) ≃ PO(q, p). A subset

of ∂PH
p,q−1 is positive if and only if it is negative under the identification

∂PH
p,q−1 ≃ ∂PH

q,p−1.
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We also prove (Lemma 4.3 and Remark 4.4) that if Γ is Hp,q−1-convex co-
compact, then for any nonempty properly convex closed subset C of Hp,q−1 on
which Γ acts properly discontinuously and cocompactly, the ideal boundary
∂iC is the proximal limit set ΛΓ ⊂ ∂PH

p,q−1.

4.1. Working inside a properly convex open domain. The following
lemma will enable us to use the restriction to C of the Hilbert metric of Ωmax.

Lemma 4.2. Let Γ be an irreducible discrete subgroup of G = PO(p, q)
acting properly discontinuously and cocompactly on some nonempty properly
convex closed subset C of Hp,q−1. Then C is contained in a maximal Γ-
invariant properly convex open subset Ωmax of P(Rp,q).

The point of Lemma 4.2 is that, not only the interior of C, but also its
boundary in Hp,q−1 is contained in such a set Ωmax.

Recall from Fact 2.8 and Remark 2.9 that in this setting the proximal limit
set ΛΓ is contained in the ideal boundary ∂iC of C; a maximal Γ-invariant
properly convex open subset Ωmax of P(Rp,q) containing C is unique.

Proof. Let Ωmax be the largest Γ-invariant properly convex open subset of
P(Rp,q) containing Int(C), as in Fact 2.8 and Remark 2.9. Suppose by con-
tradiction that C is not contained in Ωmax. By Fact 2.8 and Remark 2.9,
this means that some point y ∈ C belongs to z⊥ for some z ∈ ΛΓ ⊂ ∂iC.
The interval [y, z) is a lightlike ray of Hp,q−1. By convexity of C, it is fully
contained in C. Let (am)m∈N be a sequence of points of [y, z) converging to z
(see Figure 4). Since Γ acts cocompactly on C, for any m there exists γm ∈ Γ
such that γm · am belongs to a fixed compact subset of C. Up to taking a
subsequence, the sequences (γm · am)m and (γm · y)m and (γm · z)m converge
respectively to some points a∞, y∞, z∞ in C, with a∞ ∈ C and z∞ ∈ ΛΓ.
Since a∞ ∈ [y∞, z∞] ⊂ z⊥∞, the intersection of [y∞, z∞] with Hp,q−1 is con-
tained in a lightlike geodesic, hence can meet ∂PH

p,q−1 only at z∞. Thus
y∞ cannot belong to ∂PH

p,q−1, lest y∞ = z∞ and the closure of C in P(Rp,q)
contain a full projective line, contradicting the proper convexity of C. There-
fore, y∞ ∈ C. But this contradicts the proper discontinuity of the action of
Γ on C. �

4.2. Equality ∂iC = ΛΓ. Using Lemma 4.2, we establish the following.

Lemma 4.3. Let Γ be an irreducible discrete subgroup of G = PO(p, q) act-
ing properly discontinuously and cocompactly on a nonempty properly convex
closed subset C of Hp,q−1. If the proximal limit set ΛΓ is transverse, then the
inclusion ΛΓ ⊂ ∂iC is an equality, and this set is negative (Definition 1.9).

Recall that the transversality of ΛΓ means that y /∈ z⊥ for all y 6= z in ΛΓ.

Proof. Let Ωmin ⊂ C ⊂ Hp,q−1 be the interior of the convex hull of ΛΓ in C,
and Cmin its closure in Hp,q−1. We have

ΛΓ ⊂ ∂iCmin = ∂PΩmin ∩ ∂PH
p,q−1 ⊂ ∂iC.
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z

am

y

γm · z

γm · am

γm · y

C

Ωmax

ΛΓ

∂PH
p,q−1

Figure 4. Illustration for the proof of Lemma 4.2

The set ΛΓ is transverse by assumption, hence negative by Lemma 3.6.(2),
and so ΛΓ = ∂iCmin by Lemma 3.6.(1). We now check that ∂iCmin = ∂iC.
For this we use the fact that, by Lemma 4.2, the set C is contained in a
Γ-invariant properly convex open subset Ωmax of P(Rp,q); we denote by d the
Hilbert metric on Ωmax.

Suppose by contradiction that there exists z ∈ ∂iCr ∂iCmin. Let (zm)m∈N

be a sequence in C r Cmin converging to z. By cocompactness of the ac-
tion of Γ on C and Cmin, we may find a sequence (ym)m∈N in Ωmin such
that d(ym, zm) is uniformly bounded and d(ym, ∂HCmin) is uniformly bounded
away from zero. The segment [ym, zm] contains a unique point um of ∂HCmin,
as depicted in Figure 5. Let (am, bm) be the maximal interval of Ωmax con-
taining ym, zm, so that d(ym, zm) = 1

2 log[am, ym, zm, bm] and d(ym, um) =
1
2 log[am, ym, um, bm]. Up to passing to a subsequence, we may assume that
am → a, bm → b, um → u, and ym → y where u and y belong to the line seg-
ment [a, b] ⊂ ∂PΩmax and u, y ∈ ∂iCmin. By assumption y 6= z; since the cross
ratios [am, ym, zm, bm] = e2d(ym,zm) are bounded away from 0, 1, and +∞, the
points a, y, z, b are pairwise distinct and [am, ym, zm, bm] → [a, y, z, b]. On the
other hand, the cross ratios [am, ym, um, bm] = e2d(ym,um) are bounded away
from 1, hence [a, y, u, b] 6= 1. Since the points a, y, b are pairwise distinct,
we conclude y 6= u. But the segment [y, u] is contained in ∂PΩmax, hence
contained in ∂iCmin, contradicting the transversality of ∂iCmin = ΛΓ. �

Remark 4.4. Lemma 4.3 shows that if an irreducible discrete subgroup Γ of
PO(p, q) acts properly discontinuously and cocompactly on some nonempty
properly convex closed subset C of Hp,q−1 and if the proximal limit set ΛΓ

is transverse, then Γ is Hp,q−1-convex cocompact. It also shows that if Γ
is Hp,q−1-convex cocompact, then for any nonempty properly convex closed
subset C of Hp,q−1 on which Γ acts properly discontinuously and cocompactly,
the ideal boundary ∂iC is the proximal limit set ΛΓ ⊂ ∂PH

p,q−1.
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Figure 5. Illustration of the proof of Lemma 4.3

4.3. Gromov hyperbolicity of (C, d). In the setting of Lemma 4.3, we
denote by d the Hilbert metric on a Γ-invariant properly convex open subset
Ωmax of P(Rp,q) containing C, as given by Lemma 4.2. Using arguments
inspired from [B3], we now prove that in this setting the metric space (C, d)
is Gromov hyperbolic with Gromov boundary ∂iC = ΛΓ.

We start with the following lemma; recall from Lemma 2.6.(1) that any
geodesic ray of (C, d) has a well-defined endpoint in ∂iC = ΛΓ.

Lemma 4.5. In the setting of Lemma 4.3, there exists R > 0 such that the
image of any geodesic ray of (C, d) lies at Hausdorff distance ≤ R from the
projective interval with the same endpoints.

Proof. Suppose by contradiction that for any m ∈ N there is a geodesic ray
Gm with endpoints am ∈ C and bm ∈ ΛΓ and a point ym ∈ C on that geodesic
ray which lies at distance ≥ m from the projective interval [am, bm). By
cocompactness of the action of Γ on C, for anym ∈ N there exists γm ∈ Γ such
that γm ·ym belongs to a fixed compact set of C. Up to taking a subsequence,
(γm ·ym)m converges to some y∞ ∈ C, and (γm ·am)m and (γm ·bm)m converge
respectively to some a∞ ∈ C = C ∪ ΛΓ and b∞ ∈ ΛΓ. Since the distance d
from ym to [am, bm) goes to infinity, we have [a∞, b∞] ⊂ ∂iC = ΛΓ, hence
a∞ = b∞ by transversality of ΛΓ. Therefore, up to extracting, the geodesic
rays Gm converge to a biinfinite geodesic of (Ωmax, d) with both endpoints
equal, contradicting Lemma 2.6.(2). �

Lemma 4.6. In the setting of Lemma 4.3, the metric space (C, d) is Gromov
hyperbolic.

Proof. Suppose by contradiction that the triangles of (C, d) are not uni-
formly thin. By Lemma 4.5, the triangles of (C, d) whose sides are projective
segments are not uniformly thin: namely, there exist am, bm, cm ∈ C and
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ym ∈ [am, bm] such that

(4.1) d(ym, [am, cm] ∪ [cm, bm]) −→
n→+∞

+∞.

By cocompactness, for any m there exists γm ∈ Γ such that γm ·ym belongs to
a fixed compact set of C, as shown in Figure 6. Up to taking a subsequence,
(γm · ym)m converges to some y∞ ∈ C, and (γm · am)m and (γm · bm)m
and (γm · cm)m converge respectively to some a∞, b∞, c∞ ∈ C. By (4.1) we
have [a∞, c∞] ∪ [c∞, b∞] ⊂ ∂iC, hence a∞ = b∞ = c∞ by transversality of
∂iC = ΛΓ. This contradicts the fact that y∞ ∈ (a∞, b∞) ∩ C. �

am

bmcm

ym

C
ΛΓ

∂PH
p,q−1

Figure 6. Illustration of the proof of Lemma 4.6

Lemma 4.7. In the setting of Lemma 4.3, the Gromov boundary of (C, d) is
Γ-equivariantly homeomorphic to ∂iC = ΛΓ.

Proof. Fix a basepoint y ∈ C. The Gromov boundary of (C, d) is the set
of equivalence classes of infinite geodesic rays in C starting at y, for the
equivalence relation “to remain at bounded distance for d”. Consider the
Γ-equivariant continuous map from ∂iC to the Gromov boundary of (C, d)
sending z ∈ ∂iC to the class of the straight geodesic ray (with image a
projective interval) from y to z. This map is surjective by Lemma 4.5.
Moreover it is injective, since transversality implies that no two points of
∂iC = ΛΓ lie in a common face of ∂Ωmax, hence the Hilbert distance d
between rays going out to two different points of ∂iC goes to infinity. We
conclude using the fact that a continuous bijection between two compact
Hausdorff spaces is a homeomorphism. �

4.4. Proof of the implication (i) ⇒ (ii) of Theorem 1.11. Let Γ be
an irreducible discrete subgroup of G = PO(p, q) acting properly discontin-
uously and cocompactly on some nonempty properly convex closed subset
C of Hp,q−1 whose ideal boundary ∂iC = C ∩ ∂PH

p,q−1 is transverse. Since
Γ is irreducible, C has nonempty interior. By Lemma 3.6.(2), the set ∂iC
is negative. By Lemma 4.2, the set C is contained in a Γ-invariant prop-
erly convex open subset Ωmax of P(Rp,q), and so we may consider the re-
striction to C of the Hilbert metric d of Ωmax. The discrete group Γ acts
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cocompactly by isometries on the metric space (C, d), which by Lemmas 4.6
and 4.7 is Gromov hyperbolic, with boundary Γ-equivariantly homeomor-
phic to ∂iC = ΛΓ. By the Švarc-Milnor lemma, Γ is word hyperbolic and any
orbit map Γ → C is a quasi-isometry, extending to a Γ-equivariant homeo-
morphism ξ : ∂∞Γ → ΛΓ. This homeomorphism is transverse since ΛΓ is a
transverse subset of ∂PH

p,q−1. Since Γ is irreducible, we conclude (using [GW,
Prop. 4.10]) that the natural inclusion Γ →֒ G = PO(p, q) is P p,q

1 -Anosov.

5. Anosov subgroups with negative proximal limit set are

Hp,q−1-convex cocompact

In this section we prove the implication (ii) ⇒ (i) of Theorem 1.11. The
implication (iv) ⇒ (iii) of Theorem 1.11 immediately follows by Remark 4.1.
Together with Proposition 1.10, this yields Theorem 1.7.(2). We also show
that the connectedness assumption in Theorem 1.7.(2) cannot be removed,
by providing a counterexample.

5.1. Proof of the implication (ii) ⇒ (i) of Theorem 1.11. Let Γ be
an irreducible discrete subgroup of G = PO(p, q). Suppose that Γ is word
hyperbolic, that the natural inclusion Γ →֒ G is P p,q

1 -Anosov, and that the
proximal limit set ΛΓ ⊂ ∂PH

p,q−1 is negative (Definitions 1.9 and 2.3).
By Proposition 3.7, the group Γ preserves a nonempty properly convex

open subset of P(Rp,q); there is a maximal such subset, namely

Ωmax := P
(
Int

{
x′ ∈ R

p,q | 〈x, x′〉p,q ≤ 0 ∀x ∈ Λ̃Γ

})
,

where Λ̃Γ is a cone of Rp,q r {0} lifting ΛΓ on which all inner products
〈·, ·〉p,q of noncollinear points are negative. There is also a minimal such
subset Ωmin ⊂ Ωmax, namely the interior of the convex hull of ΛΓ in Ωmax.
By Lemma 3.6.(1) we have Ωmin ⊂ Hp,q−1, and by Lemma 3.8 the closure
Cmin of Ωmin in Hp,q−1 is contained in Ωmax. In particular, the action of Γ
on Cmin is properly discontinuous. Moreover, the ideal boundary ∂iCmin is
equal to ΛΓ by Lemma 3.6.(1); in particular, it is transverse.

To see that Γ is Hp,q−1-convex cocompact and thus complete the proof
of the implication (ii) ⇒ (i) of Theorem 1.11, it only remains to prove the
following.

Lemma 5.1. In this setting, the action of Γ on Cmin is cocompact.

Proof. By Fact 1.18, the natural inclusion Γ →֒ PO(p, q) →֒ PGL(Rp+q) is
P1-Anosov, where P1 is the stabilizer in PGL(Rp+q) of a line of Rp+q. By
[KLPa, Th. 1.7] (see also [GGKW, Rem. 5.15]), the action of Γ on P(Rp,q) is
expanding : for any point z ∈ ΛΓ there exist an element γ ∈ Γ, a neighbor-
hood U of z in P(Rp,q), and a constant C > 1 such that γ is C-expanding on U
for the metric

dP([x], [x
′]) := | sin∡(x, x′)|

on P(Rp,q). We now use a version of the argument of [KLPa, Prop. 2.5], in-
spired by Sullivan’s dynamical characterization [Su] of convex cocompactness
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in Riemannian hyperbolic spaces. (The argument in [KLPa] is a little more
involved because it deals with bundles, whereas we work directly in P(Rp,q).)

Suppose by contradiction that the action of Γ on Cmin is not cocompact,
and let (εm)n∈N be a sequence of positive reals converging to 0. For any m,
the set Km := {z ∈ Cmin | dP(z,ΛΓ) ≥ εm} is compact, hence there exists
a Γ-orbit contained in Cmin r Km. By proper discontinuity of the action
on Cmin, the supremum of dP(·,ΛΓ) on this orbit is achieved at some point
zm ∈ Cmin, and by construction, for any γ ∈ Γ,

0 < dP(γ · zm,ΛΓ) ≤ dP(zm,ΛΓ) < εm.

Up to extracting, we may assume that (zm)n∈N converges to some z ∈ ΛΓ.
Consider an element γ ∈ Γ, a neighborhood U of z in ∂PH

p,q−1, and a constant
C > 1 such that γ is C-expanding on U . For anym ∈ N, there exists z′m ∈ ΛΓ

such that dP(γ · zm,ΛΓ) = dP(γ · zm, γ · z′m). For large enough m we have
z′m ∈ U and so

dP(γ · zm,ΛΓ) ≥ C dP(zm, z
′
m) ≥ C dP(zm,ΛΓ) ≥ C dP(γ · zm,ΛΓ).

This is impossible since C > 1. �

5.2. Disconnected limit sets. Let Γ be a free group on two generators.
For rankR(G) := min(p, q) ≥ 2, let us give an example of an irreducible
P p,q
1 -Anosov representation ρ : Γ → G = PO(p, q) for which the proximal

limit set Λρ(Γ) is neither negative nor positive (Definition 1.9). This shows
that Theorem 1.7.(2) is not true when ∂∞Γ is not connected. We first work
in PO(2, 2) (Example 5.2), then in PO(p, q) for any p, q ≥ 2 (Example 5.3).

Example 5.2. Let Γ be a free group on two generators. Consider two
injective and discrete representations ρ1, ρ2 : Γ → PSL2(R) with convex co-
compact images, such that ρ1 is the holonomy of a hyperbolic 3-holed sphere
and ρ2 the holonomy of a hyperbolic one-holed torus. For i ∈ {1, 2}, let
ξi : ∂∞Γ → P1R be the boundary map associated to ρi, with image Λi (a Can-
tor set). Let ψ := ξ2◦ξ

−1
1 : Λ1 → Λ2 be the unique (ρ1, ρ2)-equivariant home-

omorphism. This map ψ does not preserve the cyclic order of P1R: there exist
x1, x2, x3, x4 ∈ ∂∞Γ such that the quadruples (ξ1(x1), ξ1(x2), ξ1(x3), ξ1(x4))
and (ξ2(x1), ξ2(x2), ξ2(x4), ξ2(x3)) are both cyclically ordered.

The identification PO(2, 2)0 ≃ PSL2(R) × PSL2(R) of Remark 2.1 lets
us see (ρ1, ρ2) as a single representation ρ : Γ → PO(2, 2). The boundary
maps ξ1, ξ2 : ∂∞Γ → P1R associated to ρ1, ρ2 combine into a map ξ from
∂∞Γ to the doubly ruled quadric ∂PH

2,1 ≃ P1R × P1R: under this iden-
tification, the image Λ of ξ is the graph of ψ, and ρ is P 2,2

1 -Anosov with
boundary map ξ. However, ρ(Γ) is not H2,1-convex cocompact nor is it
H1,2-convex cocompact (with respect to −〈·, ·〉2,2). As depicted in Figure 7,
the triples ξ(x1), ξ(x2), ξ(x3) and ξ(x1), ξ(x2), ξ(x4) are negative, while the
triples ξ(x1), ξ(x3), ξ(x4) and ξ(x2), ξ(x3), ξ(x4) are positive. Alternatively,
observe that the six segments connecting the ξ(xi) (for 1 ≤ i ≤ 4) inside
H2,1 (resp. inside S1,2) carry the generator of π1(P(R2,2)), precluding the
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ξ(x1)

ξ(x2)

ξ(x3)

ξ(x4)
∂PH

2,1

Figure 7. Illustration for Example 5.2. The triples
{ξ(x1), ξ(x2), ξ(x3)} and {ξ(x1), ξ(x2), ξ(x4)} are negative,
i.e. span an ideal triangle contained in H2,1. The triples
{ξ(x1), ξ(x3), ξ(x4)} and {ξ(x2), ξ(x3), ξ(x4)} are positive,
i.e. span ideal triangles contained in S1,2 (which go through
infinity in the picture).

possibility that these segments could be part of a properly convex subset of
P(R2,2).

Example 5.3. Take any p, q ≥ 2 and consider the embedding

τ : PO(2, 2)0 ≃ SO(2, 2)0 −֒→ SO(p, q)0 ≃ PO(p, q)0

coming from the natural inclusion R2,2 ⊂ Rp,q. The corresponding τ -equiva-
riant embedding ι : ∂PH

2,1 →֒ ∂PH
p,q−1 has the property that a subset Λ

of ∂PH
2,1 is negative (resp. positive) if and only if ι(Λ) is negative (resp.

positive) as a subset of ∂PH
p,q−1. Let ρ : Γ → PO(2, 2)0 be as in Example 5.2.

By [GW, Prop. 4.7], the composition τ ◦ ρ : Γ → PO(p, q) is P p,q
1 -Anosov

with proximal limit set Λτ◦ρ(Γ) = ι(Λρ(Γ)). By Example 5.2, this limit set
is neither negative nor positive. Since being Anosov is an open property
[L, GW] and since a small deformation of a negative (resp. positive) triple
in ∂PH

p,q−1 is still negative (resp. positive), any small deformation of τ ◦ ρ
in Hom(Γ,PO(p, q)) is still a P p,q

1 -Anosov representation with a proximal
limit set that is neither negative nor positive. Since Γ is a free group, such
deformations are abundant, including many which are irreducible. The image
of any such representation fails to be Hp,q−1-convex cocompact.

6. Link with strong projective convex cocompactness

The goal of this section is to prove Proposition 1.17. We start with some
general lemmas.

6.1. Supporting hyperplanes at the limit set. Recall that a supporting
hyperplane of a properly convex subset Ω of P(Rn) at a point z of its bound-
ary ∂PΩ is a projective hyperplane whose intersection with Ω is a subset of
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∂PΩ containing z. In the following lemma, we denote by Ωmin ⊂ Ωmax a pair
of minimal and maximal nonempty Γ-invariant properly convex open subsets
of P(Rp,q), given by Proposition 3.7, and by d the Hilbert metric on Ωmax.

Lemma 6.1. Let Γ be an irreducible discrete subgroup of G = PO(p, q)
preserving a nonempty properly convex open subset Ω of P(Rp,q). Suppose
that the proximal limit set ΛΓ ⊂ ∂PΩ is transverse. If Ω contains a uniform
neighborhood of Ωmin in (Ωmax, d), then Ω has a unique supporting hyperplane
at any point z of ΛΓ, namely z⊥.

Proof. We first check that Ωmax has a unique supporting hyperplane at any
point z of ΛΓ, namely z⊥. By Proposition 3.7, the set ΛΓ is negative or
positive. We assume that it is negative (the positive case is analogous). Let
Λ̃Γ be a cone of Rp,q r {0} lifting ΛΓ on which all inner products 〈·, ·〉p,q
of noncollinear points are negative. By Proposition 3.7, the set Ωmax is
the projectivization of the interior Ω̃max of the set of x′ ∈ Rp,q such that
〈x, x′〉p,q ≤ 0 for all x ∈ Λ̃Γ. A supporting hyperplane to Ω̃max in Rp,q is the
kernel of a linear form ℓ =

∑k
i=1〈xi, ·〉 with x1, . . . , xk ∈ Λ̃Γ. For any x ∈ Λ̃Γ

in such a hyperplane, we have ℓ(x) = 0 and 〈xi, x〉p,q ≤ 0 for all i, hence
〈xi, x〉p,q = 0 for all i. But the set ΛΓ is transverse by assumption, and so
all xi are collinear to x. Thus the unique supporting hyperplane to Ω̃max at
x ∈ Λ̃Γ is x⊥. Taking images in P(Rp,q), the unique supporting hyperplane
to Ωmax at a point z ∈ ΛΓ is z⊥.

We now assume that Ω contains a uniform neighborhood of Ωmin in
(Ωmax, d). Let us check that Ω has a unique supporting hyperplane at any
point z of ΛΓ, namely z⊥. For z ∈ ΛΓ, let (yt)t≥0 and (zt)t≥0 be two straight
geodesic rays in Ωmax with endpoint z, such that (zt)t≥0 is contained in Ωmin.
Since Ωmax has a unique supporting hyperplane at z, up to reparametriza-
tion we have d(yt, zt) → 0 as t → +∞. Since Ω contains some uniform
neighborhood of Ωmin in (Ωmax, d), we deduce that some subray (yt)t≥t0 is
contained in Ω. This shows that z⊥ is also the unique supporting hyperplane
of Ω at z. �

6.2. Extreme points at the limit set. We next prove the following.

Proposition 6.2. Let Γ be an irreducible discrete subgroup of PO(p, q) pre-
serving a properly convex open subset Ω of P(Rp,q) and acting cocompactly on
some nonempty properly convex closed subset C of Ω. If the proximal limit
set ΛΓ is transverse, then every point of ΛΓ is an extreme point of Ω.

Proposition 6.2 relies on the following lemma.

Lemma 6.3. Let Γ be a discrete subgroup of PO(p, q) preserving a properly
convex open subset Ω of P(Rp,q) and acting cocompactly on some nonempty
properly convex closed subset C of Ω contained in Hp,q−1. For any r > 0,
the closed uniform neighborhood Cr of C in Ω for the Hilbert metric dΩ is
properly convex, and the action of Γ on Cr is properly discontinuous and
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cocompact. If r > 0 is small enough, then Cr is contained in Hp,q−1, and its
ideal boundary ∂iCr is equal to the proximal limit set ΛΓ if ΛΓ is transverse
and if C is closed in Hp,q−1.

Proof of Lemma 6.3. The action of Γ is properly discontinuous on Ω (see
Section 2.3), hence also on C and on Cr for any r > 0. Let D ⊂ Hp,q−1 be a
compact fundamental domain for the action of Γ on C. For any r > 0, the
set Cr is the union of the Γ-translates of the closed uniform r-neighborhood
Dr of D in (Ω, dΩ). Since Dr is compact, the action of Γ on Cr is cocompact.
The proper convexity of Cr follows from [Bu, (18.12)]. Since D is compact
and contained in the open set Hp,q−1, for small enough r > 0 we have Dr ⊂
Hp,q−1, hence Cr ⊂ Hp,q−1. In that case, if ΛΓ is transverse, then ∂iCr = ΛΓ

by Lemma 4.3. �

Proof of Proposition 6.2. By Proposition 3.7, the set ΛΓ is negative or pos-
itive. We assume it is negative (the positive case is similar). Let Ωmin ⊂
Ω ⊂ Ωmax be given by Proposition 3.7. By Lemma 3.6.(1), the set Ωmin is
contained in Hp,q−1 and ∂PΩmin ∩ ∂PH

p,q−1 = ΛΓ. Using Lemma 3.8, we see
that the closure Cmin of Ωmin in Hp,q−1 is contained and closed in Ωmax. On
the other hand, C is contained in Ω ⊂ Ωmax and closed in Ωmax because the
action of Γ on C is cocompact. Therefore Cmin is contained in C and the
action of Γ on Cmin is cocompact. Without loss of generality, we now assume
C = Cmin.

Suppose by contradiction that there exists z ∈ ΛΓ which is contained in
a nontrivial open segment I of ∂PΩ. Fix y ∈ C. For any z1, z2 ∈ I with
z ∈ (z1, z2), the open triangle with vertices y, z1, z2 is contained in a uniform
neighborhood of the ray [y, z) in (Ω, dΩ); in particular, it is contained in
a uniform neighborhood Cr of C in (Ω, dΩ), for some r > 0, and (z1, z2) is
contained in the ideal boundary ∂iCr. By choosing z1, z2 close enough to z,
we may make r as small as we like. By Lemma 6.3, if r > 0 is small enough,
then ∂iCr = ΛΓ is transverse: contradiction. �

6.3. Proof of Proposition 1.17.(1). Suppose Γ is Hp,q−1-convex cocom-
pact: it acts properly discontinuously and cocompactly on some nonempty
properly convex closed subset C of Hp,q−1 whose ideal boundary ∂iC is trans-
verse. By Lemma 4.3, the set ∂iC is equal to the proximal limit set ΛΓ.
Let Cmin be the convex hull of ΛΓ in C: it is a closed convex subset of C,
which has compact quotient by Γ. By Lemma 4.2, the set Cmin is contained
in a maximal Γ-invariant properly convex open subset Ωmax of P(Rp,q). By
Lemma 6.3, there exists r > 0 such that the closed uniform neighborhood Cr
of Cmin in Ωmax for the Hilbert metric dΩmax

is properly convex, contained in
Hp,q−1, with ideal boundary ∂iCr = ΛΓ, and the action of Γ on Cr is properly
discontinuous and cocompact. In order to prove that Γ is strongly convex
cocompact in P(Rp+q) (Definition 1.16), it is sufficient to prove the following.

Lemma 6.4. In this setting, there is a Γ-invariant open neighborhood Ω of
Cmin in Ur := Int(Cr) which is strictly convex with C1 boundary ∂PΩ.
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Indeed, for such an Ω, the orbital limit set Λorb

Ω (Γ) is equal to ΛΓ by
Lemma 2.11, hence the convex hull of Λorb

Ω (Γ) in Ω is Cmin, which has compact
quotient by Γ. Thus if such an Ω exists, then Γ is strongly convex cocompact
in P(Rp+q).

Recall that, by definition, Ω is strictly convex with C1 boundary ∂PΩ if
every point of ∂PΩ has the property that it is an extreme point of Ω and Ω
has a unique supporting hyperplane at that point. If Ω is any Γ-invariant
properly convex open neighborhood of Cmin in Ωmax, then every point of ΛΓ

has this property by Lemma 6.1 and Proposition 6.2. Therefore, in order
to prove Lemma 6.4, we only need to focus on ∂PΩ r ΛΓ, that is we must
construct Ω such that each point of ∂PΩrΛΓ is an extreme point with unique
supporting hyperplane. Constructing such a neighborhood Ω clearly involves
arbitrary choices; here is one of many possible constructions. Cooper–Long–
Tillmann [CLT, Prop. 8.3] give a different construction yielding, in the case
Γ is torsion-free, a convex set Ω as in Lemma 6.4 with the slightly stronger
property that ∂PΩrΛΓ is locally the graph of a smooth function with positive
definite Hessian.

Proof of Lemma 6.4. We set V := Rp+q. The following argument does not
use the quadratic form of signature (p, q). Let Γ0 be a finite-index subgroup
of Γ which is torsion-free; such a subgroup exists by the Selberg lemma [Se,
Lem. 8].

We proceed in three steps. Firstly, we construct a Γ-invariant open neigh-
borhood Ω1 ⊂ Ur of Cmin in Ωmax which has C1 boundary, but which is
not necessarily strictly convex. Secondly, we construct a small deformation
Ω2 ⊂ Ur of Ω1 which still has C1 boundary and is strictly convex, but which
is only Γ0-invariant, not necessarily Γ-invariant. Finally, we use an averag-
ing procedure over translates γ ·Ω2 of Ω2, for γΓ0 ranging over the Γ0-cosets
of Γ, to construct a Γ-invariant open neighborhood Ω ⊂ Ur of Cmin which
has C1 boundary and is strictly convex.

• Construction of Ω1: Consider a compact fundamental domain D for the
action of Γ on Cmin. The convex hull of D in Ωmax is still contained in Cmin.
Let D′ ⊂ Cr be a closed neighborhood of this convex hull in Ur which has C1

boundary ∂PD
′, and let Ω1 be the interior of the convex hull of Γ · D′ in Ur.

We have Ω1 r ΛΓ ⊂ Ur r ΛΓ = Cr ⊂ Ωmax by choice of r; in particular, the
action of Γ on Ω1 r ΛΓ is properly discontinuous.

Let us check that Ω1 has C1 boundary ∂PΩ1. We first observe that any
supporting hyperplane Πy to Ω1 at a point y ∈ ∂PΩ1rΛΓ stays away from ΛΓ:
indeed, if Πy contained a point z ∈ ΛΓ, then by Lemma 6.1 it would be equal
to the unique supporting hyperplane to Ω1 at z, namely z⊥, contradicting
y ∈ Ωmax. On the other hand, since the action of Γ on Ω1 r ΛΓ is properly
discontinuous, for any neighborhood N of ΛΓ in P(V ) and any infinite se-
quence of distinct elements γj ∈ Γ, the translates γj · D′ are eventually all
contained in N . Therefore, in a neighborhood of y, the hypersurface ∂PΩ1
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coincides with the convex hull of a finite union of translates γ ·D′, which has
C1 boundary by Lemma 2.7.

• Construction of Ω2: For any y ∈ ∂PΩ1 r ΛΓ, let Fy be the face of y in
∂PΩ1, namely the intersection of ∂PΩ1 with the unique supporting hyperplane
Πy to Ω1 at y. By the above observation, Fy is a closed convex subset of
∂PΩ1 r ΛΓ.

We claim that Fy is disjoint from γ · Fy = Fγ·y for all γ ∈ Γ0 r {1}.
Indeed, if there existed y′ ∈ Fy ∩ Fγ·y, then by uniqueness the supporting
hyperplanes would satisfy Πy = Πy′ = Πγ·y, hence Fy = Fy′ = Fγ·y = γ ·Fy.
This would imply Fy = γm ·Fy for all m ∈ N, hence γm ·y ∈ Fy for all m ∈ N.
Using the fact that the action of Γ0 on ∂PΩ1 r ΛΓ is properly discontinuous
and taking a limit, we see that Fy would contain a point of ΛΓ, which we
have seen is not true. Therefore Fy is disjoint from γ ·Fy for all γ ∈ Γ0r{1}.

For any y ∈ ∂PΩ1 rΛΓ, the subset of P(V ∗) consisting of those projective
hyperplanes near the supporting hyperplane Πy that separate Fy from ΛΓ is
open and nonempty, hence (n− 1)-dimensional where n := p+ q = dim(V ).
Choose n − 1 such hyperplanes Π1

y, . . . ,Π
n−1
y in generic position, with Πi

y

cutting off a compact region Qi
y ⊃ Fy from Ω1rΛΓ. One may imagine each

Πi
y is obtained by pushing Πy normally into Ω1 and then tilting slightly in

one of n − 1 independent directions. The intersection
⋂n−1

i=1 Πi
y ⊂ P(V ) is

reduced to a singleton. By taking each hyperplane Πi
y very close to Πy, we

may assume that the union Qy :=
⋃n−1

i=1 Qi
y is disjoint from all its γ-translates

for γ ∈ Γ0 r {1}. In addition, we ensure that Fy has a neighborhood Q′
y

contained in
⋂n−1

i=1 Qi
y.

Since the action of Γ0 on ∂PΩ1rΛΓ is cocompact, there exist finitely many
points y1, . . . , ym ∈ ∂PΩ1rΛΓ such that (∂PΩ1rΛΓ) ⊂ Γ0 ·(Q

′
y1
∪· · ·∪Q′

ym
).

We now explain, for any y ∈ ∂PΩ1 r ΛΓ, how to deform Ω1 into a
new, smaller properly convex Γ0-invariant open neighborhood of Cmin with
C1 boundary, in a way that destroys all segments in Q′

y. Repeating for
y = y1, . . . , ym, this will produce a strictly convex Γ0-invariant open neigh-
borhood Ω2 ⊂ Ω1 of Cmin with C1 boundary ∂PΩ2.

Choose an affine chart containing Ωmax, an auxiliary Euclidean metric g
on this chart, and a smooth strictly concave function h : R+ → R+ with
h(0) = 0 and d

dt

∣∣
t=0

h(t) = 1 (e.g. h = tanh). We may assume that for every
1 ≤ i ≤ n − 1 the g-orthogonal projection πiy onto Πi

y satisfies πiy(Q
i
y) ⊂

Πi
y ∩ Ω1, with (πiy|Qi

y
)−1(Πi

y ∩ ∂PΩ1) ⊂ Πi
y. Define maps ϕi

y : Qi
y → Qi

y

by the property that ϕi
y preserves each fiber (πiy)

−1(y′) (a segment), taking
the point at distance t from y′ to the point at distance h(t). Then ϕi

y takes
any segment σ of Fy to a strictly convex curve, unless σ is parallel to Πi.
The image ϕi

y(Q
i
y ∩ ∂PΩ1) is still a convex hypersurface. Extending ϕi

y by
the identity on Qy r Qi

y and repeating with varying i, we find that the
composition ϕy := ϕ1

y ◦ · · · ◦ ϕn−1
y , defined on Qy, takes Q′

y ∩ ∂PΩ1 to a
strictly convex hypersurface. We can extend ϕy in a Γ0-equivariant fashion
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to Γ0 · Qy, and extend it further by the identity on the rest of Ω1: the set
ϕy(Ω1) is still Γ0-invariant, with C1 boundary, and is still contained in Ur.

Repeating with finitely many points y1, . . . , ym as above, we obtain a
strictly convex, Γ0-invariant open neighborhood Ω2 ⊂ Ur of Cmin with C1

boundary ∂PΩ2.

• Construction of Ω: Consider the finitely many Γ0-cosets γ1Γ0, . . . , γkΓ0

of Γ and the corresponding translates Ω′
i := γi ·Ω2. Let Ω′′ be a Γ-invariant

properly convex (not necessarily strictly convex) open neighborhood of Cmin

in Ur which has C1 boundary ∂PΩ
′′ and is contained in all Ω′

i, 1 ≤ i ≤ k.
(Such a neighborhood Ω′′ can be constructed for instance by the same method
as for Ω1 above.) Since Ω′

i is strictly convex, uniform neighborhoods of Ω′′

in (Ω′
i, dΩ′

i
) are strictly convex [Bu, (18.12)]. Therefore, by cocompactness,

if h : [0, 1] → [0, 1] is a convex function with sufficiently fast growth (e.g.
h(t) = tα for large enough α > 0), then the Γ0-invariant function Hi :=
h ◦ dΩ′

i
(·,Ω′′) is convex on the convex region H−1

i ([0, 1]), and in fact smooth

and strictly convex near every point outside Ω′′. The function H :=
∑k

i=1Hi

is Γ-invariant and its sublevel set Ω := H−1([0, 1)) is a Γ-invariant open
neighborhood of Cmin in Ur which is strictly convex with C1 boundary ∂PΩ.

�

6.4. Proof of Proposition 1.17.(2). Suppose Γ preserves a nonempty
strictly convex open subset Ω of P(Rn). By Lemma 2.11, the orbital limit set
Λorb

Ω (Γ) coincides with the proximal limit set ΛΓ. Suppose that the convex
hull Cmin of ΛΓ in Ω has compact quotient by Γ. By Proposition 3.7, the set
ΛΓ ⊂ ∂PH

p,q−1 is nonpositive or nonnegative (Definition 3.1). Moreover, ΛΓ

is transverse, because it is contained (Fact 2.8) in the boundary of the strictly
convex set Ω. Therefore, ΛΓ is negative or positive. If ΛΓ is negative, then
Cmin ⊂ Hp,q−1 by Lemma 3.6.(1) and Lemma 3.8, and Γ is Hp,q−1-convex
cocompact by Remark 4.4. Similarly, if ΛΓ is positive, then the image of Γ
under the natural isomorphism PO(p, q) ≃ PO(q, p) is Hq,p−1-convex cocom-
pact.

7. Examples of Hp,q−1-convex cocompact subgroups

In this section we consider the following general construction.

Proposition 7.1. Let H be a real semisimple Lie group of real rank 1. For
p, q ∈ N∗, let τ : H → G := PO(p, q) be a linear representation which
is proximal, in the sense that τ(H) contains an element which is proximal
in ∂PH

p,q−1. Then for any word hyperbolic group Γ and any representation
σ0 : Γ → H with finite kernel and convex cocompact image (in the classical
sense) in the rank-one group H,

(1) the composition ρ0 := τ ◦σ0 : Γ → G is P p,q
1 -Anosov and the proximal

limit set Λρ0(Γ) ⊂ ∂PH
p,q−1 is negative or positive (Definition 1.9);
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(2) the connected component Tρ0 of ρ0 in the space of P p,q
1 -Anosov rep-

resentations from Γ to G is a neighborhood of ρ0 in Hom(Γ, G) con-
sisting entirely of P p,q

1 -Anosov representations with negative proxi-
mal limit set or entirely of P p,q

1 -Anosov representations with positive
proximal limit set.

Proof. Since H has real rank 1, the convex cocompact representation σ0 is
P -Anosov where P is a minimal parabolic subgroup of H [GW, Th. 5.15];
in particular, there is an injective, continuous, σ0-equivariant boundary map
ξσ0

: ∂∞Γ → H/P . By [GW, Prop. 4.7] (see also [L, Prop. 3.1]), since τ
is proximal, there is a τ -equivariant embedding ι : H/P →֒ ∂PH

p,q−1 and
ρ0 = τ ◦ σ0 is P p,q

1 -Anosov with boundary map ι ◦ ξσ0
: ∂∞Γ → ∂PH

p,q−1.
In particular, the proximal limit set Λρ0(Γ) = ι ◦ ξσ0

(∂∞Γ) is contained in
Λ := ι(H/P ), which is a closed, connected subset of ∂PH

p,q−1. If σ0(Γ) is a
uniform lattice in H, then Λρ0(Γ) = Λ; since uniform lattices of H exist, we
deduce that Λ is transverse. By Proposition 1.10, the set Λ is negative or
positive. In particular, for arbitrary σ0(Γ) (not necessarily a uniform lattice),
the set Λρ0(Γ) ⊂ Λ is negative or positive, proving (1).

Statement (2) follows from (1) and from Proposition 3.5. �

Here is an immediate consequence of Theorem 1.11, Proposition 1.17, and
Proposition 7.1.

Corollary 7.2. In the setting of Proposition 7.1, the group ρ(Γ) is strongly
convex cocompact in P(Rp+q) (Definition 1.16) for all irreducible ρ ∈ Tρ0 .

More precisely, either ρ(Γ) is Hp,q−1-convex cocompact for all irreducible
ρ ∈ Tρ0 , or ρ(Γ) is Hq,p−1-convex cocompact (after identifying PO(p, q) with
PO(q, p)) for all irreducible ρ ∈ Tρ0 .

Corollary 7.2 also holds for representations ρ ∈ Tρ0 that are not irreducible:
see [DGK2].

We now make explicit a few examples to which Corollary 7.2 applies.

7.1. Hp,q−1-quasi-Fuchsian groups. Let Γ be the fundamental group of a
convex cocompact (e.g. closed) hyperbolic manifold M of dimension m ≥ 2,
with holonomy σ0 : Γ → PO(m, 1) = Isom(Hm). The representation σ0
is Pm,1

1 -Anosov [GW, Th. 5.15]. The proximal limit set Λσ0(Γ) ⊂ ∂∞Hm is
negative since any subset of ∂∞Hm is.

For p, q ∈ N∗ with p ≥ m, the natural embedding Rm,1 →֒ Rp,q induces a
representation τ : O(m, 1) → O(p, q) → PO(p, q) which is proximal, and a
τ -equivariant embedding ι : ∂∞Hm →֒ ∂PH

p,q−1. The set Λ := ι(∂∞Hm) ⊂
∂PH

p,q−1 is negative by construction.
The representation σ0 lifts to a representation σ̃0 : Γ → H := O(m, 1).

Let ρ0 := τ ◦ σ̃0 : Γ → G := PO(p, q). The proximal limit set Λρ0(Γ) =
ι(Λσ0(Γ)) ⊂ Λ is negative. Thus Corollary 7.2 implies the following.

Proposition 7.3. In this setting, the representation ρ0 : Γ → G = PO(p, q)
is P p,q

1 -Anosov.
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The connected component Tρ0 of ρ0 in the space of P p,q
1 -Anosov represen-

tations from Γ to G is a neighborhood of ρ0 in Hom(Γ, G) consisting entirely
of P p,q

1 -Anosov representations with negative proximal limit set.
For any irreducible ρ ∈ Tρ0 , the group ρ(Γ) is Hp,q−1-convex cocompact,

hence strongly convex cocompact in P(Rp+q).

For p = m + 1 = 3 and q = 1, when the hyperbolic surface M is closed,
the representation ρ0 : Γ → O(2, 1) →֒ PO(3, 1) is called Fuchsian, and
Tρ0 is the classical space of quasi-Fuchsian representations of Γ = π1(M)
into PO(3, 1), which Bers parametrized by the product of two copies of the
Teichmüller space of M .

Suppose p = m and q = 2. The space Hp,1 is the (p + 1)-dimensional
(Lorentzian) anti-de Sitter space AdSp+1. When the hyperbolic m-manifold
M is closed, Proposition 7.3 follows from work of Mess [Me] (for p = 2)
and Barbot–Mérigot [BM] (for p ≥ 3). In that case Tρ0 is actually a full
connected component of Hom(Γ,PO(p, 2)), by Mess [Me] (for p = 2) and
Barbot [Ba] (for p ≥ 3). The terminology AdS quasi-Fuchsian is used for
Hp,1-convex cocompact representations of Γ into PO(p, 2). For p = 2, these
are exactly the elements of Tρ0 , and they are parametrized by the product of
two copies of the Teichmüller space of M [Me]. For p ≥ 3, it is conjectured
[Ba] that any Hp,1-convex cocompact representation of Γ lies in Tρ0 .

7.2. Hitchin representations into PO(m,m+1) and PO(m+1,m+1),
and maximal representations into PO(2, q). For n ≥ 2, let

τn : SL2(R) −→ SLn(R)

be the irreducible n-dimensional linear representation of SL2(R), obtained
from the action of SL2(R) on the (n− 1)st symmetric power Symn−1(R2) ≃
Rn. The image of τn preserves the nondegenerate bilinear form Bn :=
−ω⊗(n−1) induced from the area form ω of R2. This form is symmetric
if n is odd, and antisymmetric (i.e. symplectic) if n is even.

Suppose n = 2m+1 is odd. The symmetric bilinear form Bn has signature

(7.1) (kn, ℓn) :=

{
(m+ 1,m) if m is odd,
(m,m+ 1) if m is even.

If we identify the orthogonal group O(Bn) (containing the image of τn) with
O(kn, ℓn), then there is a unique τn-equivariant embedding ιn : ∂∞H2 →֒
∂PH

kn,ℓn−1, and an easy computation shows that its image Λn := ι(∂∞H2)
is negative.

For p ≥ kn and q ≥ ℓn, the representation τn : SL2(R) → O(Bn) ≃
O(kn, ℓn) and the natural embedding Rkn,ℓn →֒ Rp,q induce a representation
τ : H = SL2(R) → PO(p, q) which is proximal, and a τ -equivariant embed-
ding ι : ∂∞H2 →֒ ∂PH

kn,ℓn−1 →֒ ∂PH
p,q−1. The set Λ := ι(∂∞H2) ⊂ ∂PH

p,q−1

is negative by construction.
Let Γ be the fundamental group of a convex cocompact orientable hyper-

bolic surface, with holonomy σ0 : Γ → PSL2(R). The representation σ0 lifts
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to a representation σ̃0 : Γ → H := SL2(R). Let ρ0 := τ ◦ σ̃0 : Γ → G :=
PO(p, q). The proximal limit set Λρ0(Γ) = ι(Λσ0(Γ)) ⊂ Λ is negative. Thus
Corollary 7.2 implies the following.

Proposition 7.4. In this setting, the representation ρ0 : Γ → G = PO(p, q)
is P p,q

1 -Anosov.
The connected component Tρ0 of ρ0 in the space of P p,q

1 -Anosov represen-
tations from Γ to G is a neighborhood of ρ0 in Hom(Γ, G) consisting entirely
of P p,q

1 -Anosov representations with negative proximal limit set.
For any irreducible ρ ∈ Tρ0 , the group ρ(Γ) is Hp,q−1-convex cocompact,

hence strongly convex cocompact in P(Rp+q).

It follows from [L, FG] (see e.g. [BIW2, § 6.1]) that when (p, q) = (kn, ℓn)
as in (7.1) or (p, q) = (m + 1,m + 1) and when Γ is a closed surface
group, the space Tρ0 of Proposition 7.4 is a full connected component of
Hom(Γ,PO(p, q)), called the Hitchin component of Hom(Γ,PO(p, q)). Propo-
sition 7.4 specializes in that case to Proposition 1.19.

By [BIW1, BIW3], when p = m + 1 = 2 and Γ is a closed surface group,
the space Tρ0 is a full connected component of Hom(Γ,PO(2, q)), consisting
of so-called maximal representations.

8. New examples of Anosov representations

In this section we use Theorem 1.11 to give new examples of Anosov
representations, for any hyperbolic right-angled Coxeter group.

8.1. Representations of Coxeter groups into orthogonal groups. By
definition, a right-angled Coxeter group is a group WS generated by a finite
set of involutions S = {s1, . . . , sn}, with presentation

WS =
〈
s1, . . . , sn | (sisj)

mi,j = 1 ∀ 1 ≤ i, j ≤ n
〉

where mi,i = 1 and mi,j = mj,i ∈ {2,∞} for i 6= j. It is said to be irreducible
if S cannot be written as the disjoint union of two proper subsets S′ and S′′

such that WS′ and WS′′ commute (i.e. mi,j = 2 for all si ∈ S′ and sj ∈ S′′).
The following construction gives representations of WS into orthogonal

groups, and may be formulated for arbitrary Coxeter groups. It is a defor-
mation of the well-known geometric representation due to Tits (see Kram-
mer [Kr]). Let (e1, . . . , en) be a basis of Rn and B a symmetric bilinear form
on Rn satisfying

(8.1) B(ei, ej) =





1 if i = j,
0 if mi,j = 2,

−αi,j if mi,j = ∞,

where αi,j = αj,i are any real numbers ≥ 1. Consider the representation
ρ :WS → AutR(B) ⊂ GLn(R) sending any generator si to the B-orthogonal
reflection of Rn with respect to ei:

ρ(si) =
(
x 7−→ x− 2B(ei, x) ei

)
.
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It is possible that B is degenerate. To avoid this inconvenience, we can
perturb the coefficients αi,j slightly and B becomes nondegenerate. Indeed,
det(B) is a polynomial in the variables αi,j which is not identically zero (it
would take value 1 if all αi,j were set to zero).

Remark 8.1. If B is degenerate and one wishes to keep the chosen val-
ues of the αi,j , then one may work instead in the vector space Rn/Ker(B),
where Ker(B) is the kernel of B. Note that B descends to a nondegenerate
symmetric bilinear form B on Rn/Ker(B) and the representation ρ to a rep-
resentation ρ into the general linear group of Rn/Ker(B) that preserves B.
The following arguments easily transpose to this setting.

From now on, we assume that B is nondegenerate. We identify B with
〈·, ·〉p,q and AutR(B) with O(p, q) for some p, q ∈ N. The basis (e1, . . . , en)
becomes a basis (x1, . . . , xn) of Rp,q with 〈xi, xj〉p,q = B(ei, ej) for all i, j.

8.2. Conditions for Hp,q−1-convex cocompactness. By work of Tits and
Vinberg [V], the representation ρ is injective and discrete, and WS acts
properly discontinuously via ρ on the interior Ω̃ of the ρ(WS)-orbit of the
fundamental closed polyhedral cone

(8.2) ∆̃ =
{
v ∈ R

p,q | 〈v, xi〉p,q ≤ 0 ∀1 ≤ i ≤ n
}

in Rp,q. Since B is nondegenerate, ∆̃ has nonempty interior as soon as WS

is infinite. The elements ρ(si) are reflections in the faces of ∆̃. Let Ω be the
image of Ω̃ in P(Rp,q). We shall prove the following.

Theorem 8.2. In the setting of Section 8.1, suppose that WS is infinite and
irreducible, and that the following conditions are both satisfied:

(1) there does not exist disjoint subsets S′, S′′ of S such that WS′ and
WS′′ are both infinite and commute;

(2) the parameters αij of (8.1), which define B and ρ, are all > 1.

Then Ω is properly convex and the group ρ(WS) ⊂ AutR(B) ≃ O(p, q) is
Hp,q−1-convex cocompact: it acts properly discontinously and cocompactly on
C := Ω ∩ Ω∗, which is a nonempty properly convex closed subset of Hp,q−1,
and the ideal boundary ∂iC does not contain any nontrivial segment.

Here we denote by Ω∗ the dual convex to Ω (see Section 2.3), viewed as a
subset of P(Rp,q) using the nondegenerate bilinear form 〈·, ·〉p,q (see (8.3)).

Remarks 8.3. (1) Condition (1) of Theorem 8.2 neither implies, nor is
implied by, the irreducibility of WS .

(2) Let WS be an irreducible, word hyperbolic, right-angled Coxeter
group. In [DGK3], we shall generalize Theorem 8.2 to representa-
tions ρ : WS → GL(Rn) which do not necessarily preserve a qua-
dratic form. This will enable us to completely describe the moduli
space of P1-Anosov representations ρ : WS → GL(Rn) realizing WS

as a reflection group.
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(3) In this more general context, Marquis [Ma] considered groups gener-
ated by reflections in the faces of a polytope which is not necessarily
right-angled, but 2-perfect (a condition on the codimension-2 faces).
He gave a full criterion [Ma, Th. A] for a notion of convex cocompact-
ness which is a priori weaker than strong convex cocompactness in
P(Rn). The 2-perfect assumption forces the Zariski closure of the re-
flection group to be conjugate to O(n−1, 1) or SL±(Rn) [Ma, Th. B].

8.3. Anosov representations for right-angled Coxeter groups. Note
that in the setting of Theorem 8.2 the group ρ(WS) ⊂ O(B) ≃ O(p, q) is irre-
ducible [BH]. Here is an immediate consequence of Theorems 1.7.(1) and 8.2.

Corollary 8.4. In the setting of Theorem 8.2, the group WS is word hyper-
bolic and the representation ρ : WS → O(p, q) is P p,q

1 -Anosov with negative
proximal limit set Λρ(WS) ⊂ ∂PH

p,q−1.

In particular, this yields a new proof of Moussong’s hyperbolicity criterion
[Mo] in the case of right-angled Coxeter groups.

Corollary 8.5 (Moussong [Mo]). A right-angled Coxeter group WS is word
hyperbolic if and only if it satisfies condition (1) of Theorem 8.2, or equiva-
lently if and only if the generating set S does not contain elements si1 , si2 , si3 , si4
with mi1,i3 = mi2,i4 = ∞ and mij ,ij+1

= 2 for all j ∈ Z/4Z.

This last condition is sometimes known as the no empty square condition.

Proof of Corollary 8.5. Since finite groups are all word hyperbolic, we as-
sume that WS is infinite. If WS is word hyperbolic, then it does not contain
any subgroup isomorphic to Z2, and so condition (1) of Theorem 8.2 is sat-
isfied. Conversely, suppose condition (1) of Theorem 8.2 is satisfied. If
the Coxeter group WS is irreducible, then Corollary 8.4 states that WS is
word hyperbolic. Otherwise there is a nontrivial partition S = S′ ⊔ S′′ of
the generating set such that WS is the direct product of its subgroups WS′

and WS′′ generated respectively by S′ and S′′. Up to switching S′ and S′′,
we may assume that WS′′ is a finite group and WS′ an infinite, irreducible
word hyperbolic Coxeter group, still satisfying condition (1) of Theorem 8.2.
Corollary 8.4 states that WS′ is word hyperbolic, and so WS is too. �

We can now prove Theorem 1.20.

Proof of Theorem 1.20. Let W = WS be a right-angled Coxeter group with
n generators as above. Since finite groups trivially satisfy Theorem 1.20, we
assume that WS is infinite. We also assume that WS is word hyperbolic;
then condition (1) of Theorem 8.2 is clearly satisfied. If the Coxeter group
WS is irreducible, then Corollary 8.4 provides a P p,q

1 -Anosov representation
ρ : WS → O(p, q). Otherwise there is a nontrivial partition S = S′ ⊔ S′′ of
the generating set such that WS is the direct product of its subgroups WS′

and WS′′ generated respectively by S′ and S′′. Up to switching S′ and S′′,
we may assume that WS′′ is a finite group and WS′ an infinite, irreducible
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word hyperbolic Coxeter group, still satisfying condition (1) of Theorem 8.2.
Corollary 8.4 yields a P p′,q′

1 -Anosov representation ρ′ :WS′ → O(p′, q′). The
composition of ρ′ with the natural projection WS →WS′ ≃WS/WS′′ is also
P p′,q′

1 -Anosov since its restriction to the finite-index subgroup WS′ is (see
[GW, Cor. 1.3]). �

Remark 8.6. In the context of our work [DGK1] on proper affine actions
of right-angled Coxeter groups, the possibility that ρ might be P p,q

1 -Anosov
in Corollary 8.4 was first suggested to us by Anna Wienhard.

8.4. Proof of Theorem 8.2. We assume that conditions (1) and (2) of
Theorem 8.2 are both satisfied. Condition (2) ensures that the irreducible
reflection group ρ(WS) is of negative type in the terminology of [V], i.e.
the Cartan matrix (2B(ei, ej))1≤i,j≤n has at least one negative eigenvalue.
Therefore Ω is properly convex by [V, Lem. 15]. The dual convex set Ω∗,
seen as an open subset of P(Rp,q) via 〈·, ·〉p,q, is given by

(8.3) Ω∗ = P
({
x′ ∈ R

p,q | 〈x, x′〉p,q < 0 ∀x ∈ Ω̃
})
,

where Ω̃ is the closure of Ω̃ in Rp,q r {0}.

Lemma 8.7. The properly convex set C = Ω ∩ Ω∗ is nonempty.

Proof. By Fact 2.8, the proximal limit set Λρ(WS) is nonempty and contained
in the respective closures Ω and Ω∗ of Ω and Ω∗ in P(Rp,q), hence in the
intersection Ω ∩ Ω∗, which is invariant under ρ(WS). Since ρ is irreducible,
the interior Ω ∩ Ω∗ ⊂ C is nonempty. �

Let

∆̃∗ :=

{
x =

n∑

i=1

tixi ∈ R
p,q

∣∣∣ ti ≥ 0 ∀1 ≤ i ≤ n

}

be the dual simplex to ∆̃, and let Σ̃ := ∆̃ ∩ ∆̃∗, i.e.

Σ̃ =

{
x =

n∑

i=1

tixi ∈ R
p,q

∣∣∣ ti ≥ 0 and 〈x, xj〉p,q ≤ 0 ∀1 ≤ i, j ≤ n

}
.

The set Ω∗ ⊂ P(Rp,q) is the projectivization of the intersection of all ρ(WS)-
translates of ∆̃∗r{0}. Therefore C = Ω∩Ω∗ is contained in the ρ(WS)-orbit
of the projectivization Σ ⊂ P(Rp,q) of Σ̃r {0}.

Lemma 8.8. The compact set Σ ⊂ P(Rp,q) is contained in Hp,q−1.

Proof. Let x =
∑n

i=1 tixi ∈ Σ̃ where ti ≥ 0 and 〈x, xj〉p,q ≤ 0 for all 1 ≤
i, j ≤ n. We have

〈x, x〉p,q =
n∑

i=1

ti〈x, xi〉p,q ≤ 0,

hence x projects to a point of Hp,q−1 ∪ ∂PH
p,q−1. Suppose by contradic-

tion that x projects to a point of ∂PH
p,q−1, i.e.

∑n
i=1 ti〈x, xi〉p,q = 0. Then
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ti〈x, xi〉p,q = 0 for all 1 ≤ i ≤ n. Let I ⊂ {1, . . . , n} be the (nonempty)
collection of indices k such that tk > 0. For any k ∈ I we have 〈x, xk〉p,q = 0,
hence tk =

∑
i∈Ik

tiαi,k where Ik := {i ∈ I |mi,k = ∞}. Recall that αi,k > 1
for all i ∈ Ik. Therefore we reach a contradiction by considering k ∈ I such
that tk is minimal. �

Lemma 8.9. The stabilizer in WS of any point of Σ is finite. In particular
(see [V, Th. 2]), the compact set Σ is contained in Ω.

Proof. Let x =
∑n

i=1 tixi ∈ Σ̃ where ti ≥ 0 and 〈x, xj〉p,q ≤ 0 for all 1 ≤
i, j ≤ n. The stabilizer of [x] ∈ P(Rp,q) in WS is the subgroup WSx generated
by the subset

Sx :=
{
sj ∈ S | 〈x, xj〉p,q = 0

}
.

We aim to show WSx is finite. For this we split Sx into the disjoint union of
its two subsets S0

x := {sj ∈ Sx | tj = 0} and S>
x := {sj ∈ Sx | tj > 0}.

We claim that any element of S0
x commutes with any element of S>

x ;
in particular, WSx is the direct product of its subgroups WS0

x
and WS>

x

generated respectively by S0
x and S>

x . Indeed, for any sj ∈ Sx we have by
definition

(8.4) 0 = 〈x, xj〉p,q =
n∑

i=1

ti〈xi, xj〉p,q =
∑

si∈S>

ti〈xi, xj〉p,q,

where
S> := {si ∈ S | ti > 0}.

If sj ∈ S0
x, then each term of the right-hand sum in (8.4) is nonpositive, hence

must be zero. Thus for any si ∈ S> and sj ∈ S0
x we have 〈xi, xj〉p,q = 0,

which means that si and sj commute. Therefore WSx =WS0
x
×WS>

x
.

Let us prove that WS>
x

is finite. For this it is sufficient to prove that
mj,k = 2 for all distinct sj , sk ∈ S>

x . Suppose by contradiction thatmj,k = ∞
for some sj , sk ∈ S>

x . By definition, we have

0 = 〈x, xj〉p,q = tj +
∑

si∈S>, si 6=sj

ti〈xi, xj〉p,q

≤ tj − αj,ktk < tj − tk,

where the last inequality uses condition (2) of Theorem 8.2. But similarly
by considering 〈x, xk〉p,q = 0, we find tk − tj < 0 which is impossible. Thus
mj,k = 2 for all distinct sj , sk ∈ S>

x and WS>
x

is a finite group (a product of
finitely many copies of Z/2Z).

We now check that WS0
x

is finite. For this it is sufficient to check that WS>

is infinite, since S0
x and S> are disjoint and condition (1) of Theorem 8.2 is

satisfied. By Lemma 8.8 we have

〈x, x〉p,q =
∑

si,sℓ∈S>

titk〈xi, xk〉p,q < 0.
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The diagonal terms in the sum are positive and so there must be a nonzero
nondiagonal term. In other words, there are two distinct elements si, sℓ ∈ S>

generating an infinite dihedral group, proving that WS> is infinite. �

For r > 0, let Cr be the closed uniform r-neighborhood of C in Ω with
respect to the Hilbert metric dΩ. It is properly convex [Bu, (18.12)]. By
Lemma 6.3, since the action of WS on C via ρ is cocompact, we may choose
r small enough so that Cr ⊂ Hp,q−1; the action of WS via ρ is still properly
discontinuous and cocompact on Cr. We let Ur denote the interior of Cr.

Lemma 8.10. There is no infinite straight ray contained in the boundary
∂HCr := Cr r Ur of Cr in Hp,q−1.

Proof. Suppose by contradiction that there is such a ray R = [y, z) ⊂ ∂HCr,
with y ∈ ∂HCr and z ∈ ∂iCr. Let ∆ ⊂ P(Rp,q) be the fundamental polytope
of the reflection group ρ(WS), namely the image of (8.2) in P(Rp,q); it is
bounded by the reflection hyperplanes P(x⊥i ) for 1 ≤ i ≤ n.

Up to replacing R with some ρ(WS)-translate, we may assume that R
crosses P(x⊥i ) and P(x⊥j ) transversely for some generators si 6= sj that do
not commute. Indeed, let (ρ(si1 . . . sim) · ∆)m≥M be a sequence of ρ(WS)-
translates of ∆ that meet R, where i1, . . . , im ∈ {1, . . . , n} and M ∈ N∗.
Since R is infinite, the elements siℓ for ℓ ≥ M do not all commute: there
exist M ≤ ℓ < m such that siℓ does not commute with sim but does
with siℓ+1

, . . . , sim−1
. Then siℓ . . . sim−1

= siℓ+1
. . . sim−1

siℓ , and so up to
renumbering we may assume that sim−1

and sim do not commute. Thus
ρ(si1 . . . sim−1

)−1 ·R meets ∆ and its translates ρ(sim−1
) ·∆ = ρ(sim−1

)−1 ·∆
and ρ(sim) ·∆. It follows that ρ(si1 . . . sim−1

)−1 · R crosses the hyperplanes
P(x⊥im−1

) and P(x⊥im) transversely. Indeed, ρ(sim−1
) · ∆ and ρ(sim) · ∆ are

separated in Ω by the hyperplanes P(x⊥im−1
) and P(x⊥im), whose intersec-

tion lies outside of Ω because it is pointwise fixed by the infinite subgroup
of ρ(WS) generated by ρ(sim−1

) and ρ(sim). Therefore, up to replacing R

with some ρ(WS)-translate, we may assume that R crosses P(x⊥i ) and P(x⊥j )
transversely for some generators si 6= sj that do not commute.

Let yi be the intersection point of R with the hyperplane P(x⊥i ) and let H
be a supporting hyperplane to Cr at yi. Then H must contain R. Similarly,
ρ(si) ·H must contain R. Note that H ∩ P(x⊥i ) = (ρ(si) ·H)∩ P(x⊥i ). Since
H is spanned by H ∩ P(x⊥i ) and R, we deduce that ρ(si) ·H = H. On the
other hand, since H contains R, it is also a supporting hyperplane to Cr
at the intersection point yj of R with the hyperplane P(x⊥j ), and similarly
ρ(sj) ·H = H. Therefore H is invariant under ρ(sisj).

By a straightforward calculation (see [V, § 2]), condition (2) of Theo-
rem 8.2 implies that g := ρ(sisj) ∈ PO(p, q) is proximal in P(Rp,q), hence
in ∂PH

p,q−1 (see Remark 2.4). If ξ+g , ξ
−
g ∈ ∂PH

p,q−1 are the attracting and
repelling fixed points of g, then C meets the projective line spanned by ξ+g
and ξ−g in an open interval (ξ+g , ξ

−
g ): indeed, we have ξ+g , ξ

−
g ∈ ∂iC and
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〈ξ+g , ξ
−
g 〉p,q 6= 0 (see Remark 2.4 and Fact 2.8). Since yi ∈ Cr ⊂ Ω we have

yi /∈ (ξ−g )
⊥ (see Proposition 3.7), and so gm · yi → ξ+g as m → +∞; simi-

larly, g−m · yi → ξ−g as m → +∞. Thus H contains the interval (ξ−g , ξ
+
g ):

contradiction since H does not meet C. �

Before giving the proof of Theorem 8.2, we prove one more general lemma.

Lemma 8.11. Let Γ be a discrete subgroup of O(p, q) preserving a properly
convex open subset Ω ⊂ P(Rp,q). Any accumulation point of the Γ-orbit of a
compact subset K of Ω ∩Hp,q−1 is contained in ∂PH

p,q−1.

Proof. Suppose by contradiction that there are sequences (ym) ∈ KN and
(γm) ∈ ΓN such that the γm are pairwise distinct and zm := γm ·ym converges
to some z ∈ Hp,q−1. We can lift the ym ∈ Hp,q−1 to vectors xm ∈ Rp,q with
〈xm, xm〉p,q = −1; both the xm and the γm · xm stay in a compact subset
of Rp,q. On the other hand, since Γ is discrete, there exists x ∈ Rp,q r {0}
such that (γm · x)n∈N leaves every compact subset of Rp,q. (Indeed, if we
fix a basis of Rp,q, then at least one element x of this basis must satisfy
this property.) Up to passing to a subsequence, we may assume that the
direction of γm ·x converges to some null direction ℓ. There exists ε > 0 such
that all segments [xm − εx, xm + εx] ⊂ Rp,q r {0} project to segments σm
contained in Ω. The images γm ·σm, which are again contained in Ω, converge
to the full projective line spanned by x and ℓ. This contradicts the proper
convexity of Ω. Thus the Γ-orbit of K does not have any accumulation point
in Hp,q−1. �

Proof of Theorem 8.2. Let C′ ⊂ P(Rp,q) be the ρ(WS)-orbit of Σ. By Lem-
mas 8.8 and 8.9, we have C′ ⊂ Hp,q−1 ∩ Ω. In particular, the action of WS

on C′ via ρ is properly discontinuous, and cocompact since Σ is a compact
fundamental domain.

The set C is nonempty by Lemma 8.7. Since C ⊂ C′ and C is closed in Ω,
the action of WS on C via ρ is also properly discontinuous and cocompact.
By Lemma 8.11, the set C is closed in Hp,q−1. We now complete the proof
by showing that ∂iC does not contain any nontrivial projective segment.

Suppose by contradiction that there is a nontrivial segment [a′, b′] in ∂iC.
Since ∂iC ⊂ ∂PH

p,q−1, we have 〈a′, b′〉p,q = 0. By Lemma 6.3, there exists
r > 0 such that the closed uniform neighborhood Cr of C in (Ω, dΩ) is properly
convex, contained in Hp,q−1, and the action of Γ on Cr is properly discontin-
uous and cocompact. Extend [a′, b′] to a segment [a, b] which is maximal in
∂iCr. Note that [a, b] is also a maximal segment of ∂PCr (since any segment
of ∂PCr containing [a, b] is contained in ∂PH

p,q−1 ∩ ∂PCr = ∂iCr). Consider a
point c ∈ C and a sequence of points ym ∈ C in the triangle with vertices
a, b, c, such that (ym)m converges to an interior point y of [a, b] ⊂ ∂iCr.

We claim that in Ur := Int(Cr), the Hilbert distance dUr from ym to either
projective interval (a, c] or (b, c] tends to infinity with m. Indeed, consider
a sequence (zm)m of points of (a, c] converging to z ∈ [a, c] and let us check
that dUr(ym, zm) → +∞ (the proof for (b, c] is the same). If z ∈ (a, c],
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then z ∈ Cr and so dUr(ym, zm) → +∞ by properness of the Hilbert metric.
Otherwise z = a. In that case, for each m, consider y′m, z

′
m ∈ ∂PUr such that

y′m, ym, zm, z
′
m are aligned in that order. Up to taking a subsequence, we may

assume y′m → y′ and z′m → z′ for some y′, z′ ∈ ∂PUr, with y′, y, a, z′ aligned
in that order. By maximality of [a, b] in ∂PUr, we must have z = a = z′,
hence dUr(ym, zm) → +∞ in this case as well, proving the claim.

Since Γ acts cocompactly on C, there is a sequence (γm) ∈ ΓN such
that γm · ym remains in a fixed compact subset of C ⊂ Ur. Up to pass-
ing to a subsequence, we may assume that (γm · ym)m converges to some
y∞ ∈ C, and (γm · a)m and (γm · b)m and (γm · c)m converge respectively to
some a∞, b∞, c∞ ∈ ∂iCr, with [a∞, b∞] ⊂ ∂iCr. The triangle with vertices
a∞, b∞, c∞ is nondegenerate since it contains y∞ ∈ C. Further, y∞ is infin-
itely far (for the Hilbert metric dUr) from the edges [a∞, c∞] and [b∞, c∞],
and so these edges are fully contained in ∂PUr. By Lemma 8.10, there is
no infinite straight ray in ∂HCr := Cr r Ur, hence [b∞, c∞] and [a∞, c∞] do
not intersect ∂HCr and are contained in ∂iCr ⊂ ∂PH

p,q−1. But this means
that 〈a∞, b∞〉p,q = 〈b∞, c∞〉p,q = 〈a∞, c∞〉p,q = 0, hence every point of the
triangle with vertices a∞, b∞, c∞ is null, contradicting the fact that y∞ lies
in C ⊂ Hp,q−1. �

Remark 8.12. In the proof of Theorem 8.2, we do not assume that the set
C′ = ρ(WS) ·Σ is convex. We only use that C′ is contained in Ω and contains
C = Ω∩Ω∗. In fact, by studying the local convexity of C′ along its boundary
faces, it is possible to show that C′ is convex and equal to C; this is addressed
in a general setting by Greene–Lee–Marquis [GLM].

Appendix A. Connectedness in the space of unordered tuples

The following general statement, on which Proposition 1.10 relies, is prob-
ably well known. We provide a proof for the reader’s convenience.

Fact A.1. Let Λ be a connected Hausdorff topological space. For k ≥ 1,
the space Λ(k) of unordered k-tuples of pairwise distinct points of Λ is also
connected (for the restriction of the product topology).

Given a finite subset X of Λ and a point x ∈ ΛrX, we denote by ΛX
x the

connected component of ΛrX containing x. Since Λ is Hausdorff, its finite
subsets are closed, and so ΛX

x is an open subset of Λ and its closure ΛX
x is

contained in ΛX
x ∪X.

Lemma A.2. Let Λ be a connected topological space with closed singletons.
For any k ≥ 1 and {x0, . . . , xk} ∈ Λ(k+1), there exists 0 ≤ i0 < k such that
the unordered k-tuples {x0, . . . , xk}r {xi0} and {x0, . . . , xk−1} belong to the

same connected component of Λ(k).

Proof. For 0 ≤ i < k, let Xi := {x0, . . . , xk−1} r {xi}. It is sufficient to
prove the existence of 0 ≤ i0 < k such that xi0 and xk belong to the same
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connected component of ΛrXi0 , i.e. xi0 ∈ Λ
Xi0
xk

. We have

(A.1)
⋂

0≤i<k

ΛXi
xk

⊂
⋂

0≤i<k

ΛXi
xk

⊂
⋂

0≤i<k

(ΛXi
xk

∪Xi).

Suppose by contradiction that xi /∈ ΛXi
xk

for all 0 ≤ i < k: then xi /∈ ΛXi
xk

∪Xi,
so the right-hand intersection in (A.1) is disjoint from all Xi and can be
rewritten

⋂
0≤i<k Λ

Xi
xk

. This set is therefore open and (by (A.1)) closed, and
contains xk but no other xi, contradicting the fact that Λ is connected. �

Lemma A.3. Let Λ be a connected topological space with closed singletons.
For any k ≥ 1 and {x0, . . . , xk} ∈ Λ(k+1), there exists 1 ≤ j0 ≤ k such that

xi ∈ Λ
{xj0

}
x0

for all i ∈ {1, . . . , k}r {j0}.

We call this property Hk, or Hk(x0, {x1, . . . , xk}) to be specific.

Proof. We argue by induction. Property H1 is vacuously true. Assuming
Hk−1 where k ≥ 2, let us prove Hk by contradiction. We have

(A.2)
⋂

1≤j≤k

Λ
{xj}
x0

⊂
⋂

1≤j≤k

Λ
{xj}
x0

⊂
⋂

1≤j≤k

(Λ
{xj}
x0

∪ {xj}).

Suppose Hk(x0, {x1, . . . , xk}) fails: that is, for all 1 ≤ j ≤ k,

{x1, . . . , xk}r {xj} 6⊂ Λ
{xj}
x0

.

We claim that the right member of (A.2) then cannot contain any xi for
1 ≤ i ≤ k: indeed that would imply xi ∈ Λ

{xj}
x0

for all j ∈ {1, . . . , k} r {i},
hence the above relationship would yield

{x1, . . . , xk}r {xi, xj} 6⊂ Λ
{xj}
x0

for all j ∈ {1, . . . , k}r {i}, contradicting Hk−1(x0, {x1, . . . , xk}r {xi}).
Therefore the right-hand side of (A.2) can be written

⋂
1≤j≤k Λ

{xj}
x0

, which
by (A.2) turns out to be closed. It is also open, and contains x0 but no
other xi: this contradicts connectedness of Λ. Therefore Hk holds. �

Proof of Fact A.1. We argue by induction on k to prove that Λ(k) is con-
nected for any connected topological space Λ with closed singletons. The
case k = 1 is obviously true. For k ≥ 2, suppose that (Λ′)(k−1) is connected
for any connected Λ′ with closed singletons, and let us prove that Λ(k) is
connected for any connected Λ with closed singletons.

Consider {x0, . . . , xk} ∈ Λ(k+1). By Lemma A.3, up to exchanging the
labels j0 and k, we have xi ∈ Λ

{xk}
x0

for all 1 ≤ i ≤ k − 1, i.e. all points
x0, . . . , xk−1 belong to the same connected component Λ′ of Λr {xk}. Since
Λ′(k−1) is connected, all (k − 1)-tuples {x0, . . . , xk−1} r {xi} for 0 ≤ i < k

belong to the same connected component of (Λ r {xk})
(k−1), and so all k-

tuples {x0, . . . , xk} r {xi} for 0 ≤ i < k belong to the same component
of Λ(k). But by Lemma A.2 one of these k-tuples (for i = i0) belongs to
the same component as {x0, . . . , xk−1}. Therefore all k-tuples contained
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in {x0, . . . , xk} belong to the same component of Λ(k). This is true for all
{x0, . . . , xk} ∈ Λ(k+1), hence Λ(k) is connected. �
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