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ABSTRACT. Anosov representations of word hyperbolic groups into
higher-rank semisimple Lie groups are representations with finite kernel
and discrete image that have strong analogies with convex cocompact
representations into rank-one Lie groups. However, the most naive anal-
ogy fails: generically, Anosov representations do not act properly and
cocompactly on a convex set in the associated Riemannian symmetric
space. We study representations into projective indefinite orthogonal
groups PO(p, q) by considering their action on the associated pseudo-
Riemannian hyperbolic space HP9~1 in place of the Riemannian sym-
metric space. Following work of Barbot and Mérigot in anti-de Sitter
geometry, we find an intimate connection between Anosov representa-
tions and a natural notion of convex cocompactness in this setting.

1. INTRODUCTION

Convex cocompact subgroups of rank-one semisimple Lie groups are an im-
portant class of discrete groups whose actions on the associated Riemannian
symmetric space (and its visual boundary at infinity) exhibit many desir-
able geometric and dynamical properties. Their study has been particularly
important in the setting of Kleinian groups and hyperbolic geometry. This
paper studies a generalized notion of convex cocompactness in the higher-
rank setting of projective indefinite orthogonal groups PO(p,q), described
in terms of the action on the projective space P(RP?) and on the associ-
ated pseudo-Riemannian hyperbolic space HP~!. Our forthcoming papers
[DGK2, DGK3| will extend many of these ideas to the setting of discrete
subgroups of the projective general linear group PGL(R"™) which do not nec-
essarily preserve any nonzero quadratic form.
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1.1. Convex cocompactness in projective orthogonal groups. In the
whole paper, we fix integers p,¢ > 1 and let G = PO(p, q) be the orthogonal
group, modulo its center {£I}, of a nondegenerate symmetric bilinear form
(-, *)p.q Of signature (p,q) on RPT?. We denote by RP? the space RP*? en-
dowed with the symmetric bilinear form (:,-), ,. For any linear subspace W
of RP4, we denote by W the orthogonal of W for (-, Jpq- We use similar
notation in P(RP9): in particular, for z € P(RP9) the set 2z is a projective
hyperplane of P(RP?), which contains z if and only if (2, z), , = 0.

When g = 1, the group G is the group of isometries of the real hyperbolic

space

HP = {[x] € P(RP) | (x,2)p1 < 0},

which is also the Riemannian symmetric space G/K associated with G. Re-
call that a discrete subgroup I" of G = PO(p,1) is said to be convex co-
compact if it acts cocompactly on some nonempty closed convex subset C
of HP. Note that since I' is discrete and HP is Riemannian, the action is au-
tomatically properly discontinuous, and so the quotient I'\C is a hyperbolic
orbifold, or a manifold if the action is free, with convex boundary. Basic
examples of convex cocompact subgroups include uniform lattices of G and
Schottky subgroups of G. In the case p = 3, for which the accidental iso-
morphism PO(3,1)g ~ PSLy(C) makes G a complex group, the realm of
Kleinian groups gives an abundance of interesting examples coming both
from complex analysis & la Ahlfors and Bers and from 3-manifold topology
and Thurston’s geometrization program. Notable are the quasi-Fuchsian
groups (isomorphic to closed surface groups) which are deformations of Fuch-
sian subgroups of PO(2,1) C PO(3,1).

Assume that G = PO(p, q) has real rank > 2, i.e. min(p, q) > 2, and let
K = P(O(p) x O(q)) be a maximal compact subgroup of G. The group G
is the isometry group of the Riemannian symmetric space G/K, and it is
natural to study the discrete subgroups I' of G that act cocompactly on some
convex subset of G/K. This naive generalization of convex cocompactness
turns out to be quite restrictive due to the following general result proved
independently by Kleiner—Leeb [KL| and Quint [Q).

Fact 1.1 (|[KL, Q|). Let G be a real semisimple Lie group of real rank > 2 and
K a maximal compact subgroup of G. Any Zariski-dense discrete subgroup
of G acting cocompactly on some nonempty closed convexr subset C of the
Riemannian symmetric space G/K is a uniform lattice in G.

In this paper, we propose instead a notion of convex cocompactness in
G = PO(p, q) in terms of the action on the real projective space P(RP9), and
in particular on the invariant open domain

HP4~1 = {[z] € P(RP9) | (z,2)pq < 0} ~ G/O(p,q — 1)

which is the projective model for a pseudo-Riemannian symmetric space
associated to G. Indeed, HP9~! has a natural pseudo-Riemannian structure
of signature (p,q — 1) with isometry group G, induced by the symmetric
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bilinear form (-,-), , (see Section 2.1). Geodesics of H”4~1 are intersections
of HP4~1 with straight lines of P(RPY). For ¢ = 1, the space HP4~! is the
real hyperbolic space HP, in its projective model. In general, HP9~! is a
pseudo-Riemannian analogue of HP of signature (p,q — 1), with constant
negative sectional curvature.

Recall that a subset of projective space is said to be convex if it is contained
and convex in some affine chart; in other words, any two points of the subset
are connected inside the subset by a unique projective segment. A subset of
projective space is said to be properly convez if its closure is convex. Unlike
real hyperbolic space, for ¢ > 1 the space HP9~! is not a convex subset of
the projective space P(RP:?), and the basic operation of taking convex hulls
is not well defined. Nonetheless, the notion of convexity in HPY~! makes
sense: we shall say that a subset C of HP4™! is convex if it is convex as a
subset of P(RP?) or, from an intrinsic point of view, if any two points of C
are connected inside C by a unique segment which is geodesic for the pseudo-
Riemannian structure. We shall say that C is properly convex if its closure
in P(RP?) is convex.

For ¢ = 2, the Lorentzian space HP~! is the (p + 1)-dimensional anti-de
Sitter space AdSPH!, for which a notion of AdS quasi-Fuchsian group has
been studied by Mess [Me| (for p = 2) and Barbot—Mérigot [BM, Ba| (for
p > 3). Inspired by this notion, we make the following definition.

Definition 1.2. A discrete subgroup I' of G = PO(p, q) is HP9~!-convez co-
compact if it acts properly discontinuously and cocompactly on some prop-
erly convex closed subset C of HP9~! with nonempty interior whose ideal
boundary 9;C := C . C does not contain any nontrivial projective segment.

Here C denotes the closure of C in P(RP9). We note that an HP9~!-convex
cocompact group is always finitely generated.

Remark 1.3. We shall say that a subgroup I'' of G = PO(p, q) is irreducible
if it does not preserve any projective subspace of P(RP?) of positive codi-
mension. In that case, any nonempty I'-invariant convex subset of P(RP?)
has nonempty interior, and so “C with nonempty interior” may be replaced
by “C nonempty” in Definition 1.2.

Note that a discrete subgroup I' of PO(p, ¢) need not act properly discon-
tinuously on HP9~1, since the stabilizer O(p, ¢ — 1) of a point is noncompact.
When I preserves a properly convex subset C C HP¥~!  the action on the
interior of C is always properly discontinuous (see Section 2.3), but the ac-
tion on the whole of C need not be. The requirement of proper discontinuity
in Definition 1.2 guarantees that the accumulation points of any I'-orbit are
contained in the ideal boundary 9;C. Since C is assumed to be closed in
HP4~1 the set 9;C is contained in the boundary

QP = {[2] € P(RPY) | (2, 2)pq = 0}
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of HP4~!. The condition that 0;C not contain any nontrivial projective
segment is equivalent to the condition that §;C be transverse, i.e. y ¢ 2=+ for

all y # z in 0;C.

Remark 1.4. When T is a discrete subgroup of PO(p, ¢) which is not irre-
ducible, it is possible that I" act properly discontinuously and cocompactly
on some closed convex subset C of HPY~! with nonempty interior but that
0;C contain nontrivial projective segments, as the following example shows.
It is not clear whether this is possible for irreducible I'.

Example 1.5. Let v be an element of PO(p, ¢) whose top eigenvalue A > 1
has multiplicity larger than one. The cyclic group I' = (v) acts properly dis-
continuously and cocompactly on a closed convex neighborhood C in HP:4~!
of a line connecting two points of 9;HP?~! corresponding to eigenvectors of
eigenvalue A and A~! respectively. However, the ideal boundary 9;C must
contain a nontrivial segment of the projectivization of the highest eigenspace.
Thus I is not HP9~!-convex cocompact in the sense of Definition 1.2.

In contrast to the situation of Example 1.5, it is well known that an ir-
reducible discrete subgroup I'" of PGL(R™) preserving a nonempty properly
convex subset C of P(R™) always contains a prozimal element, i.e. an ele-
ment v with a unique attracting fixed point in P(R") (see [B2, Prop. 3.1]).
We shall call prozimal limit set of I" in P(R™) the closure Ar C P(R"™) of the
set of attracting fixed points of proximal elements of I (Definition 2.3). If
the action of I'" on C is properly discontinuous, then the proximal limit set
Ar is contained in the ideal boundary 9;C: indeed, for any proximal element
~ € T" and any point y in the interior of C, the sequence (7™ -y)mnen converges
to the attracting fixed point of v in P(R™), which belongs to 9;C since the
action is properly discontinuous. For I' and C as in Definition 1.2, we shall
see (Theorem 1.7) that in fact Ar = 0,C.

Remark 1.6. The boundary 9,HP¢~! divides P(RP%) into two connected
components. One component is H”9~1 and the other is

SPH = {[a] € PRPY) | (z,2)pq > 0},

which inherits from (-,-),, a pseudo-Riemannian metric of positive curva-
ture. However, multiplication by —1 transforms (-, ), 4 into a form of signa-
ture (q,p), and SP~14 into the copy of H%P~! defined by —(-,-),,. Rather
than study two very similar notions of convex cocompactness in pseudo-
Riemannian hyperbolic spaces HP¥~! and pseudo-Riemannian “spheres”
SP=14, we will use the isomorphism PO({:,*)p4) = PO(={:,")pq) =~ PO(q,p)
to switch SP~1¢ with H%P~! when convenient.

1.2. Goals of the paper. There are three main goals. First, we show that
the notion of convex cocompactness introduced above is closely related to the
notion of Anosov representation — a notion that has become fundamental in
the study of higher Teichmiiller theory. Second, we show that in the setting
of discrete irreducible subgroups of PO(p,q), our notion of HP¥~!-convex
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cocompactness is equivalent to a notion of strong convex cocompactness in
P(R™) introduced by Crampon—-Marquis [CM], for n = p+¢q. Third, we show
that a natural construction of Coxeter groups in projective orthogonal groups
going back to Tits gives rise to many examples of HP*¢~!-convex cocompact
groups, hence to many new examples of Anosov representations into PO(p, q)
and of groups that are strongly convex cocompact in P(RP9).

1.3. Link with Anosov representations. The main result that we estab-
lish in this paper is a close connection between convex cocompactness in
HP4—1  P(RP*?) and Anosov representations.

Anosov representations of word hyperbolic groups into real semisimple Lie
groups are representations with finite kernel and discrete image, defined by
the dynamics of their action on some flag varieties. They were introduced by
Labourie [L| for fundamental groups of closed negatively-curved manifolds,
and generalized by Guichard—Wienhard [GW] to arbitrary word hyperbolic
groups. They have been extensively studied recently by many authors (see
e.g. [BCLS, KLPb, GGKW, BPS| to just name a few) and now play a crucial
role in higher Teichmiiller theory (see e.g. [BIW2]); they share many dynam-
ical properties with classical convex cocompact subgroups of rank-one simple
Lie groups (see in particular [L, GW, KLPa, KLPb]).

Let P{"? be the stabilizer in G = PO(p,q) of an isotropic line of R,
it is a parabolic subgroup of G, and G/P}"? identifies with the boundary
OpHP4~L of HP4~1. By definition, a P{*?-Anosov representation of a word
hyperbolic group I' into G is a representation p : I' — G for which there
exists a continuous, p-equivariant boundary map & : 9xoI' — G;HP9~1 which

(i) is transverse (a strengthening of injectivity), meaning that £(n) ¢
E(n')* for any n # 7' in 9T,
(ii) has an associated flow with some uniform contraction/expansion prop-

erties described in |L, GW]|.

Here 05 I' denotes the Gromov boundary of I'. A consequence of (ii) is that
& is dynamics-preserving: for any infinite-order element v € I', the element
p(v) € G is proximal in G:HPY~!, and ¢ sends the attracting fixed point of
7 in Oxo I to the attracting fixed point of p(y) in G:HP4~1. In particular, by
a density argument, the continuous map ¢ is unique, and the image £(9xI)
is the proximal limit set A,y of p(I') in &:HP¢~! (Definition 2.3 and Re-
mark 2.4). By [GW, Prop.4.10], if p(T') is irreducible, then condition (ii) is
automatically satisfied as soon as (i) is. If " is finite, then 05I" is empty and
any representation p : I' = G is P}"%-Anosov.

In real rank 1, it is easy to see [GW, Th.5.15| that a discrete subgroup
I' of G = PO(p, 1) is convex cocompact if and only if T is word hyperbolic
and the natural inclusion I' — G is P L_Anosov. In this paper, we prove
the following generalization to higher real rank.

Theorem 1.7. For p,q € N*, let I' be an irreducible discrete subgroup of
G =PO(p,q).
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(1) If T is HP9~1-convex cocompact, then it is word hyperbolic and the nat-
ural inclusion T' < G is PP"-Anosov.

(2) Conversely, if T' is word hyperbolic with connected boundary 0T and if
the natural inclusion T' — G is PP%-Anosov, then T is HP-4~1_convex
cocompact or HIP~-conver cocompact (after identifying PO(p,q) with
PO(q,p), see Remark 1.6).

If these conditions are satisfied, then for any nonempty properly convex closed
subset C of HP4~1 on which T' acts properly discontinuously and cocompactly,
the ideal boundary 0;C is the proximal limit set Ap C O:HP4~ 1.

Remark 1.8. The special case when ¢ = 2 and I is the fundamental group
of a closed hyperbolic p-manifold follows from work of Mess [Me| for p = 2
and work of Barbot—Meérigot [BM] for p > 3. In that case, if Quax de-
notes a maximal I'-invariant properly convex open subset of P(RP?) (see
Proposition 3.7), then the manifold I'\Q,.x is a GHMC' spacetime (globally
hyperbolic maximal Cauchy-compact) [BM, Th. 4.3 & Prop. 4.5].

1.4. Anosov representations with negative or positive limit set. We
may replace the connectedness assumption of Theorem 1.7.(2) with the fol-
lowing simple consistency condition on the image of the boundary map.

Definition 1.9. A subset A of 9;HP9~! is negative (vesp. positive) if it lifts to
a cone of R”?~\ {0} on which all inner products (-, -), 4 of noncollinear points
are negative (resp. positive). Equivalently (Lemma 3.2 and Remark 3.4.(1)),
every triple of distinct points of A spans a triangle fully contained in HP-4—1
(resp. SP~149) outside of the vertices.

By a cone we mean a subset of RP¢ \ {0} which is invariant under multi-
plication by positive scalars. Recall from Remark 1.6 that HP?~! and SP~1¢
are the two connected components of P(RP?) \. 9pHP?~1. In the Lorentzian
setting (i.e. ¢ = 2), a negative subset of G;HP9~! is also called an acausal
subset.

Since the connectedness of A implies the connectedness of the set of un-
ordered distinct triples of A (Fact A.1), the following holds (see Section 3.2).

Proposition 1.10. If a closed subset A of O,HP4~1 is connected and trans-
verse, then it is negative or positive.

As above, we say that A is transverse if for any y # z in A we have y ¢ z+.
Theorem 1.7 is an immediate consequence of Proposition 1.10 and of the
following, which is the main result of the paper.

Theorem 1.11. For any p,q € N* and any irreducible discrete subgroup T’
of G =PO(p, q), the following two conditions are equivalent:
(i) T is HP9~-conver cocompact,
(ii) T is word hyperbolic, the natural inclusion I' < G is PP?-Anosov, and
the prozimal limit set Ar C O:HP9~1 is negative.

Similarly, the following two conditions are equivalent:
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(iii) T is HEP~1-convex cocompact (after identifying PO(p, q) with PO(q,p)),
(iv) T is word hyperbolic, the natural inclusion T' < G is PP1-Anosov, and
the prozimal limit set Ar C O:.HP9~! is positive.

If (i) (resp. (iii)) holds, then for any nonempty properly convez closed sub-
set C of HP9~1 (resp. H9P~1) on which T acts properly discontinuously and
cocompactly, the ideal boundary 0;C is the proximal limit set Ar C O:HP4~ 1.

By [L, GW], the space of P}*?-Anosov representations is open in Hom(T', G).
In fact, the space of PI"%-Anosov representations with negative proximal
limit set is also open (Proposition 3.5). Moreover, the space of irreducible
representations is open. Therefore Theorem 1.11 implies the following.

Corollary 1.12. For any p,q € N* and any finitely generated group T, the
set of irreducible injective representations I' — G = PO(p, q) whose image is
HP4~1_conver cocompact is open in Hom(T, G).

Remark 1.13. In the special case when p > ¢ = 2 (i.e. H? 1 is the
Lorentzian anti-de Sitter space HP'' = AdSpH) and I' is isomorphic to the
fundamental group of a closed, negatively-curved Riemannian p-manifold,
the following strengthening of Theorem 1.11 holds by work of Barbot [Ba]:
I is HP'-convex cocompact if and only if its proximal limit set Ar is a topo-
logical (p — 1)-sphere which is negative (Definition 1.9), if and only if Ap
is a topological (p — 1)-sphere which is nonpositive (i.e. it lifts to a cone
of R?? \ {0} on which (-,-),2 is nonpositive); this property is called GH-
reqularity [Ba, § 1.3]. Using this, Barbot shows that the space of PY 2_Anosov
representations of I" into G = PO(p,2) is not only open but also closed
in Hom(T", G), hence it is a union of connected components of Hom(I', G)
[Ba, Th.1.2]. This becomes false when I" has virtual cohomological dimen-
sion < p: for instance, when I" is a finitely generated free group the space
Hom(I', PO(p, q)o) is connected but contains both Anosov and non-Anosov
representations.

Remark 1.14. For rankg(G) := min(p,q) > 2, there are examples of ir-
reducible P*?-Anosov representations p : I' = G = PO(p, ¢) for which the
proximal limit set A,y C O-HP4~1 is neither negative nor positive: see
Section 5.2. By Theorem 1.11 the group p(I') is neither HP*~!-convex co-
compact nor H%P~!-convex cocompact in this case. In such examples OsI’
is always disconnected. Thus one cannot remove the connectedness assump-
tion in Theorem 1.7.(2). This subtlety should be kept in mind when reading
[BM, §8.2].

Remark 1.15. The irreducibility assumption in this paper makes properly
discontinuous actions on properly convex sets more tractable (see Fact 2.8
below) and the notion of Anosov representation simpler (condition (ii) of
Section 1.3 is automatically satisfied). However, Theorems 1.7 and 1.11 and
Corollary 1.12 hold even when I' is not irreducible, as we shall prove in [DGK2].
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1.5. Link with strong projective convex cocompactness. Let n > 2.
A properly convex open subset Q of P(R") is said to be strictly convex if
its boundary does not contain any nontrivial segment. It is said to have C!
boundary if every point of the boundary of €2 has a unique supporting hy-
perplane. In [CM], Crampon—-Marquis introduced a notion of geometrically
finite subgroup I' of PGL(R™), requiring I" to preserve and act with various
nice properties on a strictly convex open subset of P(R™) with C! boundary.
If cusps are not allowed, the notion reduces to a natural notion of convex co-
compactness. We will refer to this notion as strong convexr cocompactness to
distinguish it from Definition 1.2 and from a more general notion of convex
cocompactness that we study in [DGK2).

Definition 1.16 ([CM]). A discrete subgroup I' of PGL(R") is strongly
convex cocompact in P(R™) if it preserves a nonempty strictly convex open
subset Q of P(R") with C' boundary and if the convex hull of the orbital
limit set AZ®(T") in © has compact quotient by T

Here we call orbital limit set the set AZP(I") of accumulation points in 9,0
of a I'-orbit of §2; it does not depend on the orbit since €2 is strictly convex
(Lemma 2.10). For strongly convex cocompact groups, this set coincides
with the proximal limit set Ap (Lemma 2.11). When T is finite, A2P(T") = 0.

In the setting of Definition 1.16, the action of ' on 2 is automatically
properly discontinuous (see Section 2.3), and so for torsion-free I' the quo-
tient I'\Q2 is a real projective manifold. The image in I'\Q2 of the convex
hull of AZP(T) in Q is a compact convex core for this manifold. Such convex
cocompact real projective manifolds I'\Q2 provide a natural generalization
of the compact real projective manifolds which have been parametrized by
Goldman |[Go| in dimension 2 and investigated by Benoist [B3, B4, B5, B|
in higher dimension.

We make the following link between Definitions 1.2 and 1.16.

Proposition 1.17. Letp,q € N* and let " be an irreducible discrete subgroup

of G =PO(p,q).

(1) If T is HP9~'-convex cocompact, then it is strongly convex cocompact
in P(RPT?). Moreover, the set Q of Definition 1.16 may be taken to be
contained in HP9~1,

(2) Conversely, if T' is strongly convex cocompact in P(RPTY), then it is

HP9~L-convexr cocompact or HIP~1-conver cocompact (after identifying
PO(p, q) with PO(q,p))-

The following observation is an easy consequence of the definitions. We
refer to [GW] for the notion of Pj-Anosov representation into PGL(R™),
sometimes also known as projective Anosov representation.

Fact 1.18 (|GW, Th.4.3|). Let p,q € N* with p+ q = n. A representation
with values in PO(p,q) is PP"?-Anosov if and only if it is Pi-Anosov as a
representation into PGL(R™), where Py is the stabilizer of a line of R™.
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Therefore, Theorems 1.7 and 1.11 and Proposition 1.17 give an intimate
relationship between Pj-Anosov representations into PGL(R™) and discrete
subgroups of PGL(R™) which are strongly convex cocompact in P(R™), in the
context where there is a nonzero invariant quadratic form on R™. In [DGK2|,
we shall generalize this relationship to the setting of subgroups of PGL(R™)
which do not necessarily preserve any nonzero quadratic form: indeed, the
arguments in the proofs of Theorems 1.7 and 1.11 take place in projective
geometry, and with some work we will be able to remove the use of the
quadratic form.

1.6. Examples of HP?"!-convex cocompact subgroups coming from
Anosov representations. Theorems 1.7 and 1.11 imply that many well-
known examples of Anosov representations yield HP9~!-convex cocompact
groups. In Section 7 we describe examples, generalizing quasi-Fuchsian rep-
resentations, that come from deformations of a convex cocompact subgroup
of a rank-one Lie subgroup H of G. These include certain maximal repre-
sentations of surface groups and Hitchin representations. Applying Propo-
sition 1.17, all of these examples are new examples of discrete subgroups of
PGL(R™) which are strongly convex cocompact in P(R").
Here is a sample result from Section 7.2.

Proposition 1.19. Let I' be the fundamental group of a closed orientable
hyperbolic surface, and let m > 1 and £ € {m,m + 1}.

If m is odd (resp. even,), then the group p(I') is H™ =1 _convex cocompact
(resp. HY™-convex cocompact) for any irreducible representation p in the
Hitchin component of Hom(I', PO(m + 1,¢)).

The result is true also for nonirreducible representations: see [DGK2].

1.7. New examples of Anosov representations. Conversely, Theorem 1.7
also enables us to give new examples of Anosov representations into higher-

rank semisimple Lie groups. While Anosov representations of free groups

and surface groups are abundant in the literature, the same is not true for

Anosov representations of more complicated hyperbolic groups outside the

realm of Kleinian groups. We show that certain natural and explicit repre-

sentations of hyperbolic right-angled Coxeter groups, namely deformations of

the Tits canonical representation studied by Krammer [Kr| and others (see

e.g. Dyer-Hohlweg-Ripoll [DHR]), are HP9~!-convex cocompact for some

appropriate pair (p, q); therefore, by Theorem 1.7, they are PP*?-Anosov.

Theorem 1.20. Let W be an infinite word hyperbolic right-angled Cozeter
group in n generators. Then W admits a P?-Anosov representation into
PO(p,q) for some p,q € N* with p + ¢ = n. Composing with the inclusion
PO(p, q) — PGL(R") gives a Py-Anosov representation of W into PGL(R")
(Fact 1.18).

The class of infinite hyperbolic right-angled Coxeter groups is quite large.
It includes groups of arbitrarily large virtual cohomological dimension [JS,
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H, O], which can have exotic Gromov boundaries such as the Menger curve,
Pontryagin surfaces, Menger compacta, or the Sierpiniski carpet [Be, D1, D2,
Sw].

Theorem 1.20 also provides (by restriction to a subgroup or induction to a
finite-index overgroup) Anosov representations for all groups commensurable
to hyperbolic right-angled Coxeter groups, as well as for all their quasi-
isometrically embedded subgroups.

1.8. Organization of the paper. In Section 2 we recall some well-known
facts about the space HP9~! and properly convex domains in projective
space. In Section 3 we give a characterization of negative subsets of 9pHP4~1,
from which we deduce Proposition 1.10 and Corollary 1.12, and we establish
some general properties of properly convex domains of P(RP9) preserved by
discrete subgroups of PO(p, ¢). Sections 4 and 5 are devoted to the proofs of
implications (i) = (ii) and (ii) = (i) of Theorem 1.11, respectively. In Sec-
tion 6 we prove Proposition 1.17, which makes the link between our notion of
HP-4~1_convex cocompactness and strong convex cocompactness in P(RP+9)
(Definition 1.16). In Section 7 we give examples of HP*¢~!-convex cocompact
representations coming from well-known families of Anosov representations.
Finally, in Section 8 we construct H?¢~!-convex cocompact representations
of right-angled Coxeter groups and prove Theorem 1.20. In Appendix A we
provide a proof of a (surely well known) basic result in point-set topology.
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2. REMINDERS AND BASIC FACTS

2.1. Pseudo-Riemannian hyperbolic spaces. Fix two integers p,q > 1.
Let G = PO(p,q) and let PP? be the stabilizer in G of an isotropic line
of RP4. The projective space P(RP-?) is the disjoint union of

HP~! = {[z] € P(RP) | (2, 2)p,q < O},
of

SPHe = {[a] € P(RPY) | (2, 2)pq > O},
and of

QHP T = 9,571 = {[2] € P(RPY) | (m,2)pq = 0} ~ G/ PP,
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For instance, Figure 1 shows
P(RY) = H*" U (9,H>° = §,8*") US>

and
P(RY) = H*' U (9,H*' = 9,S"?) uSh2.
The space HP9~! is homeomorphic to RP x P(RY). It has a natural pseudo-

FIGURE 1. Left: H?*C with a geodesic line ¢ (necessarily
spacelike), and S*!. Right: H?! with three geodesic lines
{5 (spacelike), ¢1 (lightlike), and ¢y (timelike), and S2.

Riemannian structure of signature (p,q — 1) with isometry group G. To see
this, consider the double covering

HP9™t = {2 € RPY | (z,2),, = —1}.

The restriction of (-, ), 4 to any tangent space to HP9~1 in RP has signature

(p,q — 1) and defines a pseudo-Riemannian structure on HPa! with isom-
etry group O(p, q), descending to a pseudo-Riemannian structure on HP:4~!
with isometry group PO(p, ¢). The sectional curvature is constant negative
for this pseudo-Riemannian structure. The geodesic lines of the pseudo-
Riemannian space HP4~! are the intersections of HP4~! with projective lines
in P(RP?). Such a line is called spacelike (resp. lightlike, resp. timelike) if it
meets OpHP9~! in two (resp. one, resp. zero) points: see Figure 1.

Similarly, SP~14 is homeomorphic to P(RP) x R? and has a natural pseudo-
Riemannian structure of signature (p — 1, ¢) with isometry group G, of con-
stant positive curvature. It identifies with H%P~! as in Remark 1.6.

Remark 2.1. For (p,q) ¢ {(1,1),(2,2)}, the group G = PO(p, q) is simple
and PP"? is a maximal proper parabolic subgroup of G. On the other hand,
for (p,q) = (1,1), the group PO(1,1) is isomorphic to R (hence reduc-
tive but not simple) and Pll’1 = PO(1,1)9. For (p,q) = (2,2), the group
PO(2,2)q is isomorphic to PSLy(R) x PSLa(R) (hence semisimple but not
simple) and its subgroup P12’2 NPO(2,2)p is B x B where B is a Borel sub-
group of PSLa(R). To see this, observe that the space Ma(R) of (2 x 2) real
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matrices is endowed with a natural nondegenerate quadratic form of signa-
ture (2,2), namely the determinant; it thus identifies with R?2. The group
PO(2,2)¢ acting on P(R??) identifies with the group PSLy(R) x PSLy(R) act-
ing on P(M3(R)) by right and left multiplication. The space 9;H*! = 9,S!2
identifies with the image in P(M2(RR)) of the rank-one matrices in Ma(R),
which identifies with P'R x PR by taking the kernel and the image.

The following notation, used in the introduction, will remain valid through-
out the paper.

Notation 2.2. For a subset X of P(RP) (e.g. a subset of HP9~1) we denote
by
e X the closure of X in P(RPY);
o Int(X) the interior of X in P(RPY) (or equivalently in HP4—1 if
X Cc HPaL),
We set 9,X := X . Int(X) and, when X C HP9~1 we denote by
o 0uX := 0, X NHPIY! the boundary of X in HPI~1;
e 0,X := 0, X NOHPI! the boundary of X in O:HP9L; if X is closed
in HP4~1 this coincides with the ideal boundary of X, namely X~ X.
We also denote by OxI' the Gromov boundary of a word hyperbolic group T'.

2.2. Limit sets in projective space. Let V be a finite-dimensional real
vector space of dimension > 2. Recall that an element g € PGL(V) is said to
be prozimal in P(V) if it admits a unique attracting fixed point £ in P(V').
Equivalently, g has a unique complex eigenvalue of maximal modulus.

If g is proximal in P(V), then ¢! is proximal in the dual projective
space P(V*), for the dual action given by g=! - ¢ := £ o g for a linear form
¢ € V*; the unique attracting fixed point of g=! in P(V*) corresponds to the
projective hyperplane H,~ C P(V)) which is the projectivization of the sum
of the generalized eigenspaces of g for eigenvalues of nonmaximal modulus;
we have g" -y — & for all y € P(V) N\ H, as n — +00.

We shall use the following terminology.

Definition 2.3. Let I' be a discrete subgroup of PGL(V). The prozimal
limit set of I' in P(V') is the closure Ar of the set of attracting fixed points
of elements of I" which are proximal in P(V').

This set is a closed, I'-invariant subset of P(V'). When I is irreducible and
contains at least one proximal element, it was studied in [Gu, B1]. In that
setting, by [B1], the action of T on Ap is minimal, i.e. all T-orbits are dense;
moreover, any nonempty, closed, I'-invariant subset of P(V') contains Ap.

Remark 2.4. For p,q € N*, an element g € G = PO(p, q) is proximal in
P(RP9) if and only if it is proximal in HP9~!, in the sense that g admits
a unique attracting fixed point f;‘ in O,HP4~1. In this case, ¢! is auto-
matically proximal too, and its unique attracting fixed point £, satisfies
<§;,§g_)p7q # 0. In particular, for a discrete subgroup I' of G = PO(p, q),
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the proximal limit set Ap of I' in P(RP?) is contained in 9;HP4~ !, and called
the proximal limit set of T" in 9,HP4~1.

2.3. Properly convex domains in projective space. Let ) be a properly
convex open subset of P(V'), with boundary ;2. Recall the Hilbert metric
dg on €:
1
dQ(ya Z) = 5 log [CL, Y, z, b]

for all distinct ¥y, z € 2, where a, b are the intersection points of 3,2 with the
projective line through y and z, with a,y, z, b in this order. Here [, -, -, ] de-
notes the cross-ratio on P'R, normalized so that [0, 1,¢, 00] = t for all t. The

metric space (€2, dq) is complete and proper (i.e. closed balls are compact),
and the automorphism group

Aut(Q) := {g € PGL(V) | g- Q= Q}

acts on €2 by isometries for dg. As a consequence, any discrete subgroup of
Aut(€) acts properly discontinuously on €.
Let V* be the dual vector space of V. By definition, the dual convex set
of Q) is _
Q =P{leV*"|lz)<0 Vze}),

where  is the closure in V ~ {0} of an open convex cone € of V ~ {0}
lifting 2. The set Q* is a properly convex open subset of P(V*) which is
preserved by the dual action of Aut(2) on P(V*).

Straight lines (contained in projective lines) are always geodesics for the
Hilbert metric dg. When 2 is not strictly convex, there can be other
geodesics as well, by the following well-known and easy fact.

Fact 2.5. For pairwise distinct points wy,we, w3 € Q, we have dg(w1,ws) =
do (w1, ws) + do(ws, we) if and only if there are segments [y,y'] and [z, 2] in
the boundary of Q such that y,wi,ws,z on the one hand, and y', w3, ws, 2’
on the other hand, are aligned in this order. In this case, there exist points
y" € ly,y] and 2" € [z, 7] such that y", w1, we, 2" are aligned in this order.

(For an illustration, we refer to the left panel of Figure 2, where wy, wa, w3
correspond to G(s),G(t),G(u).)

However, the following fact is always true, and will be used in Section 4.3.
It is proved by Foertsch-Karlsson [FK, Th.3|, as was pointed out to us
by Constantin Vernicos. Here we provide a short proof for the reader’s
convenience.

Lemma 2.6. (1) Any geodesic ray of (2, dq) has a well-defined endpoint
in the boundary O0p€).

(2) Any biinfinite geodesic of (2, dq) has two distinct endpoints in OpSQ.
Proof. We work in an affine Euclidean chart where €2 is bounded. Let I be
R>p or R and let G = (G(t))ter be a geodesic ray or biinfinite geodesic of
(2,dg). For any s < tin I, let y,; € 02 and z,; € 0y be such that
Yst,G(s),G(t), zss are aligned in this order.



14 JEFFREY DANCIGER, FRANCOIS GUERITAUD, AND FANNY KASSEL

Recall that for any y € €2, the face of 3p€) at y is by definition the
intersection of 02 with all supporting hyperplanes to 2 at y.

We claim that all points y,; for s < ¢ in I are contained in a common
face P of 0pQ) (of arbitrary dimension). Indeed, for any s < t, let Ps; be the
face of 0:(2 at ys; it is a nonempty compact convex subset of J:(2. For any
s < u < t, observe that by Fact 2.5 we have ys; € [ysu, Yu ] (see Figure 2,
left), hence any supporting hyperplane to Q at y,; is also a supporting
hyperplane to €2 at ys, and vy, i.e. Py, and P, ; are contained in F;;. For
any four points s < u < v < t, we apply the previous statement to the
triples (u,v,t) and (s,u,t) to obtain P,, C P,; C Ps;. Thus the sequence
(Po,m)m>1 (if I = Rxq) or (P—pmm)m>1 (if I = R) of nonempty compact
convex subsets of J;(2 is nondecreasing for inclusion; it must have a limit P.

Similarly, all points z,; for s < t are contained in a common face @ of 9;€.

Any forward accumulation point a of G in the boundary of €2 is an accu-
mulation point of the zp; as ¢ — 400, and therefore belongs to ). In the
Euclidean metric, zp; for ¢t > 0 is further away from the span of P than G(0)
is: therefore a belongs in fact to @ ~ P. (In particular P # @.) Similarly,
in the case I = R, all backward accumulation points of G are in P \ Q.

Suppose by contradiction that there are two sequences (S, )men and (tm)men
of positive numbers tending to +oo such that G(s,,) and G(t,,) converge re-
spectively to some points a # b in Q ~ P. Up to taking subsequences, we
may assume that s, < t,, < sy for all m.

Consider the triangle T}, spanned by ys,, tn, G(tm), and y,, 5., (see
Figure 2, right). Its angle at G(t¢,,) goes to 7 in the chosen chart as m —
+00, because G($m),G(sSm+1) — a and G(t,,,) — b. The opposite edge
[ysm’tm,ytmﬁmﬂ] of T, converges to a segment of P as m — +o00: therefore
lim,, G(tm) € P. But G(t,,) — b ¢ P: contradiction. Thus G has a unique
forward endpoint a in the boundary of 2, belonging to @) ~. P. Similarly, in
the case I = R, it has a unique backward endpoint a’ # a in P \ Q. U

(P°R)

FiGURE 2. Ilustration for the proof of Lemma 2.6. Left:
definition of the points ys; and z,;. Right: absurd situation
where G would have two forward accumulation points a # b.

In Section 6.3 we shall also use the following elementary observation.



CONVEX COCOMPACTNESS IN PSEUDO-RIEMANNIAN HYPERBOLIC SPACES 15

Lemma 2.7. Let O,04,...,0 be properly conver open subsets of P(V)
such that O is the convezr hull of the O; in some affine chart of P(V'). If the
boundary 0;Q; is C' for every i, then so is the boundary 0pO.

Proof. For any i, the boundary 8;0; is C! if and only if the dual convex set
Oy is strictly convex. In this case, the intersection ﬂle O; is also strictly

convex. But this intersection is the dual O* of @. Therefore, ;0 is C*. O

2.4. Irreducible groups preserving properly convex domains. We
shall use the following general properties due to Benoist [B2, Prop. 3.1]. We
denote by A}, the proximal limit set of I' in P(V*).

Fact 2.8 (|B2|). An irreducible discrete subgroup I' of PGL(V') preserves
a nonempty properly convex subset of P(V') if and only if the following two
conditions are satisfied:
(i) T' contains an element of PGL(V') which is prozimal both in P(V') and
in P(V*),
(1t) Ar and AT lift respectively to cones Ar of V {0} and KF of V¥~ {0}
such, that £(z) < 0 for all € Ap and { € /NXl“i
In this case, for any T-invariant properly convex open subset Q # () of P(V),
(1) the prozimal limit set Ar (resp. A}) is contained in the boundary of
Q (resp. Q) in P(V) (resp. P(V*));
(2) more specifically, Q@ and Ar lift to cones Q and Ar of V.. {0} with
O properly convex containing Ar in its boundary, and 0 and A} lift
to cones Q* and Ki‘i of V¥~ {0} with Q properly convex containing
Ki‘i in its boundary, such that £(x) <0 for all x € Ar and £ € A%;
(3) there is a unique smallest nonempty I'-invariant properly convex open
subset Qmin of P(V') contained in Q, namely the projectivization of
the interior of the RY-span of Ar for Ar as in (2); it is the interior
of the convex hull of Ar in Q;
(4) there is a unique largest T'-invariant properly convex open subset Quax
of P(V) containing Q, namely the dual convex set to the projectiviza-
tion of the interior of the RT -span of 7\? for Kii as in (2).

Remark 2.9. When V = RP? and I is contained in PO(p,q) for some
p,q € N*  the map x — (z,-)p4 from V to V* induces a homeomorphism
Ar ~ A} and Q.  is a connected component of the complement in V' of the
union of the projective hyperplanes z* for z € Apr. In the Lorentzian case
(i.e. ¢ = 2), the terminology invisible domain of Ar is often used for Qpax.

2.5. Strictly convex open domains. We now make two elementary ob-
servations about strictly convex domains.

Lemma 2.10. Let T be a discrete subgroup of PGL(V') preserving a nonempty
strictly convez open subset Q of P(V)). The set ASP(T") of accumulation points
in 0pQ) of a T-orbit of Q does not depend on the T'-orbit.
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We call this set the orbital limit set of T in €.

Proof. We may assume that T' is infinite, otherwise AZ®(T') = (). Consider
two points y # z in  and a sequence (7,,) € T of pairwise distinct elements
such that v, y = Yoo € 5 and Vi, 2 — 200 € 2. By proper discontinuity
of the action of T on Q) (see Section 2.3), the Hilbert distance dg from a given
point of € to any point of the segment =, - [y, z] tends to infinity with m.
Therefore the segment [Yoo, 2oo] = limy, Ym - [y, 2] is fully contained in Js€2.
Since € is strictly convex, 9oo = Zoo- O

Lemma 2.11. LetT be a discrete subgroup of PGL(V') preserving a nonempty
strictly convex open subset Q of P(V'). If the prozimal limit set Ap of T in
P(V) contains at least two points, then it coincides with the orbital limit set

AQP(T).

Proof. For any element v € T' which is proximal in P(V), the element v~!

is proximal in P(V*), and its attracting fixed point is contained in 9Q* by
Fact 2.8. Thus the projective hyperplane H = C IP(V') from Section 2.2 does
not meet €, and for any y € Q the sequence (¥ - y)men converges to the
attracting fixed point ffyr of v in P(V'). This shows that Ap C A2P(T).

For the reverse inclusion, suppose that Ar contains two points a # b.
In particular, I' is infinite. Consider a point y €  on the open segment
(a,b) and a sequence (7,,) € I'N of pairwise distinct elements such that
Ym * Y = Yoo € Op2. Up to passing to a subsequence, we may assume that
Ym + @ = Qoo AN Y, - b = boo fOr some aog, boo € Ar, With Yoo € [@oo, boo)-
Since € is strictly convex, Yoo € {@oo,boo} C Ar. Thus AYP(T) C Ar. O

If I is irreducible, then Ar always contains at least two points since it is
nonempty (Fact 2.8) and not contained in a projective subspace of P(V') of
positive codimension.

3. NONPOSITIVE SUBSETS OF OpHP:4~1
We shall use the following terminology which extends Definition 1.9.

Definition 3.1. For p,q € N*, a subset A of 3:HP¥~! is negative (resp.
nonpositive, nonnegative, positive) if it lifts to a cone of RP"7~\.{0} on which all
inner products (-, -)p.4 of noncollinear points are negative (resp. nonpositive,
nonnegative, positive).

In the Lorentzian case (¢ = 2), the usual terminology for a negative (resp.
nonpositive) subset of 9pHP4~! is acausal (resp. achronal).

3.1. Reading the sign on triples. The following characterization will be
used only to prove Proposition 1.10 and Corollary 1.12, in Section 3.2 below.

Lemma 3.2. Let A be a subset of OpHP4~! with at least three points. Then
the following are equivalent:

(i) A is negative,
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(ii) every triple of distinct points of A is negative,
(iii) every triple of distinct points of A spans a triangle fully contained in
HP4~1 outside of the vertices.

The equivalence (ii) <> (iii) is contained in the following immediate remark.

Remark 3.3. For any pairwise distinct points yi,y2,y3 of O:HP4~1, the
following are equivalent:

e there exist lifts ; € RP? \ {0} of the y; such that (z;, x;),q < 0 for
all i # §,
e for any lifts z; € RP? \ {0} of the y;, we have

<$17$2>p,q <331:$3>p7q <x2>333>p,q <0,

e there exist lifts x; € RP? \ {0} of the y; such that for any ¢; > 0, if
at least two of the ¢; are nonzero, then

3 3
<Zti$i, th$z> = D 2titj(zi )y, <O,
i=1 i=1 P

1 1<icj<s

e (y1,y2,y3) spans a triangle fully contained in HP~! outside of the
vertices.

Proof of Lemma 3.2. If A is negative, then any subset of A is as well, and so
(i) = (ii) holds. We now check (ii) = (i).

Suppose that every triple of distinct points of A is negative. Choose
two distinct points y1,y2 € A and respective lifts z1,29 € RP? ~ {0} with
(x1,22)pq < 0. We now define a map f : A — RPY ~ {0} as follows. We
set f(y;) := x; for i € {1,2}. For each y € A~ {y1,92}, we choose a lift
x € RPI\{0} of y; by Remark 3.3, we have (21, 22)p.q (1, Z)p,q (€2, Z)pq <0,
and so (x1,2)pq and (z2,x)p, are both nonzero of the same sign; we set
f(y) := x if this sign is negative, and f(y) := —x otherwise. We claim that
(f(y), f(¥))pq <0 for any y # ¢/ in A. Indeed, this is true by construction
if y or 4/ is equal to y1, so we assume this is not the case. By Remark 3.3,
we have (21, f(¥))p.q (21, F (¥ )p.q (f W), f(y))pq < 0. Since (@1, f(y))p,q <O
and (x1, f(¥))pq < 0 by construction, we have (f(y), f(v/'))pq < 0. Thus
{tf(y)|t > 0andy € A} is a cone of RP? \ {0} lifting A on which all inner
products (-, -)p 4 of noncollinear points are negative, and so A is negative. [

Remarks 3.4. (1) Similar equivalences to Lemma 3.2 hold after replac-
ing negative with positive in conditions (i) and (ii), and HP4~! with
SP=149 in condition (iii).

(2) It follows from Remark 3.3 that a triple of distinct points of JpHP+4~1
cannot be both negative and positive. Therefore, by Lemma 3.2, an
arbitrary subset of G;HP4~! with at least three points cannot be both
negative and positive.

(3) Our notion of positivity should not be confused with that of [B2].
For V' = RP9 consider a subset of P(V') x P(V*) of the form A =
{(z,2%) |z € A} where A C 0-HP9~1. The set A is positive in the
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sense of [B2] if and only if A is nonnegative or nonpositive in the sense
of Definition 3.1. The set A is 3-by-3 positive in the sense of [B2] if
and only if every triple of points of A is nonnegative or every triple
of distinct points of A is nonpositive in the sense of Definition 3.1.
We shall not use the terminology of [B2] in this paper.

3.2. Consequences of Lemma 3.2.

Proof of Proposition 1.10. Let A be a closed, connected, transverse subset
of &;HP% 1, and let A®) be the set of unordered triples of distinct points
of A. By Remark 3.3, we may define a function A® — {£1} by sending
(y1,y2,y3) € AB®) to the sign of (x1,2a)pq (T1,73)pq (T2, 73)p g, Where z; €
RP4 ~ {0} is an arbitrary lift of y;. This function is continuous and A®) is
connected by Fact A.1, hence the function is constant. In other words, every
triple of distinct points of A is negative or every triple of distinct points
of A is positive. By Lemma 3.2 and Remark 3.4.(1), the set A is negative or
positive. O

Here is another consequence of Lemma 3.2.

Proposition 3.5. Let I' be a word hyperbolic group and T a connected open
set in the space of PP*1-Anosov representations of T into G = PO(p,q). If
the proxvimal limit set A,y is negative (resp. positive) for some p € T, then
it is negative (resp. positive) for all p € T .

Proof. We may assume #0.,I' > 3, otherwise for any PP"?-Anosov represen-
tation p : I' = G the proximal limit set A,r) is both negative and positive.
Note that the set T is path-connected.

Suppose A, (1 is negative for some pg € T, and let (p¢).e(o,1] be a contin-
uous path in 7. For t € [0,1], let & : 95’ — 9pHP4~! be the boundary map
of the Anosov representation p;. For any triple {71, 72,73} of distinct points
of OsoI" and any ¢ € [0, 1], the triple {&:(n1), &¢(n2), &(n3)} C A,y 1y is either
negative or positive, by transversality of &. Since {&o(n1),&0(n2),&0(n3)} is
negative and t — &(n;) is continuous for all i (see [GW, Th. 5.13]), we deduce
as in the proof of Proposition 1.10 that {&(n1),&(n2),&(ns3)} is negative for
all t € [0,1]. By Lemma 3.2, the set A, is negative for all ¢ € [0, 1].

The case that A, is positive is similar. ([

3.3. Boundaries of convex subsets of H??~!. The following lemma makes
a link between convexity in H”?~! and nonpositivity in 9;HP4~.

Lemma 3.6. (1) Let Ao be a closed nonpositive (resp. nonnegative) subset
of OpHP4~1 which is not contained in a projective hyperplane. Then A
spans a nonempty convex open subset Q of P(RP?) which is contained
in HP9=1 (resp. in SP~54). Moreover, if A1 D Aq is the intersection
of OpHPA~1 with the closure of 0, then Ay is still nonpositive (resp.
nonnegative), and it is equal to Ao if Ao is negative (resp. positive).
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(2) Conversely, for any nonempty properly convex open subset Q of HP-~1
(resp. SP=19), the intersection of OpHP9~1 with the closure of Q is non-
positive (resp. nonnegative).

Proof. (1) Let Ag be a cone of R4~ {0} on which (-, “)p,q 1s nonpositive (the
nonnegative case is similar). Using the equality

(3.1) < g iz, g til’i> = E it (%, T5)p,q
- X p.q J
7 7 ]

for t; € RT and z; € INXO, we see that (-,-),, is still nonpositive on the
R*-span of 7\0. In particular, A; is nonpositive since it is contained in the
projectivization of the RT-span of Ao. Let Q be the projectivization of the
interior of this R*-span. Then € is convex, contained in HP4~1UgHP4~! and
open, hence contained in HP9~! (since 9;HP9~! is a hypersurface of P(RP:%)).
Suppose Ao is negative, i.e. all inner products (-, -), 4 of noncollinear points
of AO are negative. Any point z € Ay admits a lift to RP? \ {0} of the form
Zl 1 tiz; where xq,..., 2 € A() are pairwise noncollinear and ¢{,...,t; > 0.
Since z € G:HP7~1 we see from (3.1) that (z;,2;),, = 0forall 1 <i < j <k,
hence k = 1 and z € Ag. This shows that the inclusion A1 D Ay is an equality
when Ag is negative.

(2) Let © be a nonempty properly convex open subset of HP4~! (the SP~1:4
case is similar). We can lift it to a properly convex open cone  of RP7~ {0}
such that (z,z),, < 0 for all x € Q. Let A; be the intersection of xHP4~!
with the closure of Q, and let A; be a cone of RP4 {0} lifting A1, contained
in the closure of Q. Using the equahty (3.1) for t; € RY and x; € A1, we see
that (-,-), ¢ is nonpositive on Ay. Thus A; is nonpositive. O

3.4. Irreducible subgroups of PO(p,q) preserving properly convex
domains. Here is a consequence of Fact 2.8 (see Figure 3).

Proposition 3.7. For p,q € N*, an irreducible discrete subgroup I' of G =
PO(p, q) preserves a nonempty properly convex subset of P(RP?) if and only
if the following two conditions are satisfied:

(i) T contains an element of G which is prozimal in O.HPI~1,

(ii) Ar is nonpositive or nonnegative (Definition 3.1).
In this case, let £ be a nonempty I'-invariant properly convex open subset
of P(RP?) and Q a properly convex cone of RPY ~ {0} lifting Q. If Ar is
nonpositive (resp. nonnegative), then Ar lifts to a cone Ar in the boundary
of Q on which (-, *)p,q s nonpositive (resp. nonnegative). There is a unique
smallest nonempty I'-invariant properly convex open subset Quin of P(RP9)
contained in 2, namely the interior of the convexr hull of Ar in Q. There
is a unique largest I'-invariant properly conver open subset Qmax of P(RP9)
containing Q, namely the projectivization of the interior of the set of x' € RP4
such that (z,2'),, <0 for all z € Ap (resp. (x,2')pq > 0 for all z € Ar).
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FIGURE 3. The sets Qui, € HP4~! (light gray) and Qpax C
P(RP-9) (dark gray), for a negative proximal limit set Ar. On
the left (p,q) = (2,1), and on the right (p,q) = (2,2).

Proof. Taking V' = RPY we only need to check that condition (i) of Propo-
sition 3.7 is equivalent to condition (i) of Fact 2.8, that condition (ii) of
Proposition 3.7 implies condition (ii) of Fact 2.8, and that the existence
of a nonempty I'-invariant properly convex open subset of P(RP9) implies
condition (ii) of Proposition 3.7.

An element g € G = PO(p, q) is proximal in P(RP9) if and only if g7! is
proximal in P(RP?), because the set of eigenvalues of ¢ is stable under taking
inverses, and so ¢ has a unique eigenvalue of maximal modulus if and only
if 7! has. On the other hand, g~! is proximal in P(RP9) if and only if g
is proximal in P((RP?)*) (see Section 2.2). Using Remark 2.4, we see that
condition (i) of Fact 2.8 is equivalent to condition (i) of Proposition 3.7 for
I' c G =PO(p,q).

Suppose that Ar is nonpositive (resp. nonnegative), i.e. we can lift it to
a cone Ap of RP < {0} on which (-, “)p,q is nonpositive (resp. nonnegative).
Recall from Remark 2.9 that the map ¢ :  — (z,-)p, identifies RP9 with
(RP9)* and Ar C P(RP?) with A}, C P((RP?)*). The set /~\1’i := ¢(Ar) (resp.
Kl’i := —1p(Ap)) is a cone of (RP4)* < {0} lifting A}, and by construction
((z) <0 forall z € Ap and £ € Kl’i Thus condition (ii) of Proposition 3.7
implies condition (ii) of Fact 2.8 for I' € G = PO(p, q).

Suppose that there exists a nonempty ['-invariant properly convex open
subset Q of P(RP4). It lifts to a properly convex cone Q of RP¢ < {0}, and
Ar lifts to a cone Ap of RP {0} contained in the boundary of Q. Let

O = {0 e R | L(x) <0 VzeQl),

where Q0 is the closure of  in RPZ {0}. The set Q" is a properly convex
cone of (RP?)*~\ {0} lifting Q*. The set Af lifts to a cone A of (RP?)* {0}
contained in the boundary of Q*. By construction, ¢(z) < 0 for all z € Ap
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and / € /N\l’i Let T C O(p, q) be the lift of ' leaving invariant Q (hence also
§~2*, Kp, and /~\1’i) Since 1 induces an identification between Ar and A}, we
have i(z) € Kl*i U —Kl’i for all # € Ap. Let F~ (resp. F*) be the subcone of
Ar consisting of those vectors & such that ¥(z) € Ki’i (resp. Y(z) € —INXl’i)
By construction, we have x € F~ if and only if (z,2'),, <0 for all 2’ € Ar;
in particular, F'~ is closed in Kp and T-invariant. Similarly, F'* is closed
and T-invariant. The sets F~ and F* are disjoint since no 2 € RP4 ~ {0}
can satisfy (z,2'),, = 0 for all 2/ € Ar, otherwise the I-invariant subset
Ar of P(RP%) would be contained in the hyperplane P(z"), contradicting
the irreducibility of I'. Thus F~ and F' are disjoint, f—invariant, closed
subcones of Kp, whose projections to P(RP+?) are disjoint, I-invariant, closed
subsets of Ap. Since I is irreducible, Ar is the smallest nonempty I'-invariant
closed subset of P(RP4) (see Section 2.2), and so Ap = F~ or Ap = F*. In
the first case Ar is nonpositive, and in the second case it is nonnegative. [

In the setting of Proposition 3.7, if Ap C 9:HP~! is nonpositive (resp.
nonnegative), then Qpiy, is contained in HP4~! (resp. SP~14) by Lemma 3.6.(1).
We shall use the following in the stronger situation that Ar is negative (resp.
positive).

Lemma 3.8. In the setting of Proposition 3.7, if Ar C 0:HP9~1 is negative
(resp. positive), then the closure Cpin 0f Qmin in HPY™L (resp. SP=14) s
contained i Qmax.

Proof. Suppose Ar is negative. For any x € Kp, using the equality
<.’E, E ti$i> = E ti<$axi>p,q
, P ,
7 7

for t; € Rt and 2; € Ap, we see that (z,)p,q 1s negative on the RT-span
of Ap minus {0}. In particular, the set Cpnin, which is the projectivization of
this RT-span minus {0}, is contained in Quax, which is the projectivization
of the interior of the set of 2’ € RPY such that (z,2’),, <0 for all z € Ar.
The case that Ar is positive is analogous. ([

4. HP9~1_cCONVEX COCOMPACT GROUPS ARE ANOSOV

The goal of this section is to prove the implications (i) = (ii) and (iii) = (iv)
of Theorem 1.11, which contain Theorem 1.7.(1). By the following obser-
vation, which is immediate from the definitions, we can focus on (i) = (ii)
only.

Remark 4.1. A representation p : I' = PO(p, ¢) is P?-Anosov if and only
if it is P{"P-Anosov under the identification PO(p, ¢) ~ PO(q,p). A subset
of GHP4~1 is positive if and only if it is negative under the identification
aH)Hp,q—l ~ aPqu—l.
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We also prove (Lemma 4.3 and Remark 4.4) that if T is HPY~!-convex co-
compact, then for any nonempty properly convex closed subset C of HP4~! on
which I' acts properly discontinuously and cocompactly, the ideal boundary
9;C is the proximal limit set Ap C 9;HP4~ 1,

4.1. Working inside a properly convex open domain. The following
lemma will enable us to use the restriction to C of the Hilbert metric of Q..

Lemma 4.2. Let I' be an irreducible discrete subgroup of G = PO(p,q)
acting properly discontinuously and cocompactly on some nonempty properly
conver closed subset C of HP9~1. Then C is contained in a mazimal T-
invariant properly convexr open subset Qmax of P(RPY).

The point of Lemma 4.2 is that, not only the interior of C, but also its
boundary in HPY~! is contained in such a set Quay.

Recall from Fact 2.8 and Remark 2.9 that in this setting the proximal limit
set Ar is contained in the ideal boundary 0;C of C; a maximal I'-invariant
properly convex open subset yay of P(RP9) containing C is unique.

Proof. Let Qnax be the largest I'-invariant properly convex open subset of
P(RP?) containing Int(C), as in Fact 2.8 and Remark 2.9. Suppose by con-
tradiction that C is not contained in Q.. By Fact 2.8 and Remark 2.9,
this means that some point y € C belongs to z- for some z € Ar C 9;C.
The interval [y, z) is a lightlike ray of HP9~!. By convexity of C, it is fully
contained in C. Let (a,)men be a sequence of points of [y, z) converging to z
(see Figure 4). Since I" acts cocompactly on C, for any m there exists 7, € T’
such that v, - a,, belongs to a fixed compact subset of C. Up to taking a
subsequence, the sequences (Y, - @ )m and (Vi - Y)m and (Y, - 2)m converge
respectively to some points Goeo, Yoo, 2o i C, With ase € C and 25 € Ar.
Since oo € [Yoos Zoo] C 2%, the intersection of [yoo, 20o] With HP4~! is con-
tained in a lightlike geodesic, hence can meet O;HP9~! only at z,. Thus
Yoo cannot belong to GzHP4~1, lest 4o, = 2o and the closure of C in P(RP-9)
contain a full projective line, contradicting the proper convexity of C. There-
fore, Yo € C. But this contradicts the proper discontinuity of the action of
I"on C. O

4.2. Equality 0;C = Ar. Using Lemma 4.2, we establish the following.

Lemma 4.3. Let T’ be an irreducible discrete subgroup of G = PO(p, q) act-
ing properly discontinuously and cocompactly on a nonempty properly convex
closed subset C of HP9—1 . If the prozimal limit set Ar is transverse, then the
inclusion Ap C 0;C is an equality, and this set is negative (Definition 1.9).

Recall that the transversality of Ap means that y ¢ z* for all y # z in Ar.

Proof. Let Qumin C C C HP97! be the interior of the convex hull of Ar in C,
and Cpin its closure in HP9~1. We have

Ar C 3;Conin = 05 Quuin N HHPI™L C §;C.



CONVEX COCOMPACTNESS IN PSEUDO-RIEMANNIAN HYPERBOLIC SPACES 23

N ~
N 7
1N 7
O, HP- ,
\ /
\Y /
\ /
am /
[
" \
Y, \
/ \ N
4 N
7 N
7 N
4 N

FIGURE 4. Illustration for the proof of Lemma 4.2

The set Ar is transverse by assumption, hence negative by Lemma 3.6.(2),
and so Ar = 0;Cpin by Lemma 3.6.(1). We now check that 9;Cryin = 0;C.
For this we use the fact that, by Lemma 4.2, the set C is contained in a
I-invariant properly convex open subset Q.5 of P(RP?); we denote by d the
Hilbert metric on Q.

Suppose by contradiction that there exists z € 9;C \ 9;Ciin- Let (zm)men
be a sequence in C \ Cpin converging to z. By cocompactness of the ac-
tion of T" on C and Cpin, we may find a sequence (Ym)men in Qmin such
that d(ym, 2m) is uniformly bounded and d(y,, OsCmin) is uniformly bounded
away from zero. The segment [y, zp,] contains a unique point u,, of J4Cpin,
as depicted in Figure 5. Let (am,, by,) be the maximal interval of Qp,ax con-
taining Yum, zm, 5o that d(Ym, zm) = & 10g[am, Ym, 2m, bm| and d(ym, um) =
%log[am, Ym, Um, bm]. Up to passing to a subsequence, we may assume that
G, — @y by, — b, Uy, — u, and y,,, — y where u and y belong to the line seg-
ment [a,b] C FpQmax and u, y € 9;Crin. By assumption y # z; since the cross
ratios [@m, Yms Zm, bm] = €24Wm#m) are bounded away from 0, 1, and 400, the
points a, y, z, b are pairwise distinct and [y, Ym, 2m, bm] — [a,y, z,b]. On the
other hand, the cross ratios [am, Ym, Um, bm] = e2d(ym-um) gare hounded away
from 1, hence [a,y,u,b] # 1. Since the points a,y,b are pairwise distinct,
we conclude y # u. But the segment [y, u] is contained in JpQmax, hence
contained in 9;Cnin, contradicting the transversality of 9;Cpin = Ar. O

Remark 4.4. Lemma 4.3 shows that if an irreducible discrete subgroup I' of
PO(p, q) acts properly discontinuously and cocompactly on some nonempty
properly convex closed subset C of HP9~! and if the proximal limit set Ap
is transverse, then I' is HP*9~!-convex cocompact. It also shows that if T’
is HP9~!-convex cocompact, then for any nonempty properly convex closed
subset C of HP9~! on which T acts properly discontinuously and cocompactly,
the ideal boundary 9;C is the proximal limit set Ap C GpHP4~ 1.
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FIGURE 5. Illustration of the proof of Lemma 4.3

4.3. Gromov hyperbolicity of (C,d). In the setting of Lemma 4.3, we
denote by d the Hilbert metric on a I'-invariant properly convex open subset
Omax of P(RP?) containing C, as given by Lemma 4.2. Using arguments
inspired from [B3|, we now prove that in this setting the metric space (C, d)
is Gromov hyperbolic with Gromov boundary 9;C = Ar.

We start with the following lemma, recall from Lemma 2.6.(1) that any
geodesic ray of (C,d) has a well-defined endpoint in 9;C = Ar.

Lemma 4.5. In the setting of Lemma 4.3, there exists R > 0 such that the
image of any geodesic ray of (C,d) lies at Hausdorff distance < R from the
projective interval with the same endpoints.

Proof. Suppose by contradiction that for any m € N there is a geodesic ray
G with endpoints a,, € C and b,;, € Ar and a point y,, € C on that geodesic
ray which lies at distance > m from the projective interval [a,,by,). By
cocompactness of the action of I on C, for any m € N there exists 7, € I such
that ., - ym belongs to a fixed compact set of C. Up to taking a subsequence,
(Ym *Ym )m converges to some Yoo € C, and (Y @m)m and (Yo by )m converge
respectively to some as € C = C U Ar and by, € Ar. Since the distance d
from Yy, to [am,bmn) goes to infinity, we have [aoo, boo] C 0;C = Ar, hence
(oo = bso by transversality of Ar. Therefore, up to extracting, the geodesic
rays G, converge to a biinfinite geodesic of (Qmax,d) with both endpoints
equal, contradicting Lemma 2.6.(2). O

Lemma 4.6. In the setting of Lemma 4.3, the metric space (C,d) is Gromov
hyperbolic.

Proof. Suppose by contradiction that the triangles of (C,d) are not uni-
formly thin. By Lemma 4.5, the triangles of (C, d) whose sides are projective
segments are not uniformly thin: namely, there exist a.,,,bm,cn € C and
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Ym € [am, bm] such that
(4'1) d(yma [ama Cm] U [Cm7 bm]) — +o00.

n——+0o
By cocompactness, for any m there exists 7,, € I' such that v, -y, belongs to
a fixed compact set of C, as shown in Figure 6. Up to taking a subsequence,
(Ym * Ym)m converges to some Yoo € C, and (Vi - am)m and (Ym - bm)m
and (Y * Cm)m converge respectively to some oo, boo, oo € C. By (4.1) we
have [aoo, Coo] U [€oo, boo] C 05C, hence aoo = bog = coo by transversality of

0;C = Ar. This contradicts the fact that yso € (oo, boo) NC. O
/
\
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\ /
\
/ \\
/ \
/ N
/ C AN
/ Ar‘ N
/ N

FiGURE 6. Illustration of the proof of Lemma 4.6

Lemma 4.7. In the setting of Lemma 4.3, the Gromov boundary of (C,d) is
I'-equivariantly homeomorphic to 9;C = Ar.

Proof. Fix a basepoint y € C. The Gromov boundary of (C,d) is the set
of equivalence classes of infinite geodesic rays in C starting at y, for the
equivalence relation “to remain at bounded distance for d’. Consider the
I-equivariant continuous map from 9;C to the Gromov boundary of (C,d)
sending z € 9,C to the class of the straight geodesic ray (with image a
projective interval) from y to z. This map is surjective by Lemma 4.5.
Moreover it is injective, since transversality implies that no two points of
0;,C = Ar lie in a common face of 0Qmax, hence the Hilbert distance d
between rays going out to two different points of 0;,C goes to infinity. We
conclude using the fact that a continuous bijection between two compact
Hausdorff spaces is a homeomorphism. O

4.4. Proof of the implication (i) = (ii) of Theorem 1.11. Let I" be
an irreducible discrete subgroup of G = PO(p, q) acting properly discontin-
uously and cocompactly on some nonempty properly convex closed subset
C of HP%~! whose ideal boundary 9,C = C N 9HP4~! is transverse. Since
I' is irreducible, C has nonempty interior. By Lemma 3.6.(2), the set 9;,C
is negative. By Lemma 4.2, the set C is contained in a I'-invariant prop-
erly convex open subset Qpax of P(RPY), and so we may consider the re-
striction to C of the Hilbert metric d of Q.. The discrete group I' acts
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cocompactly by isometries on the metric space (C,d), which by Lemmas 4.6
and 4.7 is Gromov hyperbolic, with boundary I'-equivariantly homeomor-
phic to 9;C = Ap. By the Svarc-Milnor lemma, I' is word hyperbolic and any
orbit map I' — C is a quasi-isometry, extending to a I'-equivariant homeo-
morphism ¢ : 0o, I' = Ap. This homeomorphism is transverse since Ar is a
transverse subset of &;HP4~ L. Since I' is irreducible, we conclude (using [GW,
Prop. 4.10]) that the natural inclusion I < G = PO(p, ¢) is P/*?-Anosov.

5. ANOSOV SUBGROUPS WITH NEGATIVE PROXIMAL LIMIT SET ARE
HP-4~1_.CONVEX COCOMPACT

In this section we prove the implication (ii) = (i) of Theorem 1.11. The
implication (iv) = (iii) of Theorem 1.11 immediately follows by Remark 4.1.
Together with Proposition 1.10, this yields Theorem 1.7.(2). We also show
that the connectedness assumption in Theorem 1.7.(2) cannot be removed,
by providing a counterexample.

5.1. Proof of the implication (ii) = (i) of Theorem 1.11. Let I" be
an irreducible discrete subgroup of G = PO(p,q). Suppose that I' is word
hyperbolic, that the natural inclusion I' < G is Pf"%-Anosov, and that the
proximal limit set Ap C 8;HP9~! is negative (Definitions 1.9 and 2.3).

By Proposition 3.7, the group I' preserves a nonempty properly convex
open subset of P(RP?); there is a maximal such subset, namely

Qnax 1= }P’(Int{ac' e RPY | (x,2"),, <0Vz € KF}),

where Ap is a cone of RPY ~ {0} lifting Ar on which all inner products
(-,-)p,q of noncollinear points are negative. There is also a minimal such
subset Qmin C Qmax, namely the interior of the convex hull of Ap in Qpax.
By Lemma 3.6.(1) we have Qi C HP4~! and by Lemma 3.8 the closure
Cumin Of Qmin in HP9~! is contained in Qmax. In particular, the action of T’
on Cpin is properly discontinuous. Moreover, the ideal boundary 0;Cpin is
equal to Ap by Lemma 3.6.(1); in particular, it is transverse.

To see that I' is HPY~!-convex cocompact and thus complete the proof
of the implication (ii) = (i) of Theorem 1.11, it only remains to prove the
following.

Lemma 5.1. In this setting, the action of I' on Cpin s cocompact.

Proof. By Fact 1.18, the natural inclusion I' < PO(p, q) — PGL(RP*9) is
Py-Anosov, where P is the stabilizer in PGL(RP1Y) of a line of RPT4. By
[KLPa, Th. 1.7] (see also [GGKW, Rem. 5.15|), the action of I" on P(RP?) is
expanding: for any point z € Ar there exist an element v € I, a neighbor-
hood U of z in P(RP?), and a constant C' > 1 such that v is C-expanding on U
for the metric
dp([z], [2]) := | sin £(z, 2")]

on P(RP9). We now use a version of the argument of [KLPa, Prop.2.5|, in-
spired by Sullivan’s dynamical characterization [Su| of convex cocompactness
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in Riemannian hyperbolic spaces. (The argument in [KLPa| is a little more
involved because it deals with bundles, whereas we work directly in P(RP?).)

Suppose by contradiction that the action of I' on Cpyy, is not cocompact,
and let (g,)nen be a sequence of positive reals converging to 0. For any m,
the set K, := {z € Cumin|dp(2,Ar) > €5} is compact, hence there exists
a I'-orbit contained in Cpin \ Ky,. By proper discontinuity of the action
on Cpin, the supremum of dp(-, Ar) on this orbit is achieved at some point
Zm € Cmin, and by construction, for any v € I,

0 < dp(7y- 2m, Ar) < dp(2m, Ar) < e

Up to extracting, we may assume that (z,,)nen converges to some z € Ar.
Consider an element v € T, a neighborhood I of z in 9;HP4~!, and a constant
C > 1 such that v is C-expanding on /. For any m € N, there exists 2/, € Ar
such that dp(y - zm, Ar) = dp(y - 2m,7 - 2,,). For large enough m we have
zl, € U and so

d]p(’y . Zm,AF) Z Cd]p(zm,z;n) Z Cdp(zm,/\r) Z Cd]p(’y . Zm,AF).
This is impossible since C' > 1. O

5.2. Disconnected limit sets. Let I' be a free group on two generators.
For rankg(G) := min(p,q) > 2, let us give an example of an irreducible
PP_Anosov representation p : I' = G = PO(p, q) for which the proximal
limit set A,y is neither negative nor positive (Definition 1.9). This shows
that Theorem 1.7.(2) is not true when 051" is not connected. We first work
in PO(2,2) (Example 5.2), then in PO(p, ¢) for any p,q > 2 (Example 5.3).

Example 5.2. Let I' be a free group on two generators. Consider two
injective and discrete representations pi, pa : I' = PSLa(R) with convex co-
compact images, such that p; is the holonomy of a hyperbolic 3-holed sphere
and po the holonomy of a hyperbolic one-holed torus. For i € {1,2}, let
& : O’ — P'R be the boundary map associated to p;, with image A; (a Can-
tor set). Let ¢ := & o§1_1 : A1 — Ag be the unique (p1, p2)-equivariant home-
omorphism. This map 1 does not preserve the cyclic order of P'R: there exist
x1,T2,%3, s € Ol such that the quadruples (&1(x1),&1(22), &1(23), &1 (x4))
and (§2(1), &a(22), E2(24), E2(23)) are both cyclically ordered.

The identification PO(2,2)g ~ PSLy(R) x PSLy(R) of Remark 2.1 lets
us see (p1,p2) as a single representation p : I' — PO(2,2). The boundary
maps &1,& 1 O’ — PIR associated to p1, p2 combine into a map ¢ from
Ol to the doubly ruled quadric §;H?*' ~ P'R x P'R: under this iden-
tification, the image A of £ is the graph of v, and p is P12’2—Anosov with
boundary map &. However, p(T') is not H?!-convex cocompact nor is it
H2-convex cocompact (with respect to —(-,-)22). As depicted in Figure 7,
the triples £(z1),&(z2),&(z3) and £(x1),&(x2),&(x4) are negative, while the
triples (1), &(z3),{(z4) and &(x2),&(x3),&(x4) are positive. Alternatively,
observe that the six segments connecting the £(z;) (for 1 < ¢ < 4) inside
H?! (resp. inside S'?) carry the generator of 71 (P(R?2)), precluding the
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Ficure 7. Illustration for Example 5.2. The triples
{5(931)75(‘%‘2)’5(563)} and {5(331),5(372),5(1'4)} are negative,

i.e. span an ideal triangle contained in H?!'. The triples
{€(21),€(x3),&(xa)} and {{(w2),&(w3),&(74)} are positive,
i.e. span ideal triangles contained in S'2 (which go through
infinity in the picture).

possibility that these segments could be part of a properly convex subset of

P(R22).
Example 5.3. Take any p,q > 2 and consider the embedding
7:PO(2,2)9 ~ SO(2,2)y — SO(p, q)o ~ PO(p, q)o

coming from the natural inclusion R*? C RP4. The corresponding T-equiva-
riant embedding ¢ : 9;H?>! < 9;HP4~! has the property that a subset A
of 9:H?! is negative (resp. positive) if and only if +(A) is negative (resp.
positive) as a subset of O:HP4~ L. Let p: T' — PO(2,2)g be as in Example 5.2.
By [GW, Prop.4.7], the composition 70 p : I' = PO(p, q) is PP"?-Anosov
with proximal limit set A, ,r) = t(Ayr)). By Example 5.2, this limit set
is neither negative nor positive. Since being Anosov is an open property
|[L, GW] and since a small deformation of a negative (resp. positive) triple
in OpHP9~1 is still negative (resp. positive), any small deformation of 7o p
in Hom(I', PO(p, q)) is still a PP?-Anosov representation with a proximal
limit set that is neither negative nor positive. Since I' is a free group, such
deformations are abundant, including many which are irreducible. The image
of any such representation fails to be HP?~!-convex cocompact.

6. LINK WITH STRONG PROJECTIVE CONVEX COCOMPACTNESS

The goal of this section is to prove Proposition 1.17. We start with some
general lemmas.

6.1. Supporting hyperplanes at the limit set. Recall that a supporting
hyperplane of a properly convex subset 2 of P(R™) at a point z of its bound-
ary 0pf) is a projective hyperplane whose intersection with €2 is a subset of
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Op§) containing z. In the following lemma, we denote by Qmin C Qmax & pair
of minimal and maximal nonempty I'-invariant properly convex open subsets
of P(RP-?), given by Proposition 3.7, and by d the Hilbert metric on Q.

Lemma 6.1. Let T' be an irreducible discrete subgroup of G = PO(p,q)
preserving a nonempty properly conver open subset Q0 of P(RP?). Suppose
that the proximal limit set Ap C 08 is transverse. If Q0 contains a uniform
neighborhood of Quin in (Qmax, d), then Q has a unique supporting hyperplane
at any point z of Ar, namely z+

Proof. We first check that 2, has a unique supporting hyperplane at any
point z of Ap, namely z'. By Proposition 3.7, the set Ar is negative or
positive. We assume that it is negative (the positive case is analogous). Let
Ar be a cone of RP? ~ {0} lifting Ap on which all inner products (-, Vpg
of noncollinear points are negative. By Proposition 3.7, the set Quax is
the projectivization of the interior Qmax of the set of 2/ € RP9 such that
(z,2")pq <O0forall ze Ar. A supporting hyperplane to Qmayx in RP4 is the
kernel of a linear form ¢ = Zf:1<:vl, S with z1,..., 25 € Ar. For any r € Ar
in such a hyperplane, we have ¢(x) = 0 and <l‘l, Z)pg < 0 for all ¢, hence
(xi,x)pq = 0 for all i. But the set Ar is transverse by assumption, and so
all z; are collinear to x. Thus the unique supporting hyperplane to Qmax at
z € Ap is zt. Taking images in P(RP'?), the unique supporting hyperplane
to Qmax at a point z € Ap is z+.

We now assume that ) contains a uniform neighborhood of Q,;, in
(Qmax, d). Let us check that € has a unique supporting hyperplane at any
point z of Ar, namely z+. For z € Ar, let (yt)e>0 and (z¢)e>0 be two straight
geodesic rays in Qmax with endpoint z, such that (2;);>¢ is contained in Qpip.
Since 2max has a unique supporting hyperplane at z, up to reparametriza-
tion we have d(y:, zt) — 0 as t — +o0o. Since {2 contains some uniform
neighborhood of Quin in (Qmax, d), we deduce that some subray (y:)i>¢, is
contained in €. This shows that 2 is also the unique supporting hyperplane
of Q at z. O

6.2. Extreme points at the limit set. We next prove the following.

Proposition 6.2. Let T" be an irreducible discrete subgroup of PO(p, q) pre-
serving a properly convex open subset  of P(RPY) and acting cocompactly on
some nonempty properly convex closed subset C of Q. If the proximal limit
set Ap is transverse, then every point of Ar is an extreme point of ).

Proposition 6.2 relies on the following lemma.

Lemma 6.3. Let ' be a discrete subgroup of PO(p, q) preserving a properly
convex open subset Q of P(RP?) and acting cocompactly on some nonempty
properly convex closed subset C of Q0 contained in HP9~1. For any r > 0,
the closed uniform neighborhood C, of C in Q0 for the Hilbert metric dq is
properly convex, and the action of I' on C, is properly discontinuous and
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cocompact. If r > 0 is small enough, then C, is contained in HP9~', and its
ideal boundary 0;C, is equal to the proximal limit set Ar if Ar is transverse
and if C is closed in HP4~1,

Proof of Lemma 6.3. The action of T' is properly discontinuous on Q (see
Section 2.3), hence also on C and on C, for any r > 0. Let D C H”9~! be a
compact fundamental domain for the action of I' on C. For any r > 0, the
set C, is the union of the I'-translates of the closed uniform r-neighborhood
D, of D in (2, dgq). Since D, is compact, the action of I" on C, is cocompact.
The proper convexity of C, follows from [Bu, (18.12)]. Since D is compact
and contained in the open set HP~!, for small enough r > 0 we have D, C
HP4~1, hence C, C HP4~1. In that case, if Ar is transverse, then 9;,C, = Ap
by Lemma 4.3. U

Proof of Proposition 6.2. By Proposition 3.7, the set Ar is negative or pos-
itive. We assume it is negative (the positive case is similar). Let Qi C
Q C Qmax be given by Proposition 3.7. By Lemma 3.6.(1), the set Qpiy is
contained in HP4~1 and 9:Qmin N O-HP4~! = Ap. Using Lemma 3.8, we see
that the closure Cpin of Qmin in HP9~! is contained and closed in Qmax. On
the other hand, C is contained in €2 C Q.x and closed in Q,,,x because the
action of I' on C is cocompact. Therefore Cp, is contained in C and the
action of I' on Cpyi, is cocompact. Without loss of generality, we now assume
C= Cmin~

Suppose by contradiction that there exists z € Ar which is contained in
a nontrivial open segment I of 0. Fix y € C. For any z1,20 € I with
z € (21, 22), the open triangle with vertices y, z1, 22 is contained in a uniform
neighborhood of the ray [y, z) in (Q2,dq); in particular, it is contained in
a uniform neighborhood C, of C in (€,dq), for some r > 0, and (z1, 22) is
contained in the ideal boundary 0;C,. By choosing z1, z5 close enough to z,
we may make r as small as we like. By Lemma 6.3, if » > 0 is small enough,
then 0;C, = Ar is transverse: contradiction. O

6.3. Proof of Proposition 1.17.(1). Suppose I' is HPY~!-convex cocom-
pact: it acts properly discontinuously and cocompactly on some nonempty
properly convex closed subset C of HP*~! whose ideal boundary 9;C is trans-
verse. By Lemma 4.3, the set 9;C is equal to the proximal limit set Ap.
Let Cpin be the convex hull of Ap in C: it is a closed convex subset of C,
which has compact quotient by I'. By Lemma 4.2, the set Cpiy is contained
in a maximal I-invariant properly convex open subset Q. of P(RP9). By
Lemma 6.3, there exists r > 0 such that the closed uniform neighborhood C,
of Chin in Qmax for the Hilbert metric dg, . is properly convex, contained in
HP4~1, with ideal boundary 9;C, = Ar, and the action of I" on C, is properly
discontinuous and cocompact. In order to prove that I' is strongly convex
cocompact in P(RP*Y) (Definition 1.16), it is sufficient to prove the following.

Lemma 6.4. In this setting, there is a I'-invariant open neighborhood ) of
Cinin in Uy == Int(C,) which is strictly conver with C' boundary 9.
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Indeed, for such an €, the orbital limit set A?{b(F) is equal to Ar by
Lemma 2.11, hence the convex hull of A?{b(f‘) in Q is Cyin, which has compact
quotient by I'. Thus if such an € exists, then I is strongly convex cocompact
in P(RPHY).

Recall that, by definition, € is strictly convex with C' boundary 8, if
every point of 9:§) has the property that it is an extreme point of  and €2
has a unique supporting hyperplane at that point. If € is any I'-invariant
properly convex open neighborhood of Ciin in Qpax, then every point of Ap
has this property by Lemma 6.1 and Proposition 6.2. Therefore, in order
to prove Lemma 6.4, we only need to focus on €2 . Ar, that is we must
construct ) such that each point of 32\ Ar is an extreme point with unique
supporting hyperplane. Constructing such a neighborhood €2 clearly involves
arbitrary choices; here is one of many possible constructions. Cooper—Long—
Tillmann [CLT, Prop. 8.3| give a different construction yielding, in the case
I" is torsion-free, a convex set ) as in Lemma 6.4 with the slightly stronger
property that 9p€2~\ Ar is locally the graph of a smooth function with positive
definite Hessian.

Proof of Lemma 6.4. We set V := RPT4, The following argument does not
use the quadratic form of signature (p,q). Let 'y be a finite-index subgroup
of T which is torsion-free; such a subgroup exists by the Selberg lemma [Se,
Lem. 8|.

We proceed in three steps. Firstly, we construct a I'-invariant open neigh-
borhood Q1 C U, of Cmin in Qmax which has C' boundary, but which is
not necessarily strictly convex. Secondly, we construct a small deformation
Qo C U, of Q; which still has C' boundary and is strictly convex, but which
is only I'p-invariant, not necessarily I'-invariant. Finally, we use an averag-
ing procedure over translates - o of Qg, for vI'g ranging over the I'g-cosets
of I', to construct a I'-invariant open neighborhood Q C U, of Cy;, which
has C'! boundary and is strictly convex.

e Construction of €2;: Consider a compact fundamental domain D for the
action of I" on Cnin. The convex hull of D in .« is still contained in Cpjp.
Let D' C C, be a closed neighborhood of this convex hull in I, which has C*
boundary 9;D’, and let €1 be the interior of the convex hull of " - D’ in U,.
We have Q1 ~ Ar C U, ~ Ar = C, C Qmax by choice of r; in particular, the
action of I' on Q; . Ar is properly discontinuous.

Let us check that ©; has C! boundary 9:€2;. We first observe that any
supporting hyperplane II, to €21 at a point y € 021 \Ar stays away from Ar:
indeed, if II,, contained a point z € Ar, then by Lemma 6.1 it would be equal
to the unique supporting hyperplane to Q; at z, namely z*, contradicting
Y € Qmax. On the other hand, since the action of I on §; \. Ar is properly
discontinuous, for any neighborhood N of Ar in P(V) and any infinite se-
quence of distinct elements y; € T', the translates 7; - D' are eventually all
contained in A. Therefore, in a neighborhood of y, the hypersurface 95
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coincides with the convex hull of a finite union of translates v-D’, which has
C' boundary by Lemma 2.7.

e Construction of (2y: For any y € 0:{21 \ Ar, let F, be the face of y in
O0p{21, namely the intersection of 9p§2; with the unique supporting hyperplane
I, to € at y. By the above observation, F, is a closed convex subset of
a]le AN AF.

We claim that F, is disjoint from v - F, = F,., for all v € T'o ~ {1}.
Indeed, if there existed y' € F, N Fy.y, then by uniqueness the supporting
hyperplanes would satisfy II, = I, = IL,.,, hence F, = Fy = Fy.y = 7 Fy.
This would imply F, = 4™ F, for all m € N, hence y™-y € F, for allm € N.
Using the fact that the action of I'g on 35§21 \ Ar is properly discontinuous
and taking a limit, we see that JF, would contain a point of Ar, which we
have seen is not true. Therefore Fy is disjoint from - F,, for all v € I'p~ {1}.

For any y € 0:Q21 \ Ar, the subset of P(V*) consisting of those projective
hyperplanes near the supporting hyperplane 11, that separate F, from Ar is
open and nonempty, hence (n — 1)-dimensional where n := p+ ¢ = dim(V').
Choose n — 1 such hyperplanes 1'[1117 . ,H;“l in generic position, with H;
cutting off a compact region Q; D Fy from Q1 ~ Ar. One may imagine each
HZ is obtained by pushing II, normally into €2; and then tilting slightly in
one of n — 1 independent directions. The intersection ()=} Hg C P(V) is
reduced to a singleton. By taking each hyperplane H; very close to IL,, we

may assume that the union Q,, := U?:_ll Q; is disjoint from all its ~-translates
for v € To \ {1}. In addition, we ensure that F, has a neighborhood Q,
contained in ﬂ;:ll Q;.

Since the action of I'g on 921 \ Ar is cocompact, there exist finitely many
points y1, . .., ym € Gp21 \ Ar such that (91~ Ar) C To-(Qy, U---UQ; ).

We now explain, for any y € 31 ~ Ar, how to deform ; into a
new, smaller properly convex I'g-invariant open neighborhood of Cyyin with
C' boundary, in a way that destroys all segments in Q;. Repeating for
Y = Yl,-...,Ym, this will produce a strictly convex I'p-invariant open neigh-
borhood Q C Q; of Cmin with C! boundary 9:$s.

Choose an affine chart containing .y, an auxiliary Euclidean metric g
on this chart, and a smooth strictly concave function h : RT™ — RT with
h(0) =0 and %‘t:o h(t) =1 (e.g. h = tanh). We may assume that for every
1 < i < n —1 the g-orthogonal projection 7r?j onto H; satisfies WL(Q;) C
HZ Ny, with (W;]%)_l(ﬂz N 0x8) C HZ. Define maps 4,02 : Q; — QZ
1
y
the point at distance ¢ from 3’ to the point at distance h(t). Then goé takes
any segment o of F, to a strictly convex curve, unless o is parallel to II;.
The image goé(QZ N 0x€21) is still a convex hypersurface. Extending np; by

by the property that goz preserves each fiber (7¢)~!(y') (a segment), taking

the identity on Q, ~ QZ and repeating with varying ¢, we find that the
composition ¢, = cpzl/ 0---0 @Z‘l, defined on Q,, takes Q; N 02y to a
strictly convex hypersurface. We can extend ¢, in a I'p-equivariant fashion
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to I'g - 9, and extend it further by the identity on the rest of €2;: the set
¢y (Q1) is still [p-invariant, with C* boundary, and is still contained in U .

Repeating with finitely many points yi,...,y, as above, we obtain a
strictly convex, I'g-invariant open neighborhood Qo C U, of Cpin with C*
boundary 09p€s.

e Construction of Q: Consider the finitely many I'g-cosets 11, ..., 7o
of I and the corresponding translates €2} := ~; - Q3. Let Q" be a I'-invariant
properly convex (not necessarily strictly convex) open neighborhood of Cpin
in U, which has C! boundary 9;Q" and is contained in all Q) 1 < i < k.
(Such a neighborhood €2” can be constructed for instance by the same method
as for Qy above.) Since 2, is strictly convex, uniform neighborhoods of ©”
in (Qé,dQ; ) are strictly convex [Bu, (18.12)]. Therefore, by cocompactness,
if h :[0,1] — [0,1] is a convex function with sufficiently fast growth (e.g.
h(t) = t* for large enough o > 0), then the I'p-invariant function H; :=
hodg(+,€") is convex on the convex region H;'([0,1]), and in fact smooth

and strictly convex near every point outside Q”. The function H := Zle H;

is T-invariant and its sublevel set Q := H~1([0,1)) is a I-invariant open
neighborhood of Cpin in U, which is strictly convex with C! boundary ;€.
([

6.4. Proof of Proposition 1.17.(2). Suppose I' preserves a nonempty
strictly convex open subset 2 of P(R™). By Lemma 2.11, the orbital limit set
A2®(T') coincides with the proximal limit set Ar. Suppose that the convex
hull Cypin of Ar in © has compact quotient by I'. By Proposition 3.7, the set
Ar C 0;HP9~! is nonpositive or nonnegative (Definition 3.1). Moreover, Ap
is transverse, because it is contained (Fact 2.8) in the boundary of the strictly
convex set (). Therefore, Ar is negative or positive. If Ar is negative, then
Cunin C HP9~1 by Lemma 3.6.(1) and Lemma 3.8, and T' is HP9~!-convex
cocompact by Remark 4.4. Similarly, if Ar is positive, then the image of I
under the natural isomorphism PO(p, q) ~ PO(q, p) is H*P~!-convex cocom-
pact.

7. EXAMPLES OF HP4~l1.CONVEX COCOMPACT SUBGROUPS

In this section we consider the following general construction.

Proposition 7.1. Let H be a real semisimple Lie group of real rank 1. For
p,q € N*, let 7 : H — G := PO(p,q) be a linear representation which
is proximal, in the sense that T(H) contains an element which is proximal
in O:HP9~L. Then for any word hyperbolic group T' and any representation
oo : I' = H with finite kernel and convex cocompact image (in the classical
sense) in the rank-one group H,

1) the composition py := Tooq : I' = G is PP?-Anosov and the prozimal
P 1
limit set A,y C OpHP4~1 s negative or positive (Definition 1.9);
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(2) the connected component T,, of po in the space of PP?-Anosov rep-
resentations from T to G is a neighborhood of py in Hom(T', G) con-
sisting entirely of PP?-Anosov representations with negative prozi-
mal limit set or entirely of P-Anosov representations with positive
proximal limit set.

Proof. Since H has real rank 1, the convex cocompact representation og is
P-Anosov where P is a minimal parabolic subgroup of H [GW, Th.5.15];
in particular, there is an injective, continuous, og-equivariant boundary map
€y @ Ol = H/P. By [GW, Prop.4.7| (see also [L, Prop.3.1]), since 7
is proximal, there is a 7T-equivariant embedding ¢+ : H/P < 0;HP9~! and
po = T oog is P"-Anosov with boundary map ¢ o &, : O — OpHP91,
In particular, the proximal limit set A, ) = ¢ 0 &y, (Fxcl’) is contained in
A := ((H/P), which is a closed, connected subset of 9:HP4~1. If o¢(T) is a
uniform lattice in H, then A, ) = A; since uniform lattices of H exist, we
deduce that A is transverse. By Proposition 1.10, the set A is negative or
positive. In particular, for arbitrary oo(I") (not necessarily a uniform lattice),
the set A, () C A is negative or positive, proving (1).

Statement (2) follows from (1) and from Proposition 3.5. O

Here is an immediate consequence of Theorem 1.11, Proposition 1.17, and
Proposition 7.1.

Corollary 7.2. In the setting of Proposition 7.1, the group p(I') is strongly
convex cocompact in P(RP) (Definition 1.16) for all irreducible p € T, .

More precisely, either p(T') is HP9~1-convex cocompact for all irreducible
p € Thy, or p(T) is HPP~L-convex cocompact (after identifying PO(p, q) with
PO(q,p)) for all irreducible p € T, .

Corollary 7.2 also holds for representations p € 7,, that are not irreducible:
see [DGK2].
We now make explicit a few examples to which Corollary 7.2 applies.

7.1. HP9~!'_quasi-Fuchsian groups. Let I' be the fundamental group of a
convex cocompact (e.g. closed) hyperbolic manifold M of dimension m > 2,
with holonomy oo : I' — PO(m,1) = Isom(H™). The representation oy
is P" 1_Anosov [GW, Th.5.15]. The proximal limit set A,y C JooH™ is
negative since any subset of J,H™ is.

For p,q € N* with p > m, the natural embedding R""! < RP9 induces a
representation 7 : O(m,1) — O(p,q) — PO(p, q) which is proximal, and a
T-equivariant embedding ¢ : oo H™ — G;HP4~L. The set A 1= (O H™) C
0-HP94~1 is negative by construction.

The representation og lifts to a representation oy : I' = H := O(m,1).
Let pg := 700 : [ = G := PO(p,q). The proximal limit set A, ) =
t(Agyry) C A is negative. Thus Corollary 7.2 implies the following.

Proposition 7.3. In this setting, the representation py: I' — G = PO(p, q)
is PP1-Anosov.
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The connected component T,, of po in the space of P{*?-Anosov represen-
tations from T to G is a neighborhood of po in Hom(I', G) consisting entirely
of PP%-Anosov representations with negative prozimal limit set.

For any irreducible p € T, the group p(I') is HP4~1-convex cocompact,
hence strongly convex cocompact in P(RPTY).

For p=m + 1 = 3 and ¢ = 1, when the hyperbolic surface M is closed,
the representation py : I' = O(2,1) — PO(3,1) is called Fuchsian, and
Ty, is the classical space of quasi-Fuchsian representations of I' = (M)
into PO(3, 1), which Bers parametrized by the product of two copies of the
Teichmiiller space of M.

Suppose p = m and ¢ = 2. The space HP! is the (p + 1)-dimensional
(Lorentzian) anti-de Sitter space AdSP™'. When the hyperbolic m-manifold
M is closed, Proposition 7.3 follows from work of Mess [Me| (for p = 2)
and Barbot-Mérigot [BM] (for p > 3). In that case 7,, is actually a full
connected component of Hom(I',PO(p,2)), by Mess [Me| (for p = 2) and
Barbot [Ba| (for p > 3). The terminology AdS quasi-Fuchsian is used for
HP!-convex cocompact representations of I' into PO(p,2). For p = 2, these
are exactly the elements of 7,;, and they are parametrized by the product of
two copies of the Teichmiiller space of M [Me]. For p > 3, it is conjectured
[Ba] that any HP*!-convex cocompact representation of I lies in 7T, .

7.2. Hitchin representations into PO(m,m+1) and PO(m+1,m+ 1),
and maximal representations into PO(2,q). For n > 2, let

7o+ SLa(R) — SL,(R)

be the irreducible n-dimensional linear representation of SLa(R), obtained
from the action of SLy(R) on the (n — 1) symmetric power Sym™ ! (R?) ~
R™. The image of 7, preserves the nondegenerate bilinear form B, :=
—w®n=1 induced from the area form w of RZ. This form is symmetric
if n is odd, and antisymmetric (i.e. symplectic) if n is even.

Suppose n = 2m+1 is odd. The symmetric bilinear form B,, has signature

_f (m+1,m) if misodd,

(7.1) (kn, bn) := { (m,m+1) if m is even.

If we identify the orthogonal group O(B,,) (containing the image of 7,,) with
O(kp, £y), then there is a unique 7,-equivariant embedding ¢y, : O H? <
OpHF»tn=1 and an easy computation shows that its image A, := +(9xoH?)
is negative.

For p > k, and ¢ > {,, the representation 7, : SLao(R) — O(B,) ~
O(kn, £,) and the natural embedding R¥»fn < RP4 induce a representation
7 : H = SLy(R) — PO(p, q) which is proximal, and a 7T-equivariant embed-
ding ¢ : OsH? « OpHFr =1 <y 9,HP4~1, The set A := 1(0sH?) C pHP 4!
is negative by construction.

Let I' be the fundamental group of a convex cocompact orientable hyper-
bolic surface, with holonomy oq : I' = PSL9(R). The representation oy lifts
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to a representation oo : I' = H := SLy(R). Let pg:=7o00p: 1 — G :=
PO(p, q). The proximal limit set A, )y = ¢(Ayyr)) C A is negative. Thus
Corollary 7.2 implies the following.

Proposition 7.4. In this setting, the representation py: I' — G = PO(p, q)
is PP1-Anosov.

The connected component T,, of po in the space of P{*?-Anosov represen-
tations from I to G is a neighborhood of py in Hom(I', G) consisting entirely
of PP?-Anosov representations with negative prozimal limit set.

For any irreducible p € Ty, the group p(T') is HP9~1-convex cocompact,
hence strongly convex cocompact in P(RPTY).

It follows from [L, FG| (see e.g. [BIW2, §6.1|) that when (p, q) = (kn, £r)
as in (7.1) or (p,q) = (m + 1,m + 1) and when T' is a closed surface
group, the space 7T,, of Proposition 7.4 is a full connected component of
Hom(T', PO(p, q)), called the Hitchin component of Hom(T', PO(p, q)). Propo-
sition 7.4 specializes in that case to Proposition 1.19.

By [BIW1, BIW3|, when p =m + 1 = 2 and T is a closed surface group,
the space 7, is a full connected component of Hom(I', PO(2, ¢)), consisting
of so-called maximal representations.

8. NEW EXAMPLES OF ANOSOV REPRESENTATIONS

In this section we use Theorem 1.11 to give new examples of Anosov
representations, for any hyperbolic right-angled Coxeter group.

8.1. Representations of Coxeter groups into orthogonal groups. By
definition, a right-angled Coxeter group is a group Wyg generated by a finite
set of involutions S = {si,..., s,}, with presentation

W5:<51,...,sn | (sis5)™ =1 Vlgi,j§n>

where m; ; = 1 and m; j = m;,; € {2, 00} for i # j. It is said to be irreducible
if S cannot be written as the disjoint union of two proper subsets S’ and S”
such that Wg and Wer commute (i.e. m;; = 2 for all s; € S" and s; € S”).

The following construction gives representations of Wg into orthogonal
groups, and may be formulated for arbitrary Coxeter groups. It is a defor-
mation of the well-known geometric representation due to Tits (see Kram-
mer |Kr|). Let (eq1,...,e,) be a basis of R" and B a symmetric bilinear form
on R” satisfying

1 ifi=j,
(81) B(ei, €j) = 0 if mi = 2,
—Q 5 if m; ;= 0Q,

where «;; = «;; are any real numbers > 1. Consider the representation
p: Wg — Autg(B) C GL,(R) sending any generator s; to the B-orthogonal
reflection of R™ with respect to e;:

p(si) = (x> & — 2B(e;,2) €).
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It is possible that B is degenerate. To avoid this inconvenience, we can
perturb the coefficients «; ; slightly and B becomes nondegenerate. Indeed,
det(B) is a polynomial in the variables o ; which is not identically zero (it
would take value 1 if all o; j were set to zero).

Remark 8.1. If B is degenerate and one wishes to keep the chosen val-
ues of the a; ;, then one may work instead in the vector space R"/Ker(B),
where Ker(B) is the kernel of B. Note that B descends to a nondegenerate
symmetric bilinear form B on R"/Ker(B) and the representation p to a rep-
resentation p into the general linear group of R"/Ker(B) that preserves B.
The following arguments easily transpose to this setting.

From now on, we assume that B is nondegenerate. We identify B with
(-,*)p,q and Autgr(B) with O(p, q) for some p,q € N. The basis (e1,...,en)
becomes a basis (x1,...,z,) of RP? with (x4, 2;)pq = B(e;, e;) for all 4, j.

8.2. Conditions for H??~!-convex cocompactness. By work of Tits and
Vinberg [V], the representation p is injective and discrete, and Wy acts
properly discontinuously via p on the interior Q of the p(Wg)-orbit of the
fundamental closed polyhedral cone

(8.2) A={veRP | (v,2;), <0 V1<i<n}

in RP4. Since B is nondegenerate, A has nonempty interior as soon as Wg
is infinite. The elements p(s;) are reflections in the faces of A. Let 2 be the
image of Q in P(RP?). We shall prove the following.

Theorem 8.2. In the setting of Section 8.1, suppose that Wy is infinite and
irreducible, and that the following conditions are both satisfied:

(1) there does not exist disjoint subsets S’,S" of S such that Wg and
Wen are both infinite and commute;
(2) the parameters a;; of (8.1), which define B and p, are all > 1.

Then Q is properly conver and the group p(Wg) C Autg(B) =~ O(p,q) is
HP-9~1-convex cocompact: it acts properly discontinously and cocompactly on
C := QN Q*, which is a nonempty properly convex closed subset of HP4~1,
and the ideal boundary 0;C does not contain any nontrivial segment.

Here we denote by 2* the dual convex to €2 (see Section 2.3), viewed as a
subset of P(RP?) using the nondegenerate bilinear form (-, ), (see (8.3)).

Remarks 8.3. (1) Condition (1) of Theorem 8.2 neither implies, nor is
implied by, the irreducibility of Wg.

(2) Let Wg be an irreducible, word hyperbolic, right-angled Coxeter
group. In [DGK3|, we shall generalize Theorem 8.2 to representa-
tions p : Wg — GL(R™) which do not necessarily preserve a qua-
dratic form. This will enable us to completely describe the moduli
space of Pj-Anosov representations p : Wg — GL(R"™) realizing Wg
as a reflection group.
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(3) In this more general context, Marquis [Ma| considered groups gener-
ated by reflections in the faces of a polytope which is not necessarily
right-angled, but 2-perfect (a condition on the codimension-2 faces).
He gave a full criterion [Ma, Th. A| for a notion of convex cocompact-
ness which is a priori weaker than strong convex cocompactness in
P(R™). The 2-perfect assumption forces the Zariski closure of the re-
flection group to be conjugate to O(n—1,1) or SL*(R™) [Ma, Th. BJ.

8.3. Anosov representations for right-angled Coxeter groups. Note
that in the setting of Theorem 8.2 the group p(Ws) C O(B) ~ O(p, q) is irre-
ducible |[BH|. Here is an immediate consequence of Theorems 1.7.(1) and 8.2.

Corollary 8.4. In the setting of Theorem 8.2, the group Wg is word hyper-
bolic and the representation p : Ws — O(p, q) is PI*?-Anosov with negative
prozimal limit set Ayywg) C OpHPa—1,

In particular, this yields a new proof of Moussong’s hyperbolicity criterion
[Mo] in the case of right-angled Coxeter groups.

Corollary 8.5 (Moussong [Mol). A right-angled Cozxeter group Wg is word
hyperbolic if and only if it satisfies condition (1) of Theorem 8.2, or equiva-
lently if and only if the generating set S does not contain elements s;, , Siy, Siy Siy
with My, iy = My 44 = 00 and my, ;... =2 for all j € Z/AZ.

This last condition is sometimes known as the no empty square condition.

Proof of Corollary 8.5. Since finite groups are all word hyperbolic, we as-
sume that Wy is infinite. If Wy is word hyperbolic, then it does not contain
any subgroup isomorphic to Z?2, and so condition (1) of Theorem 8.2 is sat-
isfied. Conversely, suppose condition (1) of Theorem 8.2 is satisfied. If
the Coxeter group Wy is irreducible, then Corollary 8.4 states that Wg is
word hyperbolic. Otherwise there is a nontrivial partition S = S’ LI S” of
the generating set such that Wy is the direct product of its subgroups Wg:
and Wgr generated respectively by S’ and S”. Up to switching S’ and S”,
we may assume that Wgr is a finite group and Wgs an infinite, irreducible
word hyperbolic Coxeter group, still satisfying condition (1) of Theorem 8.2.
Corollary 8.4 states that Wy is word hyperbolic, and so Wy is too. U

We can now prove Theorem 1.20.

Proof of Theorem 1.20. Let W = Wg be a right-angled Coxeter group with
n generators as above. Since finite groups trivially satisfy Theorem 1.20, we
assume that Wg is infinite. We also assume that Wy is word hyperbolic;
then condition (1) of Theorem 8.2 is clearly satisfied. If the Coxeter group
W is irreducible, then Corollary 8.4 provides a PP"?-Anosov representation
p: Ws = O(p,q). Otherwise there is a nontrivial partition S = S’ LU S” of
the generating set such that Wy is the direct product of its subgroups Wg:
and Wgr generated respectively by S’ and S”. Up to switching S’ and S”,
we may assume that Wgr is a finite group and Wy an infinite, irreducible
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word hyperbolic Coxeter group, still satisfying condition (1) of Theorem 8.2.
Corollary 8.4 yields a PP 7 -Anosov representation p' : Wg: — O(p/, ¢’). The
composition of p’ with the natural projection Wg — Wgr ~ Wg/Wgn is also

PP "4 _Anosov since its restriction to the finite-index subgroup Wg: is (see
[GW, Cor. 1.3]). O

Remark 8.6. In the context of our work [DGK1| on proper affine actions
of right-angled Coxeter groups, the possibility that p might be P"?-Anosov
in Corollary 8.4 was first suggested to us by Anna Wienhard.

8.4. Proof of Theorem 8.2. We assume that conditions (1) and (2) of
Theorem 8.2 are both satisfied. Condition (2) ensures that the irreducible
reflection group p(Wg) is of negative type in the terminology of [V], i.e.
the Cartan matrix (2B(e;, €;))1<ij<n has at least one negative eigenvalue.
Therefore Q is properly convex by [V, Lem. 15]. The dual convex set 2*,
seen as an open subset of P(RPY9) via (-, -)p 4, is given by

(8.3) O =P({2/ € RPY | (z,2),, <0 VzeQ)),
where € is the closure of { in RP9 <, {0}.

Lemma 8.7. The properly convex set C = QN Q* is nonempty.

Proof. By Fact 2.8, the proximal limit set A,y) is nonempty and contained
in the respective closures  and Q* of Q and Q* in P(RPY), hence in the
intersection © N Q*, which is invariant under p(Ws). Since p is irreducible,
the interior Q2 N Q* C C is nonempty. O

Let

n
ﬁ*::{x:ZtixieRP’q t; >0 VlSZSn}

i=1
be the dual simplex to ﬁ, and let ¥ := AN &*, i.e.

n
Y= {x = Ztixi € RP4 ‘ ti > 0and (,2))py <0 V1<i,j< n}
i=1

The set Q* C P(RP) is the projectivization of the intersection of all p(Ws)-
translates of A*\ {0}. Therefore C = QNQ* is contained in the p(Wg)-orbit
of the projectivization ¥ C P(RP?) of ¥ ~\ {0}.

Lemma 8.8. The compact set ¥ C P(RP9) is contained in HP4~1.

Proof. Let @ = Y ' tix; € 5 where t; > 0 and (®,xj)pg < 0 forall 1 <
1,7 < n. We have

n
(2, 2)p,q = Zti<$>xi>p,q <0,
i=1

hence z projects to a point of HP¥4~! U §,HP9~!. Suppose by contradic-
tion that x projects to a point of &HPI™!, ie. S0 ti(x,2;)pq = 0. Then
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ti(z,zi)pg = 0 for all 1 < i < n. Let I C {1,...,n} be the (nonempty)
collection of indices k such that ¢, > 0. For any k € I we have (z,x)p 4 =0,
hence t;, = Zielk tioy ,, where Iy, := {i € I|m;, = oo}. Recall that o > 1
for all ¢ € I. Therefore we reach a contradiction by considering k € I such
that ¢ is minimal. O

Lemma 8.9. The stabilizer in Wg of any point of ¥ is finite. In particular
(see |V, Th.2]), the compact set ¥ is contained in Q.

Proof. Let ¢ = Y ' tix; € > where t; > 0 and (,2j)pq < 0 forall 1 <
i,7 < n. The stabilizer of [x] € P(RP9) in Wy is the subgroup Wg, generated
by the subset

Sy i={s; €S| (x,zj)pq =0}.
We aim to show Wy, is finite. For this we split Sy into the disjoint union of
its two subsets SO := {s; € S; |t; =0} and S; := {s; € S, |t; > 0}.

We claim that any element of SO commutes with any element of S
in particular, Wg, is the direct product of its subgroups Wgo and Wg>
generated respectively by S and S7. Indeed, for any sj € Sy we have by
definition

n
(8.4) 0= (z,2j)pq = Zti@i’ﬂfﬁp,q = Z tiZi, Zj)p,g»

=1 8;€8>
where

S” = {s; € S|t; > 0}.
If s; € SY, then each term of the right-hand sum in (8.4) is nonpositive, hence
must be zero. Thus for any s; € S~ and s; € SU we have (z;,2;)p4 = 0,
which means that s; and s; commute. Therefore Ws, = Wgo x Wg>.
Let us prove that Wg> is finite. For this it is sufficient to prove that

m; i, = 2 for all distinct s;, sy € S5 . Suppose by contradiction that m;; = oo
for some s;, s, € S. By definition, we have

0= (z,2)pq=1t; + Z ti(Tis Tj)pq
Si€S>, siF#s;

< tj — Oéj,ktk < tj — 1k,

where the last inequality uses condition (2) of Theorem 8.2. But similarly
by considering (x, x)pq = 0, we find t;, —t; < 0 which is impossible. Thus
m; i, = 2 for all distinct s;, s, € S7 and Wg> is a finite group (a product of
finitely many copies of Z/27).

We now check that Wgo is finite. For this it is sufficient to check that W~
is infinite, since SY and S~ are disjoint and condition (1) of Theorem 8.2 is
satisfied. By Lemma 8.8 we have

<x7$>p,q = Z titk<xivxk>]97q <0.

Si,S¢ES>
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The diagonal terms in the sum are positive and so there must be a nonzero
nondiagonal term. In other words, there are two distinct elements s;, s, € S~
generating an infinite dihedral group, proving that Wg> is infinite. U

For r > 0, let C, be the closed uniform r-neighborhood of C in €2 with
respect to the Hilbert metric dg. It is properly convex [Bu, (18.12)]. By
Lemma 6.3, since the action of Wg on C via p is cocompact, we may choose
r small enough so that C, C HP9~!; the action of Wy via p is still properly
discontinuous and cocompact on C,.. We let U, denote the interior of C,.

Lemma 8.10. There is no infinite straight ray contained in the boundary
0uCy :=Cr ~ U, of C, in HP9—1,

Proof. Suppose by contradiction that there is such a ray R = [y, z) C 9xCr,
with y € 05C, and z € 9,C,. Let A C P(RP'?) be the fundamental polytope
of the reflection group p(Wgs), namely the image of (8.2) in P(RPY); it is
bounded by the reflection hyperplanes P(z;") for 1 <i < n.

Up to replacing R with some p(Wg)-translate, we may assume that R
crosses P(z;") and [P(J}j‘) transversely for some generators s; # s; that do
not commute. Indeed, let (p(s;, ... Si,,) - A)m>m be a sequence of p(Wg)-
translates of A that meet R, where i1,...,i, € {1,...,n} and M € N*.
Since R is infinite, the elements s;, for £ > M do not all commute: there
exist M < ¢ < m such that s;, does not commute with s;,, but does
with s;,. ;... 8, ,. Then s;,...s;, _, = 8i .S, i, and so up to
renumbering we may assume that s;, , and s;, do not commute. Thus
p(8iy -+ 8i,, ) 1R meets A and its translates p(s;, ) A= p(si, )" A
and p(s;,,) - A. Tt follows that p(s;, ...s;,,_,) - R crosses the hyperplanes
IP’(xiLm_l) and ]P’(:z:fm) transversely. Indeed, p(s;, ;) - A and p(s;,,) - A are
separated in ) by the hyperplanes P(xiyhl) and ]P’(:vf;ﬂ ), whose intersec-
tion lies outside of 2 because it is pointwise fixed by the infinite subgroup
of p(Wg) generated by p(s;,, ,) and p(s;,, ). Therefore, up to replacing R
with some p(Ws)-translate, we may assume that R crosses P(z;") and ]P)(;Uj‘)
transversely for some generators s; # s; that do not commute.

Let y; be the intersection point of R with the hyperplane P(xf) and let H
be a supporting hyperplane to C, at y;. Then H must contain R. Similarly,
p(s;) - H must contain R. Note that H NP(zi") = (p(s;) - H) NP(z;"). Since
H is spanned by H NP(x;) and R, we deduce that p(s;) - H = H. On the
other hand, since H contains R, it is also a supporting hyperplane to C,
at the intersection point y; of R with the hyperplane IP)(:cj-), and similarly
p(sj) - H = H. Therefore H is invariant under p(s;s;).

By a straightforward calculation (see [V, §2]), condition (2) of Theo-
rem 8.2 implies that g := p(s;s;) € PO(p,q) is proximal in P(RP?), hence
in O:HP9~! (see Remark 2.4). If 5;“,59_ € 0HP4~! are the attracting and
repelling fixed points of g, then C meets the projective line spanned by 5;
and £, in an open interval (5;,5;): indeed, we have {;,ﬁg_ € 0;,C and
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(€5 €5 )pq 7 0 (see Remark 2.4 and Fact 2.8). Since y; € C, C Q we have
yi ¢ (§;)L (see Proposition 3.7), and so g™ - y; — £ as m — +oo; simi-
larly, g7 - y; — €, as m — +oo. Thus H contains the interval (fg_,fg'):
contradiction since H does not meet C.

Before giving the proof of Theorem 8.2, we prove one more general lemma.

Lemma 8.11. Let I' be a discrete subgroup of O(p,q) preserving a properly
convex open subset Q@ C P(RP?). Any accumulation point of the T'-orbit of a
compact subset K of Q NHPY~1 is contained in OpHPI1,

Proof. Suppose by contradiction that there are sequences (y,,) € KN and
(Ym) € I'N such that the Ym are pairwise distinct and zy, := Y, - Ym converges
to some z € HP9~. We can lift the y,, € HP9"! to vectors z,, € RP¢ with
(Tm, Tm)pq = —1; both the x,, and the v, - z,, stay in a compact subset
of RP4. On the other hand, since I" is discrete, there exists z € RP¢ \ {0}
such that (v, - )nen leaves every compact subset of RP?. (Indeed, if we
fix a basis of RP4, then at least one element x of this basis must satisfy
this property.) Up to passing to a subsequence, we may assume that the
direction of -, - x converges to some null direction ¢. There exists € > 0 such
that all segments [z, — ez, zp, + cx] C RPY \ {0} project to segments o,
contained in €. The images v, -0, which are again contained in §2, converge
to the full projective line spanned by x and ¢. This contradicts the proper
convexity of 2. Thus the I'-orbit of K does not have any accumulation point
in {41, O

Proof of Theorem 8.2. Let C' C P(RP?) be the p(Wg)-orbit of ¥.. By Lem-
mas 8.8 and 8.9, we have C’ ¢ H”??~! N Q. In particular, the action of Wg
on C’ via p is properly discontinuous, and cocompact since Y is a compact
fundamental domain.

The set C is nonempty by Lemma 8.7. Since C C C’ and C is closed in €,
the action of Wg on C via p is also properly discontinuous and cocompact.
By Lemma 8.11, the set C is closed in H”?~!. We now complete the proof
by showing that 9;C does not contain any nontrivial projective segment.

Suppose by contradiction that there is a nontrivial segment [a’, b'] in 9;C.
Since 9;C C 9HP4™1 we have (a/,V'),, = 0. By Lemma 6.3, there exists
r > 0 such that the closed uniform neighborhood C, of C in (2, dq) is properly
convex, contained in HP~!, and the action of I" on C, is properly discontin-
uous and cocompact. Extend [a’, V'] to a segment [a,b] which is maximal in
0;C,. Note that [a,b] is also a maximal segment of 9;C, (since any segment
of 9:C, containing [a, b] is contained in d:HP4~! N 9,C, = 9;C,). Consider a
point ¢ € C and a sequence of points y,,, € C in the triangle with vertices
a, b, ¢, such that (y,)m converges to an interior point y of [a,b] C 9;C;.

We claim that in U, := Int(C,), the Hilbert distance dyy, from y,, to either
projective interval (a,c] or (b,c] tends to infinity with m. Indeed, consider
a sequence (2, )m of points of (a,c] converging to z € [a, c] and let us check
that dy, (Ym,2m) — +oo (the proof for (b,¢] is the same). If z € (a,c],
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then z € C, and so dy, (Ym, zm) — +00 by properness of the Hilbert metric.
Otherwise z = a. In that case, for each m, consider y,,, 2/, € Opl, such that
Yoy Umy Zm, 20, are aligned in that order. Up to taking a subsequence, we may
assume y,, — y' and z/, — 2’ for some v/, 2’ € Opl,, with ¢/, y, a, 2" aligned
in that order. By maximality of [a,b] in O:U,, we must have z = a = 2/,
hence dy, (Ym, z2m) — 00 in this case as well, proving the claim.

Since T' acts cocompactly on C, there is a sequence (v,) € I'N such
that ~,, - ym remains in a fixed compact subset of C C U,.. Up to pass-
ing to a subsequence, we may assume that (v, - Ym)m converges to some
Yoo € C, and (Y - @)y and (Y - b)m and (i, - ¢)m converge respectively to
SOME oo, boo, Coo € 0iCry With [ano, boo] C 9;Cp. The triangle with vertices
Goo, boo, Coo 18 Nondegenerate since it contains yo, € C. Further, yo is infin-
itely far (for the Hilbert metric dy;.) from the edges [aoo, Coo] and [boo, Cool,
and so these edges are fully contained in J;U,.. By Lemma 8.10, there is
no infinite straight ray in dyC, := C, \ U, hence [boo, o] and [auo, €oo] do
not intersect OyC, and are contained in 9;C, C O:HP?~1. But this means
that (oo, boo)pg = (oo, Coo)p.g = (Goos Coo)p,g = 0, hence every point of the
triangle with vertices aoo, boo, Coo is null, contradicting the fact that y, lies
in C c HPa—1, O

Remark 8.12. In the proof of Theorem 8.2, we do not assume that the set
C' = p(Wg)-X is convex. We only use that C’ is contained in 2 and contains
C = QN Q*. In fact, by studying the local convexity of C’ along its boundary
faces, it is possible to show that C’ is convex and equal to C; this is addressed
in a general setting by Greene—Lee-Marquis [GLM].

APPENDIX A. CONNECTEDNESS IN THE SPACE OF UNORDERED TUPLES

The following general statement, on which Proposition 1.10 relies, is prob-
ably well known. We provide a proof for the reader’s convenience.

Fact A.1. Let A be a connected Hausdorff topological space. For k > 1,
the space A®) of unordered k-tuples of pairwise distinct points of A is also
connected (for the restriction of the product topology).

Given a finite subset X of A and a point z € A~ X, we denote by A the
connected component of A\ X containing x. Since A is Hausdorff, its finite
subsets are closed, and so A is an open subset of A and its closure AX is
contained in AX U X.

Lemma A.2. Let A be a connected topological space with closed singletons.
For any k > 1 and {xo, ...z} € AFTD | there exists 0 < ig < k such that
the unordered k-tuples {zo,...,xp} ~{xi,} and {xo,...,zr_1} belong to the
same connected component of A*).

Proof. For 0 < i < k, let X; := {zo,...,zk—1} ~ {zi}. It is sufficient to
prove the existence of 0 < igp < k such that z;, and z; belong to the same
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. X
connected component of A \ Xj,, i.e. z;, € Az.°. We have

(A1) ﬂA cﬂA [ (AU Xy,

0<i<k 0<i<k 0<i<k

Suppose by contradiction that z; ¢ AX forall 0 < i < k: then z; ¢ AX UXG,
so the right-hand intersection in (A. 1) is disjoint from all X; and can be
rewritten ()<, ., Axi. This set is therefore open and (by (A.1)) closed, and
contains x but no other x;, contradicting the fact that A is connected. [

Lemma A.3. Let A be a connected topological space with closed singletons.
For any k > 1 and {xo,...,xx} € AFFY there exists 1 < jo < k such that

x; € Aiﬁj‘)} forallie{1,...;k} ~{jo}
We call this property Hy, or H(xo, {z1,...,2x}) to be specific.

Proof. We argue by induction. Property Hp is vacuously true. Assuming
Hj;_1 where & > 2, let us prove Hy by contradiction. We have

(A.Q) ﬂ A{IJ}C ﬂ A{%} m {%}U{x]})

1<5<k 1<5<k 1<5i<k
Suppose Hg(zg, {x1,...,z}) fails: that is, for all 1 < j <k,

(w1, o)~ {ag) ¢ AL
We claim that the right member of (A.2) then cannot contain any z; for

1 <4 < k: indeed that would imply z; € A{ 7} for all je{l, ... .k}~ {i},
hence the above relationship would yield

{ormd s ooy} ¢ A
for all j € {1,...,k} ~ {i}, contradicting Hy_1(x0, {z1,...,zx} ~ {z:}).
Therefore the rlght hand side of (A.2) can be written (), <<, Aio 7} which

by (A.2) turns out to be closed. It is also open, and contains xg but no
other x;: this contradicts connectedness of A. Therefore Hj, holds. (I

Proof of Fact A.1. We argue by induction on k to prove that A®) is con-
nected for any connected topological space A with closed singletons. The
case k = 1 is obviously true. For k > 2, suppose that (A’ )(k_l) is connected
for any connected A’ with closed singletons, and let us prove that A®) is
connected for any connected A with closed singletons.

Consider {xo,...,z;} € A¥*tD. By Lemma A.3, up to exchanging the
labels jg and k, we have x; € A{ 2} for all 1 < i < k-1, ie. all points
TQyeees Thol belong to the same connected component A" of A~ {z}. Since
A’(k_l) is connected, all (k — 1)-tuples {zo,...,zr—1} ~ {x;} for 0 < i < k
belong to the same connected component of (A ~ {z})*~ and so all k-
tuples {xo,...,zx} ~ {x;} for 0 < i < k belong to the same component
of A¥). But by Lemma A.2 one of these k-tuples (for i = ig) belongs to
the same component as {xg,...,zx—1}. Therefore all k-tuples contained
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in {zo,..
{33'0, ce

[Bal
[BM]

[Be]

[B1]
[B2]

(B3]

.,z } belong to the same component of A®) This is true for all

x5} € AFHD hence A is connected. O
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