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Impact of confined geometries on hopping and trapping of motile bacteria in porous media
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We use a random walk particle-tracking (RWPT) approach to elucidate the impact of porous media confine-
ment and cell-cell interactions on bacterial transport. The model employs stochastic alternating motility states
consisting of hopping movement and trapping reorientation. The stochastic motility patterns are defined based on
direct visualization of individual trajectory data. We validate our model against experimental data, at single-cell
resolution, of bacterial E. coli motion in three-dimensional confined porous media. Results show that the model
is able to efficiently simulate the spreading dynamics of motile bacteria as it captures the impact of cell-cell
interaction and pore confinement, which marks the transition to a late-time subdiffusive regime. Furthermore,
the model is able to qualitatively reproduce the observed directional persistence. Our RWPT model constitutes a
meshless simple method which is easy to implement and does not invoke ad hoc assumptions but represents the
basis for a multiscale approach to the study of bacterial dispersal in porous systems.

DOI: 10.1103/PhysRevE.103.012611

I. INTRODUCTION

Bacterial migration through heterogeneous porous media
is important for a wide range of processes, such as biore-
mediation, biofilm formation, and anticancer drug delivery
[1–4]. In natural environments, bacteria employ diverse move-
ment modalities while navigating through porous media that
characterize their migration [5]. Motility is the capability of
an organism to spontaneously perform independent moves,
which enables bacteria to explore space and other resources
and to forage or disperse. Bacterial transport, therefore, encap-
sulates processes that act across multiple spatial and temporal
scales, which are key not only for innovative applications
but also for their growth and interactions with the physical
environment [6].

Many bacteria actively swim via flagella or twitch over
surfaces. Disregarding the way they move, most observations
of bacterial motility are undertaken in bulk fluid to avoid
artifacts arising from surface and cell-cell interactions [7–9].
As a result, little is known about the effects that confined
porous spaces have on motility. A common assumption is that
bacteria perform linear short movements caused by collisions
with the medium solid boundaries. Interaction between cells
and cell-boundary collisions are thought to reorient cells,
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similar to tumbles for E. coli [1] or flicks and reversals for
V. alginolyticus [10], leading to a decreased diffusivity.

Traditionally, modeling the motility of many bacteria via
flagella movement in aqueous systems has been conceptu-
alized using two alternating movement periods due to the
stochastic nature of bacterial motion [11,12]. Models assume
that bacterial movement is composed of two modes: runs
consisting of a linear straight movement followed by tumbles
consisting of random changes in direction that mimic interac-
tion between cells and collisions with obstacles [11,13–15].
Other methods may include particle-tracking techniques that
rely on image segmentation algorithms [16], fitting cell’s path
curve to an evolving model [17], as well as non-Poissonian
run-and-tumble patterns [18], suggesting that at least one of
the steps in the regulation of reversal is thermodynamically
irreversible.

Numerical observations assume that cell’s movement is a
stochastic process [10,11,19], and the derivation of its descrip-
tive parameters requires clear discrimination of the stochastic
patterns that relies on the rules that dictate random models.
Randomwalk particle-tracking (RWPT) approaches have long
been used to model cell migration [17,20,21]. Although this
approach provides an expression for modeling cell migration,
in most cases, the movement of individual cells cannot be
attributed to a simple random walk behavior. Recent math-
ematical and modeling works have used modified random
walk models by introducing repelling, reflecting, or absorbing
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barriers, to account for bacterial interactions with solid bound-
aries and between cells [22–25]. Others intersperse two
turning events in strictly alternating order to reproduce cell
swimming directions. Despite some differences in the mi-
gration process modeled, these models commonly obviate
transient short-time dynamics in motility states or how the
diffusive dynamics depend on the run-and-tumble velocities
and the switching probabilities between the two states.

A detailed mathematical analysis of the motility properties
of microswimmers is essential for prediction of microbial
dispersal under realistic conditions. Based on existing theories
[26], we develop a two-state RWPT model that mimics and
describes the hopping and trapping experimental dynamics re-
ported in [27]. The model uses stochastic alternating motility
states derived from direct inspection of cells’ trajectory data.
The model highlights the coupling between a cell’s direction
and its speed in confined geometries. We successfully capture
the intermediate- and long-term spreading of E. coli in a
confined porous medium.

The paper is organized as follows. Section II describes the
experimental and data analysis methodology, as well as the
RWPT approach. Section III discusses the motility patterns
observed in the experimental visualization and presents the
modeling results. Finally, we conclude and give an outlook on
further expansion of our model in Sec. IV.

II. METHODOLOGY

In the following, first we summarize the experimental setup
presented by Bhattacharjee and Datta [27], whose data we
use to evaluate our model’s ability to reproduce the observed
motility patterns. Then we recall the approach to analyze
bacterial migration and discriminate between motility states.
Finally, we present a numerical model to reproduce the ob-
served findings in the experiment.

A. Experimental data

As detailed in [27,28], we use confocal microscopy to
visualize fluorescent E. coli (strain W3110) homogeneously
dispersed in transparent, jammed packings of hydrogel par-
ticles. The packings act as solid matrices with macroscopic
interparticle pores of average size λ = 1.9 or 3.6 μm that
the cells can swim through. The internal mesh size of each
hydrogel particle is much smaller than the individual cells
but large enough to allow unimpeded transport of nutrients
and oxygen, giving rise to homogeneous nutrient conditions
throughout the packing.

In each experiment, we disperse the cells within 4 mL of
a jammed hydrogel packing at 6 × 10−4 vol%, sufficiently
dilute to minimize intercellular interactions, crossing of cel-
lular trajectories, and any influence of nutrient consumption.
We confine each medium inside a sealed glass-bottom petri
dish, with a packing height of ∼1 cm, and add an overlying
thin layer of 750 μL liquid medium to prevent evaporation.
We then use a Nikon A1R+ inverted laser-scanning confocal
microscope with a temperature-controlled stage at 30◦C to
capture fluorescence images every 69 ms from an optical slice
of 79-μm thickness. The sampling interval of 69 ms is suffi-
ciently fast to uniquely identify cells, since they do not move

more than approximately three cell body lengths between
consecutive time points, while minimizing photobleaching of
the fluorescent signal. Further, to avoid any boundary effects,
all images are captured at least 100 μm from the bottom of the
container. Using this platform, we monitor bacterial motion
through the pore space, acquiring projected two-dimensional
movies within the porous media. To track the individual cells,
we then use a custom MATLAB script developed in-house
to identify and track each cell center using a peak finding
function with subpixel precision using the classic Crocker-
Grier algorithm [29]. We track cell motion for at least 10 s,
five times longer than the unconfined run duration but over
five times shorter than the cell division time, and focus our
analysis on cells that exhibit motility within the tracking time.

This platform enabled us to discover a new mode of motil-
ity exhibited by E. coli in porous media [27]. Instead of
moving via run-and-tumble dynamics with truncated runs, as
is often assumed, we found that the cells are intermittently
and transiently trapped in tight spots as they move through
the pore space. When a cell is trapped, it constantly reorients
its body until it is able to escape; it then moves in a directed
path through the pore space, a process we call hopping, until
it again encounters a trap.

B. Trajectory analysis

In order to perform behavior discrimination, several quan-
titative features have been proposed such as the average
velocity [1], moving average of incremental displacements
(MAID) [15], and turning events [30,31]. Here, we use the
MAID to distinguish between motility states in the extracted
bacterial trajectories from [27]. The MAID has performed
well in discriminating hopping and trapping modes com-
pared to other features in a limited number of bacterial
trajectories [15].

Differences in bacterial motility modes lead to significant
effects on their migration. For instance, bacterial trapping
produces a significant decrease in the effective swimming
speed, and thus a decrease in incremental displacement is
expected. By contrast, the incremental displacements during
the hopping mode increases [1,15]. Therefore, incremental
displacements, defined as the Euclidean distance between two
consecutive points in a cell trajectory, can be used quantita-
tively to discriminate between hopping and trapping states. In
our case, hopping and trapping states were identified by means
of bacterial speed as the threshold parameter before the MAID
was applied. The moving average of the incremental displace-
ments reduces noise effects in the incremental displacements
analysis given as

κt = 1

w

(w−1)/2∑
i=−(w−1)/2

dt+i, (1)

where w is the window size for calculating the moving av-
erage of the incremental distance κ at time t , and dt+i is the
Euclidean distance between consecutive time steps in a cell
trajectory. We extract the motility parameters that govern bac-
terial transport separately for the hopping and trapping modes
to characterize our mathematical model. In summary, when a
cell speed is above the ensemble trajectory average speed, the
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FIG. 1. Illustration of the trajectory of a cell during two succes-
sive steps.

cell is considered to be in a hop. On the other hand, if the cell
speed is below the ensemble trajectory average speed, the cell
is regarded to be in a trapping state. We chose this specific
parameter value because it provides a good comparison be-
tween the obtained classification of hopping and trapping and
the traditional runs and tumbles [15,31–33]. We performed a
sensitivity analysis of other criteria to discriminate between
motility states (e.g., deviation angle variance) and the re-
sulting statistical characteristics of the analyzed trajectories
were robust to variations as large as ∼10%. We determined
the marginal distribution of velocities for the hopping and
trapping modes from the trajectory analysis [15] to analyze
and understand the pore-scale cell motion, which constitutes
a central part in the developed model. The change in the trajec-
tory direction or body orientation, θ , with respect to the arrival
direction in a given time step is computed from the bearing
angle α from x(t ) to x(t + �t ) as the angle measured in the
clockwise direction from the line segment to the horizontal
line,

tanα(t ) = y(t + �t ) − y(t )

x(t + �t ) − x(t )
, (2)

where x(t ) = [x(t ), y(t )] is the position of the cell at time t
and �t is the experimental sampling interval. Figure 1 shows
the trajectory of a cell during two successive steps and how
we extract α and θ from the pathways of each cell obtained
from the particle-tracking module.

Our emphasis is on the comparison between simulations
and experimental data, therefore we assess the accuracy of
our numerical model based on the computed mean squared
displacement (MSD), given as

MSD(S ) = 〈|x(t + S ) − x(t )|2〉, (3)

where |x(t + S ) − x(t )| is the particle displacement between
two time points, t denotes the absolute time, and S is the
so-called lag time [1]. Additional information about the exper-
imentally observed bacterial behavior can be extracted from
the normalized velocity autocorrelation functionC,

C(S ) = 〈v(t + S ) · v(t )〉
〈v2(t )〉 , (4)

where v stands for the velocity.C can also be found by double
differentiation of the MSD.

C. Mathematical model

To describe quantitatively the dispersal dynamics that bac-
teria exhibit in [27], we propose the random walk model

x(t + �t ) = x(t ) + vm(t )�t +
√
2D�tξ(t ), (5)

where vm is the motile velocity vector, and the diffusion
coefficient D is approximated from the experimental data as

D = 〈[x(tm) − x(tm − S )]2〉
6tm

, (6)

where tm is the maximum observation time. D varies from
0.53 μm2/s for λ = 1.9 μm to 5.71 μm2/s for λ = 3.6 μm.
We substitute a shifted and scaled uniform [0, 1] random vari-
able

√
24D�t (U(0, 1) − 1/2) for the last term, whereU(0, 1)

is a vector of independent and identically distributed uniform
random variables between 0 and 1 [34,35]. This choice avoids
the costly numerical generation of Gaussian random numbers.
The central limit theorem guarantees that the sum of random
displacements is again Gaussian. Each particle represents a
single cell that moves at velocity vm(t ) ∼ vm(t )e(t ), where
the subscript m stands for the motility mode. The speed vm(t )
is the velocity of the cell and the unit vector e(t ) denotes the
direction of propagation at time t . The velocity magnitude
and direction are simulated according to

vm(t ) = vm(t )

(
cos(θm(t ))
sin(θm(t ))

)
, (7)

where θm(t ) is randomly chosen according to the turning-
angle distribution ph(θ ) or pt (θ ) in the hopping or trapping
state, respectively. While the speed vm(t ) is chosen from a
marginal velocity distribution that depends on the θ chosen in
each motility mode. This vm(t ) selection preserves the corre-
lation between θ and vm extracted from the trajectory analysis.
We use the methodology presented in [36,37] as the sampling
method to select θm and vm from their known distributions.

The transitions between the motility states are determined
based on the probability distributions obtained from the ob-
served experimental trajectories. We found that the observed
duration distribution of staying in the hopping state is well
fitted by an exponential distribution; moreover, while the ob-
served duration distribution of staying in the trapping state
shows a long nonexponential tail, an exponential distribution
provides a reasonable approximation for our computations.
These findings have been observed in other E. coli experi-
ments [5,33,38]. In our case, hopping times are approximated
to be exponentially distributed with a mean hopping time τh,
thus we use a hopping transition probability of the form

P(t < t + �t ) ∼ e−(t−t0 )/τh , (8)

where t − t0 is the time passed since the previous change
of state. Equation (8) describes the hopping probability; the
trapping transition probability is analogous. Note that the
probability of starting the motion in the hop or trap phase is
denoted Ph

0 and Pt
0, respectively, with

Pt
0 = 1 − Ph

0 . (9)

The choice of an initial fixed hop probability [39] for all the
particles showed no significant impact on the results here.
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FIG. 2. Top: Trajectory of one cell. Bottom: Normalized MAID
in which the color-coded line shows the initial position (blue) and
final position (yellow) in the cell trajectory. The dashed-dotted red
line delineates hopping from the trapping mode. The solid black line
corresponds to the MAID with a higher value of w.

The occurrence of a motility mode transition event is de-
termined through a Bernoulli trial based on the transition
probability, (8).

In our numerical setup, the bacterial transport problem
is solved with the RWPT simulator described, (5). As the
initial condition for simulations of both pore length experi-
ments analyzed, we consider uniform areal distributions of
particles from [10, 120]μm and [5, 70]μm, in x and y coordi-
nates, respectively. We implement bacterial confinement and
collective dynamics assuming physical interaction between
swimmers. When a particle is in the hopping mode and closer
than a cell body length, γ = 2 μm, to another particle, its
motility mode changes to the trapping mode with P = 1, as
a result of the collision [21,24,33,40].

III. RESULTS

In the following, we study the transport dynamics of the
experimental analysis in terms of the hopping and trapping
discrimination for bacterial motility states. First, we describe
the motility patterns for the evaluated bacterial states observed
in the experimental visualization, which are the building
blocks of the mathematical model presented in the previous
section.

A. Motility patterns

We analyzed 41 cell trajectories with an average length
of 12.42 s following the procedure detailed in the previous
section. A typical trajectory is shown in Fig. 2 (upper plot),
with the starting and final points, respectively, indicated by
blue and yellowmarks. The corresponding color-codedMAID
plot versus time in Fig. 2 (lower plot) shows hopping and
trapping discrimination based on the normalized ensemble
mean incremental displacement or, in other words, the cells’
ensemble mean velocity. Segments below 1 are identified as
trapping states, while segments above the normalized thresh-
old indicate that the cells are in the hopping mode. As for
window sizes in MAID features, w values of 5 to 21 were
tested to illustrate the impact of the w value in the results
to avoid artificial smoothing from higher w values. Results
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FIG. 3. Turn-angle distributions of the hopping (blue diamonds)
and trapping (red circles) mode from the smallest pore size (1.9 μm)
in the experimental data and their fitted distributions (solid and
dashed lines).

of this analysis show that w = 9 provides the best result in
differentiating the hopping and trapping modes. Nonetheless,
a window size of 21 (solid black line in Fig. 2, lower plot),
which implies a higher smoothing degree, provides optimal
results in reducing noise without losing relevant information
for bacterial motility state discrimination. The methodology,
thus, mitigates the error propagation in the evaluation of the
state discrimination in noisy data by optimizing bacterial
motility data and avoiding visual calibrated motility state dis-
crimination [33] from the empirical data.

Classical bacterial transport models fitted bacteria orienta-
tion angles undergoing run-and-tumble cycles using uniform
distributions [41]. Experimentally, this means that, when a cell
swims around rounded obstacles over a long enough time,
the probability density function of θ should be uniform, as
it eventually samples all values of the cell body orientation
angle (θ ) within the plane of that surface with equal proba-
bility. This is also true for the overall orientation angles of an
entire population of bacteria, as long as the cell trajectories
are independent and interactions between trajectories (such as
cell collisions or hydrodynamic interactions) are random with
no long-range correlations or event memory. This traditional
notion changes in the presence of chemical gradients, medium
confinement, or flow [15,27,31,42]. The results of the θ orien-
tation angle distribution from the experimental λ = 1.9 μm
shown in Fig. 3 suggest straight hops and reverse turns in
the trapping mode, which is consistent with the run-reverse
concept due to flagellar rotation [5,43]. We observe that the
key difference between hopping and trapping is the ability of
the cell to maintain its direction of motion during the course
of a hop, while when trapped, the cell reverses its orientation,
which allows bacteria to escape bead traps by reversing their
swim [43–45]. This feature sheds lights on the classical notion
that broadly distributed angles for the trapping mode indicate
that their motion is uniform randomly oriented. Therefore,
angular distributions in different motility modes cannot be
ignored, as they provide information on bacterial swimming
strategy. The turn-angle distribution for both modes is bi-
modal, with higher peaks near lower and higher values of
| θ |. The distribution parameters, μh = [0.02π, 0.88π] and
μt = [−0.94π, 0.89π], while σh and σt are [0.69, 0.94] and
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FIG. 4. Marginal velocity distribution for hopping (blue squares)
and trapping (red circles) states from the smallest pore size (λ =
1.9 μm) in the experimental data and their fitted gamma distribution
(solid and dashed lines, respectively) for |θ | = [0, 10) (upper plot)
and |θ | = [60, 70) (lower plot).

[0.85, 0.85], respectively, were found by fitting a Gaussian
mixture model to the data [46]. The bimodal distribution in
turn-angle distributions indicates that when a cell chooses a
new direction, it is most likely to choose a new direction not
very different from or opposite to the previous direction. This
distribution is qualitatively similar to the reported for E. coli
strains AW405 [47] and O157:H7 [48] and for Pseudomonas
putida [49,50]. We find similar behavior for λ = 3.6 μm, thus
we omit these data here and focus on the small pore size case.

Figure 4 shows the marginal velocity distributions from ex-
perimental data for λ = 1.9 μm for two |θ | ranges. We found
that the gamma distribution is the continuous distribution that
best fit the experimental marginal velocity distributions for
the hopping and trapping modes (Fig. 4). The gamma-fitted
distribution shows a smaller root mean square error than
other continuous distributions (log-normal, beta, generalized
extreme value) that were tested. This result is the one ex-
pected for motile bacteria and suggests signs of enhanced
transport processes over a scale larger than the pore size
[15,51]. It can be observed in Fig. 4 that, as expected, the
hopping state marginal distribution is slightly shifted to higher
values for lower |θ | ranges and thus shows a higher mean
velocity, v̄h,|θ |=[0,10) = 12.33 μm/s (Fig. 4, upper plot) than
for higher |θ | ranges, where v̄h,|θ |=[60,70) = 9.16 μm/s (Fig. 4,
lower plot). The overall mean velocity for the hopping state is
v̄h = 9.26 μm/s. The k and β parameters for the fitted gamma
distributions for the hopping state showed variations such
as 1.31 < k < 1.77 and 4.01 < β < 8.54. The trapping state
marginal distributions display small variations for the differ-
ent |θ | ranges, showing the highest, v̄t = 3.87 μm/s (k =
1.12 and β = 3.53), for |θ | = [10, 20) and the lowest, v̄t =
2.95 μm/s (k = 1.42 and β = 2.14), for |θ | = [120, 130),
with an overall v̄t = 3.22 μm/s.

The distributions of hop and trapping times are shown in
Fig. 5, where both modes are well fit by exponential distribu-
tions. Note that while there is some deviation in the tail of the
trapping distribution (consistent with a power law [28]), the
exponential fit provides a good first approximation. The mean
hop time τh is given by the average value of the experimentally
derived hop times, τh = 0.926 s for λ = 1.9 μm and τh =
0.804 s for λ = 3.6 μm. The lower value of τh for the greatest
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FIG. 5. Experimental distribution of the duration of staying in
the hopping (blue diamonds) and trapping (red circles) modes and
best-fitting exponential distributions (solid green and dashed black
lines).

λ is attributed to higher frequencies of short hops [31]. On
the other hand, the mean trapping time τt for λ = 1.9 and
λ = 3.6 μm are 0.44 and 0.42 s, respectively. The exponential
distribution is a simplifying assumption, which is, however,
crucial for the modeling calculations.

B. Model comparison to experimental results

Based on the information extracted from the trajectory
analysis, we simulate 5000 bacterial trajectories in the absence
of chemotaxis using the random walk algorithm presented
above. We validate the model against the experimental
results [27].

Results of the computed velocity autocorrelation from the
simulation and experimental data are shown in Fig. 6. Time is
made dimensionless by considering t ′ = t/th. For simplicity
of notation, we omit the primes in the following. We find
that the RWPT model provides a good description of the
experimental velocity autocorrelation function. In particular,
the model captures the shape of the experimental velocity
autocorrelation function including the reproduction of the
negative dip. This further justifies that the RWPT model used
is appropriate to describe the motility patterns of E. coli in a
confined geometry. We hypothesize that the quick decay and
negative peak observed inC are due to pore confinement. This

0 2 4 6 8 10

−0.5

0

0.5

1

t/τh

C

1.9 μm
Model

FIG. 6. Normalized experimental (dotted blue line) and model
(dashed red line) velocity autocorrelation function plotted as a func-
tion of the dimensionless time t/τh.
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FIG. 7. Bacterial directional persistence in terms of different
turning-angle ranges at λ = 1.9 μm for the hopping and trapping
modes. Experimental and modeling results are represented by sym-
bols and lines, respectively.

observation is supported by direct inspection of individual
trajectory data. A clear example of this is inferred from the
lower plot in Fig. 2, where the plot of κ shows that the cell
starts in the hopping mode but changes its motility mode
to trapping at t < τh. Traditionally, this behavior in C has
been described as the preconfined regime in RWPT models
in confined geometries [21,52,53].

We now discuss the model’s ability to reproduce bacterial
directional persistence to determine whether turning angle
ranges of the bacterial population affect the observed speed.
We split up our data set of 10 356 hopping and 13 086
trapping speeds for λ = 1.9 μm to create separate velocity
distributions for 18 different turning-angle ranges. Please note
that for our simulation model we fit the gamma distribution
as explained in the previous section to the velocities distri-
butions. Figure 7 shows the mean instant velocity of each
motility mode for different |θ | ranges. We find directional per-
sistence in experimental data in the hopping mode, as results
indicate that turning-angle ranges [0, 10) and [10, 20) show
higher mean velocities than the rest of the |θ | ranges. These
results support the idea that higher velocities correspond to
straight hops [27,47] and, thus, coupling between vh and |θ |.
At higher |θ | range intervals, we observe a decrease in mean
velocities in hops, which indicates that when cells performs
high-angle turns in the hopping mode they reduce their in-
stant velocity and that hops after cell reorientation are smaller
than the bacterial population mean. The model shows higher
average swimming speeds (v̄m) in the hopping mode. The
discrepancy between experimental and model observations
is attributed to a broader swimming speed sampling around
the mean in the experimental observations. Note that model
results for hopping approach the reported experimental v̄h
after θ̄h. On the other hand, Fig. 7 shows that the trapping
mode exhibits a more stable range of mean instant velocities
around the reported v̄t . We find good agreement between
model and experimental evidence. Our findings shed light
on the mechanisms underlying cell reorientation as E. coli
swimming is driven by the rotation of flagella. The resulting
reorientation is commonly modeled using rotational diffusion,
which implies a persistence that decreases exponentially with
the trapping duration [30,32] that fails to capture bacterial
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∼ t0.5
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3.6 μm
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FIG. 8. Evolution of the mean squared displacement (MSD)
computed for different pore sizes, 1.9 μm (upper plot) and 3.6 μm
(lower plot). The experimental MSD is represented by symbols in
both plots, and the RWPT simulation results for 1.9 μm (dashed red
line in upper plot) and 3.6 μm (solid green line in lower plot).

dispersion at late times. Moreover, the changes in mean instant
velocities according to |θ | that we observe do not result from
differences in trapping duration. Further imaging studies of
swimming cells with labeled flagella may be able to clarify
this observation.

Results of the computed MSD from both the experimental
and the simulated trajectories are presented in Fig. 8. At early
times, we observe that the experimental MSD for both pore
length experiments, t � τh, shows a superdiffusive regime
which our model is not able to capture as the MSD from
simulations exhibits diffusive behavior at early times. The
discrepancy between model and experiment can be attributed
to the use of the approximated D coefficient following (6)
in the diffusive step in (5), which does not quantify proper
spreading at t � τh. As t approaches τh, a transition to a dif-
fusive regime occurs. The transition happens because cell-cell
and cell-obstacle interaction effects increase, which affects
bacterial step lengths and, thus, their motility behavior. Please
note that the duration of superdiffusive motion decreases as
pore confinement increases (Fig. 8). This is observed by
direct comparison of the experimental MSDs for the two pore
sizes, which reveals that the superdiffusive behavior at λ =
3.6 μm (Fig. 8, lower plot) and λ = 1.9 μm (Fig. 8, upper
plot) lasts t = 0.5τh and t = 0.15τh, respectively. There is
good agreement between experimental and model results. At
late times, the emergence of a subdiffusive regime is observed
in the case of λ = 1.9 μm, where bacterial confinement leads
to nonlinear behavior, which is consistent with previous ob-
servations [54]. This subdiffusive phenomenon is delayed in
the larger pore size but is also expected for t 	 10. Note that
we restricted our experimental analysis to 10 s because of
noisy data at longer times. The late-time subdiffusive regime
is reflected in the evolution of the experimental MSD, which
increases as ∼t1/2, shown in Fig. 8 (upper plot). The nonlinear
increase in the MSD is well described by the RWPT model,
as it captures interaction between cells and pore confinement,
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which affects bacterial motility. In addition, the late-time
agreement between model and experimental data in Fig. 8
(upper plot) stems from the correct characterization of the
experimental directional persistence in the trapping mode as
subdiffusive dynamics are commonly attributed to trapping
states [54,55]. Analysis of the MSD of individual cells for λ =
1.9 μm reveals that subdiffusive behavior may be transient
and collapses back to normal diffusion in some cells. This
effect is masked in averaging. The transient subdiffusive be-
havior has been observed in experimental cases of obstructed
diffusion [56] and computational models [25] at sufficiently
long times. We remark that our analysis is limited due to the
finite-size effect at long times, thus we do not observe such
transient behavior in the global MSD. A detailed analysis of
this limitation is discussed in the Appendix.

The RWPT model presented here is able to accurately
model bacterial transport in confined porous media in an
effective way. Our RWPT model differs from previous mod-
eling attempts using two transport modes, which neglect the
angular distribution in the trapping mode and use only the two
preferred turning angles in this mode to model cell transport
[5,31]. Most importantly, our proposed approach provides a
means to define a quantitative measure to understand the tran-
sition spectrum between the hopping and the trapping modes
and its impact on different variations of trajectory.

IV. CONCLUSIONS

We use pattern recognition techniques in a direct visual-
ization of bacterial migration to extract statistical parameters
used as input for the trajectory simulations. The analysis
of turn-angle distributions in combination with speed shows
coupling, which suggests directional persistence in bacterial
trajectories. This means that when cells are moving fast the
probability of staying on a directed path through the pore
space is high. Moreover, when cells encounter a trap they re-
orient its body until it is able to escape with an almost-uniform
distribution of speed. Inspection of the transport dynamics
shows that for both hopping and trapping modes, the gamma
distribution fits the marginal velocity best, while an exponen-
tial distribution shows that it describes well the hopping and
trapping-time distributions when used as an approximation.
These observations thus contradict the paradigm of run-and-
tumble motility which traditionally is assumed to persist in a
porous medium [1] and clarifies the impact of porous medium
confinement on bacterial motility.

Our RWPT model describes well the transport dynamics
of motile bacteria observed in the experimental visualization
analyzed, as it takes into account the constraints imposed by
the device itself and its obstacles, as well as cell-cell colli-
sions, which may induce the subdiffusive behavior observed
in the smaller pore size. Moreover, the model provides a good
description of the observed MSD and velocity autocorrelation
functions. This is further justification that the RWPT approach
is appropriate to describe the motility patterns of E. coli
in confined porous media. The approach used imposes no
statistical restrictions on the stochastic processes represent-
ing bacterial spatial random increments. Each particle moves
based on alternating motility states based on the information
extracted from the trajectory analysis and Brownian diffusion.

The RWPT framework used can also provide a systematic
approach to extract knowledge of and insights into bacterial
motility that leads to a better understanding of bacterial be-
havior at larger scales.
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APPENDIX: FINITE-SIZE EFFECTS ON
EXPERIMENTAL DATA

We illustrate here the full evolution of the experimental
global MSD (Fig. 9), which suggests that a late diffusive
regime arises after the subdiffusive behavior. However, at
these long times where the transition is expected to occur, we
lost ∼30% of the cells tracked at λ = 1.9 μm and ∼25% at
λ = 3.6 μm; such data reduction affects the MSD observed,
and consequently noisy data appear. This limitation prevents
us from claiming that the subdiffusive behavior is transient
and collapses back to normal diffusion. On the other hand,
the model captures such subdiffusion transiency and predicts
a diffusive regime at t 	 τh, however, the crossover time at
which our RWPT converges to the diffusive behavior cannot
be verified against our experimental data.
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FIG. 9. Full evolution of the mean squared displacement (MSD)
computed for different pore sizes, 1.9 μm (upper plot) and 3.6 μm
(lower plot). The experimental MSD is represented by symbols in
both plots, and the RWPT simulation results for 1.9 μm (dashed red
line in upper plot) and 3.6 μm (solid green line in lower plot).
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