POLYHEDRA INSCRIBED IN A QUADRIC
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ABSTRACT. We study convex polyhedra in three-space that are inscribed in
a quadric surface. Up to projective transformations, there are three such
surfaces: the sphere, the hyperboloid, and the cylinder. Our main result is
that a planar graph T' is realized as the 1-skeleton of a polyhedron inscribed
in the hyperboloid or cylinder if and only if I' is realized as the 1-skeleton of
a polyhedron inscribed in the sphere and I admits a Hamiltonian cycle. This
answers a question asked by Steiner in 1832.

Rivin characterized convex polyhedra inscribed in the sphere by studying
the geometry of ideal polyhedra in hyperbolic space. We study the case of
the hyperboloid and the cylinder by parameterizing the space of convex ideal
polyhedra in anti-de Sitter geometry and in half-pipe geometry. Just as the
cylinder can be seen as a degeneration of the sphere and the hyperboloid,
half-pipe geometry is naturally a limit of both hyperbolic and anti-de Sitter
geometry. We promote a unified point of view to the study of the three cases
throughout.
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1. INTRODUCTION AND RESULTS

1.1. Polyhedra inscribed in a quadric. According to a celebrated result of
Steinitz (see e.g. [43, Chapter 4]), a graph I is the 1-skeleton of a convex polyhedron
in R? if and only if I' is planar and 3-connected. Steinitz [38] also discovered,
however, that there exists a 3—connected planar graph which is not realized as the
1-skeleton of any polyhedron inscribed in the unit sphere S, answering a question
asked by Steiner [37] in 1832. An understanding of which polyhedral types can
or can not be inscribed in the sphere remained elusive until Hodgson, Rivin, and
Smith [22] gave a full characterization in 1992. This article is concerned with
realizability by polyhedra inscribed in other quadric surfaces in R3. Up to projective
transformations, there are two such surfaces: the hyperboloid H, defined by 2% +
23 — 2% = 1, and the cylinder C, defined by 2% + 23 = 1 (with z3 free).

Definition 1.1. A convex polyhedron P is inscribed in the hyperboloid H (resp.
the cylinder C) if PN H (resp. PN C) is exactly the set of vertices of P.

If a polyhedron P is inscribed in the cylinder C, then P lies in the solid cylinder
22 + 23 < 1 (and x3 free), with all points of P except its vertices lying in the
interior. A polyhedron P inscribed in the hyperboloid H could lie in (the closure
of) either complementary region of R?\ H. However, after performing a projective
transformation, preserving H and exchanging the two complementary regions of
R? \ H, we may (and will henceforth) assume that all points of P, except its
vertices, lie in the interior of the solid hyperboloid 7% + x3 — 23 < 1.

Recall that a Hamiltonian cycle in a graph is a closed path visiting each vertex
exactly once. We prove the following result, which provides an answer to Question
77 in Steiner’s book [37] about the possibility of realizing a polyhedron as inscribed
in a sphere or another quadric.

Theorem 1.2. Let I' be a planar graph. Then the following conditions are equiv-
alent:

(C): T is the 1-skeleton of some convex polyhedron inscribed in the cylinder.
(H): T is the 1-skeleton of some convex polyhedron inscribed in the hyperboloid.
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(S): T is the 1-skeleton of some convex polyhedron inscribed in the sphere and
' admits a Hamiltonian cycle.

Recall that the projective model for hyperbolic 3-space H? is given by the space
of lines in R®! which have negative signature, where R%! denotes R* equipped with
a quadratic form of signature (3,1). The quadratic form defines a metric of constant
negative curvature on H?. Viewed in an appropriate affine chart, H? is simply the
unit ball 22 + 22 + 23 < 1, with the sphere S describing the projective boundary
OH3. In this model, projective lines and planes intersecting the ball correspond to
totally geodesic lines and planes in H3. Therefore a convex polyhedron inscribed
in the sphere is naturally associated to a convex ideal polyhedron in the hyperbolic
space H3.

Following the pioneering work of Andreev [2, 3], Rivin [32] gave a parameteriza-
tion of the deformation space of such ideal polyhedra in terms of dihedral angles. As
a corollary, Hodgson, Rivin and Smith [22] showed that deciding whether a planar
graph I' may be realized as the 1-skeleton of a polyhedron inscribed in the sphere
amounts to solving a linear programming problem on I'. To prove Theorem 1.2, we
show that, given a Hamiltonian path in I'; there is a similar linear programming
problem whose solutions determine polyhedra inscribed in either the cylinder or
the hyperboloid.

Just as polyhedra inscribed in a sphere can be interpreted as ideal polyhedra in
the 3-dimensional space H?, polyhedra inscribed in a one-sheeted hyperboloid can
be interpreted as ideal polyhedra in the 3—dimensional anti-de Sitter space AdS®.
Similarly to the projective model for H?, the projective model for AdS? is given by
the set of lines in R?%? with negative signature, where R?? denotes R* now equipped
with a quadratic form of signature (2,2). Similarly as in H?, the quadratic form
defines a metric on AdS? of constant negative curvature, but unlike in H?, this
metric is indefinite, of signature (2,1). Hence AdS? is a Lorentzian analogue of H?®.
Topologically, AdS? is a solid torus. Unlike H?, the projective model of AdS? does
not fit inside a single affine chart. The solid hyperboloid % + 2% —23 < 1 in R3 gives
a picture of the projective model of most of AdS®. The full affine lines contained
inside the hyperboloid close up at infinity along a copy of the hyperbolic plane,
which is the remaining piece of AdS® not seen in this affine chart. As in hyperbolic
geometry, projective lines and planes intersecting this solid hyperboloid correspond
to geodesics in AdS3. Therefore a convex polyhedron inscribed in the hyperboloid is
naturally associated to a convex ideal polyhedron in the anti-de Sitter space AdS?,
which is a Lorentzian analogue of hyperbolic space.

Similarly, the solid cylinder 2% + 23 < 1 (with z3 free) in an affine chart R?
of RP? gives the projective model for half-pipe (HP) geometry. Therefore a con-
vex polyhedron inscribed in the cylinder is naturally associated to a convex ideal
polyhedron in the half-pipe space HP?. Half-pipe geometry, introduced by Dan-
ciger [14, 15, 16], is a transitional geometry which, in a natural sense, is a limit
of both hyperbolic and anti-de Sitter geometry. In order to prove Theorem 1.2 we
study the deformation spaces of ideal polyhedra in both AdS® and HP? concur-
rently. By viewing polyhedra in HP? as limits of polyhedra in both H? and AdS?,
we are able to translate some geometric information between the three settings. In
fact we are able to give parameterizations (Theorems 1.4, 1.5 and Theorem 1.9) of
the spaces of ideal polyhedra in both AdS? and HP? in terms of geometric features
of the polyhedra. This, in turn, describes the moduli of convex polyhedra inscribed
in the hyperboloid and the moduli of convex polyhedra inscribed in the cylinder,
where polyhedra are considered up to projective transformations fixing the respec-
tive quadric. It is these parameterizations which should be considered the main
results of this article; Theorem 1.2 will follow as a corollary.
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FIGURE 1. A polyhedron inscribed in the hyperboloid (left) and
a combinatorial equivalent polyhedron inscribed in the cylinder
(right). The 1-skeleton of any such polyhedron admits a Hamil-
tonian cycle which we call the equator (red).

1.2. Rivin’s two parameterizations of ideal polyhedra in H3. Rivin gave two
natural parameterizations of the space of convex ideal polyhedra in the hyperbolic
space H3?. Let P be a convex ideal polyhedron in H?, let E denote the edges of
the 1-skeleton of P, and let P* denote the Poincaré dual of P. We denote by e*
the edge of the 1-skeleton of P* dual to an edge e € E. Then the function § € RF
assigning to each edge its dihedral angle satisfies the following three conditions.

(1) 0 < f(e) < for all edges e € E.

(2) If e}, ..., e; bound a face of P*, then f(e1) + --- + 0(ey) = 2m.

(3) If ef,...,ej form a simple circuit which does not bound a face of P*, then
Oe1) +---+0(ex) > 2m.

Rivin [32] shows that, for an abstract polyhedron P, any assignment of weights 6
to the edges of P that satisfy the above three conditions is realized as the dihe-
dral angles of a unique (up to isometries) non-degenerate ideal polyhedron in H?.
Further the map taking any ideal polyhedron P to its dihedral angles 6 is a home-
omorphism onto the complex of all weighted planar graphs satisfying the above
linear conditions. This was first shown by Andreev [3] in the case that all angles
are acute.

The second parameterization [31] characterizes an ideal polyhedron P in terms
of the geometry intrinsic to the surface of the boundary of P. The path metric
on JP, called the induced metric, is a complete hyperbolic metric on the N-times
punctured sphere ¥ n, which determines a point in the Teichmiiller space % n.
Rivin also shows that the map taking an ideal polyhedron to its induced metric is
a homeomorphism onto 7 .

1.3. Two parameterizations of ideal polyhedra in AdS3. AdS geometry is
a Lorentzian analogue of hyperbolic geometry in the sense that the anti-de Sit-
ter space AdS™ has all sectional curvatures equal to —1. However, the metric is
Lorentzian (meaning indefinite of signature (n—1, 1)), making the geometry harder
to work with than hyperbolic geometry, in some ways. For our purposes, it is most
natural to work with the projective model of AdS? (see Section 2.2), which iden-
tifies AdS® with an open region in RP?, and its projective boundary dAdS? with
the boundary of that region. The intersection of AdS? with an affine chart is the
region 27 + 23 — 2% < 1 bounded by the hyperboloid H. The projective boundary
OAdS?, seen in this affine chart, is exactly H.
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Let P be a convex ideal polyhedron in AdS? with N vertices. That P is ideal
means that the closure of P in AdS® U AdS? is a polyhedron whose intersection
with OAdS? is precisely its vertices. That P is convex means that after removing
a space-like plane in its complement, P is geodesically convex. Alternatively, P
is convex if and only if it is convex in some affine chart of RP®. Unlike in the
hyperbolic setting, there are restrictions (Proposition 2.8) on the positions of the
N vertices. Some choices of N vertices on the projective boundary dAdS? do not
determine a convex ideal polyhedron. Roughly, this is because the hyperboloid
H has mixed curvature and the convex hull of a collection of vertices on H may
contain points both inside and outside of H. All facets of P are spacelike, meaning
the restriction of the AdS metric is positive definite. Therefore, by equipping AdS?
with a time-orientation, we may sort the faces of P into two types, those whose
normal is future-directed, and those whose normal is past-directed. The future-
directed faces unite to form a disk (a bent ideal polygon), as do the past-directed
faces (Proposition 2.9). The edges which separate the past faces from the future
faces form a Hamiltonian cycle, which we will refer to as the equator of P. A
marking of P will refer to an identification, up to isotopy, of the equator of P
with the standard N-cycle graph so that the induced ordering of the vertices is
positive with respect to the orientation and time orientation of AdS®. We let
AdSPolyh = AdSPolyh, denote the space of all marked, non-degenerate convex
ideal polyhedra in AdS? with N vertices, considered up to orientation and time-
orientation preserving isometries IsomoAdS? of AdS3. The term ideal polyhedron in
AdS? will henceforth refer to an element of this space. The topology on AdSPolyh
is induced from the quotient of the space of pairwise-distinct N-tuples of points in
OAdS? by the action of IsomAdS?, which is proper. Let ¥y x denote two-sphere
with N marked points, which we will refer to as punctures. Fix an orientation
on Xy n, a simple loop v visiting each marked point once, and label the marked
points in order along the path. We call the polygon on the positive side of 7 the
top and the polygon on the negative side the bottom of ¥y . Then, each ideal
polyhedron P is naturally identified with ¥y via the (isotopy class of the) map
taking each ideal vertex to the corresponding puncture and the equator to . This
identifies the union of the future faces of P with the top of ¥ y and the past faces
with the bottom. See Figure 2. We let Graph(Xy n,7) denote the collection of
three-connected graphs embedded in Yo n, up to isotopy, whose vertices are the
N punctures and whose edge set contains the edges of 7. Via the marking, any
ideal polyhedron P realizes the edges of a graph in Graph(Xg n,7) as a collection
of geodesic lines either on the surface of or inside of P. In particular, there is a
unique graph I' € Graph(3y n,7) whose edges are realized as the 1-skeleton of P;
we will say T is realized as the 1-skeleton of P, or by abuse that I' is the 1-skeleton
of P.

Consider a space-like oriented piecewise totally geodesic surface in AdS? and let
T and T’ be two faces of this surface meeting along a common edge e. We measure
the exterior dihedral angle at e as follows. The group of isometries of AdS? that
pointwise fix the space-like line e is a copy of O(1, 1), which should be thought of as
the group of hyperbolic rotations or Lorentz boosts of the time-like plane orthogonal
to e. By contrast to the setting of hyperbolic (Riemannian) geometry, O(1,1) has
two non-compact components. Therefore there are two distinct types of dihedral
angles possible, each of which is described by a real number rather than an element
of the circle. Let ¢ be the amount of hyperbolic rotation needed to rotate the
plane of T' into the plane of T. The sign of ¢ is defined as follows. The light-
cone of e locally divides AdS? into four quadrants, two of which are space-like and
two of which are time-like. If 7" and T” lie in opposite space-like quadrants, then
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FIGURE 2. A marking of an ideal polyhedron P (right) in AdS? is
a labeling of the ideal vertices in order going around the equator
in the positive direction. It defines an identification of ¥ y with
P that takes v to the equator (red) and the top (resp. bottom)
hemisphere of ¥ n (left) to the union of the future (resp. past)
faces of P. The l-skeleton of P (right, blue and red) defines a
graph I € Graph(Zo, n,7) (left, blue and red).

we take ¢ to be non-negative if the surface is convex along e, and negative if the
surface is concave along e. If T and T” lie in the same space-like quadrant, we
take ¢ to be non-positive if the surface is convex at e, and positive if the surface
is concave at e. Therefore, the dihedral angles along the equator of a convex ideal
polyhedron P are negative, while the dihedral angles along the other edges are
positive. Note that this definition of angle, and in particular the sign convention,
agrees with a natural alternative definition in terms of cross-ratios (see Section 2).
Let T’ € Graph(Xg,n,7) be the 1-skeleton of P, and let E denote its edges. We will
show (Proposition 1.16) that the function § € R¥ assigning to each edge of T' the
dihedral angle along the corresponding edge of P satisfies the following triple of
conditions, which we will call y-admissibility. It will be convenient to express the
conditions in terms of the dual graph I'* C ¥y n, which determines a cellulation
(the polyhedral type dual to P) of the two-sphere each face of which contains a
unique puncture. Note that the edges F/(I") are in one-one correspondence with the
edges E(I').

Definition 1.3. Let I € Graph(Xo n,7), and let I'™* C ¥y n denote the dual graph.
For each edge e € E(T') denote the corresponding dual edge by e* € E(I'*). A
function § € RF(T') is said to be y—admissible if it satisfies the following three
conditions:

(i) O(e) < 0 if e is an edge of the equator v, and (e) > 0 otherwise.

(i) If ef,...,e; bound a face of I'*, then 0(e;) + --- + 6(ex) = 0.
(iii) Ifej,...,e; form a simple circuit which does not bound a face of I'*, and such

that exactly two of the edges are dual to edges of 7, then (ey)+---+6(ey) > 0.

For any T € Graph(3g n,7) with edge set E = E(T'), we define Ap to be the
space of all functions § € RE which are y—admissible. Define AdSPolyhy to be
the space of ideal polyhedra in AdS? with 1-skeleton identified with T, and let
\Illéds : AdSPolyhp — Ar denote the map assigning to an ideal polyhedron its
dihedral angles. All of the maps \P?ds may be stitched together into one. Let A
denote the disjoint union of all Ar glued together along faces corresponding to
common subgraphs. Then, we show:

Theorem 1.4. The map WA : AdSPolyh — A, defined by WAIS(P) = WRIS(P) if
P € AdSPolyhy, is a homeomorphism.

The equivalence of conditions (H) and (S) in Theorem 1.2 follows directly from
this theorem and from Rivin’s theorem (see Section 1.2). Indeed, it is an easy
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exercise in basic arithmetic to convert any weight function # € Ar into one that
satisfies conditions (1), (2), and (3) of Rivin’s theorem. If there is a Hamiltonian
cycle v in the 1-skeleton, it is also easy to convert any weight function on the
edges of a graph I' that satisfies Rivin’s conditions into a weight function which is
~v—admissible (and is in Arp). See Section 7.4 for the detailed proof.

We also give a second parameterization of ideal polyhedra in terms of the geom-
etry intrinsic to their boundaries. Here we parameterize the space AdSPolyhy =
AdSPolyh; U polyg of all marked polyhedra with N vertices including both the
non-degenerate polyhedra AdSPolyhy and the degenerate (or collapsed) polyhedra,
parameterized by the space polyg of marked ideal polygons in H? with N vertices.
These spaces are each topologized as quotients of subspaces of the pairwise distinct
N-tuples in JAdS?. Any space-like plane in AdS? is isometric to the hyperbolic
plane H2. Therefore, similar to the setting of hyperbolic 3-space, the path metric on
the surface of P is a complete hyperbolic metric on the N-times punctured sphere
Yo v determining a point in the Teichmiiller space 7 v, again called the induced
metric. We show the following result:

Theorem 1.5. The map ® : AdSPolyhy — % v, taking a convez ideal polyhedron
P in AdS? to the induced metric on OP, is a diffeomorphism.

The (weaker) local version of this theorem is a crucial ingredient in proving Theo-
rem 1.4.

Before continuing on to half-pipe geometry and the cylinder, let us state two
questions about potential generalizations of Theorems 1.4 and 1.5. In the proofs
of Theorems 1.4 and 1.5, many of our techniques should apply in the setting of
hyperideal polyhedra, i.e. polyhedra whose vertices lie outside of the hyperboloid,
but all of whose edges pass through the hyperboloid. Like ideal polyhedra, hyper-
ideal polyhedra in AdS® have a well-defined “equator” that forms a Hamiltonian
path in their 1-skeleton, and the induced metric on their boundary is a complete
hyperbolic metric (of infinite area if at least one vertex is strictly hyperideal). In
the setting of hyperbolic geometry, hyperideal polyhedra may be described in terms
of their dihedral angles [4] or in terms of their induced metrics [33]. This suggests
the following questions on hyperideal polyhedra in the Anti-de Sitter setting.

Question 1.6. Let ¥y be the 2-sphere with N points (punctures) removed.
Given a complete hyperbolic metric h on X n, possibly of infinite volume, is there
a unique hyperideal AdS polyhedron P so that the induced metric on the boundary
of P is isometric to h?

Question 1.7. Let I' € Graph(Xg v,7), and let I'* C 3¢ ny denote the dual graph.
For each edge e € E(I') denote the corresponding dual edge by e* € E(I'*). Let
6 € RE(T"). Suppose that

(i) 6(e) < 0 if e is an edge of 7, and 6(e) > 0 otherwise.

(ii) If ef,..., e} bound a face of I'*, then 6(e1) + - -- + 6(ex) > 0.

(iii) Ifej,...,e; form a simple circuit which does not bound a face of I'*, and such
that exactly two of the edges are dual to edges of 7, then §(e1 )+ - -+6(ex) > 0.
(iv) If e}, ..., e} form a simple path starting and ending on the same face of P*,

but not contained in the boundary of that face, and such that exactly one of
the edges is dual to an edge of «, then 6(ey) +--- 4+ 0(e) > 0.
Is there a unique hyperideal polyhedron P in AdS? with 1-skeleton I' and with
equator isotopic to v so that the dihedral angles are given by 67

Condition (iv) in Question 1.7 is the analog of a condition occurring in the de-
scription of the dihedral angles of hyperideal polyhedra in hyperbolic space [4].
Given a hyperideal polyhedron in AdS?, a doubling argument along a truncation
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face dual to a hyperideal vertex shows that the Condition (iv) is implied by Con-
dition (iii). That Condition (iv) is satisfied at an ideal vertex follows easily from
(the equality case of) Condition (ii). In particular, for ideal polyhedra, Condition
(iv) is implied by Conditions (i),(ii), and (iii), so it need not be stated as a separate
condition in that setting.

Remark 1.8 (Relationship with the bending conjecture). The statements of The-
orems 1.4 and 1.5 bear close resemblance to a conjecture of Mess [28] in the setting
of globally hyperbolic Cauchy compact AdS space-times. Mess conjectured, by
analogy to a related conjecture of Thurston in the setting of quasifuchsian groups,
that such a spacetime should be determined uniquely by the bending data or by
the induced metric on the boundary of the convex core inside the spacetime. There
are existence results known in both cases, due to Bonsante—Schlenker [12] and Di-
allo [19] respectively, but no uniqueness or parameterization statement is known in
this setting. Ultimately, Theorems 1.4 and 1.5 on the one hand and Mess’s con-
jecture on the other hand boil down to understanding the connection between the
geometry of a subset of OAdS? and the geometry of its convex hull in AdS3. It
is natural to ask whether Mess’s conjecture and our theorems on ideal polyhedra
might naturally coexist as part of some larger universal theory relating the geom-
etry of a convex spacetime in AdS?® to its asymptotic geometry at the projective
boundary.

1.4. A parameterization of ideal polyhedron in HP?. Half-pipe (HP) geom-
etry is a transitional geometry lying at the intersection of hyperbolic and anti-de
Sitter geometry. Intuitively, it may be thought of as the normal bundle of a codi-
mension one hyperbolic plane inside of either hyperbolic space or anti-de Sitter
space. In [15, 16], the first named author constructs paths of three-dimensional
projective structures on certain manifolds which transition from hyperbolic ge-
ometry to AdS geometry passing through an HP structure. In our setting, it is
informative to imagine families of polyhedra in projective space whose vertices lie
on a quadric surface evolving from the sphere to the hyperboloid passing through
the cylinder. Indeed, the notion of transition is also useful for proving several key
statements needed along the way to the main theorems.

Half-pipe geometry is a homogeneous (G, X)-geometry. The projective model
X = HP? for half-pipe space is simply the solid cylinder 2?2 + 2% < 1 in the affine
Z1-2o-x3 coordinate chart R3. There is a natural projection w : HP? — H2, seen,
in this model, as the projection of the solid cylinder to the disk. The projection is
equivariant taking projective transformations which preserve the cylinder to isome-
tries of the hyperbolic plane. The projection also extends to take the projective
boundary 9HP? = C to the boundary dH? of the hyperbolic plane. The structure
group G is the codimension one subgroup of all projective transformations preserv-
ing the cylinder which preserves a certain length function along the fibers of this
projection. By pullback, the projection w determines a metric on HP? which is
degenerate along the fiber direction. In this metric, all non-degenerate 2-planes are
isometric to the hyperbolic plane.

Let P be a convex ideal polyhedron in HP? with N vertices. That P is ideal
means that the closure of P in RP? is a polyhedron contained in HP? U9HP? whose
intersection with OHP? is precisely its vertices. Since HP? is contained in an affine
chart, the notion of convexity is defined to be the same as in affine space. Then
the N vertices project to IV distinct points on the ideal boundary of the hyperbolic
plane (else one of the edges of P would be contained in dHP?, which we do not
allow). Therefore P determines an ideal polygon p = w(P) in the hyperbolic
plane. Further, all facets of an ideal polyhedron in HP? are non-degenerate; in
particular the faces of P are transverse to the fibers of w. By equipping HP?
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with an orientation of the fiber direction, we may sort the faces of P into two
types, those for which the outward pointing fiber direction is positive, and those
for which it is negative. We call such faces positive or negative, respectively. The
positive faces form a disk (a bent polygon) as do the negative faces. The edges
of P which separate a positive face from a negative face form a Hamiltonian cycle
in the 1-skeleton of P, again called the equator. As in the AdS setting, we let
HPPolyh = HPPolyh; denote the space of all marked non-degenerate convex ideal
polyhedra in HP? with N vertices, up to orientation preserving and fiber-orientation
preserving transfomations. Again, the boundary of each ideal polyhedron P is
naturally identified with 3¢ n via the (isotopy class of) map taking each ideal vertex
to the corresponding puncture and the equator to «. Under this identification, the
union of the positive faces (resp. the union of the negative faces) is identified with
the top (resp. bottom) disk of 3¢ y. Via the marking, any ideal polyhedron P
realizes the edges of a graph I' € Graph(Zo n,7) as a collection of geodesic lines
either on the surface of or inside of P.

The angle measure between two non-degenerate planes in HP? can be defined
in terms of the length function on the fibers. Alternatively, one should think of a
non-degenerate plane in HP? as an infinitesimal deformation of some fixed central
hyperbolic plane in H? or AdS?. As such, the angle between two intersecting
planes in HP? should be thought of as an infinitesimal version of the standard
angle measure in H? or AdS?. As in the AdS setting, we must distinguish between
two types of dihedral angles: two non-degenerate half-planes meeting along a non-
degenerate edge e either lie on opposite sides of or the same side of the degenerate
plane (which is the union of all degenerate lines) passing through e. As in the
AdS setting, we take the convention that the dihedral angles along the equator of a
convex ideal polyhedron P are negative, while the dihedral angles along the other
edges are positive. Let I' be the 1-skeleton of P with ~ the subgraph corresponding
to the equator. A simple argument in HP geometry (Section 3.5) shows that the
function @ assigning to each edge of P the exterior dihedral angle at that edge is
~v—admissible (Definition 1.3); in other words # € A. Define HPPolyh to be the
space of ideal polyhedra in HP? with 1-skeleton identified with I € Graph(Zg n,7)
and let \IIFP : HPPolyhy — Ar be the map assigning to an ideal polyhedron its
dihedral angles. Then all of the maps WHP : HPPolyh. — Ar may be, again,
stitched together into one. We show:

Theorem 1.9. The map WHP : HPPolyh — A, defined by WHP(P) = WHP(P), if
P € HPPolyhy, is a homeomorphism.

The equivalence of conditions (C) and (H) in Theorem 1.2 follows from Theorem 1.9
and Theorem 1.4. Note that there is no direct analogue of Theorem 1.5 in the
half-pipe setting. Indeed, the induced metric on a ideal polyhedron in HP? is
exactly the double of the ideal polygon w(P) across its boundary. The image of
the map ®% : HPPolyhy — 9 n, taking a convex ideal polyhedron P in HP? to
the induced metric on 0P, is the half-dimensional subspace Z of % y consisting
of those hyperbolic metrics which are fixed by reflection across the equator, see
Section 3. Since the dimension of 2 is half that of HPPolyh,,, ®f % fails to be
injective. Intuitively, the induced metric on P does not determine P because as a
polyhedron in H? (or AdS?) collapses onto a plane, the induced metric only changes
to second order: the path metric on a plane bent by angle 8 differs from the ambient
metric only to second order in 6.

1.5. Strategy of the proofs and organization. There is a natural relationship
between bending in AdS? and earthquakes on hyperbolic surfaces. We describe
this relationship, in our context of interest, in Section 2. Here is a synopsis. Via
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the product structure on the projective boundary dAdS? = RP! x RP', an ideal
polyhedron P € AdSPolyhy is determined by two ideal polygons p; and pg in
the hyperbolic plane, each with N labeled vertices (see Section 2.3). The two
metrics mp,mr € Jp n obtained by doubling p; and pgr respectively are called
the left metric and right metric respectively. Given weights 6 on a graph ' €
Graph(Xo n,7), the pair pr,pr determine an ideal polyhedron P with bending
data @ if and only if the left and right metrics satisfy:

(1) mpr = Eyymp,

where Fy is the shear map defined by shearing a surface along the edges of T"
according to the weights given by 6 (where a positive weight means shear to the
left, and a negative weight means shear to the right). Directly solving for py, and
pr given 6 is very difficult. However, the infinitesimal version of this problem is
more tractable; this is the relevant problem in the setting of half-pipe geometry.

An ideal polyhedron P € HPPolyhy is determined by an N-sided ideal polygon
p in the hyperbolic plane and an infinitesimal deformation V' of p (see Section 2).
Doubling yields an element m of the Teichmiiller space % y and an infinitesimal
deformation W of m which is tangent to the sub-space of doubled ideal polygons.
The data p,V determine an ideal polyhedron P € HPPolyh with bending data 6 if
and only if the infinitesimal deformation W is obtained by infinitesimally shearing
m along the edges of I according to the weights 6. In Section 3, we show how to
solve for the polygon p given § € Ar by minimizing an associated length function.
In Section 3.5, we apply the results of Section 3 to directly prove Theorem 1.9, that
WHP is a homeomorphism, after first proving:

Proposition 1.10. The map \I/?P taking an ideal polyhedron P € HPPolyhy to
its dihedral angles 0 has image in Ar. In other words, 0 is y—admissible, see
Definition 1.8.

The proof of this proposition is a simple computation in half-pipe geometry, which
uses (among other things) an infinitesimal version of the Gauss—Bonnet theorem
for polygons.

In the AdS setting constructing inverses for the maps A9 and & is too difficult,
so we proceed in the usual next-best way: we prove each map is a proper, local
homeomorphism, and then argue via topology. In order to do that, we need the
following result, which is proven in Section 7.1.

Proposition 1.11. If N > 3, the space AdSPolyhy is connected and has (real)
dimension 2(N —3). If N > 6, then AdSPolyh 5 is connected and simply connected.
If N > 6, then HPPolyhy is connected and simply connected.

Because Teichmiiller space 9 n is a ball and because AdSPolyhy is connected
and has dimension equal to that of % n, Theorem 1.5 is implied by the following
two statements.

Lemma 1.12. The map ® : AdSPolyh, — 9 n is proper.
Lemma 1.13. The map ® : AdSPolyh, — 9 n is a local immersion.

Lemma 1.12 is proved in Section 4 by directly studying the effect of degener-
ation of the left and right metrics my,mpr of P on the induced metric ®(P) via
equation (1). Lemma 1.13 is deduced in Section 5 from a similar rigidity statement
in the setting of convex Euclidean polyhedra using an infinitesimal Pogorelov map,
which is a tool that translates infinitesimal rigidity questions from one constant
curvature geometry to another.

Next, to prove Theorem 1.4, we need the relevant local parameterization and
properness statements in the setting of dihedral angles. Note that in the following
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lemmas, we consider each \Ifléds as having image in R¥, where again F is the set of
edges of the graph I' € Graph(Xg n,7). The first lemma is a properness statement
for WAdS,

Lemma 1.14. Consider a sequence P, € AdSPolyhy going to infinity in AdSPolyh
such that the dihedral angles 6,, = \PIAdS(Pn) converge to O € RE. Then O is not
~v-admissible because it fails to satisfy condition (iii) of Definition 1.3.

Lemma 1.14 is proven in Section 4 together with Lemma 1.12. In the next lemma,
we assume I is a triangulation (i.e. maximal) and extend the definition of ¥r to
all of AdSPolyh. Indeed, for P € AdSPolyh, each ideal triangle of T' is realized as
a totally geodesic ideal triangle in P. Therefore, the punctured sphere ¥y x5 maps
into P as a bent (but possibly not convex) totally geodesic surface with 1-skeleton
I" and we may measure the dihedral angles (with sign) along the edges.

Lemma 1.15. Assume I' is a triangulation of ¥o n, with E denoting the set of
3N — 6 edges of I'. If the 1-skeleton of P € AdSPolyh is a subgraph of T, then
WRS - AdSPolyh — RP s a local immersion near P.

Lemma 1.15 is obtained as a corollary of Lemma 1.13 via a certain duality between
metric data and bending data derived from the natural pseudo-complex structure
on AdSPolyh. See Section 2.4 and Section 5.

The next ingredient for Theorem 1.4 is:

Proposition 1.16. The map \Il’llids taking an ideal polyhedron P € AdSPolyhr to
its dihedral angles 0 has image in Ar.

The content of this proposition is that WAYS(P) satisfies condition (iii) of Defini-
tion 1.3 (conditions (i) and (ii) are automatic). This will be proven directly in
Section 6 by a computation in AdS geometry. See Appendix A for an alternative
indirect proof using transitional geometry.

In Section 7, we explain why Lemmas 1.14 and 1.15, and Proposition 1.16 imply
that WAYS is a covering onto A. We then argue that A is connected and simply
connected when N > 6, using Theorem 1.9, and we prove Theorem 1.4 (treating
the cases N = 4,5 separately). In addition, in Section 7.4, we deduce Theorem 1.2
from Theorem 1.4, 1.9 and Rivin’s theorem.
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2. HYPERBOLIC, ANTI-DE SITTER, AND HALF-PIPE GEOMETRY IN DIMENSION 3

This section is dedicated to the description of the three-dimensional geometries
of interest in this paper, and to the relationship between these geometries. We prove
a number of basic but fundamental theorems, some of which have not previously
appeared in the literature as stated. Of central importance is the interpretation of
bending data in these geometries in terms of shearing deformations in the hyperbolic
plane (Theorem 2.11 and 2.18).
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In [15], the first named author constructs a family of model geometries in pro-
jective space that transitions from hyperbolic geometry to anti-de Sitter geometry,
passing though half-pipe geometry. We review the dimension-three version of this
construction here. Each model geometry X = X(B) is associated to a real two-
dimensional commutative algebra 5.

Let B = R 4+ Rk be the real two-dimensional, commutative algebra generated
by a non-real element x with k2 € R. As a vector space B is spanned by 1 and &.
There is a conjugation action: (a + bk) := a — bk, which defines a square-norm

la + bk|? == (a + bk)(a + bk) = a® — b*k* € R.

Note that | - |* may not be positive definite. We refer to a as the real part and
b as the imaginary part of a + br. If k> = —1, then our algebra B = C is just
the complex numbers, and in this case we use the letter ¢ in place of k, as usual.
If k2 = +1, then B is the pseudo-complex (or Lorentz) numbers and we use the
letter 7 in place of k. In the case k2 = 0, we use the letter o in place of x. In
this case B = R + Ro, sometimes called the dual numbers, is isomorphic to the
tangent bundle of the real numbers (note that the tangent bundle of a R-algebra is
naturally an R-algebra, see last paragraph before Remark 2.2). Note that if k2 < 0,
then B = C, and if 2 > 0 then B =~ R + Rr.
Now consider the 2 x 2 matrices My (B). Let

Herm(2,B) = {A € Mx(B) : A* = A}

denote the 2 x 2 Hermitian matrices, where A* is the conjugate transpose of A. As
a real vector space, Herm(2, B) = R%. We define the following (real) inner product

OnHerm<2,B>:<[a e )= (515 )

We will use the coordinates on Herm(2, B) given by

I

(2) X — T4+ X1 T2 — X3K
To+ X3k Ty— X1 |

In these coordinates, we have that
(X, X) = —det(X) = 27 + 23 — x%23 — 273,

and we see that the signature of the inner product is (3,1) if k? < 0, or (2,2) if
k2 > 0. (See [40, Section 2.6] for the case k = —1.)

The coordinates above identify Herm(2, 3) with R*. Therefore we may identify
the real projective space RP? with the non-zero elements of Herm(2, B), considered
up to multiplication by a non-zero real number. We define the region X inside RP?
as the negative lines with respect to (-, -):

X ={X e Herm(2,B) : (X, X) < 0} /R".

Note that in the affine chart 4 = 1, our space X is the standard round ball if kK = 4,
the standard solid hyperboloid if Kk = 7, or the standard solid cylinder if K = o.

Next, define the group PGL™ (2, B) to be the 2 x 2 matrices A, with coefficients
in B, such that |det(A4)[?> > 0, up to the equivalence A ~ AA for any A\ € BX,
where here B* denotes the group of units in B. The group PGL™(2,B) acts on
X by orientation preserving projective linear transformations as follows. Given
A€ PGLY(2,B) and X € X:

A-X:=AXA".
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Remark 2.1. The matrices with real entries determine a copy of PSL(2,R) inside
of PGL™ (2, B), which preserves the set & of negative lines in the x;-z5-24 plane (in
the coordinates above). The subspace & of X is naturally a copy of the projective
model of the hyperbolic plane. We think of & as a common copy of H? contained
in every model space X = X(B) independent of the choice of 2.

Note that if B = C, then PGL"(2,8) = PSL(2,C) and X identifies with the
usual projective model for hyperbolic space X = H?. In this case, the action above
is the usual action by orientation preserving isometries of H3, and gives the familiar
isomorphism PSL(2,C) =2 PSO(3,1).

If B=R + Rr, with 72 = +1, then X identifies with the usual projective model
for anti-de Sitter space X = AdS®. Anti-de Sitter geometry is a Lorentzian analogue
of hyperbolic geometry. The inner product (-, ) determines a metric on X, defined
up to scale. We choose the metric with constant curvature —1. Note that the
metric on AdS? has signature (2, 1), so tangent vectors are partitioned into three
types: space-like, time-like, or light-like, according to whether the inner product
is positive, negative, or null, respectively. In any given tangent space, the light-
like vectors form a cone that partitions the time-like vectors into two components.
Thus, locally there is a continuous map assigning the name future pointing or past
pointing to time-like vectors. The space AdS? is time-orientable, meaning that the
labeling of time-like vectors as future or past may be done consistently over the
entire manifold. The action of PGL™(2,R + R7) on AdS?® is by isometries, thus
giving an embedding PGLT (2, R + R7) < PSO(2,2). In fact, PGLT(2,R + R7)
has two components, distinguished by whether or not the action on AdS? preserves
time-orientation, and the map is an isomorphism.

Lastly, we discuss the case B = R + Ro, with 02 = 0. In this case, X = HP? is
the projective model for half-pipe geometry (HP), defined in [15] for the purpose
of describing a geometric transition going from hyperbolic to AdS structures. The
algebra R + Ro should be thought of as the tangent bundle of R, as an algebra:
Letting « be the standard coordinate function on R, we think of a + bo as the 1-jet
of a path based at a with tangent b%. Alternatively, it will be useful to think of
R+Ro as the bundle of imaginary directions in C (or similarly, in R+R7) restricted
to the subspace R. Letting x + iy denote the standard coordinates on C, then we
think of a 4+ bo as the 1-jet of a path in C based at a € R with tangent ba%. See
Section 2.6.

Remark 2.2. In each case, the orientation reversing isometries are also described
by PGLT (2, B) acting by X ~ AX A*.

Although, we focus on dimension three, there are projective models for these
geometries in all dimensions. Generally, the n-dimensional hyperbolic space H"
(resp. the n-dimensional anti-de Sitter space AdS™) may be identified with the
space of negative lines in RP™ with respect to a quadratic form of signature (n, 1)
(resp. of signature (n—1,2)); the isometry group is the projective orthogonal group
with respect to this quadratic form, isomorphic to PO(n,1) (resp. PO(n — 1,2)).
The n-dimensional half-pipe space HP" identifies with the space of negative lines
with respect to a degenerate quadratic form with n — 1 positive eigenvalues, one
negative eigenvalue, and one zero eigenvalue. The structure group, as in the three-
dimensional case, is a codimension one subgroup of all projective transformations
preserving this set. See Section 2.5.

The projective boundary. The projective boundary 9X is the boundary of the
region X in RP®. It is given by the null lines in Herm(2, B) with respect to (-, ).
Thus

0X ={X € Herm(2,B) : det(X) =0, X # 0} /R*
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can be thought of as the 2 x 2 Hermitian matrices of rank one. We now give a
useful description of X that generalizes the identification OH?® = CP'.
Any rank one Hermitian matrix X can be decomposed (up to sign) as

(3) X = tov”,

where v € B? is a two-dimensional column vector with entries in B, unique up to
multiplication by A € B with |[A\|? = 1 (and v* denotes the transpose conjugate).
This gives the identification

IX2P'B={veB v #0}/~,

where v ~ v for A\ € B*. The action of PGL"(2,8) on P!B by matrix multi-
plication extends the action of PGL'(2,8) on X described above. We note also
that the metric on X determines a compatible conformal structure on d,,X = P!J3.
Restricted to B C P!13, this conformal structure is exactly the conformal structure
induced by the square-norm |-|2. In particular, it is Euclidean if x? < 0, Lorentzian
if k2 > 0, or degenerate if k2 = 0.

We use the square-bracket notation [ﬂ to denote the equivalence class in P! of

(i) € B2. Similarly, a 2 x 2 square-bracket matrix [Z Z] denotes the equivalence

b

class in PGL"(2,B) of the matrix (CCL d

) € GL*(2,B). Throughout, we will
identify B with its image under the injection B — P'B given by z — ﬁ] .

Remark 2.3. In the case k? > 0, the condition vv* # 0 in the definition of P!B is
not equivalent to the condition v # 0, because B has zero divisors.

The inclusion R < B induces an inclusion RP' < P'B. This copy of RP! is
precisely the projective boundary of the common hyperbolic plane & contained in
all model spaces X (independent of the choice of x2).

Recall that a subset P of projective space is called convex if P is contained in
an affine chart and is convex in that affine chart. In the notation introduced here,
the fundamental objects of this article are defined as follows:

Definition 2.4. A convex ideal polyhedron in X is a convex polyhedron P in pro-
jective space such that the vertices of P lie in 0X and the rest of P lies in X.

An ideal triangle in X is a convex ideal polyhedron with three vertices. An ideal
simplex or ideal tetrahedron is a convex ideal polyhedron with four vertices. Ideal
simplices and their moduli will play an important role in this article. We review
some of the basic theory, referring the reader to [16] for a more detailed account.
Let Z1,Z5,Z3,Z4 € Herm(2, B) have rank one, and let 21, 22, 23, 24 denote the
corresponding elements of P'3. Assume that Z1, Zo, Z3 determine an ideal triangle

in X. There is a unique A € PGL" (2, B) such that Az = oo := B] yAzg =0 :=
[ﬂ, and Azg =1:= B] Then

(Zla 22523, Z4) = AZ4
is an invariant of the ordered ideal points z1, ..., z4, which will be referred to as the
cross ratio of the four points, since it generalizes the usual cross ratio in CP'. Tt

is straighforward to check that z1, zo, 23, 24 define an ideal tetrahedron in X if and
only if z = (21, 22; 23, 24) (is defined and) lies in B C P!B and satisfies:

(4) |2[%,]1 — 22 > 0.
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In this case z is called the shape parameter of the ideal tetrahedron (with ordered
vertices 21, 22, 23, 24). Using the language of Lorentzian geometry, we say that z
and z — 1, as in (4), are space-like. In fact, all facets of an ideal tetrahedron are
space-like and totally geodesic with respect to the metric induced by (-, -) on X. The
shape parameter z is a natural geometric quantity associated to the edge e = 2129
of the tetrahedron in the following sense, described in Thurston’s notes [39, §4] in
the hyperbolic case. Change coordinates (using an element of PGLT (2, B)) so that
21 = 00, and zo = 0. Then the subgroup G, of PGL™(2, B) that preserves e is given

by
Ge:{A: B ﬂ :)\eB,|/\|2>O}.

The number A = A(A4) associated to A € G, is called the exponential B-length and
generalizes the exponential complex translation length of a loxodromic element of
PSL(2,C). Let A € G, be the unique element so that Az = z4. Then the shape
parameter is just the exponential B-length of A: z = A(A).

There are shape parameters associated to the other edges as well. We may
calculate them as follows. Let m be any even permutation of {1,2,3,4}, which
corresponds to an orientation preserving diffeomorphism of the standard simplex.
Then (2x(1), Zr(2); #x(3)> Zr(4)) is the shape parameter associated to the edge e’ =
Zr(1)%r(2)- This definition a priori depends on the orientation of the edge e’. How-
ever, one easily checks that (z2, 21; 24, 23) = (21, 22; 23, 24). Figure 3 summarizes the
relationship between the shape parameters of the six edges of an ideal tetrahedron,
familiar from the hyperbolic setting.

FIGURE 3. The shape parameters corresponding to the six edges
of an ideal tetrahedron.

2.1. Hyperbolic geometry in dimension three. Let k2 = —1, so that B = C
is the complex numbers. In this case, the inner product (-,-) on Herm(2,C) is of
type (3,1) and X is the unit ball in the affine chart 24 = 1, known as the projective
model for H3. A basic understanding of hyperbolic geometry, although not the main
setting of interest, is very important for many of the arguments in this article. We
will often use intuition from the hyperbolic setting as a guide, and so we assume
the reader has a basic level of familiarity. Let us recall some basic facts here and
present an important theorem, whose analogue in the AdS setting will be crucial.

The projective boundary 9H? identifies with P!B8 = CP'. Since the ball is
strictly convex, any N distinct points zi,...,2x determine an ideal polyhedron
P in H3. In the case N = 4, the ideal simplex P is determined by the shape
parameter z = (21, z2; 23, 24) € C. Indeed, Condition (4) gives the well-known fact
that the shape parameter z may take any value in C\ {0,1}. Consider the two faces
T = Az12z023 and T' = Azs2124 of P, each oriented compatibly with the outward
pointing normal, meeting along the edge e = z;25. Then, writing z = e*T% the
quantity s is precisely the amount of shear along e between T and T”, while 6 is
precisely the interior dihedral angle at e.
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An infinitesimal deformation of an ideal polyhedron P is given by a choice V =
(V1,...,Vn) of tangent vectors to CP! at each of the vertices z1, ..., zy of P. Such
a deformation is considered trivial if V1, ...,V are the restriction of a global Killing
field on H3 U CP' to the vertices z1,...,z,. If necessary, augment the 1-skeleton
of P so that it is an ideal triangulation I' of the surface of P. Then the map zr,
taking the vertices of an ideal polyhedron P to the collection of 3N — 6 cross ratios
associated to the edges of I', is holomorphic and the following holds:

Theorem 2.5. An ideal hyperbolic polyhedron P is infinitesimally rigid with respect
to the induced metric if and only if P is infinitesimally rigid with respect to the
dihedral angles.

Proof. Since the induced metric is determined entirely by the shear coordinates
with respect to I', we have that the infinitesimal deformation V' does not change
the induced metric to first order if and only if dlogzr (V') is pure imaginary. On
the other hand, V' does not change the dihedral angles to first order if and only if
dlog zr (V) is real. Therefore V' does not change the induced metric if and only if
1V does not change the dihedral angles. O

Remark 2.6. Theorem 2.5 is a simpler version of Bonahon’s argument [10] that a
hyperbolic three-manifold is rigid with respect to the metric data on the boundary
of the convex core if and only if it is rigid with respect to bending data on the
boundary of the convex core. In this setting of polyhedra, Bonahon’s shear-bend
cocycle is replaced by a finite graph I' with edges labeled by the relevant shape
parameters z (or log z).

2.2. Anti-de Sitter geometry in dimension three. Let B be the real algebra
generated by an element 7, with 72 = +1, which defines X = AdS?, the anti-de
Sitter space. Let us discuss some important properties of the algebra B = R + R,
known as the pseudo-complex numbers.

The algebra B = R + R7 of pseudo-complex numbers.

First, note that B is not a field as, for example, (1+7)-(1 —7) = 0. The square-
norm defined by the conjugation operation |a + b7|? = (a + b7)(a + b7) = a® — b?
comes from the (1,1) Minkowski inner product on R? (with basis {1,7}). The
space-like elements of B (i.e. square-norm > 0), acting by multiplication on B,
form a group and can be thought of as the similarities of the Minkowski plane that
fix the origin. Note that if |a 4+ b7|?> = 0, then b = +a, and multiplication by a + br
collapses all of B onto the light-like line spanned by a + br.

The elements 1+7T and 1_77 are two spanning idempotents which annihilate one

another:
2
1+7 :1:|:7', and 1+7 . 1—71 _o.
2 2 2 2

Thus B = R @& R, as R-algebras, via the isomorphism

(5) (wL,wR):a<1;T)+b<1;T>H(a,b).

Here wy, and wg are called the left and right projections B — R. These projections
extend to left and right projections P8 — RP' which give the isomorphism P! B =

RP' x RP'. Indeed, P'B is the Lorentz compactification of B = {[ﬂ T € B}.

The added points make up a wedge of circles, so that P! is topologically a torus.
The square-norm | - |2 on B induces a flat conformal Lorentzian structure on P!B
that is preserved by PGL™(2,B). We refer to PGL™(2,B) as the Lorentz Mdbius
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transformations. With its conformal structure P is the (1 + 1)-dimensional Ein-
stein universe Ein'! (see e.g. [5, 8] for more about Einstein space).

The splitting B =2 R @ R determines a similar splitting Ms(B) = MR & MR of
the algebra of 2 x 2 matrices which respects the determinant in the following sense:
VA € My(B)

(wL det A,’WR det A) = (det wL(A),det wR(A)),

where, by abuse of notation, wy, and wg also denote the extended maps Ma(B) —
My(R). The orientation preserving isometries Isom™ AdS® = PGL™ (2, B) corre-
spond to the subgroup of PGL(2,R) x PGL(2,R) such that the determinant has
the same sign in both factors. The identity component of the isometry group (which
also preserves time orientation) is given by PSL(2,R) x PSL(2, R).

Note also that the left and right projections wy,wpg : P!B — RP! respect the
cross ratio:

1—7 1+7
(szlawLZ%wLZBaWLZ4)+T(WR217WRZ2;WRZ?>7WRZ4)7

(21, 22; 23, 24) =
where on the right-hand side (-, -;-,-) denotes the usual cross ratio in RP!.

Remark 2.7. Alternatively, the left and right projections wy,, wgr may be described
naturally in terms of projective geometry. Indeed, P!B = JAdS?, thought of as a
subset of projective space RP?, is a surface which is ruled by projective lines in two
ways (the so-called “doubly ruled surface”). One ruling, called the left ruling, is
given by the family of lines {w,'(x) : 2 € RP'}, and the other, called the right
ruling, is given by the family of lines {wl_%l(x) : 2 € RP'}. Hence, the left projection
wy, may be thought of as the map which projects points of JAdS? along the lines
of the left ruling onto a fixed line in the right ruling. Similarly, the right projection
wpr may be thought of as the map which projects points of JAdS? along the lines
of the right ruling onto a fixed line in the left ruling.

2.3. Ideal Polyhedra in AdS?. Consider an ideal polyhedron P in AdS?® with
N vertices z1,...,zy € P!B. For each i = 1,...,N, let x; = wr(2;) and y; =
wgr(z;) be the left and right projections of z;. Then, all of the z; (resp. all of
the y;) are distinct. Otherwise, the convex hull of the z; (in any affine chart) will
contain a full segment in the projective boundary. The following result shows one
aspect where ideal polyhedra in AdS® behave differently than ideal polyhedra in
H?3, where we have no conditions on the position of the vertices in OH3.

Proposition 2.8. The vertices z1,...,zn € P'B determine an ideal polyhedron P
in AdS? if and only the left projections x1,...,xn and right projections yi, ..., yn
are arranged in the same cyclic order on the circle RP!.

Proof. In general, a closed set  in RPM is convex if and only any M +1 points of 2
span a (possibly degenerate) simplex contained in 2. Therefore the 21, ..., zx define
an ideal polyhedron if and only if any four vertices z;,, 2i,, 2i,, 2i, span an ideal
simplex. This is true if and only if the cross ratio z = (zi,, 2i,; 2is, 2i, ) is defined and
satisfies that |z|%, |1 — 2|2 > 0. Since z = 15Tx + Ty, where = (x;,, xi,; iy, i,
and Y= (yilvyiz;yi:s?ym)? we have that |Z|2 =Y and |1 - 2‘2 = (1 - x)(l - y) So
|22, ]1 — 2|2 > 0 if and only if  and y have the same sign and (1 — z) and (1 — )
have the same sign. Hence, z;,, 2;,, 25, 2i, span an ideal simplex if and only if the
two four-tuples of vertices (z;,, Zi,, Tig, iy) and (Yiy, Yiys Yis, Yiy) are arranged in
the same cyclic order on RP'. The proposition follows by considering all subsets of
four vertices. (]

We denote by pr, = wr,(P) (resp. pr = wr(P)) the ideal polygon in the hyperbolic
plane with vertices z1,...,zn (resp. y1,...,Yn).



18 JEFFREY DANCIGER, SARA MALONI, AND JEAN-MARC SCHLENKER

Let us quickly recall the definitions and terminology from Section 1.3. We fix,
once and for all, a time orientation on AdS3. Since all faces of an ideal polyhedron
P are space-like, the outward normal to each face is time-like and points either to
the future or to the past. This divides the faces into two groups, the future (or
top) faces, and the past (or bottom) faces. The union of the future faces is a bent
polygon, as is the union of the past faces.

Proposition 2.9. The union p™ of the future faces and the union p~ of the past
faces are each homeomorphic to a disk. The edges of p™ N p~ dividing the future
faces from the past faces form a Hamiltonian cycle in the 1-skeleton of P. We call
this Hamiltonian cycle the equator.

Proof. First, let 2T be a point in the interior of p™ and L a timeline line through
2t in AdS3. Then L intersects p~ in a point 2~ in the interior of p~. Let 7' be any
timelike plane in AdS® containing L. The intersection 7N P is a convex polygon in
T = AdS?. The boundary 8(T'N P) is the union of TNp* and TNp~. Each point of
TNp™ has a future pointing normal in 7" and each point of TNp~ has a past pointing
normal in T. By convexity of 7N P, each of TN p™ and T'Np~ is a connected
segment and these segments meet in two distinct points of p* N p~. Rotating T
around the axis L sweeps out a radial foliation of p™ by arcs of emanating from
zT and a radial foliation of p~ by arcs emanating from z~. Hence both p™ and
p~ are seen explicitly to be homeomorphic to disks. The points of p* Np~ in each
timelike plane T sweep out a Jordan curve in OP separating the interior of p™ from
the interior of p~. O

Each face of P is isometric to an ideal polygon in the hyperbolic plane. Therefore
the induced metric on the boundary of P is naturally a hyperbolic metric m on the
N-punctured sphere; it is a complete metric. Further, the labeling of the vertices,
the equator, and the top and bottom of P determine an identification (up to isotopy)
of the surface of P with the N-punctured sphere ¥ n, making m into a point of
the Teichmiiller space % n. The marking also identifies the 1-skeleton of P with a
graph I' on ¥y y with vertices at the punctures. We may project P combinatorially
to the left and right ideal polygons p;, and pg respectively. The edges of the equator
project to exterior edges of py, (resp. pr) and top/bottom edges project to interior
edges of py, (resp. pr). We may assume the 1-skeleton gives a triangulation of P by
adding additional top/bottom edges as needed. Consider an edge e = z1 25 adjacent
to two faces T' = Az12923 and TV = Az 2422, each oriented so that the normal points
out of P. Then the cross ratio z = (21, 22; 23, 24) contains the following information:

Proposition 2.10. The edge e is an equatorial edge if and only if z = a + bt has
real part a > 0.

Since the edge e is space-like, we may express it as
z=+e*T7% .= +e%(cosh § + 7sinh §).

By convexity of P, the imaginary part of z is always positive. Hence, either z =
+e°T70 with § > 0, or z = —e*T7% with § < 0. In the former case, the edge e is
an equatorial edge and in the latter case e is a top/bottom edge. In either case,
s = s(e) is precisely the shear coordinate (in the sense of Thurston) of the induced
hyperbolic metric m along the edge e, and 6 is the exterior dihedral angle at the
edge e (as defined in Section 1.3).

We now give the fundamentally important relationship between shearing and
bending in the setting of ideal polyhedra. Let my, (resp. mp) denote the double of
pr (resp. pr). Since the vertices of P, and its projections p;, and pg, are labeled,
we may regard my and mp as points of the Teichmiiller space Jp n; we call mp,
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the left metric and mp the right metric. Recall the definition of AdSPolyh, given
in Section 1.3.

Theorem 2.11. Let mp,mp,m € Jp n be the left metric, the right metric, and
the induced metric defined by P € AdSPolyhy, and let 6 denote the dihedral angles.
Then the following diagram holds:

(6) le—E"%ml—@%mR,

where Ey denotes shearing along T' according to the weights 6 (a positive weight
means shear to the left). Further, given the left and right metrics myr, and mg (any
two metrics obtained by doubling two ideal polygons pr, and pr), the induced metric
m and the dihedral angles 0 are the unique metric and weighted graph on Xo N (with
positive weights on the top/bottom edges, and negative weights on ) such that (6)
holds.

Proof. Let I' € Graph(Xg n,7) represent the 1-skeleton of P. By adding extra
edges if necessary, we may assume I is a triangulation. As above we associate the
shape parameter z = ee*(®)+70(®) t6 a given edge a of ', where ¢ = 1. Then,

z = ee*(@(cosh O(ar) + 7 sinh 6(a))
1-—71 1+7
— cp8(a) —0(a) 6(c)
= ( 2 © 2 ¢ )

_ 1 ngesm)fe(a) " ”TTgesm)w(a)

Therefore the shear coordinates in the left metric mj, are given by s;, = s — 6 and
the shear coordinate in the right metric mg are sg = s + 6. Equation (6) follows.

The uniqueness statement also follows from this calculation. Indeed, given two
metrics my, and mpg, obtained by doubling ideal polygons p; and pr respectively,
and any triangulation I' € Graph(3¢ v, ), we may solve for the shear coordinates s,
determining a metric m, and the weights 6 needed to satisfy (6). Specifically,
s = (sgp+sp)/2 and 0 = (sg — s1)/2, where now s;, and sp denote the shear
coordinates with respect to I'. We may construct a polyhedral immersion of ¥
whose induced metric is m and whose (exterior) bending angles are 6 as follows.
Lift T to a triangulation I' of the universal cover 507 ~. Then s and 6 define an
equivariant polyhedral immersion f : io_’ ~ — AdS?, mapping the two triangles
adjacent to a lift € of an edge e € E(I') to spacelike geodesic ideal triangles in
AdS? meeting along the spacelike geodesic line f(€) with sheering s(e), bending
6(e), and which have equal time orientation if e ¢ ~ or opposite time orientation
if e € . Similarly, the shear coordinates s; and sg respectively define polygonal
maps ]?L, fR : iO,N — H? with folding precisely at the (lifts of) edges of . Since
my, and mpg are the doubles of ideal polygons p;, and pgr respectively, it follows
that fL and fR have trivial monodromy and image equal to p;, and pg respectively.
Hence the monodromy of f, which is the product of the monodromies of fL and
IR, is also trivial, so f well-defines a polyhedral immersion f : X y — AdS?® with
bending data 6 and induced metric m. If 6 takes negative values on the equator and
non-negative values elsewhere, then f is locally convex and bounds a convex ideal
polyhedron P. The uniqueness statement follows because P is uniquely determined
by pr and pg. O

As a corollary we obtain a version of Thurston’s earthquake theorem for ideal
polygons in the hyperbolic plane. A measured lamination on the standard ideal N-
gon is simply a pairwise disjoint collection of diagonals with positive weights. We
denote by MLy the complex of these measured laminations. A function 6 € Ar
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determines two measured laminations 64 and 6_ by restriction to the top edges of
I" and to the bottom edges.

Corollary 2.12 (Earthquake theorem for ideal polygons). Let pr,pr € polygy be
two ideal polygons. Then there exists unique 0,0 € MLy such that pr = Ey_ pr,
and pr, = Fyg_pgr, where again E) denotes shearing according to the edges of A\ €
MLy according to the weights of A.

Proof. Let x1,...,xny be the ideal vertices of p;, and let y1,...,yny be the ideal

vertices of pr. Then, the vertices z; = 1_77301 + HTTyi define an ideal polyhedron
P € AdSPolyh  such that @y, (P) = pr, and wr(P) = pr. We think of ¥y y as the
double of the standard ideal IN-gon, meaning that the top hemisphere is identified
with the standard ideal N-gon and the bottom hemisphere is identified with the
standard ideal N-gon but with orientation reversed. The left metric my (resp.
mp) is obtained from pr, (resp. pr) by doubling. This means that the restriction
of my, to the top hemisphere of ¥y y is pr, and the restriction of my, to the bottom
hemisphere is P, the same ideal polygon but with opposite orientation. Similarly,
the restriction of mp to the top and bottom hemispheres of ¥ n is pr and Dg.
Let I' € Graph(2Z¢, n,7) denote the 1-skeleton of P and let § € RF(I) denote the
dihedral angles. Theorem 2.11 implies that mpr = Esgmy. Restricting to the top
hemisphere, we have that pr = Ep, pr, where 0, € MLy is twice the restriction
of 6 to the top hemisphere. Restricting to the bottom hemisphere, we have that
Pr = Fo_pr, where 6_ is the restriction of # to the bottom hemisphere. This
implies that pr = E_g_pr, or equivalently pr, = Ey_pr. Uniqueness of 6,,6_
follows from uniqueness of # in Theorem 2.11. O

Let us briefly digress to discuss the question of whether, in the context of Corol-
lary 2.12, a given 6 and 6_ are realized by some py, and pgr, and whether they are
realized uniquely. In the setting of closed surfaces, it is known [12] that given a pair
of measured laminations 6 and 6_ which are filling, there exist two hyperbolic sur-
faces pr and pr such that pg is obtained from py, by left earthquake along 6, and
also by right earthquake along 6_. Tt is conjectured [28] that pr, and pg are unique.
Similarly, any pair of laminations 6,0 € MLy appearing in Corollary 2.12 must
be filling, meaning that any diagonal intersects the support of 8, or 6_ transversely;
this is equivalent to the statement that the graph I" € Graph(Xg v,7), obtained by
placing the support of 6, on the top hemisphere and the support of §_ on the
bottom hemisphere, is three-connected. It will follow from Theorem 1.4 that in
the case N is odd, the polygons pr, pr are unique, given the measured laminations
0.,0_. This is because § € A is determined entirely by its restrictions 6, and
f_ to the top and bottom edges. However, there are examples of filling measured
laminations 64,60_ such that there is no element § € 4 whose restriction to the
top edges is f; and whose restriction to the bottom edges is §_ (see Appendix A).
The situation is even worse in the case N is even. If 6, ,60_ are realized by a pair
of ideal polygons py,,pgr, then there is a one dimensional family of pairs of ideal
polygons for which the laminations 6, 6_ turn out to be the same. This is because
for any 6 € A, there is a one parameter family of deformations of § which leave
0,,0_ unchanged: simply add and subtract the same quantity from the weights of
alternating edges on the equator. Further, in the case N even, only a codimension
one subspace of filling laminations 6,0_ are realized in Corollary 2.12. It is an
interesting problem to determine this codimension one subspace.

2.4. The pseudo-complex structure on AdSPolyh,;. The space of marked ideal
polyhedra AdSPolyh y naturally identifies with a subset of (R + R7)V =3, by trans-
forming each ideal polyhedron so that its first three vertices are respectively 0, 1, 0o €
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P!B. The marking on each polyhedron P € AdSPolyh  identifies P with the stan-
dard N-punctured sphere ¥y . So, given a triangulation I' on ¥ y with vertices
at the punctures and edge set denoted F, we may define the map zr : AdSPolyh,, —
(R + R7)¥ which associates to each edge e of a polyhedron P the cross ratio of the
four points defining the two triangles adjacent at e. This map is pseudo-complex
holomorphic, meaning that the differential is (R + R7)-linear. This observation
allows us to prove the following analogue of Theorem 2.5.

Theorem 2.13. An ideal polyhedron P € AdSPolyhy is infinitesimally rigid with
respect to the induced metric if and only if P is infinitesimally rigid with respect to
the dihedral angles.

Proof. Let V € TpAdSPolyhy = (R + R7)V=3. Let I be a triangulation obtained
from the 1-skeleton of P by adding edges in the non-triangular faces if necessary.
Since the induced metric is determined entirely by the shear coordinates with re-
spect to I', we have that V does not change the induced metric to first order if
and only if dlog zr(V) is pure imaginary. On the other hand, V' does not change
the dihedral angles to first order if and only if dlogzr(V) is real. Therefore V'
does not change the induced metric if and only if 7V does not change the dihedral
angles. O

2.5. Half-pipe geometry in dimension three. We give some lemmas useful for
working with HP?. Recall the algebra R + Ro, with 02 = 0. The half-pipe space is
given by

HP? :=X={X+Yo:X,Y € Mo(R), X" = X,det(X) > 0, YT = -V} / ~,
where (X 4+ Yo) ~ A(X +Yo) for A € RX. There is a projection w : HP® — H?,
defined by w(X + Yo) = X, where we interpret the symmetric matrices X of
positive determinant, considered up to scale, as a copy of H2. The fibers of this
projection will be referred to simply as fibers. The projection can be made into a
diffeomorphism X — H? x R (not an isometry) given in coordinates by
(7) X+Yor— (X,L),
where the length L along the fiber is defined by the equation

(8) Y = LVdet X (? _01> .

The projective boundary 9X identifies with P!(R + Ro), which identifies with the
tangent bundle TRP' via the natural map TR? — (R 4 Ro)? sending a vector
v € R? and a tangent vector w € T,R? = R? to v + ow. It will be convenient to
think of an ideal vertex as an infinitesimal variation of a point on RP' = 9H2. In
this way, a convex ideal polyhedron P in HP? defines an infinitesimal deformation
V = V(P) of the ideal polygon p = w(P) in H?>.

We restrict to the identity component of the structure group, which is given by

Go = PSL(2,R + Ro)
={A+ Bo:Ae€SL(2,R), and B € TASL(2,R)}/ £.
The structure group identifies with the tangent bundle TPSL(2,R), and it will be
convenient to think of its elements as having a finite component A € PSL(2,R) and
an infinitesimal component a € s[(2,R), via the isomorphism
PSL(2,R) x sl(2,R) — Gg
(A,a) — A+ Aao,

where Aa € T4PSL(2,R). (This is the usual isomorphism G x g — T'G for a Lie
group G with Lie algebra g = T1G, gotten by left translating vectors from the
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identity.) The identification Gy = TPSL(2,R) is compatible with the identification
OHP® =~ TRP*.

Thinking of a € s[(2,R) as an infinitesimal isometry of H?, recall that at each
point X € H? we may decompose a into its translational (X-symmetric) and rota-
tional (X-skew) parts:

a4 = aX-sym + aX_skew
= % (a—I—XaTX_l) + % (a — XaTX_l) ,

where the rotational part ax_skew is & rotation centered at X of infinitesimal angle
rot(a, X) defined by

\/Yﬁlax_skew\/fz rot(a, X) (1(/]2 _%]/2> .

The action of an element of Gq in the fiber direction depends on the rotational part
of the infinitesimal part of that element.

- R

HP3
1+o0a)- P (1+o0a)- &2

e

= v
< ¢ _oF [ >

FIGURE 4. The action of 1+ ac on HP? when a is an infinitesimal
rotation centered at x (left), or a is an infinitesimal translation
along L (right). The central hyperbolic plane & (see Remark 2.1)
and its image under the action are depicted.

Lemma 2.14. The action of a pure infinitesimal 14+ac on the point X +Y o € X is

by translation in the fiber direction by amount equal to the rotational part rot(a, X)

of the infinitesimal isometry a at the point X € H2. In the product coordinates (7):
1+ao:(X,L)— (X, L +rot(a, X)).

More generally, the action of A+ Aaoc is given by

A+ Aao: (X,L)— (A-X,L+rot(a, X)).
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Proof.
(1+ao) - (X+Yo)=(1+ao)(X +0oY)(1—-a"0)
=X +o0Y +0(aX — XaT)
=X+ 0Y + 0 2ax skewX

= X +0Y + 0 2rot(a, X)VX (1(/)2 _%)/2> VX

=X + oY + 0 rot(a, X)det(vVX) (O 1) ,

where the last equality follows from the algebraic identity

0 —1 0 -1
V(0 )y i (0 ).
The first statement now follows from Equation (8). The second more general for-
mula follows easily after left multiplication by A. O

Definition 2.15. Let a € s[xR be an infinitesimal translation of length ¢ along an
oriented geodesic ¢ in H2. Then, for any oriented geodesic ¢ in HP? that projects
to £, the element 1 + ac is called an infinitesimal rotation about the axis ? of
infinitesimal angle ¢.

Thinking of the fiber direction in HP? as the direction of infinitesimal unit length
normal to H? into either H? or AdS®, the definition is justified by the previous
lemma. In fact, the amount of translation in the fiber direction is ¢ times the
signed distance to ‘.

2.6. Ideal polyhedra in HP?. There are several important interpretations of a
convex ideal polyhedron P in HP?. As described in the previous section, P defines
an infinitesimal deformation V' = V(P) of the ideal polygon p = w(P) in H2.
Alternatively, P may be interpreted as an infinitesimally thick polyhedron in H? or
AdS?. Multiplying the tangent vector V by i (resp. 7) describes an infinitesimal
deformation iV (resp. 7V) of the polygon p into H? (resp. AdS?). The polyhedron
P in HP? is a rescaled limit of a path of hyperbolic (resp. anti-de Sitter) polyhedra
collapsing to p and tangent to iV (resp. 7V') in the following sense. Consider the
path of algebras B, generated by k; such that 7 = —¢|t|. Then the geometries X(B;)
associated to these algebras are conjugate to X(B;) = X(C) = H? for all ¢t > 0, or
to X(B_1) = X(R+ R7) = AdS? for t < 0. For t > 0, the map a; : C — B; defined
by i — r¢/|t| is an isomorphism of algebras. For ¢ < 0, the map a; : R+ R7 — B;
defined by 7 — k;/|t| is an isomorphism. Each of these maps defines a projective
transformation, again denoted a;, taking the standard model of hyperbolic space
H3 = X(Bi) (resp. the standard model of anti-de Sitter space AdS? = X(B_1)) to
the conjugate model X(B;).

Proposition 2.16. Consider a smooth family Q; of ideal polyhedra in H? (resp.
AdS?), defined fort > 0 (resp. fort <0). Assume that Qo = p is an ideal polygon
contained in the central hyperbolic plane & bounded by RP* and Q, =U+ W
(resp. Qy =U +7W ), where U,W are infinitesimal deformations of p as an ideal
polygon in H2. Then the limit of a;(Q;) as t — 0 is an ideal polyhedron P in
X(By) = HP® which satisfies w(P) = Qo and V(P) = W.

Proof. We demonstrate the claim for a single ideal vertex of the ideal polyhedron.
Let us treat only the case ¢t > 0, as the ¢t < 0 case is similar. Consider the point
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z = x 4+ iy € CP'. The corresponding point in the boundary of H? = X(By) is the
(projective class of) Hermitian matrix

T4yl 2+ v x4y
[1}[“3 e 1]_[:1:@1, 1]

The transformation a; maps this to

Pyt w+ | _ oty t
[x’?y 1 o 1 [z =%y 1.

Now if z(t) = x(t) + iy(t) is a smooth path in ¢ with 2(0) = z, y(0) =0, 2/(0) = u

and y'(0) = w, then the limit as ¢ — 0 of the above is the point

4 w1

of the projective boundary of HP? = X(By) corresponding to zo + ow € P(By),
which has @(z¢ + ow) = z¢ € RP' and V(z¢ + ow) = w € T,,RP* = R, O

The interplay between these two interpretations leads to Theorem 2.18 below,
which is a fundamental tool for studying half-pipe geometry. Before stating the
theorem, let us recall the terminology introduced in Section 1.4 and state a propo-
sition. We fix an orientation of the fiber direction once and for all. Every convex
ideal polyhedron in HP® has a top, for which the outward pointing fiber direction
is positive, and a bottom, for which the outward pointing fiber direction is nega-
tive. The edges naturally sort into three types: an edge is called a top edge if it
is adjacent to two top faces or a bottom edge if it is adjacent to two bottom faces,
or an equatorial edge if it is adjacent to both a top and bottom face. The union of
the top faces is a bent polygon which projects down to the ideal polygon p = w(P)
in H2. The union of the bottom faces also projects to p. The infinitesimal dihedral
angle at an edge is measured in terms of the infinitesimal rotation angle needed to
rotate one face adjacent to the edge into the same plane as the other. The dihedral
angle at a top/bottom edge will be given a positive sign, while the dihedral angles
at an equatorial edge will be given a negative sign. This sign convention is justified
by the following (see [15, §4.2]):

Proposition 2.17. The infinitesimal dihedral angle along an edge of P is simply
the derivative of the dihedral angle of the corresponding edge of Qy, where Q; is as
in Proposition 2.16.

Alternatively, dihedral angles may also be measured using the cross ratio. Indeed,
if two (consistently oriented) ideal triangles T' = Azj2923 and T7 = Azy2;129 meet
at a common edge o = 2729, then the cross ratio z = (21, 22; 23, 24) satisfies that
2z = ee*17% = ce*(1 + 00), where s is the shear between T and T”, where 6 is the
dihedral angle, and where ¢ is +1 if « is an edge of the equator and —1 if « is a
top/bottom edge.

We consider the bending angles on the top (resp. bottom) edges of an ideal poly-
hedron P as a (positive) measured lamination on the ideal polygon p = w(P). The
following theorem is the infinitesimal version of Theorem 2.11 about the interplay
between earthquakes and AdS geometry.

Theorem 2.18. Let P be an ideal polyhedron in HP® and let 6, (resp. 0_) be
the measured lamination on p = w(P) describing the bending angles on top (resp.
on bottom). Then the infinitesimal deformation V.= V(P) of p defined by P is
equal to eq, (p), where eg, is the infinitesimal left earthquake along 0. Similarly,
V = —eg_(p) is obtained by right earthquake along 6_.
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Proof. Let T' € Graph(Xg n,7) represent the l-skeleton of OP. By adding extra
edges if necessary, we may assume I' is a triangulation. As above we associate
the shape parameter z(a) = ee5(®)+79(®) to any given edge o of T'. Note that the
map taking four points on RP! to their cross ratio is smooth and that, under the
identifications TRP' 2 P'(R 4+ Ro) and TR = R + Ro , the differential of the
cross-ratio map (RP')®) — R is exactly the cross ratio (P'(R+Ro))®) — R+Ro.
Therefore the shear coordinate of p = w(P) at a is s(«) and the infinitesimal
variation of the shear coordinate at « under the deformation V(P) is (c). The
result follows. O

2.7. Half-pipe geometry in dimension two. The structure group G for HP?
acts transitively on degenerate planes, i.e. the planes for which the restriction of
the metric on HP? is degenerate. These are exactly the planes that appear vertical
in the standard picture of HP? (as in Figure 4); they are the inverse image of lines
(copies of H') in H? under the projection . Each degenerate plane is a copy of two-
dimensional half-pipe geometry HP?. For the purposes of the following discussion,
we will fix one degenerate plane in HP? as our model:

{5 2) (5, D)

Here we describe two important facts about HP?. The first is (reasonably) named
the infinitesimal Gauss-Bonnet formula. See [15, §3] for details about half-pipe
geometry in arbitrary dimensions.

There is an invariant notion of area in HP?. As above, let L denote the length
function along the fiber direction. Then the area of a polygon p (or a more compli-
cated body) is the integral of the length L(zw~1(x) Np) of the segment of p above
x, over all z € w(p) C H'. Alternatively, if p is the limit as t — 0 of a;p;, where
p; is a smooth family of collapsing polygons in H?, then the area of p is simply the
derivative at ¢ = 0 of the area of p;.

Proposition 2.19 (Infinitesimal Gauss-Bonnet formula). Let p be a polygon in
HP? whose edges are each non-degenerate. Then the area of p is equal to the sum
of the exterior angles of p. In particular, the sum of the exterior angles of any
polygon is positive.

Proof. Let p; be a smooth family of collapsing polygons in H? so that p is the limit
as t — 0 of a;p;. Then the area of p is the derivative of the area of p; at t = 0. Each
exterior angle of p is the derivative of the corresponding angle of p; at ¢ = 0. The
proposition follows from the usual Gauss-Bonnet formula for polygons in H2. O

Secondly, we give a bound on the dihedral angle between two non-degenerate
planes in terms of the angle seen in the intersection with a degenerate plane H =2
HP?. This will be used in the proof of Proposition 1.10.

Proposition 2.20. Let P,Q be two non-degenerate planes in HP® which intersect
at dihedral angle 0. Let H be a degenerate plane so that the lines HNP and HNQ
intersect at angle ¥ in H = HP?. Then sign(d) = sign() and [9| < || with equality
if and only if H is orthogonal to the line PN Q.

Proof. We may change coordinates so that P = & (recall that &2 is a copy of
H? common to all of the models X(B) in projective space, see Remark 2.1). The
second plane @ is the limit as ¢ — 0 of a,Q, where Q); is a smoothly varying family
of planes in H? with limit Qo = &. We may choose the path @Q; so that the line
L =Q:N & is constant for all ¢ > 0. The dihedral angle between @ and & is the
derivative at t = 0 of the dihedral angle 6; between @; and &2, now thought of as
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a plane in H3. The degenerate plane H defines a plane H' in (the projective model
of) H? which is orthogonal to 2.

FIGURE 5. The triangle on oy with right angle at & N H' N gy,
angle 0; at Q; N & Nog and angle ¢; at Q; N H' N oy

Let ¢ be the angle between @, N2 and H'. Let og be a small sphere centered at
the intersection point of &, Q; and H’. After scaling up o to a sphere of constant
curvature 1, the spherical triangle with vertices Q; N & N oy, ¥ N H' N oy and
H' N Q; Nog has edge lengths d(Q; N P2 Naog, ZNH Nog) = and d(P N H' N
oo, H N Q¢ Nog) = ¥, while it has a right angle at 22 N H' N oy and angle 6; at
Q:NZPNay, see Figure 5. It then follows from a standard spherical triangle formula
that

tan; = tan 6, sinp .

The proposition now follows since 9 = %L:oﬂt’ 0= % o0t and Oy = Jo (both
are either zero or 7). O

3. LENGTH FUNCTIONS AND EARTHQUAKES

We prove Theorem 1.9 by showing that each ideal polyhedron in HP? is realized
as the unique minimum of a certain length function defined in terms of its dihedral
angles. Our strategy is inspired by a similar one used by Series [36], and later
Bonahon [11], in the setting of quasifuchsian hyperbolic three-manifolds with small
bending.

3.1. Shear and length coordinates on the Teichmiiller space of a punc-
tured sphere. Consider an ideal triangulation I" of the N-times punctured sphere
Yo,n. Let aq,...,®, denote the n = 3N — 6 edges of I'. There are two natural
coordinate systems on the Teichmiiller space 95 n of complete hyperbolic metrics
on Yo n (see [29, 41]):

e Let s1,---,s, denote the shear coordinates along the edges of I'. The
sum of the shear coordinates over edges adjacent to a particular vertex is
always zero. Under this condition, the shears along the edges provide global
coordinates on Jp .

o We may define length coordinates ¢1,...,¢, on J y as follows. In any
hyperbolic structure, choose a horocycle around each cusp, and let ¢; de-
note the (signed) length of the segment of «; connecting the two relevant
horocycles. By abuse, we call ¢; the length of «;. Changing a horocycle
at a particular cusp corresponds to adding a constant to the lengths of all
edges going into that cusp. The lengths /1, ..., £, are only well-defined up
to this addition of constants, making these coordinates elements of R /RY.
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It is well-known [29, 41] that both the shears and the lengths give global coordinate
systems for Teichmiiller space. It is quite simple to go from length coordinates to
shear coordinates, in fact the map sending lengths to shears is linear. To describe
this coordinate transformation more precisely, let us establish some notation. The
orientation of the surface determines a cyclic order on the edges of any triangle.
Given any two edges aj,qy, let €;; = —¢;; be the number of positively oriented
triangles 7' of I' such that oy, a; are distinct edges of T' counted with a positive
sign if o; follows a; in the cyclic order on the edges of 7', and with negative sign if
a; follows ;. By definition, (e;)1<i j<n is an anti-self adjoint matrix with entries
in {—1,0,1}. Tt is straightforward to check the following, see Thurston [41, p. 44],
Penner [29]:

Lemma 3.1 (Thurston, Penner). Given a hyperbolic metric h € Jy n with length
coordinates (¢;), the corresponding shear coordinates are defined by

1
S; = 5 Zeijéj .
J

Note that the right-hand side is independent of the horocycles chosen to define the £;.

Definition 3.2. Let w denote the anti-symmetric bilinear form on % n, defined
by

1
(9) w = §Zeijd€,-®d€j.
4,J
Note that, by Lemma 3.1, we may also express w as

It follows that w is well-defined (independent of the ambiguity in the definition of
d¢;) because for any tangent vector Y, ds;(Y) is a balanced function on the set
E = E(T") of edges, meaning it is a function whose values sum to zero on those
edges incident to any vertex.

From the second expression for w, we can see that it is a symplectic form, i.e. it is
non-degenerate. In fact, we mention that w is nothing other than (a multiple of)
the Weil-Petersson symplectic form (see Wolpert [42] and Fock-Goncharov [21]),
though we will not need this fact. It is straight-forward to check directly that w
does not depend on the particular triangulation used in its definition.

3.2. The gradient of the length function. Given a function f: % y — R, we
denote by DY f its symplectic gradient with respect to w, defined by the following
relation: for any vector field X on 9 n,

w(Df, X) = df (X).

Let 0 = (61,...,6,) be any balanced assignments of weights to the edges of T
Then one may define the corresponding length function £y as a function on Jp n:
for any hyperbolic metric h € 9 n, with length coordinates (¢;)1<i<n, set

lo(h) = 0il; .

The function ¢y does not depend on the choice of horocycles at the cusps precisely
because 6 is balanced. We let eg denote the vector field on Fp y defined by ds;(eg) =
0;, in other words ey shears along each edge according to the weights 6. It follows
immediately from (10) that:

Lemma 3.3. Let 0 = (01, ...,0,) be balanced weights on the edges of T'. Then
Dwfg = —€y.
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3.3. The space of doubles is Lagrangian. We assume, from here on, that our
graph I' admits a Hamiltonian cycle . Then cutting ¥ y along v yields two
topological ideal polygons, one of which we label top and the other bottom. There
is an orientation reversing involution ¢ on ¥ x which exchanges top with bottom
and pointwise fixes v. We let Z denote the half-dimensional subspace of 9 n
which is fixed by the action of ¢, i.e. those hyperbolic metrics which are obtained
by doubling a hyperbolic ideal polygon and marking the surface in such a way that
the boundary of the polygon identifies with ~.

Proposition 3.4. The space of doubles 9 is a Lagrangian subspace of To n with
respect to w.

Proof. We may compute w with respect to a symmetric triangulation I" (one which
is fixed under the involution ¢). For h € %, the shear coordinates (s;(h)) are
anti-symmetric, in the sense that, if ¢(o;) = «;, then s;(h) = —s;(h). (So, in
particular, s;(h) =0, if a; is an edge of v.) On the other hand, the lengths (¢;(h))
are symmetric, in the sense that, if ¢(o;) = «;, then ¢;(h) = £;(h). The proposition
follows immediately from the second expression (10) for w above. O

3.4. Convexity of the length function. We now show a form of convexity for
the restriction of the length function ¢y to the space of doubles 7 in F n. It
will sometimes be convenient to identify the space of doubles 2 with the space
polyg = polyg, of marked ideal polygons in the hyperbolic plane, and to think of
(the restriction of) ¢y as a function on polyg. The graph I" on ¥y n, then, projects
to each polygon p in polyg, with ~ identified to the perimeter edges of p and all
other edges of I identified with diagonals of p.

The following proposition is the analog, in the (simpler) setting of ideal poly-
gons, of a theorem of Kerckhoff [25] which played a key role in Series’s analysis of
quasifuchsian manifolds with small bending [36]. In a similar way, the proposition
is crucial for Theorem 1.9.

Proposition 3.5. For all 0 € Ar, the length function £y : polygy — R is proper
and admits a unique critical point which is a non-degenerate minimum.

The proof is based on two lemmas.
Lemma 3.6. If 6 € Ar, then £y : polyg — R is proper.

Lemma 3.7. If 0 € Ar, then £y is conver and non-degenerate on earthquake paths
in polyg.

Proof of Proposition 3.5. Let 8 € Ap. Since {y is proper by Lemma 3.6, it has at
least one minimum in polyg. Moreover Lemma 3.7 shows that any critical point is
a non-degenerate minimum.

Let p,p’ € polygy be two minima of fy. There is, by Corollary 2.12, a unique
measured lamination A on p such that E)(p) = p’. Then Lemma 3.7 shows that the
function t — £y(E;x(p)) is convex and non-degenerate, so it cannot have critical
points both at ¢ = 0 and at ¢ = 1, a contradiction. So £y has a unique critical point
on polygy. O

We now turn to the proofs of the two lemmas.

Proof of Lemma 3.6. Let (pn)nen be a sequence of ideal polygons with N vertices,
which degenerates in polyg,. Then, after taking a subsequence, if necessary, there
is a finite collection of segments a1, ..., a, on the polygon such that:
e a; and a; are disjoint, if ¢ # j,
e for all n, each a; is realized as a minimizing geodesic segment connecting
two non-adjacent edges of p,,
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e for alli € {1,---,p}, the length of a; in p, goes to zero, as n — oo,
e any two edges of p, that can be connected by a segment disjoint from the
a; remain at distance at least ¢, for some € > 0 independent of n.

After taking a further subsequence, the p, converge to the union of p + 1 ideal
polygons pé& . ,p((fo)H), which, topologically, is obtained by cutting the original
polygon along each a; and then collapsing each (copy of each) segment a; to a new
ideal vertex. Recall that given 7 > 0 and a geodesic line « in H?, the r-neighborhood
of o is called a hypercycle neighborhood of a. We may choose horoballs at each ideal
vertex and disjoint hypercycle neighborhoods N; ,, of the (geodesic realization in pj,

of) a;, with radii r; ,, — oo, which converge to a system of horoballs for the limiting

ideal polygons pgi), ceey pgﬂ). Our function 6 is naturally defined on the limiting

polygons, since all edges of the limit correspond to edges of the original polygon.
However, 6 is no longer balanced at the new ideal vertices of pg), . 7pfféﬂ); instead
the sum of the 0 values along the edges going into one of the new vertices is strictly
positive, since 6 satisfies assumption (iii) of Definition 1.3. Now, we may split ¢y
into two pieces

to = L]

corresponding to the weighted length contained in the union of the neighborhoods
N; » and the weighted length outside of those neighborhoods. The former is always
positive, since 6 is yv—admissibile, so it satisfies condition (iii) of Definition 1.3, and
since the arcs with positive weight crossing a; have length at least 2r; , in N; ,,
while the two arcs with negative weight crossing a; have length exactly 2r;, in
N, . The later converges to the #-length function ¢4 (pg,)) + Ly (p((fo)ﬂ)) of the
limiting polygons with respect to the limiting horoballs. However, by altering the
radii of the neighborhoods NV; ,, we may arrange for the limiting horoball around
each of the new vertices to be arbitrarily small (i.e. far out toward infinity), making

Ly (pg))) + 44y (pgéﬂ)) arbitrarily large. It follows that ¢y (p,) — +o0. O

+ 4y

UNi,n |(UN'i,n)C’

Proof of Lemma 3.7. Let p € polygy, and let A be a measured lamination on p,
that is, a set of disjoint diagonals 3i,-- -, 8, each with a weight \; > 0. We need
to prove that the function t — ¢y(E\p) is convex with strictly positive second
derivative. To prove this, we prove an analogue of the Kerckhoff-Wolpert formula
in this setting, specifically:

d
(11) %fe(Et,\p) = 0;); cos(pij) + K,

where ¢;; € (0,7) is the angle at which the edge a; of I' crosses the edge 3; of the
support of A, the sum is taken over all ¢, so that o; intersects 3; non-trivially,
and K := K(0,\) is independent of p and ¢. The lemma follows from this formula
by a standard argument about earthquakes (see [24, Lemma 3.6]): each angle ¢;;
of intersection strictly decreases with ¢ because, from the point of view of the edge
B;, the endpoints at infinity of o; are moving to the left.

It suffices to prove the formula (11) in the case that the lamination \ is a single
diagonal 8 with weight equal to one. We choose horocycles h, ; at each vertex v
and at each time t along the earthquake path as follows. Begin at time ¢t = 0 with
any collection of horocycles {h, o}. For a vertex v that is not an endpoint of 3, we
simply apply the earthquake E}y to h, o: Define h, ; = Eizhy 0. If w is an endpoint
of 3, then the earthquake breaks the horocycle h, ¢ into two pieces. We define
hw.+ to be the horocycle equidistant from these two pieces. An easy calculation in
hyperbolic plane geometry shows that, for «; an edge of I' crossing 3, we have

d d ..
gf(ai) == dist(hy,t, Py ) = cos(p;),
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where ¢; is the angle at which «; crosses 3, where v and v’ are the endpoints of a;,
and where dist(-, ) denotes the signed distance between horocycles. Further £(53)
remains constant along the earthquake path. Finally, for any edge aj which shares
one endpoint v with 3, we have that %Z(ak) = +1/2 is independent of p and ¢; the
sign depends on whether «y lies on one side of 3, or the other. O

3.5. Proof of Theorem 1.9. We now have tools to prove Theorem 1.9. First,
however, we must prove Proposition 1.10.

Proof of Proposition 1.10. We must prove that the dihedral angles function 6 =
Ur(P) of any ideal polyhedron P € HPPolyhy is y—admissible (Definition 1.3).
Condition (i) is simply our convention of labeling the dihedral angles of equatorial
edges with negative signs. So, we must prove that 6 satisfies (ii) and (iii).

That 6 satisfies condition (ii) follows from the fact that the sum of the dihedral
angles at a vertex of an ideal polyhedron in H?® is constant (equal to 27). By
Proposition 2.17, the dihedral angles of P are simply the derivatives of the (exterior)
dihedral angles of Q;, where Q; is a path of ideal polyhedra in hyperbolic space (or
anti-de Sitter space), as in Proposition 2.16.

Now, let us prove that 6 satisfies (iii). Consider a path ¢ on P normal to the
1-skeleton I' and crossing exactly two non-adjacent edges of the equator. Then,
without affecting the combinatorics of the path, we deform so that ¢ is precisely
P N H for some vertical (degenerate) plane H that is orthogonal to both edges of
the equator crossed by c. Note that the angle between a non-degenerate line «
and a degenerate plane H is precisely the angle formed between the lines w(«)
and w(H) in H? and therefore we can indeed achieve that H is orthogonal to both
edges of the equator simultaneously (by contrast to the analogous situation in H? or
AdS?). The plane H is isomorphic to a copy of two-dimensional half-pipe geometry
HP?. Inside H, the edges of ¢ are non-degenerate, forming a polygon with exterior
angles bounded above by the corresponding dihedral angles of P. Indeed, if 6; is
the dihedral angle between two faces in HP? and 9; is the angle formed by those
faces when intersected with H, then by Proposition 2.20, sign(v;) = sign(6;) and
|9 < 10;] with equality if and only if H is orthogonal to the line of intersection
between the faces. Therefore the exterior angle in H at each of the two points
where c¢ intersects the equator is equal to the exterior dihedral angle along that
equatorial edge (and both are negative) while the exterior angle at any other vertex
of ¢ is strictly less than the exterior dihedral angle of P at the corresponding
edge (and both are positive). By the infinitesimal Gauss-Bonnet formula in HP?
(Proposition 2.19), the sum of the exterior angles of ¢ is positive and so it follows
that the sum of the exterior dihedral angles over the edges of P crossed by c is also
positive. O

Proof of Theorem 1.9. The map F : HPPolyh — polyg x A, taking an HP ideal
polyhedron to its projection to H?2, an ideal polygon, and to its dihedral angles,
has a continuous left inverse. Let G : polyg x A — HPPolyh be the map that takes
p € polyg and bends according to the top angles 6 of 0 € A, ignoring the rest of
the information in # (the bottom and equatorial dihedral angles). Then Go F' is the
identity. Hence, to show that ¥ = UHP is a homeomorphism, we need only show
that there is a continuous map H : A — polyg such that G(H(¥(P)),¥(P)) = P.
The existence of such a continuous map H is guaranteed by Proposition 3.5 and
a simple application of the Implicit Function Theorem as follows. For 6 € A,
define H(6) to be the unique minimum in polyg of ¢y given by Proposition 3.5.
That H is continuous (in fact differentiable on all strata of A) follows from the
convexity of £y, thought of as a function on polyg. Now, recall that the space
of ideal polygons polyg identifies with the space of doubles & in 9 . Hence,
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because H () minimizes £y over polyg, the restriction of dfy (now thought of as
a one-form on all of 9 n) to Z is zero at (the double of) H(6). It then follows
that the infinitesimal shear eg on  n is tangent to the subspace of doubles 2
at (the double of) H () because ey is dual to ¢y (Lemma 3.3) and the space of
doubles Z is Lagrangian (Proposition 3.4). Therefore ey determines a well-defined
infinitesimal deformation of the polygon H(6) and the pair p = H(6),V = eg(H(0))
determines an HP polyhedron P such that F(P) = (H(6),0) as in the discussion in
Section 2.6. The formula G(H(¥(P)), ¥ (P)) = P follows, and this completes the
proof of Theorem 1.9. (|

4. PROPERNESS

In this section we will prove the two properness lemmas needed for the proofs
of the main results. Lemma 1.12 states that the map ®, sending an ideal polyhe-
dron in AdS? to its induced metric, is proper. Lemma 1.14, when combined with
Proposition 1.16, will imply properness of the map sending a polyhedron of fixed
combinatorics to its dihedral angles.

4.1. Properness for the induced metric (Lemma 1.12). To prove Lemma
1.12, we consider a compact subset K C Jp n. We must show that the set ®~1(K)
is a compact subset of AdSPolyh. In other words, if P is a polyhedron with m =
®(P) € K, we must show that P lies in a compact subset of AdSPolyh.

Since there are finitely many triangulations of the disk with N vertices, we may
consider polyhedra P with fixed combinatorics, that is the graph T' is fixed. We
may assume [ is a triangulation by adding edges if necessary.

FIGURE 6. The polyhedron P with combinatorics given by I'. The
red edge is e, and ¢* = r(vT;e), ¢7 = wr(v7;e).

Recall that the induced metric m on P is related to the left and right metrics
my, and mp by the diagram in Theorem 2.11: mpr = Ey(m) and m = Eg(my),
where 6 : I' — R is the assignment of exterior dihedral angles to the edges of P
and Fjy is the shear map associated to 8. Also, recall that m; and mp are cusped
metrics on the sphere that come from doubling the metric structures on the ideal
polygon obtained by projecting the vertices of P to the left and right foliations of
OAdS3. To show that P lies in a compact set, we must show that mz and mp lie in
compact sets. It is enough to show that 6 remains bounded over ®~!(K). Although
we have not yet proved Proposition 1.16, we will use here that 6 is y—admissible,
so it satisfies conditions (i) and (ii) in Definition 1.3. That these conditions are
satisfied is essentially trivial, see the first paragraph of Section 6.
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Consider an edge e of the equator «y of I', and recall that 6(e) < 0 (by condition
(i) of the definition of Ar). Let sz, (e), sr(e), s(e) denote the shear coordinate along
e, with respect to I'; of the left metric mp, the right metric mp, and the induced
metric m. Then, by Theorem 2.11, we have:

sr(e) —s(e) =0(e) = s(e) — sp(e) .
Now the edge e belongs to a unique triangle of I' in the top hemisphere of 3¢ ,
the third vertex of which we denote by v*. On the bottom hemisphere, the edge
e, again, belongs to a unique triangle, whose third vertex we denote by v™.

There are two cases to consider. Recall that we fixed an orientation of the
equator y. Imagining that we view Xy y from above, it is intuitive to call the
positive direction left and the negative direction right. First suppose v lies to the
left of v~ when viewed from e. The restriction of the right metric mg to the top
hemisphere of ¥y y is a marked hyperbolic ideal polygon pgr, in which the vertex
v again lies to the left of v~. Since mp is the double of pr, we may calculate the
shear coordinate sg(e) of sg by the simple formula:

sr(e) =mr(vte) —mr(v ™ 5e),

where mr(v;e) denotes the hyperbolic orthogonal projection of v onto the edge e
in pg, see Figure 6. Then we have sr(e) > 0 and so sp(e) > s(e) > sg(e) > 0. In
particular,

6(e) = sr(e) — s(e) > —s(e).
In the case that v* lies to the right of v~, we examine the left metric my. In the
restriction pr, of my, to the top hemisphere, the vertex v* again lies to the right of v™
and so, by a similar calculation as above, sp.(e) < 0 and so sr(e) < s(e) < sp(e) < 0.
Therefore

O(e) = s(e) —sr(e) > s(e) .
In either case, 6(e) is bounded, because the shears s(e) are bounded, as m varies
over the compact set K.

We have shown that all of the edges e for which 6(e) < 0 have 6(e) bounded. It
then follows that the other edges €', for which 6(e’) > 0, also have 6(e’) bounded,
since the sum of all positive and negative angles along edges coming into any vertex
of P must be zero (condition (ii) of the definition of Ar). Therefore ®~1(K) is
compact.

4.2. Proof of Lemma 1.14. Let I' € Graph(Zg n,7). We consider a sequence
(Py)nen going to infinity in AdSPolyh y such that the dihedral angles 6, = WIS (P,)
converge to 0, € RF, where E = E(I') denotes the edges of I' as usual. We must
show that 0 fails to satisfy condition (iii) of Definition 1.3.

For each n, let pL = wr(P,) and pff = wr(P,) be the ideal polygons whose
ideal vertices are the left and right projections of the ideal vertices of P, (as in
Section 2.3). Let vf,,, -+, vk, denote the vertices in RP' of p%, and similarly let
vfn, e ,U]I\%]’n denote the vertices of pZ. By applying an isometry of AdS®, we may
assume that the first three vertices of P, are (0,0), (1,1) and (oo, 00) independent
of n, so that v{jn =vf =0, vé:’n = ’Ugn =1 and v?ﬁn = vglfn = oo for all n.

Since #,, converges to the limit 6. and the polyhedra P,, diverge, the sequence
of ideal polygons (p%),en diverges (in the space of ideal N-gons up to equivalence).
Reducing to a subsequence, we may assume all of the vertices converge to well-
defined limits viLm — viLm € RP'. However, since the sequence of polygons (PE) pen
does not converge in the space of ideal N-gons, there is at least one index i such
that vfm = UiL-‘,-l,oo' Now, since the right polygon pf is obtained from pZ by an
R
R

to a well-defined limit Ufoo and that Uil:oo = UiL_Hm if and only if vﬁoo = vﬁ_l,m. In

earthquake of bounded magnitude, it follows that each vertex v;* also converges
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other words the polyhedra P,, converge to a convex ideal polyhedron P, of strictly
fewer vertices.

The combinatorial structure of P, is obtained from I' by collapsing vertices and
the corresponding edges and faces in the obvious way: if two vertices that span an
edge collapse together, then that edge disappears. If that edge bounded a triangle,
then that triangle collapses to an edge, and so on. Let 'y, denote the 1-skeleton
of P, and let I';, denote the dual graph. Consider a simple path co in I' . We
may lift ¢, to a path ¢ in the dual graph I'* fof I" in the obvious way: an edge of
Coo 18 dual to an edge e of P,,. Under the collapse I' — I', e lifts to a collection
of consecutive edges in I' which determines a path of adjacent edges in I'*. The
sum of the dihedral angles assigned by 6,, to the path ¢ converges to the sum of the
dihedral angles of P, over the edges of co.

Now consider an ideal vertex of P,, which is the limit of two or more vertices
of the P, and let ¢, denote the path of edges bounding the face of I';  dual to
this vertex. Of course, the sum of the angles over the edges of ¢ is zero, since Py,
satisfies condition (ii) of Definition 1.3. It therefore follows that ., assigns angles
that sum to zero around the edges of the path c¢. Therefore 6., violates condition
(iii) in the definition of y-admissible maps, since ¢ does not bound a face in I'*, and
the proof is complete.

5. RIGIDITY

This section is dedicated to the local versions of Theorems 1.4 and 1.5, which
are Lemma 1.13 and Lemma 1.15.

5.1. The Pogorelov map for AdS™. We recall here the definition and main prop-
erties of the infinitesimal Pogorelov map, which turns infinitesimal rigidity problems
for polyhedra (or submanifolds) in constant curvature pseudo-Riemannian space-
forms into similar infinitesimal rigidity problems in flat spaces, where they are eas-
ier to deal with. These maps, as well as their non-infinitesimal counterparts, were
discovered by Pogorelov [30, Chapter 5] (in the Riemannian case). Another ac-
count and some geometric explanations of the existence of these maps can be found
in Schlenker [33, Prop. 5.7] or in Fillastre [20, Section 3.3]. See also Labourie—
Schlenker [26, Cor. 3.3] or Izmestiev [23]. We follow here mostly the presentation
given in [20, Section 3.3], and refer to this paper for the proofs.

Although we will return to dimension three shortly, we describe the Pogorelov
map in any dimension n. Consider the complement U in AdS™ of a spacelike totally
geodesic hyperplane Hy, dual to a point zg € AdS™. Here duality means that Hg
is defined by the equation (zg,x) = 0, where (-, -) is the inner product of signature
(n — 1,2) defining AdS™. Then U is naturally the intersection of AdS™ with an
affine chart R™ of projective space, and we may take ¢(xo) = 0 to be the origin of
this affine chart, where ¢ : U < R™ denotes the inclusion. The union of all light-like
geodesics passing through zg is called the light cone C(xy).

We equip R™ with a flat Lorentzian metric, making it into a copy of Minkowski
space R"~1:1. We may choose this metric so that the inclusion ¢ is an isometry at the
tangent space to zg. This has the pleasant consequence that +(C(z0)) is precisely
the light cone of t(zg) in R*~11. We now define a bundle map Y : TU — TR~ 11
over the inclusion ¢ : U < R*" 11 as follows: Y agrees with dv on T, ,U. For any
xz € U\ C(zg), and any vector v € T, U, write v = v, + v, where v, is tangent to
the radial geodesic passing through zy and x, and v, is orthogonal to this radial
geodesic, and define

(12) T(v) =4/ HdHL?’IJ)Q”ZdL(UT) +diu(vy),
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where 7 is the unit radial vector (so ||#[|> = 1) and the norm |- || in the numerator
of the first term is the AdS metric, while the norm in the denominator is the
Minkowski metric. Note that a radial geodesic of U (passing through z¢) is taken
by ¢ to a radial geodesic in R"~ 1! (passing through the origin) of the same type
(space-like, light-like, time-like), although the length measure along the geodesic is
not preserved. Hence the quantity under the square-root in (12) is always positive.

The key property of the infinitesimal Pogorelov map is the following (the proof
is an easy computation in coordinates, see [20, Lemma 3.4]).

Lemma 5.1. Let Z be a vector field on U \ C(xo) C AdS™. Then Z is a Killing
vector field if and only if Y(Z) (wherever defined) is a Killing vector field for the
Minkowski metric on R*~1H1,

In fact, the lemma implies that the bundle map Y, which so far has only been
defined over U \ C(xzg), has a continuous extension to all of U. The bundle map T
is called an infinitesimal Pogorelov map.

Next, the bundle map = : TR*"~ 5! — TR™ over the identity, which simply
changes the sign of the n-th coordinate of a given tangent vector, has the same
property: it sends Killing vector fields in R* 1! to Killing vector fields for the
Euclidean metric on R™. Hence the map II = Z o T is a bundle map over the
inclusion U — R™ with the following property:

Lemma 5.2. Let Z be a vector field on U C AdS™. Then Z is a Killing vector
field if and only if I1(Z) is a Killing vector field for the Fuclidean metric on R™.

The bundle map II is also called an infinitesimal Pogorelov map. Henceforth we
return to the setting of three-dimensional geometry.

5.2. Rigidity of Euclidean polyhedra. In order to make use of the infinitesimal
Pogorelov map defined above, we recall some elementary and well-known results
about the rigidity of convex Euclidean polyhedra. It has been known since Legendre
[27] and Cauchy [13] that convex polyhedra in Euclidean three-space R? are globally
rigid. In fact, given two polyhedra Py, Py, if there is map 0Py — JP, which respects
the combinatorics and is an isometry on each face, then the map is the restriction of
a global isometry of Euclidean space. Later Dehn [18] proved that convex Euclidean
polyhedra are also infinitesimally rigid. In fact, he showed that any first-order
deformation V' of a polyhedron P that preserves the combinatorics and the metric
on each face is the restriction of a global Killing vector field. Here V' is not allowed,
for example, to deform the polyhedron so that a quadrilateral face becomes two
triangular faces. Still later, A.D. Alexandrov [1] proved a stronger version of this
statement:

Theorem 5.3 (Alexandrov). Let P be a convex polyhedron in R3, and let V be an
infinitesimal deformation of P (that might or might not change the combinatorics).
Then, if the induced metric on each face is fixed, at first order, under V, the
deformation V is the restriction to P of a global Fuclidean Killing field.

5.3. Proof of Lemma 1.13 (and Lemma 1.15). We first prove Lemma 1.13.
Lemma 1.15 then follows from it and Theorem 2.13.

Let P € AdSPolyh,,. We argue by contradiction and suppose that ® is not a
local immersion at P. This means that there exists a tangent vector V' to AdSPolyh
at P such that d®(V) = 0. In other terms, there is a first-order deformation V' of
P, as an ideal polyhedron in AdS?, which does not change the induced metric.

Now, V is described by tangent vectors V; € T,,0AdS® at each ideal vertex z;.
Since P is convex, it is contained in the complement U C AdS? of a spacelike totally
geodesic plane. We wish to use the Pogorelov map II defined in Section 5.1 above.
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However, II is not defined over the projective boundary, so we need to be slightly
careful. We may assume that the l-skeleton I' of P is a triangulation. If not,
we simply add diagonals to all of the non-triangular faces as needed. Consider a
triangular face T' = Az;, 2, 2;,. The tangent vectors V;,, V;,, Vi, determine a unique
Killing field X, which defines the motion of the points of T under the deformation.
The deformation vectors for the vertices of an adjacent triangle T = Az;, z;, 2i,
similarly determine a Killing field X', which determines the motion of the points of
T’. In general, X and X’ might not agree on the common edge e = z;25. However,
because d®(V) = 0, the shear coordinate along e does not change to first order,
and therefore X and X’ do agree along the edge e. It follows that V defines a
vector field W on P whose restriction to any face agrees with a Killing field of
AdS®. We now apply the Pogorelov map to obtain II(W), a vector field on the
boundary of a convex polyhedron +(P) in Euclidean space R3. By Lemma 5.2, the
restriction of II(W) to each face of ¢(P) agrees with a Euclidean Killing field. By
Theorem 5.3, II(W) must be the restriction of a global Euclidean Killing field Y.
Hence, again, using Lemma 5.2, we see that W was the restriction of a global
Killing field ITI7*(Y) of AdS® and therefore V represents the trivial deformation in
AdSPolyh ;. This completes the proof of Lemma 1.13.

6. NECESSARY CONDITIONS ON THE DIHEDRAL ANGLES: PROOF OF
PROPOSITION 1.16

In this section we prove Proposition 1.16, which states that the map \Ill/ids, taking
an ideal polyhedron P in AdS with 1-skeleton T to its dihedral angles § = WRIS(P),
has image in the convex cone Ar; in other words 6 is y—admissible (Definition 1.3).
That 6 satisfies (i) is just our sign convention for dihedral angles. That the dihedral
angles 6 satisfy (ii) follows exactly as in the hyperbolic setting: The intersection of P
with a small “horo-torus” centered about an ideal vertex of P is a convex polygon in
the Minkowski plane, whose exterior angles are equal to the corresponding exterior
dihedral angles on P.

The difficult part of Proposition 1.16 is to prove that 6 satisfies condition (iii)
of y-admissibility (Definition 1.3), and the remainder of this section is dedicated to
this claim. Consider a simple cycle ef, e}, ..., el = ef in I'* such that 6(e;) < 0 for
exactly two edges j = 1,r. Let f/ be the vertex of I'*, dual to a two-dimensional
face f; of P, which is an endpoint of e} and e}, ;. In other words, the face f; of P
contains the edges e; and e; 1. We must prove that the sum 6(e;)+---+6(e,) > 0.

We now define a polyhedron @) by “extending” the faces fi,..., f, and forget-
ting about the other faces of P. We will call @ the extension polyhedron. More
rigorously: Since P is contained in an affine chart of RP?, a lift P of P to the three-
sphere S is a convex polyhedron contained in an open half-space of S3. Define
Q to be the intersection of the half-spaces defined by the lifts of f1,..., f,. Then
generically Q will be contained in an open half-space, in which case Q projects to
a compact polyhedron @ in some affine chart of RP?. We will, in a sense, reduce
the generic case to the easier case that C~2 is not contained in an open half-space,
which we treat first. In this case, the combinatorial structure of Q is very simple
in that Q has exactly two antipodal vertices. The projection @ of Q to RP? has
one vertex, which is contained in every face fi,..., f, and edge eq, ..., e, of @, see
Figure 7. Therefore f1,..., f, and ey,...,e, are orthogonal to the time-like plane
A dual to that vertex. As in Section 5.1, duality is defined with respect to the
inner product of signature (2,2) that defines AdS3. The intersection ¢ = ANQ is a
convex compact polygon lying in A = AdS? whose exterior angles are equal to the
exterior dihedral angles of (). That (iii) holds in this case now follows from:
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FIGURE 7. In the degenerate case, the extension polyhedron @
has a single vertex in projective space, at infinity in the figure. All
faces and edges of @) are orthogonal to the time-like plane A dual
to the vertex.

Claim 6.1. The sum of the exterior angles of a compact, convex, space-like polygon
q in AdS? is strictly positive.

Proof. This follows directly from the Gauss-Bonnet formula for Lorentzian polygons
(see [9]). Alternatively, one may easily prove the claim directly for triangles and
then argue by induction. O

Before continuing to the general case, it is useful to examine the dual picture
in this simple case. Let RP? denote the projective plane in RP? containing the
timelike polygon ¢. The intersection of RP? with AdS? is a copy of AdS? (called A
above). Let ¢* denote the set of points in RP? whose dual hyperplane does not cross
the interior of q. Then ¢* is just the dual polygon to ¢, viewed in the projective
space containing ¢, rather than the dual projective space, via the signature (1,2)
quadratic form defining AdS?. See Figure 8. Since all edges of ¢ are space-like,

AdS?
[/ OAdS?

q 1

S

y

FIGURE 8. A compact spacelike polygon ¢ in AdS? and its dual
q*. All vertices of ¢* lie in AdS?. All edges of ¢* are spacelike, but
two of the edges cross the boundary of AdS?. The exterior angles
of ¢* at the vertices are positive.
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the vertices of ¢* are contained in AdS?. If v is a vertex of ¢ with positive exterior
angle, then the dual edge v* in ¢* is a space-like edge contained in AdS?. However,
if v is a vertex of ¢ with negative exterior angle, then the dual edge v* of ¢* begins
and ends in AdS? but contains a segment outside of AdS?. All exterior angles of
q* are positive, since all edges of ¢ are contained in AdS?. Conversely, if ¢* is any
polygon in RP? having vertices in AdS?, spacelike edges exactly two of which leave
AdS?, and positive exterior angles, then the dual of ¢* is a compact convex polygon
in AdS?. Note that the length of an edge in ¢* is equal to the dihedral angle at the
corresponding vertex of g, with the two edges which leave AdS? having negative
length. Therefore Claim 6.1 is equivalent to:

Claim 6.2. Let ¢* be a convex polygon in RP? with vertices in AdS2, with space-like
edges all but two (non-adjacent) of which are contained in AdS?, and with positive
exterior angle at each vertex. Then the sum of the lengths of the edges of q* is
positive.

This dual point of view will be useful in the general case, which we turn to now.

Consider the generic case that the extension polyhedron @ is compact in an
affine chart of RP?. In this case, Q will have extra edges, in addition to e1, ..., e,
which are not contained in AdS?; these edges may be either space-like or time-like.
Let Q* denote the dual polyhedron in RP?, where we identify RP® with its dual
via the inner product of signature (2,2) that defines AdS®. By perturbing a small
amount if necessary, we may assume that all vertices of @) lie outside of the closure
of AdS3, so that the faces of Q* are each time-like. The vertices of Q*, dual to the
space-like faces fi, ..., fn, lie in AdS3. The dual edges e3,. .., e} are space-like and
form a Hamiltonian cycle in 0Q* dividing it into two convex polyhedral surfaces
(0Q*)1 and (0Q*)2. We need only work with one of these surfaces, say (0Q*);. The
surface (0Q*); is a polygon, bent along some interior edges. Note that two of the
perimeter edges e} and e of (0Q*); each contain a segment outside of AdS?, while
e3,...,ei_; and e’ ,..., €} are contained in AdS®. We will show the following
lemma, the proof is deferred until Section 6.2.

Lemma 6.3. The surface (0Q*)1 is intrinsically locally convez, with positive exte-
rior angles.

The lemma says that when (0Q*); is “un-folded” onto a time-like plane (a copy of
AdS?), it is convex with positive exterior angles and therefore isomorphic to some
¢* as in Claim 6.2 above. Therefore condition (iii) will follow from the lemma.
Before embarking on the proof, we draw on some intuition from the Riemannian
setting. To show that a developable polyhedral surface S in a Riemannian space
(R3 say) is intrinsically locally convex, one must simply show that the total angle of
S at each vertex is less than 7. Equivalently, one examines the link of each vertex
v of S, which is naturally a polygonal path in the unit sphere in the tangent space
at v: S is locally convex at v if and only if the length of this polygonal path is less
than 7. We show that (0Q*); is locally convex in much the same way, by examining
the link of each vertex of (0Q*); and measuring how long it is. However the space
of rays emanating from a point in a Lorentzian space is not the Riemannian unit
sphere, but rather what is called the HS sphere or HS?.

6.1. The geometry of the HS sphere. HS geometry, introduced in [33, 34] and
used recently in [6, 7], is the natural local geometry near a point in a Lorentzian
space-time such as AdS3. In those papers, HS-structures with cone singularities
occur naturally as the induced geometric structures on the boundary of polyhedra
or, in a related manner, on the links of vertices of the singular graph in Lorentzian
3-manifolds with cone singularities. Here we will use comparatively simpler notions
without cone singularities.
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The tangent space at a point of AdS? is a copy of the three-dimensional Minkowski
space R%1. The HS sphere HS? is the space of rays based at the origin in R%!. It
admits a natural decomposition into five subsets:

o Let H? (respectively H? ) denote the future oriented (resp. past oriented)
time-like rays. Both HZ and HZ are copies of the Klein model for the
hyperbolic plane and are equipped with the standard hyperbolic metric in
the usual way.

o Let dS? denote the space-like rays, equipped with the standard de Sitter
metric.

e The light-like rays form two circles, H2 and OH?2, which are the bound-
aries of Hi and H2 respectively.

The group SOg(2, 1) of time-orientation and orientation preserving linear isometries
of R%! acts naturally (and projectively) on HS?, preserving this decomposition. The
geodesic 0, , between two (non-antipodal) points z,y € HS? is defined to be the
positive span of the two rays x,y. The space HS? is equipped with a (partially
defined) signed distance function d(-,-) as follows.

o If 2,y € H2 or 2,y € H? then d(z,y) is the usual hyperbolic distance,
equal to the hyperbolic length of o .

o Let z,y € dS%. We will only be interested in the case that O,y is time-like,
meaning the plane in R?! spanned by o, , has mixed signature. If o, , is
contained in dS?, then d(z,y) is defined to be the de Sitter length of o ,
taken to be a negative (rather than imaginary) number. Note that in this
case d(z,y) = —d(z*,y*), where z* (resp. y*) denotes the geodesic line dual
to z (resp. y) in ]H[i (equal to the intersection with ]H[i of the orthogonal
complement of z (resp. y)). In the case that o,, passes through H2 (or
H?), we define d(z,y) = +d(x*,y*).

e Let z € H2 and y € dS%. Then we define d(z,y) = +d(z,y*) if z and y
lie on opposite sides of y* or d(x,y) = —d(z,y*) if z and y lie on the same
side of y*.

We note that this distance function may be similarly defined in terms of the Hilbert
distance (cross ratios) with respect to OH3 or OH? . Let o be a polygonal path in
HS? with endpoints z,y € dS? and call o time-oriented if o is the concatenation of
three polygonal subpaths: a path crossing from x to Hi which is future-oriented,
followed by a path in Hi, followed by a path from Hi back into dS? which is past
oriented. The length £ (o) is defined to be the sum of the lengths of the geodesic
segments comprising o. It is important to note that £ (o) is well-defined under
sub-division. The crucial ingredient in the proof of Lemma 6.3 is the following
substitute for the triangle inequality.

Claim 6.4. Let o be a time-oriented polygonal path with endpoints x,y € dS? and
suppose further that the geodesic segment o, is time-like and crosses through Hi

Then ZL(0) > L(04,y)-

Proof. Let x = xq,x1,...,2, =y be the ordered vertices of o, with xg, ..., z; lying
in dS?, x;41,..., x; lying in Hi and jq1,...,T, lying in dS?. Then,

i1
Z(o)=— Zd(xz,x}';ﬂ) + e1d(x], Tit1)
k=0

J
+ E d(wg, Tp41)  + e2d(x),2544) E d(x, i)
k=i+1 k=j+1
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where €1,e2 = £1. We may assume, by sub-dividing, that x; and z;;; are on
the same side of z7 and that z; and x4 are on the same side of z7,,, so that
€1 = €2 = —1. Therefore all of the dual lines zg,..., 27 and z7,,,... 2} lie in
between z;41 and z; in H. In fact, the dual lines are arranged, in order from

closest to ;41 to closest to x;, as follows: z7,x7 |, ..., 25,25, 25 _1,..., T} See
Figure 9. Therefore, we have, by the triangle inequality in H?, that

ES
Tjy2

ds?

FIGURE 9. In the proof of Claim 6.4, o is a time oriented polygonal
path in HS2. In Lemma 6.3, we apply Claim 6.4 to the case that
o is the link of a vertex of (0Q*)1, which is convex (as drawn).

d(wiyr,x) > d@ipn,2]) + Y d(@g, o)
k=1

n
+d(xg,an) + Y g wioy) + (@, 7))
k=j+2
since the line connecting x;11 to x; crosses each of the dual lines in the above
equation. Again by the triangle inequality in H?, we also have

j—1
d(zip,x) < Y @k, Trpa).
k=it1

It follows that . (0, ) = d(z§, x) < Z(0). O

6.2. Proof of Lemma 6.3. To complete the proof of Proposition 1.16 (that the
dihedral angle maps are y-admissible), we now prove Lemma 6.3 which states that
the convex pleated polygon (0Q*); is intrinsically locally convex with positive exte-
rior angles. Consider a vertex f; of (0Q*);. We consider the link o at f; of (0Q*)1,
a polygonal path in the space of rays in T't- AdS? which is naturally a copy of HS2.
The endpoints x and y of o correspond to two consecutive dual edges e; and e},
in the perimeter of (0Q*)1. Since the e} are space-like, z,y lie in dS? ¢ HS®. By
assumption, the edges e; and e; ; intersect outside of AdS® at a point v; (which is
positive with respect to the (2,2) form), and therefore the plane v; containing e}
and ej, |, which is dual to v;, is time-like, thus so is 0, ,. Note the intersection of
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the spacelike face f; with v} is a spacelike edge contained in AdS?, since the end-
points of this edge are contained in AdS? and the intersection f; N AdS? is convex
(since it extends a face of the original polyhedron P). It then follows from this
and from convexity of () that the geodesic o, , passes through a hyperbolic region
of HS?, which without loss in generality we take to be Hi. Further, by convexity
of @ and the fact that each of the faces of 0Q* is time-like, the link o at f; of
(0Q*)1 is time-oriented in the sense defined in the previous section. Therefore, it
follows from Claim 6.4 that £ (o) > £(0,,) > 0. Lemma 6.3 now follows because
Z (o) is a complete invariant of the local geometry of (0Q*); at f/; the develop-
ment of (0Q*); onto a copy of AdS? is convex at this vertex, with positive exterior
angle, if and only if the length of the link is positive. This completes the proof of
Proposition 1.16.

7. TOPOLOGICAL ARGUMENTS

7.1. The topology of the space of ideal polyhedra. In this Section we prove
Proposition 1.11.

Proof of Proposition 1.11. First, let’s study AdSPolyh and AdSPolyh . By Propo-
sition 2.8, the space AdSPolyh,; identifies with the space polyg, x polyg, of pairs
(pr,pr) of marked ideal N-gons in the hyperbolic plane considered up to the ac-
tion of PSLsR x PSLyoR. The space AdSPolyh, is obtained from AdSPolyhy by
removing all pairs (pr,pr) such that p;, and pr are isometric. Using the action of
PSLsR x PSL;R we may, in a unique way, put p;, and pg into standard position so
that the first three vertices of each polygon are oo,0 and 1. The remaining vertices

of py, form an increasing sequence of N — 3 points x4 < --+ < zx in (1,00). Simi-
larly, the remaining vertices of pr also form an increasing sequence y4 < -+ < yn
in (1,00) and py, is isometric to pg if and only if (24,...,25) = (Ya,.-.,yn). It

follows that AdSPolyh , is homeomorphic to RN =3 x RV=3 and AdSPolyh 5 is home-
omorphic to RY =3 x RV=3 minus the diagonal. Therefore AdSPolyh, is homotopy
equivalent to the sphere of dimension N — 4.

We now study the space HPPolyh,. Recall from Section 2.6 that the space
HPPolyh y identifies with the space of pairs (p, V) where p is a marked ideal N-
gon in the hyperbolic plane and V' is a non-trivial infinitesimal deformation of p
considered up to the action of the tangent bundle TPSLyR. Using this action we
may, in a unique way, place (p, V) in standard position so that the first three vertices
of p are 1 = 00,29 = 0,23 = 1 and so that V(z1) =0, V(z2) =0, and V(z3) = 0.
The remaining N — 3 tangent vectors are not all zero and their basepoints form
an increasing sequence in (1,00). It follows that HPPolyhy is homeomorphic to
TRN=3 minus the zero section. Therefore HPPolyh , is homotopy equivalent to the
sphere of dimension N — 4. O

As a corollary of Theorem 1.9 and this proposition we have:

Corollary 7.1. The space of angle assignments A is connected and simply con-
nected whenever the number of vertices N > 6.

7.2. UAYS is a local homeo. Lemma 1.15 says that for each triangulation I €
Graph(2o n,7), the map ¥r : AdSPolyh — R¥ is a local immersion at any ideal
polyhedron P whose 1-skeleton is contained in I'. We now deduce the following
result.

Lemma 7.2. UAYS . AdSPolyh — A is a local homeomorphism.

Proof. Given any I' € Graph(Xg n,7), we must first show that the dimension of
Ar (if non-empty) is 2N — 6. The dimension of the convex cone Ar is determined
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by the rank of the N equations in condition (ii) of y—admissibility (Definition 1.3).
Assume first that N is odd. Then these equations may be used to eliminate the
the N weights on the equator. Indeed if &; denotes the equation of (ii) determined
by the vertex v; of I', then treating indices cyclically we find that

Eimt—Ejpat = &1+ E;

is an equation which depends on (the weight at) the edge e; with endpoints v; and
v;+1 but on no other edge of the equator. This shows that the equations &1,...,EN
have rank N and the dimension of Ar is therefore 3N — 6 — N = 2N — 6. Next if
N is even, we may only eliminate N — 1 of the weights on the equator because all
equatorial weights cancel in the alternating sum:

& =&+ +Env1—EN.

However, note that this sum is not trivial since it depends non-trivially on (the
weight at) any edge whose two endpoints are an even number of edges apart along
the equator. Since I' is a triangulation, there must exist some such edge. So the
equations in condition (ii) of y—admissibility (Definition 1.3) have rank N in this
case as well.

Next, for each triangulation T, let Vo € RE(@) be the subspace satisfying the
equations of condition (ii). Since Vr has dimension 2N — 6, as shown above, each
of the maps WpYS is a local diffeomorphism at any polyhedron P whose 1-skeleton
is a subgraph of I'. The map WAYS, pieced together from the \Il/lidsover all T, is an
open map by the definition of the topology of the complex A. Further, since each
\I/"lids is a local diffeomorphism in a neighborhood of any point in the closure of the
stratum of AdSPolyh defined by T', we have that U9 is a local bijection to A. Tt
follows that ¥A9S is a local homeomorphism. O

Lemma 7.2 and Lemma 1.14 imply that UA9S is a covering. Since for N > 6,
AdSPolyh is connected and A is connected and simply connected, we conclude that
Theorem 1.4 holds when N > 6.

7.3. The cases N = 4,5. Although the topology of A is slightly more complicated
when N = 4,5, the proof of Theorem 1.4 is straightforward in these cases. In
the case N = 4, the space AdSPolyh is the space of marked (non-degenerate) ideal
tetrahedra which has two components and the map WA is easily seen to be a
homeomorphism. Indeed, an ideal tetrahedron in AdS? is determined by its shape
parameter (see Section 2.2); its dihedral angles may be determined directly from the
shape parameter. Conversely, the shape parameter is determined by any two angles
along edges emanating from a common vertex. Therefore an ideal tetrahedron is
determined entirely by the local geometry near any ideal vertex.

In the case N =5, both AdSPolyh and A are homotopy equivalent to the circle.
Indeed, that AdSPolyh is homotopy equivalent to the circle is shown in the proof
of Proposition 1.11 in Section 7.1. It is also shown in the same proof that HPPolyh
is homotopy equivalent to the circle, hence so is A by Theorem 1.9 (it is also
easy to determine the topology of A directly in this case). To show that the map
WAIS i5 3 homeomorphism, rather than some non-trivial covering, consider an ideal
polyhedron P with N vertices. We may cut P into two ideal tetrahedra T, T’ along
some interior triangular face A. The tetrahedron T is determined by the angles
along the three edges emanating from any vertex of 7', in particular the vertex not
belonging to A. These three angles are dihedral angles of P as well, so it follows
that the geometry of T is determined by the dihedral angles of P. Similarly, the
geometry of T” is determined by the dihedral angles of P. Since there is exactly one
way to glue T and 7" back together (with the correct combinatorics), the geometry
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of P is determined by its dihedral angles, i.e. WAYS is injective, and is therefore a
homeomorphism.

7.4. Proof of Theorem 1.2. Finally, we prove Theorem 1.2. The equivalence of
(C) and (H) is immediate from Theorems 1.9 and 1.4. We now show the equivalence
of (H) and (S) using Theorem 1.4 and Rivin’s Theorem, discussed in Section 1.2.
Let T' € Graph(Xo n,7), and as usual let E = E(I') denote the edges of I'. First
suppose P € AdSPolyhy, and let § = WAYS(P) € Ap. For any t > 0, the weights ¢
are also in Ar. We choose ¢t > 0 so that:

(A) for all edges e € E, tl(e) € (—m,m) \ {0}.

(B) for all of the finitely many simple cycles ¢ in I'*, the sum of the values of

t0 along c is greater than —m.

Note that any simple cycle ¢, as in (B) above, crosses the equator v at least twice.
If ¢ crosses the equator v exactly twice, then this sum will either be zero, if ¢
bounds a face of IT'* (condition (ii) of y-admissibility, Definition 1.3), or positive if
not (condition (iii)). Noting that tf(e) € (—m,0) if e € v and t6(e) € (0, 7) if not,
we let §': E — (0,7) be defined by

0'(e) = to(e) if e is not an edge of ~,
DT w4 td(e) if e is an edge of .

Then ¢’ satisfies the three conditions of Rivin’s Theorem and is therefore realized
as the dihedral angles of some ideal polyhedron P’ in H3. In the projective model
for H3, P’ is a polyhedron inscribed in the sphere with 1-skeleton T.

Conversely, suppose P’ is an ideal polyhedron in H? with 1-skeleton I'. Then
the dihedral angles 6" : E — (0,7) of P’ satisfy the three conditions of Rivin’s
Theorem. We define 6 : E — R by

0e) = 0'(e) if e is not an edge of 7,
€= 0'(e) —m if e is an edge of .

Then 6 is easily seen to be y-admissible (Definition 1.3) and so by Theorem 1.4,
§ = WAIS(P) for some P € AdSPolyh. In the projective model for AdS?, P is a
polyhedron inscribed in the hyperboloid with 1-skeleton I'. This completes the
proof of Theorem 1.2.

Remark 7.3. Let I' be a planar graph and suppose I is realized as the 1-skeleton
of some ideal polyhedron inscribed in the sphere. Note that I" may contain many
different Hamiltonian cycles. Applying the above to each Hamiltonian cycle v shows
the following: The components of the space of realizations of I" as the 1-skeleton of
a polyhedron inscribed in the hyperboloid (or similarly, the cylinder) are in one-one
correspondence with the Hamiltonian cycles in T

APPENDIX A. IDEAL POLYHEDRA WITH DIHEDRAL ANGLES GOING TO ZERO

We outline an alternative proof of Proposition 1.16 using transitional geometry
ideas. The argument uses Lemmas 1.14 and 1.15 to produce deformation paths of
polyhedra with dihedral angles going to zero in a prescribed manner. Here is the
basic idea: starting from an ideal polyhedron P € AdSPolyh with dihedral angles 6,
we deform P so that the dihedral angles are proportional to 6 and decrease toward
zero. An appropriate rescaled limit of these collapsing polyhedra yields an ideal
polyhedron P/, in HP® whose (infinitesimal) dihedral angles are precisely 6; we
then conclude, via Proposition 1.10, that 6 was in A to begin with.

The main ingredient is the following proposition. Recall the projective transfor-
mations a; of Section 2.6, which when applied to (the projective model of) AdS?
yield HP? in the limit as ¢ — 0.
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Proposition A.1. Let T' € Graph(Zo n,7) and consider weights § € RET) that
satisfy conditions (i), (ii) of Definition 1.3, and the following weaker version of (iii):
(iil’): If e3,..., e} form a simple circuit that does not bound a face of T, and
such that exactly two of the edges are dual to edges of the equator, then

O(er) +---+6(en) #0.
Let Py, be a sequence in AdSPolyhr with dihedral angles t1,0 such that t, — 0. Then:

(1) Py converges to an ideal N-gon Pu in the hyperbolic plane.
2) a,, P, converges to an ideal polyhedron P in HP? with 1-skeleton T' and
k g p y [ee)
infinitesimal dihedral angles 6.

Proposition A.1 will be applied in the alternative proof of Proposition 1.16 be-
low to show by contradiction that the dihedral angles 6 of an ideal polyhedron in
AdSPolyh must satisfy Condition (iii). In particular, if 6 satisfies (iii’) but not (iii),
then Proposition A.1 produces an ideal polyhedron in HP? with the same dihedral
angles, contradicting the already proved HP geometry version of Proposition 1.16,
namely Proposition 1.10.

We briefly mention an analogue of Proposition A.1 in the setting of quasifuchsian
hyperbolic three-manifolds. The first conclusion of the proposition can be seen as
an analogue of Series’ theorem [35], which states that when the bending data of
a sequence of quasifuchsian representations goes to zero in a controlled manner,
the convex cores collapse to a Fuchsian surface. The second part is the analogue
of work of Danciger—Kerckhoff [17] showing that after application of appropriate
projective transformations (in our notation, the a;), the collapsing convex cores of
such quasifuchsian representations converge to a convex core in half-pipe geometry.

Proof. We adapt the proof of Lemma 1.14 (properness of the map ¥A9S). As in
that proof, we may again assume that the ideal vertices (vlL,k, vﬁk), R (U]l\}’k, vﬁhk)
of Py satisfy that:

. vfk :vfk =0, 'UZLJC = Ugfk =1, U?ik :v?{‘:k = o0;

e For each i€ {1,... N}, vZLk — v{joo and vi}?k — vfoo; and
iL’OO = viLJrl’oo if and only if vfoo = vf'H’OO.

Therefore, we again find that the limit P, of P (in this normalization) is a
convex ideal polyhedron in AdS?, possibly of fewer vertices, and possibly degenerate
(i.e. lying in a two-plane). The dihedral angle at an edge e of Py, is again the sum
of 05 (€) over all edges €' of T" which collapse to e, where in this case 0., = 0.
Therefore all dihedral angles of P, are zero and we have that P, is an ideal
polygon lying in the hyperbolic plane & containing the ideal triangle A spanned by
(0,0), (1,1), and (oo, 00). To prevent collapse, we apply the appropriate projective
transformations a;, to the Pg.

e

Claim A.2. Up to taking a subsequence (in fact not necessary), the vertices a, v; i
converge to points v __ in the projective boundary OHP?.

2,00

Proof. This can be seen from the following simple compactness statement, which
may be verified by induction: Given M > 1 and © > 0, there exists two smooth
families of space-like bounding planes Q. (t) and Q_(t), defined for ¢ > 0, such
that

Q+(O) = Q_(O) =P

Q. (t) and Q_(t) are disjoint for ¢ > 0 and their common perpendicular is
a fixed time-like line « (independent of ¢).

The time-like distance (along «) between Q. () and Q_(t) is O(¢).

Any space-like convex connected ideal polygonal surface in AdS? for which
Ay is (contained in) a face, which has at most M faces, and all of whose
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dihedral angles are bounded by tO lies to the past of Q. (¢) and to the
future of Q_(t).

The first three conditions above imply that the limit of 0, Q4 (¢) and a;Q_(t) as
t — 0 are two disjoint non-degenerate planes Q’/, and Q' in HP?. Therefore, the
limit of a;, P, must, after extracting a subsequence if necessary, converge to some
polyhedron in HP? U 9HP? lying below @, and above Q' . g

As in the proof of Lemma 1.14, the limit of a;, P is the convex hull P/ of
V] nor 5 Un oo 10 HP?. The 1-skeleton I of P/ is obtained from the original 1-

» Yn,00

skeleton I' by collapsing some edges to vertices and some faces to edges or vertices.

Lemma A.3. Given ¢ € ', the infinitesimal dihedral angle 07_(€’) of P, at e is

the sum of 6(e) = %t@(e)hzo over all edges e which collapse to €.

Proof. The sequence of edges ey, ..., e, € E(T") which collapse to ¢’ may be arranged
in order so that the dual edges in I'* form a simple path. The sequence of adjacent
faces fo,..., fe of T are such that in P, each of these faces collapses to e’ except
the first fp and last fp. After applying a;, , the planes W1, ..., W, containing these
faces (we are suppressing the t; dependence here) converge to planes W7,..., W)
arranged in order around the common edge realizing ¢’ in HP?. The angle #/_(e’),
which is the dihedral angle between W7 and W/, is seen to be the sum over ¢ of the
dihedral angle between W] and W/, ;, which is precisely 6(e;). O

Next, consider the projection w : HP? — 2. Note that @(V] o) = Vico- Let H
denote the HP horo-cylinder which is the inverse image under w of a small horocycle
in & centered at a vertex v; o of Ps. The metric on H inherited from HP? is flat
and degenerate; it is the pull-back under w of the metric on a horocycle. The
intersection of H with P/ is a convex polygon ¢ in H. The infinitesimal angles at
vertices of ¢ are the same as the infinitesimal dihedral angles of the corresponding
edges of P/ . Note that the vertices of ¢ are the intersection with H of all edges
emanating from the ideal points U;VOO such that v; o = vj 0. The following lemma is
just the fact that the exterior angles of a convex polygon in the Euclidean plane sum
up to a constant 2w, interpreted in the setting that the polygon is infinitesimally
thin.

Lemma A.4. The infinitesimal angles of q sum to zero.

Now, suppose, for contradiction, that v;41,. = vic. Then, the vertices of
q correspond to a path ¢’ of edges of I whose inverse image under the collapse
is a path ¢ of edges in I" which do not bound a face of I'*. It follows from the
above that the sum of (e) over the edges e of the path c¢ is zero, contradicting the
condition (iii’). O

Remark A.5. This argument also works in the context of hyperbolic ideal poly-
hedra with dihedral angles going to zero and 7 at a controlled rate.

Remark A.6. Assuming the stronger condition (iii) on 6, the limiting ideal polygon
P, must be the unique minimum of the length function ¢y over the space polyg
of marked ideal polygons. See the proof of Theorem 1.9.

Outline of alternative proof of Proposition 1.16. Let I' € Graph(Zo n,7) and sup-
pose P € AdSPolyhy such that the dihedral angles § = ¥UA4S(P) € RFM) violate
condition (iii) in the definition of Ap. We argue by contradiction. First we show
that there are nearby weights 0’ satisfying conditions (i), (ii), as well as condition
(iii”) of Proposition A.1 above and so that at least one of the angle sum expres-
sions of (iii’) is strictly negative. This may already be the case for #. If not, then
there is at least one angle sum expression as in (iii) which evaluates to zero, and
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we will perturb. In the case that I' is a triangulation, it is simple to verify that
none of the angle sum expressions in condition (iii) is locally constant when the
equations of condition (ii) are satisfied, and therefore a nearby 6’ exists as desired,
since (iii’) consists of only finitely many conditions . If T" is not a triangulation,
then it actually could be the case that an angle sum expression as in condition (iii)
is constant equal to zero on the entire space of weights satisfying (ii). However, it
is always possible to add a small number of edges (at most one for each angle sum
expression of (iii) which evaluates to zero for #) with very small positive weights,
while perturbing the other weights slightly, to produce 6’ as desired. Let us briefly
explain.

_+_
— 7
8 6
+
9
5 +
10
4_
34
11
1 2

+

FIGURE 10. The black edges (including circular arcs, and solid and
dashed straight edges) form a three-connected graph on the sphere
which contains a Hamiltonian path (the circular arcs), but which
is never realized as the 1-skeleton of a convex ideal polyhedron in
AdS?. The thick curvy red path determines a path in the dual
graph as in condition (iii) for which the angle sum is identically
zero over any systems of weights satisfying (ii). Indeed the angle
sum is precisely the alternating sum of the terms in the vertex
equations (for vertices 1-9) with signs as labeled in the diagram.

Suppose ej, ..., ey form a simple circuit that does not bound a face of I'*, such
that exactly two of the edges are dual to edges of the equator, and such that
O(e1)+---+0(en) = 0 for all angle assignments 6 satistying (ii). Then, in the algebra
of functions on the edges of I', the sum 6(eq) + - - - + 6(e,) is a linear combination
of the vertex relations of (ii). More specifically, the angle sum 6(ey) + --- + 6(e,,)
is equal to the alternating sum of vertex relations for the ordered collection of
vertices (necessarily odd in number) lying on one side of the simple circuit. See
Figure 10. Consider a face f of I' containing two such adjacent vertices vy and v_
which appear respectively with a 4+ sign and a — sign in the alternating sum. The
only non-equatorial edges emanating from v_ end at a vertex represented in the
alternating sum with a positive sign. Hence, we may add a diagonal edge ¢’ within f
to I' connecting vy to another vertex represented in the sum with a positive sign. In
this new combinatorics we may deform the angle sum 6(e1)+- - -+6(e,) = —260(e’) to
negative values by assigning a small positive weight to e’. If after this adjustment,
there remains other simple circuits of the type considered in (iii’) with angle sum
identically zero, we perform a similar adjustment for that simple circuit. As there
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are only finitely many simple circuits to consider, this process terminates in finitely
many steps yielding an angle assignment on some supergraph of T' satisfying (iii’).
Next, by Lemma 7.2 (which was a simple consequence of Lemma 1.15, inde-
pendent of Proposition 1.16), there is an ideal polyhedron P’ € AdSPolyh, close
to P, so that WAYS(P') = ¢’. Now, consider the path of weights t¢’, defined for
t > 0. Lemma 7.2 implies that there exists a path P, in AdSPolyh such that
VAIS(P,) = 6, defined at least for ¢ close to one. In fact, the path P, may be
defined for all 1 > ¢t > 0. Indeed if the limit as ¢t — T > 0 of P, failed to exist,
then the proof of Lemma 1.14 would imply that WAYS(P,) either goes to infinity
or limits to an element of R¥(™) for which some angle sum expression as in (iii) is
exactly zero, impossible since the limit as t — T of WAYS(P,) is, of course, equal
to T0'. Hence, we may apply Proposition A.1 to the path P;. The result is an
ideal polyhedron P!, € HPPolyh whose infinitesimal dihedral angles are precisely

0’. This contradicts Proposition 1.10 since 6" does not satisfy (iii).
O
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