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ABSTRACT: We report a large kinetic isotope effect (KIE) for intramolecular charge transport in π-conjugated
oligophenyleneimine (OPI) molecules connected to Au electrodes. 13C and 15N substitution on the imine bonds produces a
conductance KIE of ∼2.7 per labeled atom in long OPI wires >4 nm in length, far larger than typical heavy-atom KIEs for chemical
reactions. In contrast, isotopic labeling in shorter OPI wires <4 nm does not produce a conductance KIE, consistent with a direct
tunneling mechanism. Temperature-dependent measurements reveal that conductance for a long 15N-substituted OPI wire is
activated, and we propose that the exceptionally large conductance KIEs imply a thermally assisted, through-barrier polaron
tunneling mechanism. In general, observation of large conductance KIEs opens up considerable opportunities for understanding
microscopic conduction mechanisms in π-conjugated molecules.

The use of isotopic labeling to examine electrical
conduction mechanisms in molecular conductors is

relatively rare,1−3 perhaps because the effects have generally
been expected to be quite small. In principle, however,
exploration of conduction isotope effects in molecular systems
holds promise for deciphering charge transport mecha-
nisms,4−6 including rate-limiting steps and transition states,
in exact analogy with the study of kinetic isotope effects (KIEs)
for determining reaction mechanisms in physical organic
chemistry.
Here we report the discovery of a large KIE for hopping

conduction in nanoscopic π-conjugated molecular wires
connected between Au electrodes. Our experiments focus on
13C-, 15N-, and D-labeled oligophenyleneimine (OPI) wires
grown from Au substrates, Figure 1A (see also Figures S1−S3
in the Supporting Information), with the number of phenyl-
enes in the range n = 2−10, corresponding to molecular
lengths of 1−7 nm. Figure 1A shows that our labeling studies
to date have focused on the imine linkage (−C(H)N−).
The OPI wires are synthesized on Au surfaces beginning with
formation of self-assembled monolayers (SAMs) of 4-amino-
thiophenol followed by sequential “click-like” condensation
reactions with aryl dialdehydes and diamines, as we have
reported previously.7−10 Isotopic substitution is achieved by
using monomers shown in Figure 1B. Monomers 1, 2, and 7−
10 are commercially available, and 3−6 were synthesized as
described in the Supporting Information. The syntheses of 27
different 13C-, 15N-, and D-substituted OPI wires and 9
unsubstituted versions, along with their characterization by
infrared and X-ray photoelectron spectroscopies, are reported
in Figures S4−S9 in the Supporting Information.
To measure the conductance (or resistance) of the

isotopically substituted OPI wires, we employed the conduct-
ing probe atomic force microscopy (CP-AFM) platform,
Figure 2A.7,9−15 Au-coated probe tips were brought into soft
(∼1 nN) contact with the OPI wire films, and voltage was
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Figure 1. (a) Structures of isotopologues OPI-7N, OPI-7C, OPI-7D,
and the unsubstituted OPI-7 parent molecule on Au. The general
naming scheme is OPI-nX, where n = 2−10 is the number of
phenylene rings and X is the isotope. (b) Corresponding monomer
units used to synthesize the OPI wires. * denotes 15N or 13C.
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swept at the tip while the substrate was grounded. Figure 2B
displays the resulting current−voltage (I−V) characteristics on
a semi-log scale for OPI-4 and the 13C-, 15N-, and D-labeled
versions, OPI-4C, OPI-4N, and OPI-4D, respectively. Differ-
ences in average currents are within the error of the
measurements, and there is no apparent KIE. We have
established previously that, for short OPI molecules up to OPI-
5, the dominant electrical transport mechanism is direct
tunneling,7,9,10,12 and in such a situation, a significant KIE is
not expected.
Figure 2C reveals a very different result for the longer

oligomers OPI-7, OPI-7C, and OPI-7N. The 13C- and 15N-
substituted OPI-7C and OPI-7N molecules have significantly
lower current than OPI-7, by about a factor of 3−5, at all
voltages. Similar observations hold for n = 6 and longer (n =
8−10) 13C- and 15N-substituted wires, Figures S10−S12.
However, there is no apparent difference in currents for OPI-
7D versus OPI-7. In prior work, we have demonstrated that the
mechanism of charge transport in long OPI wires is thermally
activated, multistep hopping in which holes are injected into
the OPI π-systems and driven along the molecules by the
applied electric field.7,9,10,12 The localized hole is best
described as a polaron, i.e., charge and the accompanying

geometric distortion of bond lengths and angles in the
molecular backbone, Scheme 1. In this situation, transition

state theory applies for each intramolecular polaron hop and
one expects a KIE.16−25 Our observations of KIEs in long
molecules (n = 6−10) are consistent with this expectation.
Low bias resistance versus molecular length results for all 36

OPI wires are shown in Figure 3A. The tunneling and hopping

transport regimes are defined by the stark slope change evident
in the resistance data. For short OPI molecules below 4 nm in
which direct tunneling dominates, the resistance increases
exponentially with molecular length, as expected.7,9,10,12,26−33

There is no KIE in this regime for any of the wires; the
resistance versus length behavior is indistinguishable for the
labeled versus unlabeled versions. For long OPI wires >4 nm
where the transport mechanism is polaron hopping, large KIEs
are evident. In particular, the 13C- and 15N-substituted wires
have distinctly higher resistances (R) than the unlabeled OPI
wires. The slopes of the R vs length trends are also steeper for
the 13C and 15N isotopologues. H/D exchange on the imine
functionality did not produce a KIE for any OPI wire length.
Conductance KIEs are quantified by the ratio of wire

conductances G (= 1/R), which are directly proportional to
polaron hopping rates, i.e., KIE = Glight/Gheavy = Rheavy/Rlight,
where Glight (Rlight) is the conductance (resistance) of the

Figure 2. (a) Scheme of the CP-AFM setup. (b) Semilog plots of
averaged I−V curves for OPI-4 and OPI-4X. (c) Averaged I−V curves
for OPI-7 and OPI-7X. Each curve is the average of 200 I−V traces.
The error bars represent one standard deviation.

Scheme 1. Representation of a Polaron in an OPI Oligomer

Figure 3. (a) Semi-log plot of low bias (±0.5 V) resistance versus
molecular length. Corresponding ring numbers are indicated. Error
bars are one standard deviation. Each point represents the average of
200 I−V traces. (b) KIEs for labeled OPI wires versus ring number
extracted from the data in (a).
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unlabeled molecule and Gheavy (Rheavy) corresponds to the
heavy-atom isotopologue. For all 13C- and 15N-substituted
wires in the hopping regime, KIE ≫ 1, as shown in Figure 3B
and Table 1. These conductance KIEs are exceptionally large,
ranging from 3 to 30. Primary KIEs for reactions involving 13C-
labeled molecules, and to a lesser extent 15N-isotopologues, are
documented in solution- and gas-phase studies and are
generally quite small (13C KIE < 1.01) near room temper-
ature.34−39 However, unlike typical reaction kinetics studies in
which single bond breaking or formation rates are the primary
focus, the conductance KIEs reported here represent an
aggregate of multiple intramolecular polaron transfer events,
involving many bonds in the wire backbone.
To normalize the KIEs, we divided the total KIE for each

wire by the number of isotope atoms present in the wire (e.g.,
n − 1 isotope atoms for OPI-nC wires). The isotope
normalized KIEs are also shown in Table 1 and range from
0.7 to 3.3, generally increasing with length. We believe the
isotope normalized KIEs for the longest wires (highlighted in
bold in Table 1) are more reliable than those for the n = 6−8
wires, for two reasons. First, there will be more polaron
hopping events in the longest wires and hence a greater
number of labeled imine bonds will be sampled. Second, it
seems quite likely there are “end-effects” in the conductance
measurements that impact the calculation of the normalized
KIE. For example, the normalized KIE for the OPI-6C wires is
0.7 (Table 1), which suggests a rate increase compared to the
unlabeled OPI-6, but this is at odds with the total KIE for OPI-
6C wires that shows they are 3.6× more resistive than
unlabeled OPI-6 wires. This discrepancy is resolved if one
presumes that imine bonds closest to the contacts somehow do
not contribute to the wire resistance, perhaps because injected
charge is initially distributed over several rings. The upshot is
that we take the normalized KIEs for OPI-9C, OPI-9N, OPI-
10C, and OPI-10N in Table 1 as better values. The
approximate mean normalized KIE for these wires is 2.7,
which again is an extraordinarily large value compared to
typical heavy atom KIEs in chemistry.
Prior quantum chemical calculations by Gagliardi, Cramer,

and co-workers for isolated, positively charged OPI wires
revealed that the polaron is localized to a few repeat units such
that multiple hops are necessary to traverse the entire wire
length.9,10 These calculations also indicated that the intra-
molecular hopping transition states involve simultaneous
flattening of the dihedral angle between adjacent phenylenes
and lengthening of the −CN− (imine) bond. In this
scenario, the substitution of heavy isotopes in the imine linkage
is expected to produce a KIE as the ground state vibration
frequency is decreased, leading to a higher barrier and fewer
attempted crossings through the transition state per unit time.
Understanding the role of intermolecular interactions on the
transition state is important, as is whether 13C exchange in the
phenyl rings has an impact similar to labeling the imine

functionality. Those studies are ongoing. Likewise, there are
fluctuations in KIE with increasing n, and further investigation
is necessary to determine the cause. Nevertheless, our current
observations verify the key role of the imine bond on the
polaron hopping rate.
The critical question is why the observed conductance KIEs

are so large. Computational estimates of the transition state
energies for polaron hopping in OPIs are ∼100 meV (10 kJ/
mol) corresponding to concurrent bond stretching and
torsional ring motion. Indeed, we have made initial temper-
ature-dependent measurements that reveal conductance
activation energies of 200−300 meV for both OPI-7N and
OPI-7 (Figure S13), and it does not appear that activation
energy differences can explain the large 15N KIE at room
temperature (Table 1). Furthermore, while heavy atom
substitution will decrease the barrier attempt frequency, the
small percentage increases in atomic weights for 13C and 15N
substitution are unable to account for the large KIEs. This
suggested to us that a classical over-the-barrier mechanism may
be inadequate to explain the large KIEs for intramolecular
polaron transport.
An intriguing possibility is that the transport mechanism

involves thermally assisted polaron tunneling.18,40−44 By
polaron tunneling we mean coupled charge and nuclear (e.g.,
C, N) tunneling, i.e., a simultaneous change in both electronic
and nuclear coordinates. Generally speaking, observation of
exceptionally large KIEs can be an indicator of nuclear
tunneling processes.45−50 Nuclear tunneling is known to play a
critical role in the bond shift isomerization of cyclo-
butadiene47,51−53 and the umbrella inversion of the ammonia
molecule,47,54−56 for example, as well as other reac-
tions.34,36−39,47,57−59 Other authors have also proposed a role
for 12C-tunneling in polaron transport in molecular semi-
conductors.40−44 For the OPI system, the conditions for
nuclear tunneling appear to be met, namely a small barrier
height (∼100 meV) and a narrow barrier width. The narrow
barrier width is inferred from the polaron hopping transition
state, which involves stretching of the imine bond. Changing
the imine bond order from two (CN) to one (C−N), as
implied by the change from aromatic to quinoidal bonding
patterns in OPI polarons,7,9,10 results in a bond length increase
of only ∼0.2 Å, supporting the narrow barrier concept.
For a thermally assisted polaron tunneling mechanism, a

crucial question is whether the estimated nuclear tunneling
rates are compatible with the rate of charge transfer through
the OPI molecules. A second question is whether large KIEs
can indeed be predicted, even approximately. Inspection of
Figure 2 shows that current levels of 1 nA pass through the
metal-OPI-7-metal junctions at V = 0.5 V. From prior work we
know that 50−100 OPI-7 molecules are contacted by the CP-
AFM probe.8,13,60 To make a conservative calculation, we
assume that the current passes through on average 10 OPI-7
molecules. This corresponds to 109 holes/s per molecule, or a

Table 1. Summary of the Kinetic Isotopic Effect for Labeled OPI Wiresa

Ring Number 13C KIE per 13C 15N KIE per 15N D

6 3.6 ± 1.2 0.7 ± 0.2 4.4 ± 0.8 1.1 ± 0.2 0.9 ± 0.3
7 8.1 ± 2.2 1.4 ± 0.4 10.1 ± 1.2 2.0 ± 0.2 1.2 ± 0.3
8 6.9 ± 2.9 1.0 ± 0.4 6.7 ± 1.6 1.2 ± 0.3 0.9 ± 0.4
9 18.5 ± 3.5 2.3 ± 0.4 20.7 ± 1.5 2.9 ± 0.2 0.9 ± 0.3
10 29.6 ± 3.5 3.3 ± 0.4 20.6 ± 2.5 2.5 ± 0.3 1.1 ± 0.2

aKIE = Glight/Gheavy = Rheavy/Rlight. KIE per 13C/15N is the KIE divided by the number of heavy isotope atoms per wire.
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hole transit time per molecule of approximately 1 ns.
Approximate rates of nuclear tunneling can be calculated as
outlined by Karmakar and Datta in their recent paper on heavy
atom tunneling in organic reactions.47 Assuming a parabolic
barrier for 12C atom tunneling that is 100 meV in height and
0.2 Å in width, gives a transmission probability T = 5 × 10−4.
Multiplying T by the CN vibration frequency of 5 × 1013 s−1

(∼1600 cm−1), we obtain a 12C-tunneling rate of 1010 s−1, an
extraordinarily large value. Importantly, this tunneling rate is
compatible with (faster than) the estimated 109 s−1 rate of hole
transfer across the OPI molecules at V = 0.5 V. A similar
calculation for 13C-tunneling gives T = 3.7 × 10−4, yielding a
KIE = 1.4 for a single labeled imine bond. This estimated KIE
appears to be within a factor of 2 of our normalized KIE/
isotope (∼2.7), and thus is in reasonable agreement given the
approximate nature of the calculation.
In summary, we have discovered extraordinarily large heavy

atom KIEs for intramolecular charge transport in π-conjugated
oligomers. The results may be consistent with a thermally
assisted, intramolecular polaron tunneling mechanism. Further
experiments, for example conductance measurements down to
much lower temperatures (e.g., 10 K) where activated
processes freeze out and tunneling processes dominate, are
desirable.4,18,40,42,44 Additionally, computational analysis will
be essential for assessment of the role of nuclear tunneling and
for obtaining quantitative agreement between transport
experiments and theory, especially in light of the large electric
fields involved, which alter the potential energy landscape. It
seems clear that the discovery of large heavy-atom KIEs for
intramolecular polaron transport−independent of whether
heavy-atom tunneling is occurring−opens up opportunities
for understanding microscopic conduction mechanisms in
molecules. If polaron tunneling effects are confirmed, intra-
molecular charge transport experiments may also provide a
platform for examination of heavy-atom tunneling processes
generally.
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J.; Zhou, G.; Müllen, K.; Tao, N. Transition from Tunneling to
Hopping in Single Molecular Junctions by Measuring Length and
Temperature Dependence. J. Am. Chem. Soc. 2010, 132 (33), 11658−
11664.
(30) Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale
Electronics: From Concept to Function. Chem. Rev. 2016, 116 (7),
4318−4440.
(31) Bowers, C. M.; Rappoport, D.; Baghbanzadeh, M.; Simeone, F.
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