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H I G H L I G H T S

• The drinking water resistome is distinct
in systems with and without disinfec-
tion residuals.

• Presence/absence of disinfectant resid-
uals is associated with antimicrobial re-
sistance traits.

• Resistant trait distributions are strongly
associated with microbial community.

• Mycobacterial populations with intrin-
sic resistance were only recovered
from systems with disinfection residual.
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Antimicrobial resistance (AMR) in drinking water has received less attention than its counterparts in the urban
water cycle. While culture-based techniques or gene-centric PCR have been used to probe the impact of treat-
ment approaches (e.g., disinfection) on AMR in drinking water, to our knowledge there is no systematic compar-
ison of AMR trait distribution and prevalence between disinfected and disinfectant residual-free drinking water
systems. We used metagenomics to assess the associations between disinfectant residuals and AMR prevalence
and its host association in full-scale drinking water distribution systems (DWDSs) with andwithout disinfectant
residuals.While thedifferences inAMRprofiles betweenDWDSswere associatedwith the presence or absence of
disinfectant, they were also associated with overall water chemistry and more importantly with microbial com-
munity structure. AMR genes and mechanisms differentially abundant in disinfected systemswere primarily as-
sociated with nontuberculous mycobacteria (NTM). Finally, evaluation of metagenome assembled genomes
(MAGs) also suggests that NTM possessing AMR genes conferring intrinsic resistance to key antibiotics were
prevalent in disinfected systems, whereas such NTM genomes were not detected in disinfectant residual free
DWDSs. Altogether, our findings provide insights into the drinking water resistome and its association with po-
tential opportunistic pathogens, particularly in systems with disinfectant residual.
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1. Introduction

Regulation compliant drinking water can contain low concentra-
tions of chemicals and microorganisms which stem from source water,
treatment process, distribution systems, and premises plumbing
(Bautista-De los Santos et al., 2016b; Nescerecka et al., 2014). While
chemicals (e.g., disinfection by-products (DBP) (Richardson et al.,
2007)) and microorganisms (Pinto et al., 2014; Prest et al., 2016; Vaz-
Moreira et al., 2013) have been extensively studied in drinking water,
our understanding of emerging biological contaminants (Pruden et al.,
2006) like antibiotic resistance bacteria (ARB) and genes (ARG) is lim-
ited. In fact, drinking water can constitute a potential exposure route
to microorganisms with intrinsic and acquired antibiotic resistance
genes (i.e., resistome (Wright, 2007)) and it can be particularly
concerning if these traits are associated with waterborne pathogens
(Ashbolt et al., 2013). This is of particular concern for treatment pro-
cesses, which are known to shape the drinking water microbiome
(Zhang and Liu, 2019) and play a role in selecting antimicrobial resistant
opportunistic pathogens (Sanganyado and Gwenzi, 2019).

Drinking water disinfection, via chlorination, remains the most
widely used treatment strategy for pathogen control (Cutler and
Miller, 2005). However, its unintended impacts (e.g., DBP formation)
have prompted the evaluation of alternative strategies to mitigate asso-
ciated risks. These range from the use of alternate disinfectants such as
chloramines, to advanced oxidation processes that avoid the use of dis-
infectants and sometimes eliminate the need formaintaining a disinfec-
tant residual. A disinfectant residual free approach towards production
and distribution of safe drinking water is practiced in some European
countries (e.g., Denmark, Netherlands, Switzerland) (Rosario-Ortiz
et al., 2016). Among the range of treatment strategies tomanagemicro-
bial growth in the drinking water distribution systems (DWDS), disin-
fection is likely to have a significant effect on AMR prevalence; either
via direct (Karumathil et al., 2014; Shrivastava et al., 2004; Zhang
et al., 2017) or indirect (i.e., DBP mediated) selection (Lv et al., 2014)
of resistant microbial populations. For instance, sub-lethal chlorine con-
centrations are associated with upregulation of ARGs in pathogens
(Karumathil et al., 2014; Shrivastava et al., 2004) and can promote
conjugative transfer of ARGs within strains and across genera (Zhang
et al., 2017). Culture dependent work has shown that the presence of
chlorine (Armstrong et al., 1982) and monochloramine (Xi et al.,
2009) can result in increased ARB and ARG (Shi et al., 2012) prevalence.
For instance, Xu et al. showed that a terminal chlorination step in ad-
vanced ozone-biological activated carbon treatment enhanced ARG
concentrations (Xu et al., 2016). Others have argued that the change
in resistance profiles are likely driven by changes in bacterial commu-
nity composition during drinkingwater treatment rather than selection
for the resistance traits themselves (Jia et al., 2015).

A key challenge for contextualizing the importance of ARGs in DWS
has been the inability to resolve their host-association. The presence of
ARGs in pathogenic microorganisms or mobile genetic elements can
present higher exposure risk, compared to their presence in non-
pathogenic and/or innocuous microbes (Bengtsson-Palme and Larsson,
2015;Martínez et al., 2014). qPCR is the gold standard for ARG detection
and quantitation, but requires a priori knowledge of the ARGs that need
to be quantified and it lacks host association information. In contrast,
high throughput sequencing (HTS) (e.g., metagenomics) facilitates the
identification of a broader range of ARGs and enables insights about
the functionality of detected ARGs and their host association. Multiple
studies have shown high concordance between these two techniques,
and show that metagenomic methods can indeed be useful for relative
quantitation (Munk et al., 2017; Plaire et al., 2017; Stedtfeld et al.,
2017; Willmann et al., 2015; Zhou et al., 2016). However, there are ca-
veats associated with the use of metagenomic data. Cost of sequencing
can be significantly higher than qPCRwith the trade-off being the ability
to capture larger number of genes. Additionally, the detection power of
metagenomics is limited to medium-to-high abundance genes and rare

traits require extremely deep sequencing effort (Fitzpatrick andWalsh,
2016). In contrast, qPCR can detect target genes at extremely low levels.
Further, metagenomic based ARG identification is impacted by the use
of varying thresholds for functional annotation (Arango-Argoty et al.,
2018; Clooney et al., 2016; Li et al., 2015; Xavier et al., 2016), requiring
additional curation efforts to ensure the trait assignment is robust.

In this study, we used a metagenomic approach to compare the
prevalence of ARGs and their hosts in DWS with different disinfection
strategies. To do this, we analyzed tapwater samples from several loca-
tions in the UK and the Netherlands that either maintain (Dis) or lack
disinfectant residual (NonDis) in the DWDS, respectively. Specifically,
our goals were to (1) survey ARGs across a range of Dis and NonDis
DWDS, (2) assess their abundance and diversity in relation to pres-
ence/absence of disinfectant residual, (3) employ de novo assembly
and genome binning to determine the host-association of high preva-
lence ARGs, and (4) evaluate the relationship between the prevalence
of ARG harboringmicrobes and/or mobile genetic elements to the pres-
ence/absence and concentration of a disinfectant residual in the DWDS.

2. Methods

2.1. Drinking water sampling and water quality analyses

A total of 39 sampleswere collected from 11 drinkingwater systems
(DWS) including systems with a disinfectant residual (Dis), located in
the UK (n = 21), and without a disinfectant residual (NonDis), located
in the Netherlands (n = 18) in 2013 and 2015, respectively. Bulk
water was collected from different countries to capture the differences
in disinfection strategy. In the UK, it is common practice to maintain
and regularly monitor disinfectant residual while a residual disinfectant
is not maintained in the DWDS in the Netherlands. A detailed sampling
protocol was described previously (Bautista-de los Santos et al., 2016a).
Briefly, the drinking water faucet was flushed for 20 min, to minimize
impact of stagnant water from premises plumbing. A grab sample was
either collected from the tap in sterile (by autoclaving) Nalgene con-
tainers, transported to the laboratory at 4 °C and immediately filtered
or filtered onsite using sterile equipment. Drinking water was filtered
in triplicate through 0.2 μm Sterivex filters (SVGP01050 EMDMillipore,
USA) using a peristaltic pump (Watson-Marlow 323S/D, UK) until the
filter clogged or up to a 15 l volume for each filter.Water quality param-
etersmeasurements were performed as described previously (Bautista-
de los Santos et al., 2016a). This included on-site measurements of tem-
perature, pH, conductivity, and dissolved oxygen using an Orion 5 Star
Meter (Thermo Fisher Scientific, USA). Total chlorine was measured
on site with US EPA compliant HACH kit on a DR 2800 VIS Spectropho-
tometer (Hach Lange, UK). Nitrogen species (ammonia, nitrite, and ni-
trate) were measured in the laboratory using standard methods 4500-
NH3-F, 4500-NO2-B, and 4500-NO3-B respectively. Total Organic Carbon
(TOC) was measured with a Shimadzu TOC-LCPH Analyzer (Shimadzu,
Japan). Detailed measurements and descriptions of sampling sites can
be found in supplementary materials (Table S1).

2.2. DNA extraction and shotgun sequencing

Filter membranes were aseptically removed from the Sterivex car-
tridge and transferred to 2 ml Lysing Matrix E tubes (SKU 116914100,
MP Biomedicals, USA) and DNA extraction and purification were per-
formed in a Maxwell® 16 DNA extraction system (Promega) using the
LEV DNA kit (AS1290, Promega, USA). Briefly, 300 μl of lysing buffer
and 30 μl of Proteinase K were added to the Lysing Matrix E tubes con-
taining the filter membrane, followed by incubation at 56 °C for 20min.
Subsequently, 500 μl of chloroform:isoamyl alcohol (24:1, pH 8.0) was
added to the tube and the tube was vortexed, followed by bead beating
for 40 s at 6 m/s using a FastPrep 24 instrument (MP Biomedicals, USA)
and centrifugation at 14,000g for 10 min. The aqueous phase of the su-
pernatant was transferred to a 2 ml centrifuge tube and twomore bead
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beating steps were performed by replacing the aqueous phase with
fresh lysing buffer (75 μl and 50 μl, respectively) prior to each bead beat-
ing step and followed by centrifugation at 14,000g for 10 min. Subse-
quent DNA purification from the aqueous phase was carried out by
Maxwell LEV DNA kit. The extracted DNA was quantified using a Qubit
HSdsDNAkit (Q32854, Life Technologies, UK)with aQubit 2.0 Fluorom-
eter (Life Technologies, UK). Negative controls consisting of reagent
blanks (no input material) and filter blanks (filter membranes from un-
used Sterivex filters) were processed identically as the samples for DNA
extraction (n = 8).

Libraries were prepared using the Nextera XT DNA Sample Prepara-
tion Kit (FC-131-1096, Illumina Inc.) according to the manufacturer's
protocol. DNA extracts from the reagent and filter blanks were spiked
with genomic DNA from an even and an uneven mock community
consisting of genomic DNA from 10 organisms (Table S2) and included
in the library preparation and sequencing run. All sampleswere cleaned
up with HighPrep PCRmagnetic beads (AC-60050, MagBio Inc.) accord-
ing tomanufacturer's instructions to remove very short fragments, eval-
uated for fragment size using High Sensitivity DNA Kit on Agilent
Bioanalyzer (5067-4626, Agilent Inc.) and then quantified with qPCR
according to Illumina guidelines. Libraries from all samples and spiked
negative controls were normalized based on qPCR results and pooled
in equimolar concentration. Finally, the pooled sampleswere quantified
with Qubit HS dsDNA assay and concentrated using HighPrep PCRmag-
netic beads. The sequencing library was then subject to metagenomic
sequencing on four lanes of Illumina HiSeq 2500 flow cell (paired end,
dual indexing, 2 × 250 bp read length, Rapid Run Mode) at University
of Liverpool Centre for Genomic Research (CGR, Liverpool, UK). UK
and the Netherlands sampleswere processed identically and sequenced
together.

2.3. Metagenomic data processing

Quality filtering was performed at the CGR on the raw FASTQ files
by trimming reads to remove Illumina adapter sequences using
Cutadapt (Compeau et al., 2011) v1.2.1. The option -O 3 was used,
so the 3′ end of any reads which match the adapter sequence for
3 bp or more were trimmed. The reads were further trimmed using
Trimmomatic (Bolger et al., 2014) v0.35 with a minimum Phred
score of Q20. Filtered paired end reads were interleaved and co-
assembled for each drinking water system using MetaSpades (Nurk
et al., 2017) v3.10.1, for a total of 11 co-assemblies (6 Dis and 5
NonDis), to minimize heterogeneities between sampling sites. The
resulting scaffolds were filtered by size selection and only scaffolds
500 bp or longer were used for downstream analyses. Coverage in-
formation was obtained by mapping trimmed reads from each sam-
ple against scaffolds with bwa-mem (Li and Durbin, 2009) v0.7.12
and followed by using genomecov from bedtools (Quinlan and Hall,
2010). Furthermore, contaminant analyses were incorporated into
the processing workflow as described in detail by Dai et al. (2020).
A scaffold was considered present in a sample if it was not detected
in the negative controls or if its relative abundance in sample was
greater than the negative control and coverage across the length of
scaffold was more uniform in the sample as compared to the nega-
tive control. Using this approach, each scaffold was labelled as a
“true” scaffold (i.e., present in the sample) or a “contaminant” scaf-
fold. Only true scaffolds were used for downstream analyses. Open
reading frames (ORFs) were identified using prodigal (Hyatt et al.,
2010) v2.6.3. The predicted ORFs were then searched against rpoB
gene specific hmm profile (pf04563) from the Pfam-A database
using hmmsearch (hmmer.org). The rpoB normalized coverage of
each true scaffold was determined by dividing its coverage in each
sample by the cumulative coverage of all scaffolds containing rpoB
genes in that sample. Scaffold level coverage was used for normaliza-
tion purposes to account for unequal mapping density of reads
across scaffolds.

2.3.1. Annotation of antibiotic resistance genes
To obtain a cross-validated list of ARGs, PredictedORFswere queried

using two approaches. First, ORFs were mapped against the Compre-
hensive Antibiotic Resistance Database (McArthur et al., 2013) (CARD,
homologous model, v3.0.3) using DIAMOND (Buchfink et al., 2014)
v0.8.2 to identify antibiotic resistance ontologies (ARO) with an e-
value threshold of 10−5. Second, the same ORFs were further interro-
gated using the DeepARG (Arango-Argoty et al., 2018) v2 pipeline
with default parameters. The alignment results from both approaches
were merged and further filtered. Specifically, only alignments with
alignment lengths of 25 aa or longer, query coverage greater or equal
to 70%, and percent identity greater or equal to 50% (Pearson, 2013)
were retained. We considered alignments with percent identities to
the CARD reference genes ranging from 50% to 80% and greater than
80% as loose and strict as recommended previously (Arango-Argoty
et al., 2018). Further,we only retained loose alignments (i.e., 50–80% se-
quence similarity) to the CARD references if they were also annotated
by DeepARG to the same antibiotic resistance genes. Finally, any ARO
identified as a “mutant” was discarded. We use a combined approach
to produce robust annotations that balance strict homology-based an-
notations, known to drastically under predict (i.e., false negatives)
AMR prevalence due to heavy reliance on reference database, and
loose ARG annotations, which risk the inclusion of false positives by an-
notating homologous genes as associated with antibiotic resistance
(false positives). Therefore, a cross-validated list of ARGs was obtained
by examining the predicted gene sequences from open-reading frames
(ORFs) in assembled scaffolds against CARD and the DeepARG pipeline
and combining results that were consistent using both approaches.

2.3.2. Microbial community membership and structure
Paired-end libraries of all samples were analyzed using phyloFlash

(Gruber-Vodicka et al., 2019) v3.3b1 software with default settings as
well as their reformatted version of the SILVA database (Quast et al.,
2013) (Release 132), downloaded using phyloFlash_makedb.pl –
remote. The FASTA outputfiles containing SSU rRNA gene sequences as-
sembled by phyloFlash using SPAdes and EMIRGE were combined and
filtered to remove sequences less than 500 bp length. The sequences
within this FASTA file were further clustered with vsearch (Rognes
et al., 2016) v2.13.6 using ‘cluster_fast’ and with an identity threshold
of 99% to generate operational taxonomic units (OTUs). Cluster cen-
troids were then used as representative SSU rRNA gene sequences for
their respective OTUs. The quality filtered paired-end reads were
mapped to these representative SSU rRNA gene sequences using
BBMap (Bushnell, 2015) v38.63with the following flags: ‘ambiguous=
best’, ‘mappedonly = t’, ‘pairedonly = t’, and ‘minid = 0.97’. An OTU
table of relative abundances was generated by dividing the number of
mapped reads to representative OTU sequences by the total number
of reads from the sample mapped to all representative OTU sequences.
All representative OTUs sequences were aligned using SINA (Pruesse
et al., 2012) v1.2.11. This alignmentwas subsequently used to construct
a Maximum-likelihood phylogenetic tree with IQ-TREE (Nguyen et al.,
2015) v1.6.12 using ‘-fast’ flag. Phylogenetic tree visualization and an-
notation was performed on iTOL (Letunic and Bork, 2019).

2.3.3. Identifying host and mobile genetic element association of ARGs
All scaffolds containing ORFs identified as ARGs were classified with

Kaiju (Menzel et al., 2016) v1.7.2 using the NCBI non-redundant data-
base as reference (index and taxonomy downloaded from http://kaiju.
binf.ku.dk/server, file: nr_euk 2019-06-25). Finally, we also analyzed
the ARO containing scaffolds to determine if they were associated
with mobile genetic elements by determining if they were likely plas-
mid or viral scaffolds. To do this, the scaffolds were aligned against a
local database consisting of plasmid sequences or viral sequences ob-
tained fromNCBI RefSeq (Release 86) with an identity and query cover-
age threshold of 97% and 70%, respectively. Further, the scaffolds
containing AROs were analyzed for viral origin by (1) aligning against
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the IMG/VR database (Paez-Espino et al., 2017a) using BLAST with an
identity and query coverage threshold of 97% and 70%, respectively,
(2) using the k-mer based approach of VirFinder (Ren et al., 2017)
with default settings, and (3) using the IMG/VR protocol for viral detec-
tion using the virus discovery pipeline as described previously (Paez-
Espino et al., 2017b).

2.3.4. Genome binning, annotation, and phylogenomic analyses
Metagenome assembled genomes (MAGs) were recovered by bin-

ning using the CONCOCT (Alneberg et al., 2014) implementation in
anvi'o (Eren et al., 2015). Resulting bins were refined using RefineM
(Parks et al., 2017) and then manually curated in anvi'o and de-
duplicated by dRep (Olm et al., 2017) v2.3.2. The quality of all refined
bins was assessed by CheckM (Parks et al., 2015). Detailed binning
and curation procedure to obtain MAGs is described by Dai et al.
(2020). Taxonomic assignment was performed based on GTDB-Tk
(Parks et al., 2018) v0.1.3. The web-based Resistance Gene Identifier
(RGI) tool of the CARD was used to assess the presence of ARGs in all
MAGs. DNA sequences were queried to recover perfect or strict hits
only (according to the RGI nomenclature) and the high quality/coverage
optionwas selected. The coding density of a subset ofMAGs attributable
to AROs was calculated as the cumulative length of ORFs annotated as
ARGswithinMAG divided by the length of theMAG to estimate propor-
tional length of ORFs annotated as AROs within a MAG. Reads from all
samples were mapped to the MAGs using BBMap (Bushnell, 2015)
v38.24 with a 90% identity threshold and the following flags: ‘ambigu-
ous = best’ and ‘pairedonly = t’. A MAG was regarded as detected in
a sample if at least 25% of its bases were covered by at least one read
in a sample. The abundance of aMAG in a samplewas calculated as sam-
ple reads mapped per total number of reads in sample (in million) per
genome length in kbp (RPKM).

A total of 356 reference genomes within the genera Mycobacterium,
Mycolicibacterium, Mycolicibacter, Mycoliciballus, and Mycobacteroides
were downloaded using ncbi-genome-download (https://github.com/
kblin/ncbi-genome-download) with flags: ‘–section refseq’ ‘–format
fasta’, and ‘–assembly-level complete’. These genera were chosen
based on Gupta et al. proposed division of the Mycobacterium genus
into five distinct monophyletic groups (Gupta et al., 2018). Next, dRep
v2.3.2was used to obtain representative reference genomeswith a clus-
tering criterion of 99% identity, which resulted in 63 representative ge-
nomes. Phylogenomic trees were generated in anvi'o by first using the
program ‘anvi-get-sequences-for-hmm-hits’ to recover individually-
aligned and concatenated 38 single-copy ribosomal protein genes
from ‘Bacteria_71’ hmm profiles(Lee and Ponty, 2019) using five myco-
bacterial MAGs recovered from this study and 63 complete representa-
tive reference genomes (Table S3), and then using the program ‘anvi-
gen-phylogenomic-tree’ that infers evolutionary associations between
genomes using FastTree (Price et al., 2010) v2.1.10. Phylogenomic tree
visualization and annotation was performed on iTOL (Letunic and
Bork, 2019).

2.4. Data analyses and statistics

Statistical analyses were conducted in R software (R Development
Core Team, 2018) and visualizations generated with ggplot2
(Wickham, 2011) package. Non parametric testing was performed
with R base statistic packages using function wilcox.test() using pres-
ence/absence of disinfectant as the grouping factor. Alphadiversitymet-
rics were obtained with sepecnumber() and diversity() functions from
vegan (Oksanen et al., 2015) package 2.4-0. Beta diversity was evalu-
ated with pairwise comparisons of rpoB normalized ARO abundances
and SSU rRNA gene based OTU relative abundances using Bray Curtis
distances in metaMDS() function from vegan. Permutational ANOVA
was performed using the perm.oneway.anova() function from wPerm
package (https://cran.r-project.org/web/packages/wPerm/index.html).
Bray Curtis dissimilarities in resistome were correlated with the

Euclidean distances of environmental parameters using Spearman's
correlation method implemented in bioenv() function from vegan. As
a complement, a parsimonious dbRDA model of resistome abundance
was developed by stepwise regression constrained by environmental
variables based on Akaike Information Criteria (AIC) using capscale()
and ordistep() from the vegan package. Environmental parameters
were standardized using deconstand() from vegan. Mantel testing
using Spearman's correlation between Bray Curtis distances of relative
abundances of taxa and rpoB normalized ARO were performed with
mantel() function within vegan.

3. Results and discussion

To investigate the prevalence of antibiotic resistance genes (ARGs)
as a function of disinfectant residual strategy (i.e., disinfectant residual
present (Dis) vs disinfectant residual free (NonDis)), we generated 39
shotgun metagenomes containing an average of 7.4 × 106 paired-end
reads per sample after quality control (Table S4) and an average
metagenome assembly size of 434.4 Mbp. Our metagenomes corre-
spond to different full-scale drinking water systems (DWS) in the UK
and the Netherlands, each with their unique source water, treatment
system configuration, and distribution system. Thus, these DWS inher-
ently harbor different drinking water microbiomes, irrespective of the
sampling time-frame. Our goal was to determine whether the pres-
ence/absence of disinfectant residuals was associated with antimicro-
bial resistance and its host association and whether this association is
discernible in light of these underlying inevitable confounding variables
- that can be addressed through statistical analyses and a balanced study
design. We achieved a balanced study design by incorporating a similar
number of samples between the two groups (Dis or NonDis) and a
DWS-specific co-assembly approach, which should capture DWS spe-
cific communities and their resistomes. We relied on consensus ARG
annotation approach that combined homology to the CARD database
with DeepARG based annotations to identify loose (50–80% sequence
similarity) and strictly (>80% sequence similarity) annotated AMR
traits. Further, we examine the results through the group wise compar-
isons of the relative abundance of ARGs between Dis and NonDis
systems. Therefore, our results don't necessarily reflect quantitative ex-
posures, considering the fact that the typical absolute abundance
(i.e., concentration) of microbes in Dis systems are significantly lower
than that in NonDis systems. Rather, the focus of this study was to un-
derstand the ecology of AMR in Dis and NonDis systems and assess
the role of water chemistry and microbial community on ARG distribu-
tion and their host associations in systems thatmaintain or do notmain-
tain a disinfectant residual.

3.1. Antimicrobial resistance traits are prevalent in drinking water systems
irrespective of presence/absence of disinfectant residual

We identified a total of 807 significant hits comprising 134 AROs
using a combination of CARD-based homology search and DeepARG in
Dis and NonDis groups (Fig. S1A, Table S5), with a median query cover-
age centered at 100% (Fig. S1B). For both the Dis and NonDis categories,
80% of the annotations were within 50–80% sequence similarity. The
relative abundance of an AROwas determined as that of ARO containing
scaffold coverage normalized by rpoB coverage in the sample. The rpoB
gene, unlike the 16S rRNA gene, is a single copy gene that can be used as
a molecularmarker to estimate the bacteriological diversity of a sample
and normalize the abundance of functional genes of interest (Case et al.,
2007; Dahllof et al., 2000; Vos et al., 2012).

A greater number of scaffolds from the Dis samples were annotated
with AROs as compared to theNonDis samples,with themean rpoB nor-
malized coverage of these AROs being significantly higher (p<0.001) in
the Dis (2.7 ± 10 × 10−2) compared to the NonDis (2.5 ± 11 × 10−3)
samples. Of the 134 AROs detected in this study, a total of 83 and 94
AROs were present in Dis and NonDis samples, respectively with 40
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and 51 AROs exclusive to Dis and NonDis, respectively (Fig. 1A,
Table S6). This is likely due to higher microbial diversity in NonDis sys-
tems (Bautista-De los Santos et al., 2016b; Dai et al., 2020) which may
result in higher diversity of ARGs. Of the shared AROs (n=43), a higher
proportion of AROs exhibited greater relative abundance in Dis systems
(n=28) as compared to NonDis (n=15) (Fig. 1B). Of the shared AROs,
only three were frequently (i.e., detected in ≥50% of samples in each
strategy) detected in sampleswithin each strategy (Fig. 1C) and showed
varying levels of similarity with their corresponding reference AROs.
The frequent and proportionally abundant AROs in Dis systems
consisted ofMexF, adeF, and golS all of these are associated antibiotic ef-
flux.MexF is amultidrug transporter of the RND efflux family associated
with bacteria within the genera Pseudomonas (Fetar et al., 2011). It has
been shown that P. fluorescens in biofilms responded to sublethal so-
dium hypochlorite concentrations by increased transcription of MexEF
pumps, among other genes (Lipus et al., 2019). Further, adeF is a mem-
brane protein for multidrug efflux in the RND family, associated with
Acinetobacter baumannii (Coyne et al., 2010) and golS is a regulator for
the expression of a multidrug efflux pump in response to silver, also
within the RND family (Checa et al., 2007).

Among the AROs categorized as exclusively present in either strat-
egy type, only three and one ARO were frequently detected (i.e., ≥ 50%
detection rate) in Dis and NonDis systems, respectively (Fig. 1D).
These consisted of efpA, RbpA, andmfpA in Dis systems (Table S6). efpA
is a transporter associated with Mycobacterium tuberculosis that medi-
ates resistance to rifamycin and isoniazid,which is upregulated in expo-
sure to oxidative stress (Wilson et al., 1999) and may be elicited by
disinfectant residual in Dis systems. RbpA is a RNA polymerase binding
protein which confers resistance to rifampin and is also associated
with Mycobacterium tuberculosis. mfpA is a qnr homolog and a penta-
peptide repeat protein that confers resistance to fluoroquinolones via
target protection in Mycolicibacterium smegmatis. Di Cesare et al. re-
ported that the qnrS harboring microbes demonstrated enhanced sur-
vival and post-disinfection growth, whereas this was not the case for
alternate disinfectants (e.g., peracetic acid, UV) (Di Cesare et al., 2016).
Tetracycline efflux pump, tetA, was the only exclusive and frequently
detected ARO in NonDis systems. Among these genes, RbpA consistently
showed homology to corresponding genes in the reference database,
while the other genes were highly divergent from their corresponding
CARD reference sequences (Fig. 1D).

Fig. 1. (A) Venn diagram of annotated antibiotic resistance ontologies (AROs) for NonDis samples in blue and Dis samples in orange. (B) Fold difference in mean rpoB normalized AROs
shared between Dis and NonDis systems indicated that shared AROs were enriched in Dis systems. (C) Fold difference in mean rpoB coverage of shared AROs with frequency of
detection >50% also indicated enrichment in Dis samples and the distribution of percent identities to reference sequences in the CARD database are shown on the top. (D) Mean rpoB
coverage of exclusive AROs with frequency of detection >50% for Dis systems in orange and NonDis systems in blue shows a more abundant and frequent resistome in Dis systems
compared to NonDis systems and the distribution of percent identities to reference sequences in the CARD database are shown on the top.
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3.2. Efflux and target alteration are dominant antibiotic resistance mecha-
nisms in disinfected and non-disinfected systems

The AROs detected in this study were associated with six different
resistance mechanisms. Specifically (1) efflux, (2) target alteration,
(3) enzymatic inactivation, (4) target protection, and (5) target replace-
ment (Fig. S2A). The efflux resistance mechanism was the most
abundant group in both Dis and NonDis samples, significantly higher
(p < 0.001) for Dis compared to NonDis systems (Fig. 2). The detected
efflux genes include those associated with ATP binding cassette (ABC),
resistance nodulation cell division (RND), small multidrug resistance
(SMR), and major facilitator super family antibiotic efflux (MFS) gene
families for both Dis and NonDis systems. Efflux pumps are widespread
and present in all organisms and exhibit multiple ecological roles
(e.g., cell-cell communication, homeostasis, extrusion of abiotic factors
(Blanco et al., 2016)), therefore their prevalence and abundance in
databases is likely high, as well as the potential for them to be
annotated. Some genes in this category will only mediate resistance if
overexpressed, while others have basal intrinsic resistance (Lupo
et al., 2012). Genes involved in enzymatic inactivation of antibiotics,
(i.e., acetyltransferases, beta-lactamases, phosphotransferases)
accounted for 32% and 26% of the AROs found in Dis and NonDis sam-
ples, respectivelywith diverse AAC, BlaOXA, and APH associated genes de-
tected. AROs involved in enzymatic inactivation and target protection
were also significantly different between strategies (p< 0.001) and ex-
hibited higher relative abundance in Dis systems. The significance for
target protection category was largely driven by the absence of target
protection genes in NonDis systems. In contrast, genes involved in
target replacement mechanism were significantly more abundant
(p < 0.001) in NonDis samples. The genes associated with this mecha-
nism were exclusively dfr and sul related genes which are both related
to folicmetabolism and arewidespread in the environment and are pre-
dominantly located on plasmids or transposons (Frye and Jackson,
2013). The inactivation of ARGs such as sul1 frommunicipal wastewater
is most effective with chlorination, followed by UV and ozonation
(Zhuang et al., 2015) which could explain the infrequency of detection
of these genes in Dis systems.

Mechanisms of resistance are important to ascertain target path-
ways and in fact disinfectants often share mechanisms of action with
antibiotics (Chapman, 2003). The aforementionedmechanisms of resis-
tance were associated with 16 drug classes (Figs. S2B, S3). The order of
abundance of drug classes was relatively similar between strategies. For
Dis systems, multidrug resistance was the most abundant category
(49.75% of AROs), followed by aminoglycoside (16.5%), beta-lactam
(6.4%), rifamycin (5.4%), with the remaining drug classes accounting
for less than 5% of the AROs individually. For NonDis systems, the
order of drug classes was as follows: multidrug (39.16%), aminoglyco-
side (12.82%), peptide (9.80%), diaminopyrimidine (7.46%), beta-
lactam (5.83%), bacitracin (5.36%), with the remaining drug classes ac-
counting for less than 5% of the AROs individually. Consistent with the
observation of prevalence of efflux mechanism of resistance regardless
of strategy, multidrug determinants constituted majority of the AROs.

Group-wise comparisons indicated statistically significant differ-
ences between Dis and NonDis groups for resistance traits associated
with aminoglycoside (p < 0.01), diaminopyrimidine (p < 0.001),
fosfomycin (p < 0.001), lincosamide (p < 0.001), multidrug (<0.001),
sulfonamide (p < 0.01) (Fig. 2). The cumulative rpoB normalized
coverage of aminoglycoside resistance was higher in Dis compared to
NonDis samples. This drug class consisted of acetyltransferases and
phosphotransferases that elicit antibiotic inactivation that were de-
tected in both Dis and NonDis systems, and included a transcriptional
activator of a two-component system that mediates resistance through
efflux in NonDis samples (kdpE). Previous studies have documented
aminoglycoside as a dominant determinant in aquatic environments
including drinking water metagenomes (Ma et al., 2017) and E. coli iso-
lates (Zhang et al., 2009). Diaminopyrimidine resistance was signifi-
cantly higher in NonDis samples as opposed to Dis samples. This
determinant exclusively consisted of dihydrofolate reductases which
mediate resistance through target replacement, and was more diverse
in NonDis systems. Diaminopyrimidine (trimethoprim) is widely dis-
tributed in natural waters (Danner et al., 2019), it has been shown to
readily react with chlorine (Dodd and Huang, 2007), but in contrast it
has less potential to react with UV (Kim et al., 2015). This could suggest
that the antibiotic selective pressure is reduced in Dis systems while

Fig. 2. Comparison of cumulative rpoB normalized coverage between Dis and NonDis treatment strategies (orange and blue, respectively) for statistically significant mechanisms of
resistance in grey panels and statistically significant drug classes in green panels.
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remainingpotentially unchanged inNonDis systems at treatments steps
prior to distribution. Consequently, the microbial communities -and
their associated resistance traits- which thrive in these conditions,
have the potential to persist downstream (e.g., in the distribution
system). Genes associated with fosfomycin drug class were more
abundant and frequently detected in Dis strategy. Fosfomycin is a
broad-spectrum bactericidal drug that inhibits bacterial cell wall bio-
genesis by inactivating the enzyme UDP-N acetylglucosamine-3-
enolpyruvyltransferase, also known as MurA (Collignon et al., 2016;
Thompson et al., 2015). The observed determinants within this class
consisted exclusively of Fos genes and primarily FosX.

3.3. Antimicrobial resistance traits while not conserved across drinkingwa-
ter systems, indicated association with presence/absence of disinfectant
residual

While the relative abundance of AMR genes and associated mecha-
nisms drug classes demonstrated significant differences between Dis
and NonDis systems, there were very few universally conserved AMR
genes within each disinfection strategy. Of the 83 AROs detected in
Dis systems, only 11 AROs were present in 50% or more Dis samples,
whereas only 11 out of 94 AROs that were detected in NonDis systems
had a frequency of detection greater or equal to 50%. Further, the traits
that were widely distributed across DWS within each strategy were
largely limited to efflux related genes (Dis: 6/11, NonDis: 8/11). This in-
dicates that while AMR traits are found in DWSs from both strategies,
the core resistome across all sampled DWSs or even within each disin-
fection strategy group was highly limited in diversity. This could either
be a result of the variable impact of factors influencing the prevalence of
AMR traits between individualDWSs or AMR traitsmay not be under di-
rect selection due to the presence or absence of disinfection. Thus, we
evaluated the potential association between other water chemistry pa-
rameters on the resistome structure and membership and compared
that with the effect exhibited by presence/absence of disinfectant.

Bray-Curtis distance clustering of samples based on rpoB normalized
coverage of AROs in each sample showed that the structure of the resis-
tance traits clustered based on the presence or absence of a disinfectant
residual (Fig. 3A). This suggests that despite the limited nature of the
core resistome, the abundance and membership of a resistome was as-
sociatedwith the presence or absence of disinfectant residual. Permuta-
tional ANOVA analyses indicated a significant difference in ARO
composition based on grouping of samples with respect to presence/

absence of disinfectant residual (p < 0.001). We further evaluated the
contribution of othermeasured chemical parameters on thedistribution
of AMR traits through a combination of (1) correlations of the Bray-
Curtis dissimilarities between samples estimated using resistome data
and corresponding Euclidean distances estimated usingmeasured envi-
ronmental (i.e., temperature) and water chemistry (i.e., pH, conductiv-
ity, dissolved oxygen (DO), TOC, nitrate, and chlorine concentration)
parameters and (2) distance based redundancy analysis (dbRDA)
followed by (3) variance partitioning analyses. The best subset of envi-
ronmental and water chemistry parameters found were chlorine and
temperature, which moderately and significantly correlated with
resistome distribution (Spearman's ρ = 0.54, p < 0.001) Additionally,
a statistically significant model (p < 0.001) was achieved through a
stepwise regression procedure based on AIC applied to constrained
and null dbRDAmodels. The finalmodel included temperature, pH, con-
ductivity, total chlorine, and TOC, and excluded other water quality pa-
rameters to achieve a parsimonious model from backward and forward
selection. The first two principal components explained 71% of the var-
iation (Fig. 3B, Table S7) with an adjusted R2 of 0.28. Since conductivity
exhibited a high variance inflation factor (2.05). Conductivity measure-
ments could be a proxy for sourcewater type or treatment process. Usu-
ally high conductivity waters are recovered from ground water sources
and changes in conductivity can be observed after water softening, for
example. Conductivity, although generally higher in NonDis systems,
reflects high and low measurements for samples in both strategies.
This observation coupled with the multicollinearity exhibited with
other variables, suggests that this factor is neither the only nor the
best to explain variation in resistance traits prevalence. Therefore, vari-
ance partitioning analysis was performed after removing this variable
from themodel to allocate the variation of rpoB normalized abundances
of resistance traits among four explanatory variables, i.e., temperature,
pH, total chlorine and TOC, as well as obtaining an overall variation ef-
fect. The environmental variable explaining the highest individual frac-
tion was pH (adjusted R2 = 0.07), followed by temperature (adjusted
R2 = 0.04), chlorine (adjusted R2 = 0.04), and TOC (adjusted R2 =
0.03). Chlorine concentration (i.e., presence/absence of disinfectant, re-
sidual disinfection strategy), although not the main explanatory vari-
able is important in combination with the other explanatory variables
(adjusted R2= 0.10). Thus, while the presence/absence and concentra-
tion of chlorine was not the sole explanatory variable, it was consis-
tently identified as significant in all considered models. Further,
approximately 76% of the variation in AMR trait distribution could not

Fig. 3. (A) Ordination plot using Bray-Curtis distance describing AROs' rpoB normalized coverage dissimilarity colored by disinfection strategy (Orange: Dis and Blue: NonDis). The
clustering suggests that the resistome composition of Dis and NonDis systems is different. (B) Distance based redundancy analyses (dbRDA) plot showing the Bray-Curtis distance of
resistome data, with Dis samples in orange and NonDis samples in blue, constrained by the Euclidean distances of its respective environmental parameters as vectors.
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be allocated to any of the measured environmental and chemical pa-
rameters (Table S8). This clearly indicates that AMR trait distribution
in DWSs is impacted by several other factors that were not measured
by this study. These unaccounted factors could range from source wa-
ters, treatment process types, DWDS characteristics, etc.

3.4. Microbial community structure is a strong determinant of AMR trait
distributions

In order to address additional factors that might impact AMR trait
distributions, we (1) estimated the bacterial community membership
and structure in each sample to evaluate its association with AMR trait
distribution and (2) also evaluated the host association of detected
AROs through a combination of taxonomic annotation of ARO contigs
and binning of contigs into metagenome assembled genomes (MAGs).
PhyloFlash analyses resulted in the reconstruction of 481 bacterial 16S
rRNA gene sequences. As expected, NonDis samples were more diverse
as compared to samples from Dis systems. Taxa within the phylum
Proteobacteria exhibited the highest relative abundance (RA, consider-
ing the bacterial fraction only) across in Dis and NonDis systems and
their abundance ranged from 4.7–99.9% in Dis samples, with mean RA
of 70.6% and 10.9–62.2% in NonDis samples with mean RA of 43.5%.
Actinobacteria and Cyanobacteria, were more abundant in Dis samples

as compared to NonDis samples (mean RA in Dis = 12.8% vs in
NonDis = 8.6%, and mean RA in Dis = 7.8%, vs in NonDis = 1.02%, re-
spectively). Further, Patescibacteria and Omnitrophicaeota were more
abundant to NonDis than Dis systems (mean RA: Dis = 8.3%, NonDis =
29%, andDis= 1.9%, NonDis=5.3%, respectively) (Fig. 4A, Table S9). To
determine the association between bacterial community structure and
AMR trait prevalence, we performedMantel test with distancematrices
constructed using pairwise Bray Curtis distances between samples that
were estimated using relative abundance of assembled 16S rRNA genes
and rpoB normalized ARO abundance. The results showed that the AMR
distributions were highly correlated with bacterial community struc-
ture across all drinking water samples (Mantel R = 0.75, <0.001)
(Fig. 4B), with stronger correlations for Dis (Mantel R = 0.84, <0.001)
(Fig. S4A) as compared to NonDis systems (Mantel R = 0.76, <0.001)
(Fig. S4B). This suggests that community membership is strongly
associated with AMR trait distribution and has an important role in
shaping the resistome, which is consistent with a previous report (Jia
et al., 2015).

We further evaluated the taxonomic affiliation of all scaffolds to as-
sess whether ARO containing contigs exhibiting significantly higher rel-
ative abundance in Dis compared to NonDis systems exhibited a
conserved taxonomic signal (Table S10). Only two ARO containing low
abundance scaffolds were annotated as being of viral origin using either

Fig. 4. (A) The phylogenetic tree of 481 reconstructed SSU sequences with mean relative abundance in Dis and NonDis samples with the outer circle indicating relative abundance in Dis
(inner ring) and NonDis (outer ring) systems. (B) Global correlation between Bray-Curtis pairwise distances of community RA and Bray-Curtis pairwise distances of rpoB normalized
coverage of AROs. Pairwise comparison between Dis samples, NonDis and Dis vs NonDis are shown in orange, blue, and grey, respectively. (C) ARO carrying scaffolds classified at
phylum level, Dis samples on the left and NonDis samples on the right. Log10 transformations of scaffold relative abundance are used for visualization purposes.

8 M. Sevillano et al. / Science of the Total Environment 749 (2020) 141451



of the approaches that rely on the IMG/VR database, while no ARO con-
taining scaffolds were annotated as viral scaffolds using NCBI or
VirFinder. While our sampling protocol was not designed for viral re-
covery, our results suggest that particle (size ≥0.2 μm) and host-
associated mobile genetic elements (i.e., viruses and plasmids) do not
contribute significantly to AMR traits in drinking water systems. A ma-
jority of the ARO containing contigs were classified as Proteobacteria at
the phylum level in Dis and NonDis systems (Fig. 4C, Table S11). The
taxonomic classification at phylum level of ARO containing scaffolds in-
dicated high abundance of Proteobacteria, regardless of the disinfection
strategy. The proportion of ARO containing scaffolds classified as
Proteobacteria in the systems ranged from 42 to 91% in Dis, and
58–88% in NonDis. The ARO containing contigs from NonDis systems
were associated with more candidate phyla (e.g., Patescibacteria) and
in general were more taxonomically diverse than Dis systems; this
was consistent with the observation of higher diversity of themicrobial
communities as a whole.While ARO containing scaffoldswithin NonDis
systems exhibited high taxonomic diversity, those from Dis systems
were largely confined to Proteobacteria and Actinobacteria (7–54%).
Furthermore, we observed that the approximately 50–100% of the
Actinobacterial ARO associated scaffolds were classified to the genus
Mycobacterium depending on sample, whereas no ARO containing scaf-
folds in the NonDis systems were classified asMycobacterium.

3.5. Genome-resolved metagenomics indicates that ARO harboring
mycobacteria are responsive to chlorine concentrations

The 787 scaffolds containing 807 AROs were binned into 65 of the
112 MAGs assembled from Dis (n = 62) and NonDis systems (n =
50) (Dai et al., 2020),withmajority of the ARO containingMAGs assem-
bled fromDis systems (n=48/65).MAGs from theDis systemprimarily
belonged to Proteobacteria (n = 33/48), Actinobacteriota (n = 5),
Planctomyceota (n = 5), and Cyanobacteriota (n = 4), while those

from the NonDis systems belonged to Proteobacteria (n = 14/17),
Acidobacteriota (n=2), and Actinobacteriota (n=1) (Fig. 5A), accord-
ing to the GTDB-Tk taxonomy. The primary resistancemechanism asso-
ciated with these MAGs were efflux which was detected in present in
57/65 MAGs, followed by inactivation present in 23/65 MAGs
(Fig. 5A). All Actinobacteriotal MAGs from Dis systems were associated
with mycobacteria and harbored multiple AROs. In contrast, no myco-
bacterial MAGs were assembled from NonDis systems. Specifically,
mycobacteria MAGs were recovered from D3, D4, and D5 metagenome
assemblies. The complete statistics associated with each mycobacterial
MAG are presented in Table 1. Genome taxonomy database annotation
indicated that Bins 4 and 13 were closely related to Mycobacterium
llatzerense with 99.4 and 97.0% sequence average nucleotide identity
to the same draft genome (GCF_000746215) which was assembled
from plant associated samples. Bin 3 exhibited 99.4% sequence
similarity to a mycobacterial isolate sampled from tap water sample
in Germany (GCF_002013415), while Bins 9 and 10 did not have any
closely related mycobacterial genomes at the species level. Phyloge-
netic placement of the bins based on multigene alignment of ribo-
somal proteins indicated that all assembled bins belonged to
environmental and rapidly growing mycobacteria (Fig. 5B). While
Bin 3 placed in the rapid growing Mycobacterium chelonae-absceccus
complex (i.e., Mycobacteroides), Bins 4 and 13 were closely phyloge-
netically clustered with the fortuitum-vaccae clades. Although Bins 9
and 10 were distantly related frommost mycobacterial reference ge-
nomes, they were closely associated with mycobacterial isolates
from hydrocarbon contaminated and river estuary sediment, respec-
tively. All five assembledMAGs contained at least one ARO, with Bins
10 and 13 containing three and two, respectively (Table 1). Specifi-
cally, the identified AROs were RbpA, mtrA, and murA. In two of
these bins, RbpA (rifamycin resistance) and mtrA (macrolide and
penam resistance) co-occur. M. llatzarense has been isolated from
DWDS and is described as a NTM that resists amoebal phagocytosis

Fig. 5. (A) Heatmap depicting the presence or absence of resistance traits (ARO) in metagenome assembled genomes (MAGs), from Dis and NonDis samples in right and left panel,
respectively. The top bars of the heatmap denote Phylum, RPKM in NonDis systems, and RPKM in Dis systems from top to bottom. The bars to the right of the heatmap show drug
classes and mechanisms from left to right. The red circles correspond to selected MAGs shown in panel B. (B) Phylogenomic tree contextualizing selected MAGs (in bold red font) and
representative Mycobacterium reference genomes. The labels are colored by clades. The heatmap corresponds to ANI values between selected MAGs (D5_Bin_D4, D4_Bin_13,
D4_Bin_10, D3_Bin_9, and D3_Bin_3, respective to outer most ring) and representative reference genomes.
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and survives disinfection (Delafont et al., 2017; Lalucat et al., 2019).
Similarly, Bin3 associated with theM. chelonae-absceccus complex also
demonstrated the presence of gene conferring rifamycin resistance.
The enrichment of mycobacterial MAGs with AMR traits in Dis systems
can be attributed to several factors. For instance, mycobacteria are
known to harbor intrinsic antibiotic resistance (Fedrizzi et al., 2017)
and their colonization, survival, and persistence in DWDS and their re-
sistance to disinfectants at low nutrient concentrations has been well
documented (Dantec et al., 2002; Falkinham III et al., 2015; Loret and
Dumoutier, 2019). Further, intracellular colonization of mycobacteria
in protozoa may allow for survival and proliferation of these genera
(Thomas et al., 2008) and sheltering within biofilms can also enhance
their survival (Liu et al., 2016; Loret and Dumoutier, 2019; Revetta
et al., 2016; Zhang et al., 2018).

4. Conclusions

In conclusion, in this studywe identified and characterized the AMR
traits of tapwater fromDWSwith andwithout disinfectant residual, Dis
and NonDis, respectively. We observed that presence/absence of disin-
fectant plays a significant role in AMR trait prevalence, composition,
and abundance. Although both systems have a diverse and uneven
AMR trait distribution, they exhibited higher relative abundance in
Dis systems compared to NonDis systems. Further, while the ARO
distribution was significantly associated with presence/absence of
chlorine, a large proportion of the variance in ARO trait distribution
was unexplained by water chemistry alone. Further, the precise
ARO traits detected in each system varied significantly suggesting
that AMR traits themselves may not be under selection in drinking
water systems. Rather, consistent with previous reports, bacterial
community structure was the strongest determinant of ARO pres-
ence/absence and distribution. In particular, the ARO host associa-
tion indicated significant and consistent differences across Dis and
NonDis system suggesting that disinfection mediated selection pres-
sures likely play a role at the community level with indirect implica-
tions for AMR prevalence. For instance, we recovered ARO containing
nontuberculous mycobacterial MAGs only from Dis systems. An
important direction for future research is coupling quantitative
measurements with functional metagenomics to determine absolute
concentrations of ARGs and assess if the associated hosts are active
and AMR traits are functional. This information will be vital to trans-
late our characterization of the AMR traits in drinking water systems
to quantitative microbiological risk assessment.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.141451.
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