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ABSTRACT: We report quantitative analysis of tunneling conductance in molecular junctions based on self-assembled monolayers
(SAMs) of oligophenylene dimethanethiols (OPDMn) in which —CH,— spacers flank either side of the phenylene (n = 1),
biphenylene (1 = 2), and terphenylene (n = 3) aromatic cores. The current—voltage (I—V) characteristics for the OPDMn junctions
with Au and Pt contacts are analyzed quantitatively with a previously validated single level model (SLM) to extract key junction
metrics, namely the HOMO-to-Fermi-level offset, &}, and the electronic coupling, I'. Independent determination of &, by ultraviolet
photoelectron spectroscopy (UPS) corroborates the estimation of ¢, from the I—V characteristics and provides strong evidence for
the validity of the SLM analysis. Further, comparison of the results for OPDMn junctions with those for oligophenylene dithiol
(OPDn) junctions, which do not have —CH,— spacers, reveals that the much larger resistance for OPDMn (>1000-fold) is primarily
due to a ~50-fold decrease in I" and not to any significant change in ¢; €, is nearly identical for OPDMn and OPDn junctions for
each value of n. Overall, our results provide a clear delineation of the influence of —CH,— spacers on ¢, and I" and give further
evidence that the analytical SLM is a useful tool for determining structure-transport relationships in molecular tunnel junctions.

B INTRODUCTION (UPS) for oligophenylene thiol and alkanethiol systems,”” and
by its prediction of “universal” behavior for single-step
tunneling that matches experimental findings.”">

In this paper, we combine experiments and SLM analysis to
assess the impact of aliphatic —CH,— spacers on ¢, and I for
junctions based on self-assembled monolayers (SAMs) of

A central focus of molecular electronics is to understand the
effect of chemical structure on electron transport through
metal—molecule—metal junctions,'~** Figure 1. For symmetric
junctions where off-resonant, single-step tunneling dominates,

the analytical single level model (SLM) derived from the . . ) -
Landauer picture has proven to be a convenient theoretical oligophenylene dimethanethiols (OPDMn, n = 1-3) com-

tool to determine key transport parameters from junction pared to SAMs of oliggphenylene dithiols (OI,)DH) that do not

current—voltage (I-V) characteristics S=7,91012,1330 rpoco have the spacer, Figure 1A. Our experiments use the

parameters include the HOMO (or LUMO) energy offset, & conducting probe atomic force microscopy (CP-AFM) plat-
. . o » o form. The insertion of an aliphatic spacer is well-known to

(or ), and the orbital coupling I', as shown in Figure 1B.

Recent work by Baldea®° and the authors® "' ~"#°%" has

demonstrated that &, and I' are easily extracted from Received: December 28, 2020
experimental data using the analytical SLM, and the resulting Revised:  February 2, 2021
I-V prediction by SLM matches the experimental I-V Published: February 10, 2021

characteristics very well. The validity of the SLM for simple
tunnel junctions is also corroborated by independent
determination of &, by ultraviolet photoelectron spectroscopy

© 2021 American Chemical Society https://dx.doi.org/10.1021/acs.jpcc.0c11514
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Figure 1. (A) Schematic representation of a metal—molecule—metal junction. To make the junction, a metal-coated AFM tip is brought into
contact with a SAM of OPDMn or OPDn on Au or Pt substrates. Molecular structures of OPDn and OPDMn (n = 1—3) are shown. (B) Typical

junction electronic structure with main parameters &, and I'.

produce a dramatic decrease in molecular conductance
generally.'***” Our goal is not to simply confirm that this
is so but rather to understand the quantitative impact on the &,
and I' metrics extracted by SLM analysis. The utility of SLM
for understanding the physical organic chemistry of molecular
conductance will ultimately depend on having self-consistent
measurements of &, and I" on a wide range of molecules as a
function of their architecture. We thus seek to quantify these
metrics for the prototypical case of —CH,— insertion and,
simultaneously, to add to the growing body of evidence that
the SLM can be applied productively to the analysis of single-
step tunneling junctions like those based on OPDMn.

Indeed, we observe here that the SLM I—V simulation for
OPDMn junctions matches the measured I—V data, and the &,
values determined by SLM analysis agree remarkably well with
those measured by UPS. We find that introducing —CH,—
groups increases OPDMn resistance by 3 orders of magnitude
relative to OPDn junctions, and the increased resistance is
overwhelmingly attributable to a decrease in the electronic
coupling I', not to an increase in g, Clear delineation of
structural influences on &, and I" is a principal result of our
study.

We summarize the relevant SLM formulas here. SLM
predicts the I—V characteristics for a symmetric junction are
described by eq 1
&’

I=GV—sF——
ghz - (eV/Z)Z

(1

where G is the zero bias conductance that can be expressed as
follows

1—~2

G = NG,—;
&y

)

Here, I' = \/ﬁ = &,,/G/NG, is the average interface
coupling, I'; and I, are determined by the molecular coupling
to the substrate (s) and the tip (t) (I'y & I'; in symmetric
junctions), G, = 2¢*/h is the quantum conductance, and N is
the number of molecules in the junction. To compute I" of
OPDMn and OPDn junctions, we set N = 80, a value close to
that directly determined from other dithiol-based CP-AFM
junctions.6’7’13

Importantly, eq 1 enables expression of the HOMO energy
offset &, in terms of the transition voltages Vi, and V_ at
positive and negative bias polarity as follows:***
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& =2

JVie? + 10V, Y, 1/3 + W, 3)

which, when V,, & -V, & V; for symmetric junctions,

simplifies to

_ \/gethl

&
h 2

4)
Key assumptions underlying eqs 1—4 are (i) that a single
orbital, coupled to the contacts, mediates the off-resonant
tunneling, (ii) that the line shape of the broadened orbital is
Lorentzian,”**” and (iii) that the orbital offset &, is larger than
the contact coupling strength I'.

B EXPERIMENTAL METHOD

Materials. Gold nuggets (99.999% pure) were purchased
from Mowrey, Inc. (St. Paul, MN) and Kurt J. Lesker Co.,
respectively. Evaporation boats and Cr evaporation rods were
secured from R. D. Mathis (Long Beach, CA). Pt and Ti metal
for e-beam evaporation were purchased from Kamis, Inc.
(Mahopac Falls, NY). Si (100) wafers were acquired from
WaferNet (San Jose, CA). AFM tips (DNP-10 Si;N, contact-
mode probes) were purchased from Bruker. 1,4-benzenedime-
thanethiol (OPDM1) 98% and 4,4’-bis(mercaptomethyl)-
biphenyl (OPDM2) 97% were purchased from Sigma-Alrich
company. [1,1':4’,1”-Terphenyl]-4,4”-dimethanethiol
(OPDM3) was synthesized following the procedure reported
in the SL

Conducting Tip and Sample Preparation. Contact-
mode AFM tips were coated with Au using a thermal
evaporator housed in a Nj-filled glovebox (H,0, O, < 0.1
ppm). Then, 500 A films were deposited at a rate of 0.5—1.0
A/s on top of a 50 A Cr adhesion layer and were immediately
transferred without exposure to air to another glovebox
containing the CP-AFM to carry out the conductance
measurements. For Pt-coated AFM tips, 200 A thick Pt films
were e-beam deposited onto tips with a S0 A Ti adhesion layer,
and immediately transferred to the measurement glovebox.
The radii of the tips were ~50 nm after metal coating."”

Template-stripped flat metal substrates were employed to
grow high-quality SAMs.>~>">!31%39% Eor flat Au substrates,
5000 A of Au was first deposited onto clean Si wafers in an e-
beam evaporator. Si chips (1 cm?) were then glued onto the
metal surface using epoxy (EPOTEK 377, Epoxy Technolo-
gies, MA). The epoxy layer was cured by placing the wafers in
an oven at 120 °C for 1 h. For flat Pt substrates, 3000 A of Pt
was sputter-coated onto a clean Si wafer at a rate of ~3 A/s.
On top of the Pt film, subsequent deposition of 300 A of Cr

https://dx.doi.org/10.1021/acs.jpcc.0c11514
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Figure 2. Average -V curves and transition voltage plots for Au—OPDM1—Au (A, B), Au—OPDM2—Au (C, D), and Au—OPDM3—Au (E, F)
tunnel junctions. SLM simulations are shown in black. Extracted parameters for each junction, G, &, and I, are listed in A, C, and E. G is
determined from the low bias slope, £,"*™* is determined from V in the transition voltage plots and eq 4, and I is computed from G and & by eq

2. None of the parameters are freely adjusted.

and 2000 A of Au was carried out in a thermal evaporator. The on the sample were surveyed and the high-resolution C;; and
Au film enhanced the yield of flat Pt substrates due to better Sy, spectra were collected on the second spot. The binding
adhesion with the cured epoxy layer.””*" The rest of the steps energy scales were referenced to the Auyy,,, peak (84.0 eV).

were the same as for flat Au substrates. The flat substrates Angle-resolved XPS (ARXPS) was employed to measure
peeled off the silicon surface were used for SAMs preparation. SAM thicknesses on Au and Pt substrates using similar

To create SAMs, the flat substrate peeled off was incubated instrument settings with takeoff angles of 20°, 30°, 40°, 50°,
in a 0.5 mM hexane solution of the dithiols at 60 °C for 1 h in 60°, 70° 80° and 90°. The HOMO—Fermi level offset of
the absence of light."'~** Afterward, the samples were rinsed OPDMn SAMs on metals was measured by UPS in the same
with hexane and then ethanol and dried in a stream of N, gas. instrument (section S3 in the Supporting Information).

XPS and UPS Methods. The chemical composition and Transport Measurements. CP-AFM-based molecular
thickness of the OPDMn SAMs were characterized by XPS junctions were fabricated by mounting the substrates in the
(see Supporting Information). The XPS measurements were AFM and bringing the metal-coated tip into contact with the
performed on a PHI Versa Probe III XPS system (ULVAC- SAM under a 1 nN applied compressive load. Voltages V were
PHI) using a monochromatized Al Ka X-ray source (1486.6 applied to the tip with a Keithley model 236 electrometer
eV). The base pressure was 5.0 X 10™° Pa. During data operated in sweep mode with the sample grounded. Voltage
collection, the pressure was ca. 1.0 X 107® Pa. The samples spanned +1.3 V for OPDMn junctions. The slope of the low-
were mounted on a piece of double-sided adhesive tape on a bias I—V characteristic (linear portion within the bias range of
sample holder. The samples were grounded by a metal spring +0.1 V) was used to define a junction (low-bias) conductance
clip on the sample holder. The X-ray spot size (diameter) was G. All transport measurements were carried out in an Ar-filled

200 um and the source power was 50 W at 15 kV. Two spots glovebox (MBraun).
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Table 1. Comparison of Key Electronic Structure Parameters, Including the Energy Offset &}

trans

and &*%, Low Bias

Conductance G, and Average Coupling I, for OPDn and OPDMn Junctions®

metal quantity OPD1 OPD2 OPD3 OPDM1 OPDM2 OPDM3
Au £ (V) 0.87 + 0.07 0.73 + 0.05 0.56 + 0.04 0.96 + 0.12 0.88 + 0.10 0.69 + 0.11
el™s (eV) 0.82 + 0.10 0.74 + 0.10 0.68 + 0.10 1.05 + 0.10 0.91 + 0.10 0.81 + 0.10
G (S) 1.7 x 107* 3.7 X 107° 6.7 x 107° 74 +25%x 107° 14 + 09 x 107° 44 + 1.5 x 107°
I (meV) 141.6 + 20.8 56.6 + 8.9 183 + 4.2 33+ 13 1.0 + 0.6 0.7 £ 02
Pt gl (eV) 0.75 + 0.08 0.63 + 0.06 0.49 + 0.05 0.73 + 0.11 0.61 + 0.13 0.5 +0.11
el™s (eV) 0.81 + 0.10 0.72 + 0.10 0.60 + 0.10 0.71 + 0.10 0.68 + 0.10 0.59 + 0.10
G (S) L1+107° 1.9 x 107* 42 x 1073 26+ 13 %107 8.1 +3.6x107° 44 +18x107°
I' (meV) 317.6 + 32.9 109.8 + 25.4 40.1 + 8.5 47 + 1.9 26+ 1.1 12 + 0.6
“Quoted errors are the standard deviations, or, in the case of UPS, the estimated accuracy.
(A) r : : O. : (B) . . 5 1,
——OPDM3 ope=1 *
124 @ Pt .
Au_Fresh ® Au L
el .
s .
> 10.81eV 1
£ .
C
Q
E 4
om=1) |
A (n=2)
X (n=3)
15 10 05 00 05 06 0.9 12
Binding Energy (eV) e,UPS(ev)

Figure 3. (A) UPS spectra of bare Au and OPDM3 SAMs on Au at low binding energy. Binding energies are referenced to the Fermi level, E,.¢ = Eg;

= 0 eV. The blue intersecting lines indicate the onset energy of the HOMO. (B) Comparison of &,

1" from transport measurements (and the single-

level model) with &S for OPDMn molecular junctions with Au and Pt contacts.

B RESULTS AND DISCUSSION

Formation of OPDMn SAMs. SAMs of aryldimethane-
thiols have been reported previously.”'~** We found that
OPDMn SAMs could be formed reproducibly on Au and Pt
substrates by incubation of the metal surfaces in 0.5 mM n-
hexane solutions for 1 h at 60 °C in the absence of
light."'=*»*~*% The SAMs were characterized by angle
resolved X-ray photoelectron spectroscopy (XPS, see section
S1 in the Supporting Information, SI).

Transport Behavior for OPDMn Junctions and SLM
Analysis. Figure 2 displays the I—V characteristics for
OPDM1, OPDM2, and OPDM3 junctions with Au contacts,
respectively, over +1.5 V (+1.3 V in the case of OPDM3) and
the associated transition voltage (V) plots.”~*'>"* The same
data set with Pt contacts is shown in Figure SS in the SI. From
the positive (or negative) maximum in each V, plot we
determined & (i.e., &, from transport) via eq 4.
Conductance G was determined from the slope at zero bias.
With G and ™ as inputs to eq 1, the SLM I—V simulations
were made and are shown as the black curves in Figure 2A—C.
Comparison of the experimental data with the SLM results is
quite satisfactory. Note that I" is determined from N, G, and
e™™ via eq 2, but N is taken to be fixed and I is not an
adjustable parameter in the SLM prediction; it follows directly
from determination of G and &**. Furthermore, the SLM
predictions (black traces) in Figure 2 are not fits in the
conventional sense of having two freely adjustable parameters.
Both G and &*™ are determined by prescribed procedures just
mentioned and then input into eq 1 to yield the simulated I-V
characteristic. Table 1 shows the extracted values of G, &*™,
and I" for OPDM1—3 with Au and Pt contacts. Also shown for
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comparison are the same metrics for OPD1—3 junctions that
have been reported by us previously.”*’

To corroborate the &f*™ values extracted from the -V
characteristics for OPDMn, we undertook measurements of &,
by UPS. Figure 3a displays the UPS spectrum of an OPDM3
SAM on Au relative to that of bare Au; the method of
estimating &)™ is also shown.”” As is evident, the HOMO
edge is at 0.81 eV, within error in reasonable correspondence
with ™™ = 0.69 eV obtained from transport measurements
(see Figure 2E). Corresponding UPS spectra for OPDM1 and
OPDM2 on Au and Pt substrates are shown in Figure S6 and
S7 in the SI; Table 1 also summarizes the e 7> values for
OPDMn and OPDn (reported earlier) on Au and Pt.
Importantly, Figure 3b plots & vs e/™ for OPDMn
molecules with Au and Pt contacts. One observes that as n
increases, both & and &/"® decrease as expected because of
the increased m-system conjugation. An excellent linear
correlation is observed between £ and &*® with all of the
data following on, or very close, to the slope = 1 guide to the
eye. This correlation between the transport-extracted &, and ¢,
determined independently by electron spectroscopy provides
strong additional support for the validity of the SLM for
OPDMn junctions.

We note that & and &}"® agree well in spite of the fact
that the UPS measurement probes only “half the junction”
(i.e., there is no second contact), and this has important
implications for the mechanism of energy level alignment.
Evidently, binding of an OPDMn molecule to a metal via a
single thiol group essentially fixes &p; introducing a second,
chemically or physically bonded metal contact has a minimal
impact on &, This finding corroborates our earlier reports on

different molecular systems®’ and implies that image charge

https://dx.doi.org/10.1021/acs.jpcc.0c11514
J. Phys. Chem. C 2021, 125, 4292—4298
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effects must be reasonably small, as the effects of a second
contact appear to be roughly negligible.

Comparison of OPDMn and OPDn Junctions. Figure 4
displays a direct comparison between the I—V behavior for

10°
10
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108 f
10°4
10-10 4

Current (A)

09 -06 03 00 03 06 09
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Figure 4. Overlay of semilog plots of average I-V curves for Au-
OPDMn-Au (blue) and Au-OPDn-Au (black) junctions.

OPDMn and OPDn junctions with Au contacts. Similar
comparative data with Pt contacts are shown in Figure S8. It is
clear that OPDMn junctions are approximately 10° times less
conductive than OPDn junctions at any voltage. The difference
can be traced to large differences in G; inspection of Table 1
shows that G for OPDMn is indeed of order ~10* smaller than
G for OPDn. As G depends on I'*/g,* (eq 2) it is reasonable to
ask which factor, I or ¢, is responsible. Figure SA plots &
for OPDMn vs &*™ for OPDn. One sees that the correlation is
very good; as & for OPDMn increases with decreasing n,
er™ for OPDn also increases approximately commensurately.
There is only a very small difference between &;*™ for OPDMn
and OPDn for any value of n. In other words, insertion of the
—CH,— spacer at either end of the OPDMn molecule has not
strongly affected ™™, and differences in & cannot be the
cause of the very different current levels.

However, Figure 5B reveals a much different story for I'.
The plot of I for OPDMn vs OPDn shows very clearly that
while I' correlates for OPDMn and OPDn, the slope of the
data set is much less than 1 and is close to 0.02. In other
words, for any value of n, I' for OPDMn is about 50 times
smaller than I" for OPDn. Because G is proportional to I" 2, the
factor of 50 difference translates to a factor of 2500 in the low
bias conductance, which explains the very large difference in
currents for OPDMn vs OPDn at any voltage. Thus, the

impact of the —CH,— spacers on OPDMn conductance is
overwhelmingly due to the spacer influence on I'. At a general
level this is an expected result, but it is important that
quantitative measures for both & and I' are so easily
obtained with the analytical SLM model, and that the relative
contributions of & vs I" can be delineated.

The weak dependence of & on the presence or absence of
the spacers is a more subtle question and likely requires better
understanding of the degree of equilibrium charge exchange
between the OPDMn and OPDn molecules, respectively, and
the metal contacts. That is, at equilibrium OPDMn and OPDn
junctions achieve nearly the same equilibrium HOMO offset
&y, which may reflect local charge shifts at the Au—S (or Pt—S)
contacts, or between the pi-systems and the contacts, or both
effects. Quantum chemical calculations are necessary for

further insight on the energy level alignment problem.

B CONCLUSION

We have demonstrated here that the analytical single level
model can be employed productively to analyze the I-V
characteristics of OPDMn molecular junctions and in
particular to extract quantitative values for the key metrics &
and I'. Direct comparison of the OPDMn results with SLM
results for OPDn junctions, which do not have —CH,— spacers
flanking the pi-cores, allowed evaluation of the impact of the
spacers on &, and I'. We find that I is strongly determined by
the spacers but that &, is essentially independent of their
presence or absence. This information naturally provides a
more complete physical description of tunneling conductance
in OPDMn versus OPDn junctions.

More generally, our results provide additional evidence that
the SLM is a useful model for analysis of junctions in which
off-resonance, single-step tunneling applies. We have argued
previously’~'"? that for the experimentalist having a simple
analytical tool is a tremendous advantage because it allows
quantitative structure—property comparisons to be made
straightforwardly, and this in turn should enhance conductance
assessments of a broader range of molecular structures.
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