Downloaded via UNIV OF MINNESOTA on May 13, 2021 at 18:49:16 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Ultraflat Sub-10 Nanometer Gap Electrodes
for Two-Dimensional Optoelectronic Devices

Seon Namgung, Steven J. Koester,™ and Sang-Hyun Oh*

Cite This: ACS Nano 2021, 15, 5276-5283 I: I Read Online

ACCESS | il  Metrics & More | Article Recommendations ‘ @ Supporting Information

Two-dimensional (2D) materials are promising
candidates for building ultrashort-channel devices because their 104
thickness can be reduced down to a single atomic layer. Here, we 105

demonstrate an ultraflat nanogap platform based on atomic layer

<

=

deposition (ALD) and utilize the structure to fabricate 2D material- 5
. : 5 O o7
based optical and electronic devices. In our method, ultraflat metal e
surfaces, template-stripped from a Si wafer mold, are separated by S 0e

an Al,O; ALD layer down to a gap width of 10 nm. Surfaces of both
electrodes are vertically aligned without a height difference, and
each electrode is ultraflat with a measured root-mean-square teitetts:
roughness as low as 0.315 nm, smaller than the thickness of f-lfff;é —r
monolayer graphene. Simply by placing 2D material flakes on top of ; S -
the platform, short-channel field-effect transistors based on black -
phosphorus and MoS, are fabricated, exhibiting their typical
transistor characteristics. Furthermore, we use the same platform to demonstrate photodetectors with a nanoscale
photosensitive channel, exhibiting higher photosensitivity compared to microscale gap channels. Our wafer-scale atomic layer
lithography method can benefit a diverse range of 2D optical and electronic applications.
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n modern electronics, there has always been a high been reported, where the large bandgap of MoS, allowed a
demand to integrate more electronic components on a high on—off ratio (~10°) even with the short channel length.
chip, a need which has fueled the scaling of devices with However, these methods rely on etching or cleavage of the
critical dimensions down to a few nanometers.' > To crystalline structure along the crystal axis or grain boundaries,
maintain the electrostatic control as the channel length is which limits the direction of device formation along these
scaled down, a thinner channel structure must be used to predefined boundaries. In addition, the roughness of as-
reduce short-channel effects.*™® Thus, two-dimensional (2D) deposited metal electrodes beneath the 2D materials can have
materials, which can be thinned down to single atomic layer, a detrimental effect on the intimate contact between the 2D

have been considered promising for gaining short-channel material and base electrodes. Alternatively, vertical transistors

immunity and have been employed to demonstrate high on— based on 2D materials have beenzze;%(plored to contrc?llably
off current ratios, low power consumption, and fast define channel lengths to ~10 nm, ™" but the integration of

operation.9_15 2D materials on the vertical sidewalls remains a challenge.

To fabricate nanoscale short-channel devices based on 2D Here, we develop a scalable method to build an ultraflat
materials, several fabrication strategies have been applied. For nanogap platform, which can be used for short-channel 2D

. material devices without directional restriction on device
example, nanoscale channel length was achieved by angled i )
i . . 16—19 formation. In this approach, we construct two metal layers
metal deposition and using a nanowire mask. However,

those methods cannot be used to fabricate multiple devices

or to orient devices in different directions from the direction December 23, 2020
of angled deposition. Other approaches have been proposed February 19, 2021
to provide a precreated nanogap platform, which works as a February 24, 2021

source—drain electrode pair, onto which 2D materials are
transferred as a channel material.’””' Based on these
methods, short-channel devices based on 2D materials have
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Figure 1. Schematic images showing a short-channel device built by transferring 2D materials on top of ultraflat template-stripped (left)
and rough as-deposited (right) metal structures with nanoscale gap.

separated by a nanoscale gap as short as 10 nm, defined
precisely by a sandwiched Al,O; film deposited by an atomic
layer deposition (ALD) process.””** The two metal layers
with the nanogap separation are formed by a template-
stripping method,”* " resulting in metal layers with a root-
mean-squared (RMS) roughness as low as 0.315S nm. This
ultrasmooth interface should be favorable for intimate contact
with 2D materials and minimize carrier scattering from the
rough surface. In this work, we demonstrate that the ultraflat
platform can be used to build 2D material based short-
channel field-effect transistors (FETs) and photodetectors.
This simple approach, wherein 2D materials can be placed on
top of predesigned ultraflat nanogaps, allows large-scale
fabrication of 2D material-based short-channel devices.

RESULTS AND DISCUSSION

Device Fabrication Process. The schematic diagram in
Figure 1 shows devices built by transferring 2D materials on
top of a precreated metal base pair separated by a nanogap.
In these device structures, the pair of metal bases work as
electrodes connecting the transferred 2D material flake, while
the nanogap between two electrodes functions as a channel
for carrier transport. Since the electrical and optical
properties of 2D materials are significantly affected by the
roughness of the substrate, the ultraflat template-stripped Au
used in our work (left) should be advantageous compared to
the rougher as-deposited Au platform (right) for carrier
transport in 2D materials with less contact resistance.

Our nanogap platform has ultraflat metal surfaces on both
sides that are template-stripped off of a Si wafer. In the lateral
direction, a gap size as small as 10 nm is precisely defined by
an ALD ALO; layer between the two flat metal surfaces.
Figure 2a shows the fabrication process of our ultraflat
nanogap platform. The process starts with deposition of an
ALO; layer on a Si wafer using ALD (step 1). The flatness of
a Si wafer (typically RMS roughness of ~0.3 nm)”° and
atomically controlled layer-by-layer formation of Al,O; from
the ALD method result in the ultraflat metal surface that will
eventually serve as the ultraflat electrodes in the final
template-stripped structure. It should be noted that the
thickness of the Al,O; layer in step 1 corresponds to the
length of a nanogap in the final structure. The first metal
layer is created by photolithography on top of the ALO;-
deposited wafer (step 2). Since the whole structure built on
the Si wafer needs to be stripped off of the wafer, the metals
used in these methods are limited to metals with low
adhesion to the Al,O; layer, such as Au, Ag, and Pd.
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Next, the exposed region of the Al,O; layer is etched with
phosphoric acid (step 3). Here, the first metal layer acts as an
etch mask to protect Al,O; beneath the metal layer. Since Si
is much more resistant than Al,O; against the phosphoric
acid etchant, only AL,O; is etched out, leaving the base Si
unaffected. After the wet etching, the same thickness of Al,O;
layer is deposited by ALD again (step 4), using the same
protocol as in step 1. This step is crucial to achieve the
ultraflatness across the gap without a height difference
between electrodes in the final structure. To secure a
seamless structure between two metal layers, the second
metal is deposited with a few pum of overlap with the first
metal, which in our demonstration is limited by the
photolithography resolution (step S). With the overlap, the
distance between the first metal and second metal is solely
defined by the thickness of the AL,O; ALD layer, which
corresponds to the channel length in the final structure.

Sub-10 nm metal nanogap structures have been used to
study fundamental physics in quantum regime such as
boosted li%ht—matter interaction and quantized electron
tunneling.”” ** Top-down approaches such as e-beam
lithography are challenging to use for fabricating sub-10 nm
nanogap structures over large areas. Diverse alternative
approaches have been proposed, such as self-assembled
monolayers, the insertion of 2D materials,”> and precisely
controlled metal deposition or electromigration. Compared to
those methods, atomic layer lithography, taking advantage of
the ALD technique for forming solid dielectric films with
atomic precision, allows the fabrication of sub-10 nm gaps
uniformly over large regions in a controllable and
reproducible manner. Many promising optical applications
based on the highly enhanced electric field inside nanogaps
have been successfully demonstrated using atomic layer
lithography, such as extraordinary optical transmission, stron
light absorption, and ultrasensitive molecular detection.**™>
In our work, in addition to the versatile optical applications,
atomic layer lithography is utilized to provide a short-channel
device platform for 2D materials.

To peel off the whole structure, an optical adhesive
(NOA61, Norland Inc.) is applied on the structures on the Si
wafer and covered with a glass slide as a mechanical support
(step 6). After curing the glue, the whole structure, except
the Al,O; layer on the Si wafer, is stripped off from the wafer
mechanically (step 7). This separation is possible because the
adhesion between the metal layers and the Al,O; layer on the
wafer is weak compared to other interfaces, that is, the
adhesion between Al,O,/Si, metal/epoxy, Al,O;/epoxy, and
epoxy/glass. The stripped structure is turned over (step 8),
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Figure 2. Fabrication of an ultraflat nanogap platform. (a) Schematic diagram showing the fabrication process of an ultraflat nanogap
platform (see text for details). (b) SEM image showing a structure after the second metal deposition. Inset image indicates the
corresponding process (step S). There is no height difference in the base lines below the first metal and the second metal (indicated by
red dotted lines). (c) Optical micrograph of a whole device structure before template stripping (step 5). The overlapped area between the
first Au and the second Au can be seen before template stripping (marked by red arrows). The nanogap line is also seen due to the
scattering from the height difference at the line (marked by blue arrows). (d) Optical micrograph of the device shown in (c) after
template stripping (step 9). Since the structure is turned over, the overlapped region cannot be seen. The nanogap line cannot be seen
due to the ultraflatness and nanoscale dimension (i.e., no light scattering).

and as a final step, a flake of 2D material is transferred on top
of the ultraflat metal surface, which was initially facing the Si/
ALO; mold (step 9). Since the ALO; layer is left on the
wafer in step 7, the ultraflat bare metal surfaces are exposed
and can be contacted with the 2D material directly. In
addition, since this method does not rely upon a crystal axis
of a crystalline base, we can fabricate nanogap structures in
any arbitrary direction.

Template-Stripped Ultraflat Nanogap Electrodes.
Figure 2b shows a scanning electron microscopy (SEM)
image of a cross-sectional view corresponding to step 5. It
should be noted that the height of the bottom lines of the
two Au electrodes is the same across the Al,O; barrier,
marked by red dotted lines in Figure 2b. The same height of
the bottom lines was achieved by using the same condition
and number of cycles in the ALD deposition to build the
AL O, layer beneath the first Au layer (in step 1) and the
AL O, layer beneath the second Au layer (in step 4). By
depositing the second metal with an overlapped region on
top of the first metal, the distance between the first Au layer
and the second Au layer is solely determined by the AlL,O,
layer formed between the two metal layers. The distance of

5278

the separation determines the channel length of the final
device.

Figure 2c shows a top-view image of the structure before
template stripping, corresponding to step S. The nanogap is
formed along the boundary between the two Au layers
(marked by blue arrows). The overlapped region between
two Au layers is also clearly seen from the top-view image
(marked by red arrows). On the other hand, after being
stripped oft and turned over, the overlapped region is not
seen from the top-view image in Figure 2d corresponding to
step 9, since the overlapped region is underneath the first Au
layer. It should also be noted that the nanogap line cannot be
seen after being stripped off, which was clearly seen before
being stripped oft due to light scattering at the boundary
(Figure 2c). The absence of light scattering at the boundary
after being stripped off indicates no height difference exists
between the two Au layers in the final structure (Figure 2d).

Metrology. To characterize our nanogap platform, we
used SEM and atomic force microscopy (AFM). Figure 3a
shows SEM images of nanogap structures of widths from 10
to 30 nm. The thickness of the gap size is determined by the
thickness of the AL, O; layer between the two electrodes
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Figure 3. Characterization of ultraflat nanogap platform. (a) SEM
images of nanogaps with different size. (b) SEM image of an
MoS, flake transferred on an ultraflat nanogap platform. The
region in the dotted lines is magnified and shown in the right
image. (c) AFM image of an MoS, flake transferred on an as-
deposited Au surface. (d) AFM image of an MoS, flake
transferred on a template stripped (TSed) Au surface with a
nanogap. (e) RMS roughness of Au bases and MoS, on the Au
bases. (f) Histogram of the surface height deviation of Au bases
and MoS, on the Au bases. Note the reduction on the roughness
of MoS, on an as-deposited Au base compared to that of an
original as-deposited Au base in (e) and the change on the
distribution of surface height deviation of MoS, on an as-
deposited Au base compared to that of an original as-deposited
Au base in (f). These results indicate the suspension of MoS,
over the as-deposited Au base, resulting from poor contact
between them.

(Figure 2b). These nanoscale gaps are constructed over a
large area owing to the uniformity of the ALD layer. Thus,
our method can be practically utilized as a general process in
massive manufacturing of nanoscale gap structures over a
large area without restriction of gap formation along a certain
angle. To build nanogap-based devices, we simply transferred
2D material flakes on top of our platform. Figure 3b shows
an SEM image after a flake of MoS, was transferred onto a
nanogap. The nanogap structure is clearly seen underneath
the flake (right image) and acts as a channel in a final device.

We also conducted AFM analysis on the 2D materials on
the base Au platform to confirm the intimate contact between
2D materials and ultraflat nanogap structures. Figure 3c,d
shows AFM images of an MoS, flake transferred onto an as-
deposited Au metal surface and an MoS, flake transferred
onto a template-stripped nanogap structure, respectively. The
white arrow in Figure 3d indicates a nanogap on the
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template-stripped surface. The sandwiched Al,O; layer
between electrodes is not observed in the AFM image,
because the surface of the ALOj; layer is well below the
electrodes. In a few cases, the Al,O; layer was observable, but
still lower than the electrodes (Supplementary Figure S1).
Thus, in general, our results show that the ultraflat platform
can be used for device fabrication without being disturbed by
the AL O, layer. The dark-blue regions (lower regions) in
both images indicate base Au regions, and the dark-yellow
regions (higher regions) indicate MoS, regions on top of
each Au surface. The stronger color contrast in Figure 3c
compared to Figure 3d indicates the larger surface roughness
of the as-deposited Au surface and MoS, on the as-deposited
Au surface. We conducted statistical analysis on each surface
to confirm if the MoS, flakes make intimate contact with the
base Au surface. The RMS roughness of the template-
stripped side of the first Au layer is 0.315 nm, while that of
the MoS, surface on the template-stripped Au is 0.335 nm
(red bars in Figure 3e). We note the surface of the template-
stripped side of the second Au layer is also ultraflat and has a
RMS roughness of 0.350 nm. The histogram profiles of
surface height deviation of both surfaces are in good
agreement (red solid and dotted line in Figure 3f). The
good consistency of RMS roughness and the surface height
deviation profile between both surfaces indicates MoS, makes
intimate contact on the ultraflat template-stripped Au surface.
On the other hand, the RMS roughness of the as-deposited
Au surface is 1.177 nm, while that of the MoS, surface on the
as-deposited Au is 0.796 nm (blue bars in Figure 3e). The
histogram profiles of surface height deviation of MoS, surface
on as-deposited Au surface (blue dotted line in Figure 3f) is
more centered with lower deviation values compared to that
of the as-deposited base Au surface (blue solid line in Figure
3f). The reduction of the RMS roughness and more centered
deviation profile of MoS, surface on as-deposited surface
indicates that the MoS, is suspended over the rough as-
deposited surface, disrupting intimate contact between them.
These results provide strong evidence that a more intimate
contact can be established between 2D materials and metal
contacts using our fabrication platform compared to conven-
tional techniques.

Characterization of Short-Channel Field-Effect Tran-
sistors. After transferring 2D material flakes on top of our
ultraflat nanogap platform, we explored the electrical
characteristics of 2D material-based devices. The schematic
diagram in Figure 4a shows the device structure of a
nanoscale FET based on our ultraflat electrode platform. The
two metal layers separated by a nanogap function as source—
drain electrodes and MoS, and black phosphorus (BP) as
channel materials.**~** For the devices with BP channels, we
deposited 10 nm of ALD AL,O; on top of the BP after
transferring the BP onto the nanogap structures, to protect
BP from degradation in ambient conditions. In our nanoscale
FET structure, ionic liquid is applied on top of a transferred
2D material flake, operating as a gate electrode. Before the
2D material transfer, the leakage current between the two
electrodes was measured and found to be negligible, which
confirms the nanogap insulates the two electrodes electrically
(Supplementary Figure S2). The electrical isolation between
two metal structures without 2D materials allows our
platform to be used to build FETs by transferring 2D
materials on top of the structure. Figure 4b,c shows the
transfer characteristics and subthreshold swing (SS) vs drain
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Figure 4. Electrical properties of short-channel 2D material FETs based on an ultraflat nanogap platform. (a) Schematic diagram showing
an FET structure based on an ultraflat nanogap platform. The two metal regions separated by a nanogap work as source—drain
electrodes. Ion liquid is applied on top of the 2D materials, working as a gate electrode. (b, c) Transfer characteristics and SS vs drain
current of an MoS, FET with a 30 nm channel length, respectively. (d, e) Transfer characteristics and SS vs drain current of a BP FET

with a 30 nm channel length, respectively.

current plot for an MoS, FET on a 30 nm nanogap platform,
respectively. The transfer characteristics clearly show n-type
behavior with a high on—off ratio of ~10* The SS value is
measured as low as 83 mV/decade. Figure 4d,e shows the
transfer characteristics and the SS vs drain current plot of a
BP device on a 30 nm nanogap platform, respectively. In this
device, the transfer characteristics clearly show p-type
behavior with an on—off ratio of ~10°. The measured SS is
as low as 204 mV/decade. We also observed the operation of
a BP device using nanogap spacings down to 10 nm
(Supplementary Figure S3). These device characteristics with
BP and MoS, flakes on nanogap structures show that our
platform can be utilized to build 2D material-based short-
channel FETs.

We further studied ambipolar behavior of a BP FET with a
15 nm nanogap structure (Figure S). With negative drain
voltage, p-type characteristics from hole conductivity were
observed (Figure Sab), while n-type characteristics from
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electron conductivity were observed with positive drain
voltage (Figure Sc,d). In the output characteristics (Figures
5b,d), current saturation is observed in both cases. This
ambipolar behavior from a single device is useful for practical
applications such as building logic gates.

Photodetector Based on Black Phosphorus on a
Nanogap Channel. In addition to the FET devices, we used
our platform to fabricate and demonstrate photodetectors
with a nanoscale photosensitive channel. Photodetectors
based on 2D materials have been demonstrated to exhibit
high sensitivity, broadband operation, and high-speed
response.”*® In highly integrated chips, photodetectors
with a nanoscale photosensitive area are important for on-
chip photonic integrated circuits. Here, to compare the
performance of photodetection in nanoscale and microscale
channels, we created an ultraflat platform with a gap
increasing from 15 nm to a few ym. Then, we transferred
a BP flake on top of our platform. We conducted scanning
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Figure 5. Ambipolar behavior of a BP FET with 15 nm nanogap. (a, b) Transfer and output characteristics of a BP with 15 nm gap with
negative drain voltages showing p-type FET characteristics. (c, d) Transfer and output characteristics of the device in (a, b) with positive

drain voltages showing n-type FET characteristics.
photocurrent microscopy (SPCM)*”*® on the device, as
shown in Figure 6a. The device was scanned in a raster
pattern, and photocurrent through the gap was recorded with
a focused 532 nm laser spot with 320 nW power. Figure 6b
shows spatial maps of photocurrents with 50 mV and —S0
mV applied voltage. With S0 mV (=50 mV) of applied drain
voltage, positive (negative) photocurrent was measured across
the gap channel. In both cases, photocurrent was only
measured in the gap region, and the photocurrent within
nanogap region is larger than in the microgap regions. In the
nanogap region, responsivity is measured as high as 40 mA/
W. This larger photocurrent in the nanogap region can be
attributed to a more effective charge separation from the
larger electric field formed between the two electrodes. Thus,
our platform can be utilized to build photodetectors with a
nanoscale channel simply by placing 2D materials on top of
the platform.

We have developed a scalable method to create an ultraflat
nanogap electrode platform based on atomic layer lithography
and template-stripping methods. Two metal regions are
separated by an AL, O; ALD layer, and the thickness of the
Al O; layer precisely defines the distance between the two
metal layers. The two metal surfaces in the platform exhibit
ultraflatness, and are vertically aligned without height
difference. We utilize the platform to build electronic and
optical devices based on 2D materials, simply by placing
different 2D material flakes on top of our platform. The
ultraflatness across two metal regions should be beneficial to
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minimize contact resistance and carrier scattering in the 2D
material. We demonstrate FET devices with BP and MoS,
flakes showing their typical semiconducting characteristics.
Furthermore, we show that our platform can be utilized to
build photodetectors with nanoscale photosensitive regions
using an SPCM setup. Potentially, creation of a bimetallic
ultraflat platform composed of different metals® for each
electrode would enhance the photodetector performance by
facilitating charge carrier separation due to the built-in
potential created by the different metal work functions.
Notably, since our method to build an ultraflat nanogap
platform relies on uniform formation of ALD over wafer
scale, optoelectronic devices with controllable nanogap size
can be fabricated in a facile manner over large areas.

Device Fabrication. For the nanogap formation shown in
Figure 2a, an Al,O; layer of desired thickness was deposited on a
bare Si wafer using ALD. Electrode patterns were created by
photolithography and a 100 nm-thick Au layer was deposited using
electron beam evaporation. Phosphoric acid was used to etch the
Al,O; layer. The same ALD and metallization method was used to
create the second Au electrodes. Optical adhesive (NOA61, Norland
Inc.) was used as a backing layer, and a glass slide was used as a
support. The adhesive was cured by ultraviolet light exposure and
heat treatment on a hot plate (65 °C for 12 h). After peeling the
nanogap structures off of the Si mold, MoS, or BP flakes were
mechanically exfoliated and placed on the ultraflat nanogap
structures using a microscope-based alignment setup. To protect
BP, a 10 nm-thick Al,O; layer was deposited over the whole
substrate using ALD.
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Figure 6. Short-channel photodetector based on ultraflat nanogap
platform. (a) Experimental setup for scanning photocurrent
microscope. The gap between two electrodes increases from
nanoscale gap to microscale gap. (b) Spatial mapping of
photocurrent on a BP photodetector based on ultraflat nanogap
platform. Enhanced photocurrent is observed on the nanogap
region compared to the microscale region.

Device Characterization. SEM (JEOL 6700 FE SEM) and
noncontact AFM (Keysight 5500 environmental SPM) were used to
characterize nanogap structures and devices. Electrical measurement
was performed using an Agilent BISO0A semiconductor parameter
analyzer in ambient conditions. Ionic liquid (1-butyl-3-methylimi-
dazolium hexafluorophosphate, Sigma-Aldrich) was used for gating,
and Pt wire was used for electrical connection. For SPCM, a laser
light with a wavelength of 532 nm was focused using a 50X
objective (0.55 N.A.) for device illumination, and a Keithley 2450
source meter was used to apply a voltage and measure electrical
current between source—drain electrodes. The optical power at the
sample was determined as 320 nW. The device was scanned in a
raster pattern using a piezo-stage (Mad City Laboratories, Inc.) over
the fixed laser spot.
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