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ABSTRACT: Bottlebrush polymers have great potential as vehicles
to noncovalently sequester, stabilize, and deliver hydrophobic small
molecule actives. To this end, we synthesized a poly(N-
isopropylacrylamide-stat-N,N-dimethylacrylamide) bottlebrush co-
polymer using ring-opening metathesis polymerization and devel-
oped a facile method to control the thermoresponsive properties
using postpolymerization modification. Six increasingly hydrophilic
end-groups were installed, yielding cloud point temperature control
over a range of 22—42 °C. Solubility enhancement of the antiseizure
medication, phenytoin, increased significantly with the hydrophilicity
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of the end-group moiety. Notably, carboxylated bottlebrush copolymers solubilized formulations with higher drug loadings than
linear copolymers because they exist as unimolecular nanoparticles with a synthetically defined density of polymer chains that are
more stable in solution. This work provides the first investigation of bottlebrush polymers for hydrophobic noncovalent

sequestration and solubilization of pharmaceuticals.

olymer excipients are inactive ingredients included in pill
formulations that are frequently, but not exclusively, used
to sequester small molecules and larger payloads through
noncovalent interactions with active pharmaceutical ingre-
dients (APIs),"* proteins,’ and polynucelotides.” In oral,
intravenous, or intramuscular administration, the polymer
works with the active ingredients as a stabilizer, both on the
shelf and in vivo. Although oral drug delivery is the most
common form of medication administration, over 60% of APIs
in the pharmaceutical pipeline are impacted by gastrointestinal
track insolubility, yet, if solubilized, would have adequate
permeability across the epithelial lining.” Such APIs are
categorized by the Biopharmaceutical Classification System
(BCS) as Class 11" and can be solubilized with polymer
excipients using a polymer-amorphous spray-dried dispersion
(PASD) in which the amorphous API is suspended in a
polymer matrix facilitating rapid dissolution and sustained
solubility in aqueous media.” Common classes of linear
polymers used as excipients are cellulose-based,”'® poly-
vinylpyrrolidones,'""'* poly(ethylene oxide),"* and poly(acrylic
acid).'* Many have been well studied with respect to the
micro- and nanoscale interactions with APIs during dis-
solution.'”™"” However, the exploration of these important
materials has been limited in the chemical and architectural
scope. This has hindered the development of effective
excipient—API pairs and, hence, the performance and
commercialization of numerous important drug candidates.
Bottlebrush polymers are composed of side chains grafted-
to, -from, or -through a polymer backbone to form comb,
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globular, or worm-like architectures.'® These macromolecules
show unique and promising properties for many applications
ranging from surface modification'” and energy storage™ to
hydrogels’”** and therapeutic delivery.”~** Bottlebrushes
present a well-defined and tunable synthetic platform, offering
control over the density,”>' monomer composition,”* and
conformation®® of the side chains. Ring-opening metathesis
polymerization (ROMP) of norbornene-functionalized macro-
monomers (MMs) affords an efficient route to globular
macromolecular structures with densely packed side chains
with diverse compositions,”* including hydrophobic,” >’
hydrophilic,””*® and thermoresponsive®”** moieties. Thera-
peutics and imaging labels can be covalently attached to
bottlebrush architectures using established coupling chem-
istries>~*>*” to achieve controlled release in the presence of
the appropriate stimulus.”® While bottlebrush polymers have
been shown to be successful delivery vehicles through covalent
conjugation, the interactions of such macromolecules with
small molecules through noncovalent interactions is not well
studied.”” Understanding the ability of these systems to serve
as supramolecular hosts could enable the development of
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Figure 1. (A) Synthetic scheme for macromonomer MM-57-C3H, and bottlebrush BB-57-36-C3H,. RAFT polymerization was run to 80%
conversion in 1,4-dioxane with 0.05 equiv of AIBN at 70 °C. ROMP was run in dichloromethane (DCM) with Grubb’s 3rd generation catalyst. (B)
Postpolymerization modification of MM-57-C;H, and BB-57-36-C;H,. The color code defines gray as poly(NIPAm-stat-DMA) in cartoon
representations, (i) toluene/methanol (70:30), 1-ethylpiperidine hypophosphite, blue light (450 nm), 25 °C, 4 days, (ii) tetrahydrofuran, tris(2-
carboxyethyl)phosphine hydrochloride, n-propylamine, 23 °C, 1 h, (iii) hydroxy ethyl acrylate, 23 °C, 14 h, (iv) poly(ethylene glycol) methyl ether
acrylate, 23 °C, 14 h, (v) poly(ethylene glycol) hydroxy ether acrylate, 23 °C, 14 h, (vi) tert-butyl acrylate, 23 °C, 14 h, (vii) trifluoroacetic acid,
DCM, 23 °C, 5 h.

Table 1. Summary of Physical and Solution Characterization of Linear (PND) Controls and End-Group Modified
Macromonomer (MM) and Bottlebrush (BB) Polymers

sample mol %% (N/D)  M,” (kDa) M,, sic (kDa) P’ Ty, (°C)  Ryps o (nm) 1, /T2 density® (mg/mL)

1 PA-PND-245-C,H, 65/35 3V 30 111 39 5.5, 34.0 0.29, 0.22

2 PA-PND-61-C;H, 66/34 73" 7.0 1.02 44 2.5 0.18

3 PA-PND-62-C,,H,; 66/34 7.V 72 1.02 50 7.4" 021" 74"
4 CA-PND-62-C,H,q 66/34 7.0 72 1.02 51 72 0.12

5 CP-PND-72-C,,H,; 64/36 9.0" 83 1.02 38 7.9 0.04

MM-57-C,H, 66/34 62 6.9 1.04 31 1.6 0.11

MM-57-H 66/34 6.3 6.6 1.04 37 27,117 0.29, 0.22

MM-57-OH 66/34 6.4 6.7 1.04 41 2.6 0.31

MM.-57-PEG-CH, 66/34 6.5 6.7 1.04 44 2.5 0.17

MM-57-PEG-OH 66/34 6.6 7.0 1.05 43 23, 47.6 0.06, 0.11

MM-57-tButyl 66/34 6.3 6.4 1.03 38 22 0.22

MM-57-COOH 66/34 6.4 6.6 1.03 43 2.4 0.34

BB-57-36-C;H, 66/34 240 280 1.15 22 9.59" 0.118" 1052
BB-57-36-H 66/34 230 260 115 35 9.6" 0.07" 101
BB-57-36-OH 66/34 240 280 1.19 35 10.0" 0.09" 91
BB-57-36-PEG-CH, 66/34 240 290 1.20 39 10.0" 0.07" 89
BB-57-36-PEG-OH 66/34 240 280 115 39 9.7" 0.13" 99
BB-57-36-tButyl 66/34 230 270 115 29 9.6" 0.07" 100
BB-57-36-COOH 66/34 230 250 (250°) 1.07 2 9.8" 0.08" 96

“H NMR ratio of peak integrations at 1H at 4.00 ppm to 6H at 3.25 ppm. YSEC-MALS in DMF with 0.05 M LiBr. “Cloud point measurements
determined at 80% transmittance. “DynaPro plate reader DLS — regularization fit (9 mg/mL). “Calculated using eq S1./M, by 'H NMR in CDCL,
SMeasured at 20 °C. hMultiangle DLS 2nd cumulant fit (1 mg/mL). ‘M,, calculated by SLS.

highly tunable, multivalent vehicles to enhance solubility, when applied to rapidly crystallizing small molecule
release, and/or delivery of intractable active molecules through therapeutics.”’ This has been attributed to the balancing of
noncovalent interactions. three synergistic effects: (i) inhibition of crystallization by
Hydrophilic and thermoresponsive polyacrylamide-contain- NIPAm repeat units, (ii) enhanced solubility imparted by the
ing copolymers,*"** such as poly(N-isopropylacrylamide-stat- DMA at the optimal ratio of 65:35 NIPAm:DMA, and (iii)
N,N-dimethylacrylamide) (poly(NIPAm-stat-DMA) or PND) formation of nanoaggregates that host the drug during
have been shown to outperform standard excipients, such as dissolution.*' Tactics to further increase excipient efficacy
hydroxypropyl methylcellulose acetate succinate (HPMCAS) generally rely on improving the rate of dissolution, self-
376 https://dx.doi.org/10.1021/acsmacrolett.0c00890
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assembly, and colloidal stability of drug-rich nanoparticles,
which form during the dissolution process.'® Previous work
increased the strength of polymer—API noncovalent inter-
actions with such polyacrylamide copolymers by increasing the
density of polymer chains within a defined volume such as the
corona of block copolymer micelles” or using nanogel**
architectures. Bottlebrush polymers offer a robust design space,
decoupling the variables of polymer chain chemistry, density,
and end-group functionality from the typical constraints of
micelle self-assembly, as a synthetically tunable macro-
molecular scaffold.

In this work we hypothesized that bottlebrush polymers
would promote effective noncovalent sequestration and
retention of small molecule APIs as unimolecular nanoparticles
while affording more architectural control and stability over
self-assembled micelles, thus, directly improving excipient
solubilization effectiveness. Herein, a poly(NIPAm-stat-
DMA) bottlebrush copolymer was synthesized using grafting-
through methods (Figure 1A) and was used as a template to
isolate the effects of end-group functionality while keeping
molecular weight, monomer composition, and polymer
architecture (chain density) constant. We synthesized a
ROMP-active chain transfer agent (CTA) with a propyl
(-C3H;) Z-group (Scheme S1 and Figure S1—S4) in an effort
to initially reduce the hydrophobic contribution of the end-
groups. Shown in Figure 1A, the MM-57-C;H,, polymerized
using reversible addition—fragmentation chain transfer
(RAFT) with the ROMP-active CTA, were stitched together
through ROMP (>95% conversion) to form the bottlebrush
template (BB-N,-Ny,,-Z) with a side-chain degree of polymer-
ization (N,.) of 57 and a backbone degree of polymerization
(Ny,) of 36 with propyl Z-groups, BB-57-36-C;H, (Schemes
$2—S6 and Figures S5—S11). Both MM-57-C3H, and BB-57-
36-C;H; were end-group modified post-RAFT and post-
ROMP, respectively (Figure 1B, Schemes S7 and S8 and
Figures S12—S27). The end-group functionality was system-
atically altered by either fully removing the trithiocarbonate
(-H) using photoinduced chain transfer in the presence of a
proton donor™ or thia-Michael addition to install a spectrum
of acrylates,* yielding the following end-groups: hydroxyl
(-OH), methyl-PEG (-PEG-CH,), hydroxy-PEG (-PEG-OH),
tert-butyl (-t-butyl), and carboxylic acid (-COOH). The dense
bottlebrush architectures were compared to five linear PND
controls polymerized via RAFT with four distinct CTAs
(Table 1, Scheme S9, and Figures S28—S33): (1) propionic
acid(PA)-PND-245-C;H,, (2) PA-PND-61-C;H,, (3) PA-
PND-62-C;,H,s, (4) cyano-acid(CA)-PND-62-C;,H,;, and
(5) cyano-propyl(CP)-PND-72-C,H,;.

The influence of end-group functionality on the bottlebrush
(BB) polymers was assessed as a function of cloud point
temperature (TCP), solution structure, and density and
compared to the linear copolymer analogues (1—5) and end-
group modified macromonomers (MM; see additional
discussion, Figures S34—545, Tables S2—84). The T, of
BB-57-36-C;H, decreased to 22 °C due to the increased
molecular weight and hydrophobic contributions from 36
propyl end-groups compared to the linear copolymer controls
1-5 (T, > 38 °C). Because the molecular weight and
composition of the side chains remained constant, Z-groups
were responsible for the incremental increase in T, with
increasing hydrophilicity, -tbutyl < -H &~ -OH < -PEG-CH; ~
-PEG-OH < -COOH, where T, = 42 °C for BB-57-36-COOH
(Table 1, Figure 2A). Therefore, using end-group modification
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alone, we systematically tuned the T, of the thermoresponsive
bottlebrush polymers spanning a range of 22—42 °C.
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Figure 2. (A) Transmittance data for the end-group modified BB and
control 3 upon heating: 9 mg/mL sample in PBS pH 6.5. (B) R,
distributions of BB-57-36-Z and control 3 at 1 mg/mL in PBS pH 6.5
at 25 °C (BB-C;H; measured at 20 °C) calculated using regularized
positive exponential sum (REPES) Laplace inversion route analysis.*”

Bottlebrush polymers are enticing candidates to create
synthetically fixed unimolecular micelle-like or globular
nanoparticles. The hydrodynamic radius (R;,) of BB-57-36-
C;H, was measured at 20 °C to demonstrate that, below its
cloud point (TCP =22 °C), the particles with a R, = 9.5 nm did
not aggregate in solution (Table 1 and Figure 2B). Each Z-
group variation of BB-57-36-C;H, was measured to have a
polydispersity index (PDI) less than 0.15, indicating they exist
as well-defined, monodisperse unimers in solution with a Ry, =
9.6—10 nm (Table 1, Figure 2B, Figures S43 and S44). This
confirms that bottlebrushes were not coupled together through
disulfide bond formation or other radical side reactions during
end-group modification. The dodecyl Z-groups drive control 3
to form a monomodal population of micelles with a R, = 7.4
nm (Figure 2B). Therefore, control 3 could be directly
compared to the globular macromolecular bottlebrushes
(shape factor’™®* = 0.96, Figure S45) as a noncovalent
supramolecular architecture. Due to a T, above 37 °C, BB-57-
36-PEG-CH;, -PEG-OH, and -COOH maintained monomodal
populations in solution at 37 °C (Figure S$40) with minimal
change in R from 25 °C. We estimated the average density
(pgp) of each end-group modified bottlebrush to be between
89 and 105 mg/mL (Table 1, see eq Sl), replicating the
optimal density range exhibited by previous work in the dru
delivery field with micelles and cross-linked nanogels.****°~>
Based on these data, we hypothesized that the bottlebrush
excipient architecture should facilitate sustained solubilization
at higher drug loading due to a high density of polymer chains
promoting noncovalent associations with APIs through the
NIPAm moieties.

We examined solubility enhancement performance with a
model BCS Class II AP, phenytoin (PTN), an anticonvulsant
on the World Health Organization’s list of essential
medicines™ (log P = 2.14,>* T, = 295 °C). Each BB-57-36-
Z, MM-57-Z, and controls 1—5 were spray dried with 10 wt %
of PTN (confirmed by synchrotron WAXS, Figure S46), and
the concentration of the solubilized PTN in the fasted-state
simulated intestinal fluid (FaSSIF) during the dissolution
experiment was evaluated using high-pressure liquid chroma-
tography at 4, 10, 20, 40, 90, 180, and 360 min (at 25 and 37
°C). A complete discussion of the dissolution results with
linear controls and macromonomers can be found in Figures
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Figure 3. Dissolution results for the BB-57-36-Z and control 3 with 10 wt % (circles) and 25 wt % (triangles) PTN in FaSSIF pH 6.5 at 37 °C,

arranged in order of most hydrophobic to hydrophilic Z-group.

S47—S57. At 37 °C (Figure 3), the bottlebrush dissolution
performance improved incrementally with increasing hydro-
philicity of the Z-group (from -CyH, to -COOH), mirroring
the trend in T, shown in Figure 2A. It was observed that T,
with respect to the targeted delivery temperature played an
important role in determining PASD solubilization effective-
ness (see dissolution results at 25 °C, Figure S57, and Extra
Discussion - Drug Dissolution Performance in the SI). Both
PEGylated bottlebrush polymers had a T, above 37 °C and
showed burst-like release profiles, prompting the following
question: why is PEGylation not enough to fully solubilize and
maintain 1000 pg/mL in solution for 6 h as with BB-57-36-
COOH? Static light scattering (SLS) measurements revealed
that the second virial coefficient (A,) measured at 25 °C was
four times larger for BB-57-36-COOH versus BB-57-36-PEG-
CH, (Table S4 and Figure S45). Therefore, carboxylic acid
groups increased the solvent quality for this bottlebrush
facilitating rapid dissolution and sustained solubility of the
PASD in FaSSIF. The top performing polymer excipients were
control 3 and BB-57-36-COOH, which both solubilized
amorphous API by forming ~20 nm drug-loaded particles
that were stable in solution for 6 h (Figure 4A, DLS studies
described in Figures S58 and S59). Therefore, both were spray-
dried at 25 wt % PTN loading.

The dissolution results for control 3 and BB-57-36-COOH
with 25 wt % PTN loading at 37 °C are shown in Figure 3.
Consistent with previous studies,*""** the linear control was
unable to solubilize greater than 600 pg/mL of PTN. For the
BB-57-36-COOH PASD, we observed full solubilization of the
targed 1000 pg/mL of PTN at 25 wt % loading for up to 90
min. To the best of our knowledge, this is the first report of full
solubilization of PTN from a PASD at 25 wt % drug loading
and highlights the importance of polymer architecture through
tailoring the density of chains in enhancing solubility through
the noncovalent sequestration of small molecule APIs.
Although crystallization occurred over time due to the
transition from polymer—API to API—API noncovalent
interactions leading to drug crystal nucleation and growth,
BB-57-36-COOH can fully solubilize 1000 ug/mL of the API
at early time points. DLS studies (Figure 4B) during
dissolution revealed that BB-57-36-COOH solubilized and
stabilized amorphous PTN monomodal drug-loaded nano-
particles (~26 nm) despite crystallization over time evidenced
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by polarized light microscopy (Figure S73). In contrast,
control 3 could not stabilize 25 wt % of PTN without
significant aggregation and polymer-drug separation (Figure
4B,C and see Figure S71 for polarized light microscopy).
Opverall, these data show that the bottlebrushes can sequester
small molecules as distinct unimolecular nanoparticles (Figure
4C) that, due to a synthetically defined density of polymer
chains, are more stable in solution, despite higher loadings of
hydrophobic small molecules, making them superior to linear
polymer excipients.

Interestingly, from a stoichiometric perspective, we estimate
that each BB-57-36-COOH hosts 331 PTN molecules and
each polymer chain of control 3 needs to stabilize 10 PTN
molecules at 25 wt % drug loading. We also consider the
number of NIPAm repeat units per PTN molecule in each
system with respect to de Genne’s theory of n-clustering™ in
which NIPAm units can form hydrophobic environments
(without a temperature driven transition) through intermo-
lecular associations between the isopropyl groups of “n”
NIPAm repeat units. At 25 wt %, there are four NIPAm repeat
units per PTN molecule in each system. The lower limit of “n”
in NIPAm containing copolymers has been experimentally
determined to be about three or four.>® Therefore, since not
every NIPAm repeat unit exists in a triad or quartet along a
statistical copolymer chain, the ratio of PTN molecules to n-
clusters in these systems is slightly more than 1:1. We
hypothesize that the excess PTN molecules overwhelm the n-
clusters present within the linear PND excipient and
crystallization occurs. However, because the bottlebrush
architecture synthetically fixes the density of polymer chains
within a defined volume, the ratio of PTN molecules to n-
clusters can be shifted toward unity for a short period of time
facilitating the 90 min of full dissolution seen in Figure 3. This
n-clustering limit of four NIPAm repeat units per drug
molecule in a PASD formulation could be used to predict the
upper limit of drug solubilization effectiveness of PND
excipients with other small molecule APIs.

In conclusion, we have presented the first study using
bottlebrush polymers for the physical sequestration and
solubilization of hydrophobic pharmaceuticals enabled through
postpolymerization end-group modification of a thermores-
ponsive bottlebrush copolymer template. Through end-group
modification only, we systematically increased the hydro-

https://dx.doi.org/10.1021/acsmacrolett.0c00890
ACS Macro Lett. 2021, 10, 375-381


http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.0c00890/suppl_file/mz0c00890_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00890?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00890?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00890?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00890?fig=fig3&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://dx.doi.org/10.1021/acsmacrolett.0c00890?ref=pdf

ACS Macro Letters

pubs.acs.org/macroletters

Control 3 BB-57-36-COOH
Alowan ’ N
> S f e 360 min
5 2 N A AR o N
C se
£ /\ $ % 90min
= P IR Nkt
D 10 min
N
g 4 min
S
z polymer only

1 10 100 1 10 100
B R, (nm) R, (nm)
~ |25wt% A ' Y '
-*é 7\ ,A\ s % 360 min
[0} N S % .
€ IR ; Vi 90 min
-c .
ﬁ 10 min
g 4 min
S
Z polymer only
1 10 100 1 10 100
R, (nm) R, (nm)

90 min, 25 wt %

crystalline PTN,
drug-loaded micelles, and
polymer-drug aggregates

unimolecular drug-loaded
nanoparticles

Figure 4. Dynamic light scattering Ry, distributions during dissolution
run in PBS at 37 °C for control 3 and BB-57-36-COOH with (A) 10
wt % PTN and (B) 25 wt % PTN at 4, 10, 90, and 360 min. Polymer
only (open circles) samples were measured at 9 mg/mL in PBS at 37
°C. (C) Tllustration of the drug—polymer species present in solution
at 90 min during dissolution with 25 wt % PTN.

philicity of the bottlebrush polymer, incrementally increasing
the solubility enhancement of each bottlebrush with the model
APIL, PTN. The carboxylated bottlebrush out-performed the
linear copolymers at 25 wt % drug loadings. This superior
performance was attributed to the synthetically fixed density of
bottlebrush copolymer side chains. Bottlebrush architectures
are ideal vehicles for the physical encapsulation of hydrophobic
small molecules and have great potential for future applications
in sequestration, stabilization, and delivery of a multitude of
important active molecules.
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