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Abstract—This paper study the low-shot learning paradigm
in Natural Language Processing (NLP), which aims to provide
the ability that can adapt to new tasks or new domains with
limited annotation data, like zero or few labeled examples.
Specifically, Low-shot learning unifies the zero-shot and few-
shot learning paradigm. Diverse low-shot learning approaches,
including capsule-based networks, data-augmentation methods,
and memory networks, are discussed for different NLP tasks,
for example, intent detection and named entity typing. We also
provide potential future directions for low-shot learning in NLP.

Index Terms—Zero-shot Learning, Few-shot Learning, Natural
Language Processing, Intent Detection

I. INTRODUCTION

Natural language processing (NLP) is a subfield of Artifi-

cial Intelligence that applies to text by computers, in order

to process and analyze large amounts of natural language

data [1], [2], [9], [48]. Diverse tasks are followed by NLP

researches, including text classification [3], [6], named entity

recognition [4] and machine translation [5]. Significant success

has achieved in these NLP tasks with the development of deep

learning techniques [49], such as LSTM [7] and Transformers

[8]. These models can achieve decent performance when they

are optimized with large-scale human-labeled annotation data.

However, they are not intelligent enough to promptly adapt

to new tasks or new domains, especially in this ever-changing

digital world. For example, adding a new class in text classifi-

cation tasks means to collect large amount of annotations for

the new class and re-train the whole model. It is wasteful to

ignore the previously well-trained model and make the whole

process labor-intensive and time-consuming again.

Recently, researchers are interested in achieving decent

performance with reduced human annotation and extending

models’ ability for new tasks or new domains. Low-resource

learning paradigms like zero-shot learning [47] and few-shot

learning [10] have drawn a lot of attention in the field of

machine learning. Zero-shot learning is to adapt to new tasks

or new domains without additional labeled data for these new

tasks, while few-shot learning is to solve this problem with

only a few labeled examples. To unify these two learning

paradigms in natural language processing, we propose a new

learning paradigm named as Low-shot Learning. The goal of

low-shot learning is to provide a model that can adapt to

new tasks with limited annotation data, including zero or few

labeled examples.

In this paper, we discuss and analyze low-shot learning in

natural language processing, including zero-shot learning and

few-shot learning. We study different approaches, including

capsule-based networks [11], data-augmentation methods [12]

and memory networks [13]. Several NLP tasks, like intent

detection [14] and named entity typing [15], are utilized

to evaluate the performance of different low-shot learning

approaches. Potential future directions are also provided for

the low-shot learning in NLP.

II. ZERO-SHOT LEARNING IN NLP

The research on zero-shot learning in NLP is still in its

infancy [23]. We mainly discuss text classification tasks for the

zero-shot learning setting in NLP, including intent detection

and named entity typing.

A. Zero-shot Intent Detection

Intent detection is a crucial task for intelligent assistants. It

aims at identifying user intentions from their spoken language

[14]. As more features and skills are being added to devices

that expand their capabilities to new programs, it is common

for intelligent assistants to encounter the zero-shot intent

detection scenario, where no labeled utterances are available

for the new intents.

Previous zero-shot learning methods for intent detection

utilize external resources such as label ontologies [17] or man-

ually defined attributes that describe intents [18] to associate

existing and emerging intents, which require extra annotation.

Compatibility-based methods for zero-shot intent detection

[19] assume the capability of learning a high-quality mapping

from the utterance to its intent directly, so that such mapping

can be further capitalized to measure the compatibility of an
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utterance with emerging intents. However, the diverse semantic

expressions may impede the learning of such mapping.

Reference [16] is the first work that attempt to tackle the

zero-shot intent detection problem with a capsule-based [11]

model. A capsule houses a vector representation of a group of

neurons, and the orientation of the vector encodes properties

of an object (like the shape/color of a face), while the length

of the vector reflects its probability of existence (how likely a

face with certain properties exists). The capsule model learns

a hierarchy of feature detectors via a routing-by-agreement

mechanism: capsules for detecting low-level features (like

nose/eyes) send their outputs to high-level capsules (such

as faces) only when there is a strong agreement of their

predictions to high-level capsules.

The aforementioned properties of capsule models could be

quite appealing for text modeling, specifically in this case,

modeling the user utterance for intent detection: low-level

semantic features such as the get action, time and city name

contribute to a more abstract intent (like get weather) col-

lectively. A semantic feature, which may be expressed quite

differently among users, can contribute more to one intent than

others. The dynamic routing-by-agreement mechanism can

be used to dynamically assign a proper contribution of each

semantic and aggregate them to get an intent representation.

More importantly, [16] discover the potential of zero-shot

learning ability on the capsule model, which is not yet widely

recognized. It makes the capsule model even more suitable

for text modeling when no labeled utterances are available for

emerging intents. The ability to neglect the disagreed output

of low-level semantics for certain intents during routing-by-

agreement encourages the learning of generalizable semantic

features that can be adapted to emerging intents.

B. Zero-shot Named Entity Typing

Named entity typing (NET) is to classify the types of the

named entity mentions in a given utterance [20], [21]. For

example, entity “Amy” in utterance “Amy bought 300 shares

of Acme Corp. in 2006.” is recognized as the type of Person.

However, the number of entity types are diverse and unlimited,

it’s imperative to develop zero-shot models for NET.

Previous zero-shot NET models only learn a simple map-

ping function between entity mentions and types. The repre-

sentations of mentions or types are learned either from hand-

crafted features [22], or pre-trained word embeddings [24].

These models do not have explicit knowledge transfer from

seen types to unseen types. Intuitively, we want to mimic

the way how humans learn new concepts. Humans learn

new concepts by comparing the similarities and differences

between new concepts and old concepts stored in our memory.

Reference [25] is the first work that proposes the mem-

ory augmented zero-shot NET model (MZET) to tackle the

aforementioned problems. MZET stores the representations of

the seen types in the memory as the knowledge we learned

from the training data. To detect the zero-shot types, MZET

compares the similarities between the seen types and unseen

types.

III. FEW-SHOT LEARNING IN NLP

Inspired by humans’ ability to adapt existing knowledge

to new concepts quickly with only a few examples, few-

shot learning [10] has recently drawn a lot of attention. Few-

shot learning approaches [26] are expected to discriminate

new classes from each other with only a few examples,

namely, the few shots. This setting is a challenge problem in

NLP for which little attention has been paid by the research

community. In this section, we discuss both few-shot learning

and generalized few-shot learning setting in NLP. In addition,

data augmentation methods are introduced to solve the scarce

annotation problem for these low-resource settings.

A. Few-shot Learning

Few-shot learning [10] is to learn classifiers for new classes

with only a few training examples per class. Recent few-shot

learning approaches either learn one generalizable distance

metric to separate the classes [26], [27] or optimize parameters

based on the gradients computed from few-shot examples [28].

Recently, some few-shot learning studies are presented with

a special focus on text classification [29]–[32]. Reference

[29] develops a few-shot text classification model for multi-

label text classification where there is a known structure of

the label space. Reference [30] proposes Induction Networks

that use dynamic routing induction method to encapsulate the

abstract class representation from a few examples. Reference

[31] proposes an open-world learning model to deal with the

unseen classes in the product classification problem. However,

they all focused on classification among the few-shot classes

without the seen classes.

B. Generalized Few-shot Learning

The formulation of few-shot learning only focuses on dis-

criminating new classes and ignores existing classes. It fails to

maintain a globally consistent label space that contains both

existing classes and new classes. From a practical point of

view, a good text classification model is expected to detect

any class, no matter if it is an existing class or a new class.

A more realistic yet challenging problem setup is consid-

ered in the few-shot scenarios for NLP, which is named as

generalized few-Shot learning. Generalized few-shot learning

aims to correctly classify utterances that might belong to both

existing and new classes. Compared to few-shot learning that

only needs to discriminate new classes, Generalized few-shot

learning is a much more challenging task. Due to the lack of

annotations for new classes, the model has a bias on existing

classes over new classes and tends to predict the test samples

as existing classes.

C. Data Augmentation Methods for few-shots

Since the bottleneck in few-shot learning is the lack of

annotations, the performance can be easily improved if we

can generate labeled utterances for few-shot classes. Several

works [12], [33], [40] have proposed to utilize variational

autoencoders (VAE) [34] to augment the training data for

low-resource spoken language understanding. However, these
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model’s ability is limited by encoders built with simple LSTMs

[7], and they can only generate utterances with simple modi-

fications.

To generate high quality and diverse utterances for new

classes, [35] propose a Conditional Text Generation with

BERT (CG-BERT) to transfer expressions learned in existing

classes to new classes. CG-BERT is a conditional variational

autoencoder (CVAE) [36] that incorporates BERT [37] natu-

rally with specific attention masks. It utilizes the label as the

condition in CVAE and provides a tractable method to generate

text by controlling the latent variable. The distribution for

utterances with the same label is modeled in the latent space.

During training, expressions associated with existing classes

are learned through regularizing the latent representations with

specific prior distributions. And through sampling from the

learned latent distribution, we can generate new utterances

conditioned on new labels to augment the training data.

In order to provide a flexible framework that can use

pre-trained weights from different kinds of transformer-based

language models, including BERT [37] and GPT [38], [35]

utilizes the Unified Language model [39] as the backbone.

The encoder and decoder are built with multiple transformer

layers. And a hidden layer is added between the encoder and

the decoder. The latent variable contained in the latent layer

learns the representations for utterances in a low-dimensional

space. To incorporate CVAE into the unified language model,

specific attention masks are proposed for these transformer

layers.

Although CG-BERT has shown the ability to generate high-

quality utterances that improve the performance for general-

ized few-shot learning, the model structure is not designed for

the low-resource text generation setting. Existing classes and

few-shot classes are learned separately in the model without

explicit connections. Therefore the ability to generalize to few-

shot intents is implicit and limited.

Reference [41] focuses on the natural language generation

for few-shot intents. Firstly, they define the intent in a way

that benefits the few-shot generalization ability. When users

interact with intelligent assistants, their goal is to query some

information or execute a command in a certain domain [42].

For instance, the intent of the input “wake me up at 7 am”

is to set an alarm. The intent consists of an action “Set”

in the domain of “Alarm”. These actions or domains are

very likely to be shared among different intents including the

few-shot ones [31]. For example, there are a lot of actions

(“query”, “set”, “remove”) can be combined with the domain

of “alarm”. The action “query” also exists in multiple domains

like “weather”, “calendar” and “movie”. Therefore, [41] define

the intent as a pair of two parts: a domain and an action.

Unlike CG-BERT in which the input utterance is modeled

as a whole, [41] want the model to learn which parts of

the utterance are related to the domain and what kind of

expressions contribute to the action. A composed variationaL

natural language generator (CLANG) is proposed to model

the local features corresponding to the domain and the action

in each utterance. CLANG is a transformer-based [8] con-

ditional variational autoencoder (CVAE) [36] with a bi-latent

component. In the bi-latent component, two independent latent

variables are utilized to model the distribution of the action and

the domain separately, thus improving the model flexibility.

Special attention masks are designed to guide the model to

focus on different parts of the utterance and learn the local

features. Through decomposing the utterances for the existing

intents, the model learns to express the utterances for the few-

shot intents as a composition of the learned local features.

The generalization ability for low-resource text generation is

enhanced with this local-aware model.

Reference [43] propose a domain-independent data aug-

mentation technique, Mixup, that linearly interpolates image

inputs on the pixel-based feature space. [44] combine Mixup

with CNN [45] and LSTM [7] for text applications. They

only conduct mixup on the fixed word embedding level like

[43] did in image classification. Reference [46] add a mixup

layer over the final hidden layer of the pre-trained transformer-

based model. This mixup layer is dynamic and trained together

within the whole text classification model.

IV. CONCLUSIONS AND FUTURE WORK

This paper studies the low-shot learning paradigm in NLP,

which is aim to provide the ability that can adapt to new

tasks or new domains with extremely low annotation data,

like zero or few labeled examples. Specifically, Low-shot

learning unifies the zero-shot learning, few-shot learning and

generalized few-shot learning paradigms. Diverse low-shot

learning approaches, including capsule-based networks, mem-

ory networks and data-augmentation methods are discussed

for different NLP tasks, like intent detection and named entity

typing.

Although this paper has explore different directions for low-

shot learning in NLP, these aforementioned models lack the

ability to add the knowledge in the new examples and update

itself continuously. Continuous learning in the low-shot setting

is a interesting problem for NLP and worth to explore.
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