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Abstract—Representation learning for heterogeneous graphs
aims at learning meaningful node (or edge) representations to
facilitate downstream tasks such as node classification, node
clustering, and link prediction. While graph neural networks
(GNNs) have recently proven to be effective in representation
learning, one of the limitations is that most investigations focus
on homogeneous graphs. Existing investigations on heterogeneous
graphs often make direct use of meta-path type structures.
Meta-path-based approaches often require a priori designation
of meta-paths based on heuristic foreknowledge regarding the
characteristics of heterogeneous graphs under investigation.

In this paper, we propose a model without any a priori selection
of meta-paths. We utilize locally-sampled (heterogeneous) context
graphs “centered” at a target node in order to extract relevant
representational information for that target node. To deal with
the heterogeneity in the graph, given the different types of nodes,
we use different linear transformations to map the features in
different domains into a unified feature space. We use the classical
Graph Convolution Network (GCN) model as a tool to aggregate
node features and then aggregate the context graph feature
vectors to produce the target node’s feature representation. We
evaluate our model on three real-world datasets. The results show
that the proposed model has better performance when compared
with four baseline models.

Index Terms—Graph Mining, Graph Neural Network, Hetero-
geneous Node Embedding

I. INTRODUCTION

Heterogeneous graphs contain multi-typed nodes and struc-

tural relations as well as abundant content associated with

nodes [1]–[3]. Many real-world applications are associated

with heterogeneous graphs [1]–[4]. For example, the academic

graph shown in Fig. 1 is an example, where papers, authors,

venues, and terms are four types of nodes. The correspond-

ing edges include author-paper (write/written), paper-venue

(publish), and paper-terms (contain). Structures of this kind

(involving multiple types of nodes and edges) give rise to new

categories of problems such as node classification, relation

inference, and personalized recommendation [1], [2], [4]–[6].

Traditionally, works on classification and representation in

heterogeneous graphs has relied on manual feature engineer-

ing. These works use graph specifications and statistics of node

1The work is performed during an internship at Futurewei Technologies
Inc.

Fig. 1: An Example of DBLP Heterogeneous Graph.

type (or properties) in order to learn node embeddings which

can then be used for downstream tasks.

Starting from homogeneous graphs, many works have used

random walk-based approaches or their variants to accomplish

the target embeddings. For instance, DeepWalk [7] first sam-

ples a set of short random walk paths and then feed these

paths into a SkipGram Model to learn node embedding by

approximating the node co-occurrence probability in these

random walk paths. Later, Y. Sun, et al. [8] proposed to build

meta-paths specifically designed for heterogeneous graphs.

Meta-paths are connected sequences of node types. Other

similar works have been proposed based on such meta-path

structures. Metapath2vec [9] feeds meta-path guided random

walk paths into a SkipGram model. Recent works also utilize

Graph Neural Networks (GNNs) techniques for analyzing

heterogeneous graphs. One advantage of GNN is that it can

constantly update the node embedding by aggregating the

embedding of neighboring nodes [10], [11]. HetGNN [12]

samples a number of nodes for all node types via random

walks and it uses the bidirectional LSTM to encode node

content features. It further aggregates node content features

of selected nodes to arrive at the target node embedding.

Extensive works have been proposed for applying GNN to-

gether with meta-path. HAN [13] uses pre-defined meta-paths
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to construct homogeneous graphs for target nodes. It then

aggregates them via both node level attention (when aggre-

gating nodes connected via the same type of meta-paths) or

semantic level attention (when aggregating all the meta-paths).

MAGNN [14] makes some further improvements on HAN. It

argues that the intermediate nodes in the meta-paths also play

an important role when learning node embeddings. However,

it relies on domain experts’ pre-defining of meta-paths and

on the costly computation for obtaining all the instances of

meta-paths. As such, the automatic recognition and learning

of the meta-paths themselves becomes a meaningful challenge

along with the related node embedding that depends on them.

Graph Transformer Network (GTN) [5] selects edge types by

1× 1 convolution kernels and multiplies the matrices of edge

types to build a matrix containing meta-path instance count.

Graph Convolutional Network [10] applies graph convolution

to aggregate node features via the learnt paths. Heterogeneous

Graph Transformer (HGT) [15] incorporates more complex

data settings of multi-type nodes and multi-relation edges

and proposes a graph transformer model for million-scale

datasets. HGT uses both node type-based self-attention and

edge type-based message passing to get to node embeddings.

Unfortunately, this model cannot easily adapt to distributed

parallel computation and requires special engineering.

To sum up, the previously proposed methods suffer from

at least one of the following limitations: (1) Purely random

walks do not capture the heterogeneity (or type) structure

in the graphs, which causes loss (or at best, discounting)

of information. (2) Meta-path-guided random walk methods,

while achieving better performance, need a priori designation

of the meta-paths. This requires manual efforts and domain

knowledge to choose the best meta-paths. It is biased to that

knowledge and maynot be able to discover or capture novel,

significant structures. (3) Current proposed models that can

automatically select meta-paths through judicious use of neural

network architectures are potentially hard to parallelize as

they often rely on the global graph matrix. On the contrary,

an architecture that only relies on local graph information

is easier for parallel training. To overcome these limitations,

we seek a novel graph neural network-based approach that

does not require a priori meta-path designation, can easily be

parallelized during training for large datasets and can scale

and maintain good performance all around.

In this paper, we propose a heterogeneous graph neural

networks (HetLGN) that only utilizes the local information to

learn the node representations without any pre-knowledge or

manual efforts for feature engineering. Our proposed approach

can be easily adapted to any parallel training systems. We

first sample a context graph for each target node, and then

obtain the corresponding node content and structural features.

To deal with the heterogeneity in the graph, we project the

features of different node types into a unified space. We

then use a common GNN module, e.g., graph convolution

networks (GCN), to learn the context graph embedding whose

aggregation produces the target node embedding. We conduct

experiments on three real-world datasets. Our results show the

effectiveness of our proposed model.
The rest of the paper is organized as follows: We discuss

the related work in Section II. We define the notations and

problem in Section III. We give a detailed model in Section IV.

We show the experimental setting and result in Section V.

Section VI concludes the paper.

II. RELATED WORK

Our work relates to three parts: (1) graph representation

learning; (2) heterogeneous graph mining; (3) graph neural

networks.

A. Graph Representation Learning
Graph representation learning aims at learning the node or

edge representations for general tasks. Early works like [16],

[17] uses the matrix factorization (MF) method to compute the

node embedding, but the MF methods are strictly restricted

to relatively small graphs. To deal with large graphs, works

like [7], [18] use sampling based methods. DeepWalk [7]

samples a set of sequences and uses skipgram-based model

to approximate the similarity between nodes. Node2vec [18]

improves the sampling method of DeepWalk. LINE [19]

calculates the 1- and 2-hop neighbors to make it applicable

to large graphs. Many works also propose “deep learning”

(DL) techniques. SDNE [20] uses auto-encoder model as

well as a Laplacian eigenmap to learn node embedding in

a semi-supervised manner. Spectral CNN [21] proposes two

constructions, one based upon a hierarchical clustering of

the domain, and the other based on the spectrum of graph

Laplacian to learn node embedding.

B. Heterogeneous Graph Mining
Heterogeneous graph mining has been studied for over

a decade to deal with various tasks such as node classi-

fication [12], [13], item recommendation [22], [23], which

have no simple analogy in homogeneous graphs, and link

prediction [6], [24] which can be used for graph completion

or in recommendation systems. PathSim [8] proposes to use

a meta-path based similarity score to find similar nodes. With

the development of DL techniques, many DL models based on

meta-path have been proposed [2], [22]. HERec [2] uses meta-

path-based random walks in order to select node sequences.

This work uses extended Matrix Factorization (MF) to learn

the node embedding. MCRec [22] proposes a novel neural

networks with co-attention mechanism for leveraging rich

meta-path information for Top-K recommendation. HAN [13]

proposes a two level attention mechanism to fuse the meta-path

based sequences with their semantic meaning. MAGNN [14]

improves HAN by aggregating all the nodes in meta-paths

together. HetGNN [12] uses Bi-directional LSTM as a feature

encoding unit and an aggregation tool. However, its pre-

defined meta-path greatly limits the potential impact of meta-

path structures. GTN [5] selects the meta-paths by softly

selecting edge types. HGT [15] does not require pre-defined

meta-path. It proposes to use stacked multiple heterogeneous

graph transformer layers in order to co-compute the meta-paths

along with other potential tasks.
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C. Graph Neural Networks

Graph Neural Network (GNN) is a different type of neural

network compared with other deep learning models such as

CNN, LSTM. It aims at handling data represented as graph

structures.

GNNs usually take two steps during graph data processing:

(1) feature projection, and (2) aggregation An early GNN

work is Graph Convolutional Network (GCN) [10] which

calculates weights for edges and aggregates one-hop neigh-

boring nodes based on these weights. This thread of research

has been extended by other works [11], [24]–[30]. A major

difference among GNN variations lies in their propagation

methods. ClusterGCN [28] splits nodes into several clusters

and proposes an inter-propagation for clusters, which acceler-

ates the training procedure for large graphs. SimpleGCN [29]

accelerates the learning process by removing the redundant

linear transformation. Deep Graph Informax [30] learns the

node embedding by maximizing the mutual information of

nodes. GraphSAGE [26] samples neighboring nodes in order

to reduce the computation complexity for large homogeneous

graphs.

Moreover, there are some other works for graph-level

representation learning. To learn the graph representations,

GNNs adopt different types of readout or pooling function.

EigenGCN [31] uses an eigen-pooling to maintain the graph

structural information by eigen decomposition. GIN [32] pro-

poses several pooling methods and proves they have similar

powers to Weiferiler-Leman Kernel [33]. JK-Net [34] argues

that local information suffers losses during the propagation

process. It proposes skip-connections from layer to layer. A

more recent work [35] learns both node and graph representa-

tions by contrasting embedding between node representations

from one view and graph representations from another view.

III. TERMINOLOGY AND PROBLEM DEFINITION

A. Notations and Definitions

To formulate our problem, we define the heterogeneous

graph as follows. 1

DEFINITION 1: (Heterogeneous Graph) Given a graph G =
(V, E) where V is the node set, E is the edge set, there exists

type mapping functions τ : V → A and φ : E → R map

nodes to types A and edges to types R, respectively. A graph

is heterogeneous when satisfies constraint: |A|+ |R| > 2.

B. Problem Formulation

We formulate the node representation learning problem in

heterogeneous graphs as follows.

DEFINITION 2: (Heterogeneous Node Representation

Learning) Given a heterogeneous graph G = (V, E , τ, φ) and

associated node contents, our task is to find a mapping function

f : Vt → R
|Vt|×d that maps the target nodes Vt into a d-

dimensional vector space.

1Throughout the paper, we use lowercase letters (e.g., x) to denote scalars.
We use lowercase boldface letters (e.g., x) to denote vectors. We use uppercase
boldface letters X to denote matrices. The i-th row of the matrix X is denoted
as X(i, :) or xi.
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(3) Context Graph 
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Fig. 2: An illustration of the HetLGN framework.

The learned node representations can be easily applied to any

downstream tasks such as node classification, node clustering,

link prediction, etc.

IV. THE PROPOSED METHOD

In this section, we present HetLGN framework illustrated

in Figure 2 to address the limitations of previous graph neural

network methods described in Section 1. The HetLGN frame-

work consists of four components: (1) context graph sampling,

(2) feature encoding, (3) context graph embedding, and (4)

prediction. These four components are further elaborated as

follows.

A. Context Graph Sampling

Most of the research works for heterogeneous node embed-

ding uses random walk paths and meta-paths as the context to

learn the node embedding. However, those path-based meth-

ods focus more on sequential information rather than graph

structural information. Although using multiple sequences may

partially capture certain graph structures, they cannot fully

exploit the graph structure and its semantics.

Besides, the purely random walk-based approaches ignore

the heterogeneity of node/edge types, and the pre-defined

meta-path based approaches require additional manual analysis

on the data. Neither are suitable for modern graph analysis

tasks over very large heterogeneous datasets.

Therefore, to enhance information obtained from the local

sub-graphs, we need to guarantee both heterogeneous and

locally dense structures that can be captured by the context

graph sampling method. Inspired by the mini-batch sampling

used in [15], we propose a multi-branched context graph

sampling algorithm which aims to sampling a dense local

structure while at the same time handling the heterogeneity

in the graph.

In order to sample more diversified type information in

graph, we follow the intuition that nodes with higher degrees

will provide less type information than those with lower

degrees when sampled with equal probability. Based on this

intuition, we employ a sampling strategy that visits nodes

based on a probability derived from a ”type budget” selection

function.
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In addition, to deal with the node heterogeneity, the sam-

pling probability is updated with respect to the node types.

This is done in order to ensure that the sampled context

graph can have more evenly distributed types of nodes. This

approach ensures that the context graphs avoid biases towards

branching from types of neighboring nodes with higher de-

gree. Similar to [15], we define a budget-based selection

function which guarantees the number of nodes sampled are

proportional to the corresponding node types. The detail of

this method is shown in Algorithm 2.

The multi-branched context graph sampling method obtains

a context graph around a given target node i. The search

process starts with node i. It then calculates the sampling

probabilities for all 1-hop neighboring nodes around node

i. It further randomly sample w nodes from all neighboring

nodes of node i according to the calculated probabilities. It

continues to search for all the 2-hop neighboring nodes of the

previously sampled nodes. Again, it samples w nodes from

these 2-hop nodes according to the re-calculated probabilities.

Iteratively, it continues to search until the d-hop neighboring

nodes are reached. The algorithm is searching in a multi-

branched fashion as it expands the search area from all

previous sampled nodes stored in the budget B. The details

are shown in Algorithm 1.

Having sampled the nodes, we are able to construct the

context graph for node i, and its adjacency matrix denoted as

Âi. Thus, for target node set Vt = {1, · · · , n}, we are able to

compute the corresponding context graph adjacency matrices

{Â1, ..., Ân}.

B. Feature Encoding

In heterogeneous graphs, nodes are almost always asso-

ciated with abundant content information. In order to learn

good embedding, the node content features play an important

role. On the other hand, the position of a node in the context

graph with regard to a target node also reveals structural

information. (Structural features are also strong features for

inductive learning [6].) However, the features of different node

types are from various domains, which needs to be projected

into a unified space for proper feature encoding. To handle

this situation, we will first obtain the node content features,

and then get the structural features according to the relative

position with respect to the target node. Finally, we embed

both node content features and structural feature according to

the node type.

Formally, a sampled context graph Âi contains context

nodes C = {i, g1, g2, · · · , gm} where m = w × d (sampled

w from each of the d levels) for target node i. The node

content features can be obtained in a data pre-processing stage

according to the raw content feature data types. For example,

if the raw content features involve pieces of text, we can

apply feature extractor such as transformers or word2vec. If

features are images, we can apply deep neural models such

as convolutional neural networks (CNNs) in a procedure of

pre-trained feature extraction. Therefore, by applying existing

Algorithm 1: Multi-Branches Context Graph Sampling

Input: Adjacency matrix A, target node i, sample

depth d and sample width w.

Result: A set of context nodes C={i, c1, · · · , cw} for

the target node i, adjacency matrix of sampled

context graph Âi.

1 Initialize an empty context node set C = {};
2 C.add((τ(i), i)) ;

3 Initialize an empty Budget B storing nodes and their

types with normalized degrees;

4 for (τ(t), t) ∈ C do
5 Add-In-Budget(B, (τ(t), t), A, C); // Add

neighbors of t to B
6 end
7 for l←1 to d do
8 for node t ∈ domain B do
9 probl−1[(τ(t), t)]← B[(τ(t),t)]2∑

m B[(τ(m),m)]2 ;

// Calculate sampling
probability all nodes

10 end
11 Random sample w nodes {ct}wt=1 from B using

probl−1;

12 for node t ∈ {cj}wj=1 do
13 C.add((τ(t), t)); // Add node t as

context node
14 Add-In-Budget(B, (τ(t), t), A, C);
15 B.pop((τ(t), t)) ;

16 end
17 end
18 Reconstruct the adjacency matrix of the sampled

context graph Âi based on sampled context node set

C ;

19 return C, Âi ;

models for text or image or other content type processing, we

could construct the node content features x
(c)
i ,x

(c)
g1 , · · · ,x(c)

gm .

For structural features, we want to maintain the distance

between the context nodes to the target node. Here, we first

compute the shortest distances between the context nodes

and the target node. After this computation, we use a one

hot encoding to encode the shortest distance of each context

node. Note that for target node itself, the distance is zero.

As illustrated in Figure 2, we can obtain the node structure

features {x(s)
i ,x

(s)
g1 , · · · ,x(s)

gm}.
Combining both node content features and node structure

features, we get the complete node feature x by concatenation

as follows.

xk = x
(c)
k � x

(s)
k , ∀k ∈ {i, g1, g2, · · · , gm}. (1)

Due to the node heterogeneity, we transform the node

features into a unified space according to the node types. The

projection can be denoted as

hk = Wτ(k)
p xk + bτ(k)

p (2)
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Algorithm 2: Add-In-Budget(B, (τ(t), t),A, C)

Input: Adjacency matrix A, target node t, and

sampled context node set C.

Result: Updated Budget B.

1 for each possible adjacent node type τ and edge type
φ do

2 Dt ← 1/len(A(τ,φ,τ(t))[t]); // get
normalized degree of added node
t regarding to each type triplet
(τ(s), φ(e), τ(t)) derived from
corresponding node triplet
(s, e, t). A(τ,φ,τ(t))[t] represents all
node types adjacency to node t.

3 for all neighboring nodes k of node t do
4 if k is not in C then
5 B[(τ(k), k)]← B[(τ(k), k)] +Dt

6 end
7 end
8 end
9 return Updated Budget B ;

where W
τ(k)
p and b

τ(k)
p are trainable parameters of weights

and bias for node type τ(k), respectively, where τ(k) is the

type of node k. Therefore, by projecting all nodes in all

context graphs, in the same manner, we build feature matrices

{H1, · · · ,Hn} for all target nodes {1, · · · , n}.

C. Context Graph Embedding

After obtaining the context graph, we aim to get the context

graph embedding and take it as the target node embedding. In

this paper, we try to utilize the context graphs containing richer

information than sequences to deal with the node embedding

problem. Using graphs to learn the node embedding is rea-

sonable due to the assumption that nodes are similar to their

neighbor nodes. Unlike sequences, which only consider the

path connections, the graph bears more structural information

and it can make use of all information within the graph. Due

to the recent development of graph neural networks, people

find an efficient way to learn both node embedding and graph

embedding for graph structured data. Potentially, any graph

neural network can be applied to learn the context graph

embedding. In this paper, we simply use the graph convolution

network (GCN) [10] to learn the graph embedding for our

context graphs.

Formally, we have a context graph adjacency matrix Âi and

the corresponding feature matrix Hi. We first need to normal-

ize the context graph adjacency matrix Âi. The normalized

adjacency matrix can be computed as follows.

Ãi = D
−1/2
i ÂiD

−1/2
i (3)

where Di(j, j) =
∑

j Âi(j, :) is a diagonal matrix. Together

with the feature matrix Hi, we feed them into a GCN.

Here, we use L layers of the GCN to learn a comprehensive

embedding as follows.

H
(l)
i = ÃiH

(l−1)
i W(l−1)

g , l = 1, · · · , L. (4)

where H
(0)
i = Hi and W

(l−1)
g ∈ R

h×h denotes the trainable

variable at (l − 1)-th layer. To better fuse the features, we

adopt the idea from JK-Net [34] by concatenating all feature

matrix from L layers of the GCN network to compute the final

context graph embedding by the follow method.

h
(g)
i =

∑

j

H
(1)
i (j, :) � · · · �

∑

j

H
(L)
i (j, :) (5)

where the h
(g)
i is the context graph embedding. For each con-

text graph fed into the learning module, our model produces

embeddings {h(g)
i |∀i ∈ Vt} for all target nodes in the batch.

D. Prediction

After getting all context graph embeddings, we simply use

one linear layer as a classifier, which is formulated as follows.

ŷi = Wch
(g)
i + bc (6)

where ŷi ∈ R
|C| and |C| denotes the number of classes. We

use cross-entropy as the loss function. Given the ground truth

yi, the loss function is

L = −
B∑

i

C∑

j

(yi(j) log ŷi(j)) (7)

During training, HetLGN samples B (i.e., batch size) con-

text graphs for the (batch of) target nodes first and then trains

the context-embedding neural network based on GCN model.

When testing, the same forward procedure is used to predict

node labels for nodes in the test set.

V. EXPERIMENT

In this section, we introduce the datasets, comparison meth-

ods, and evaluation metrics. Then we show the experimental

setting, disucss the experimental results on three real-world

datasets and provide a parameter study.

A. Dataset

To show the effectiveness of the proposed model, we per-

formed experiments on three real-world heterogeneous graph

datasets. Some basic statistics of the datasets are provided in

Table I.

• ACM is an academic heterogeneous graph. The node

types include paper, author, and field. The edge types

include paper-paper (citation), paper-author (write), and

paper-field (belong to). In this dataset, we select 3025

papers from three areas (Database, Wireless Communica-

tion, Data Mining) as the target nodes following the data

preprocessing as described in [13]. The content features

of paper nodes are constructed by the bag-of-words of

keywords. Since only paper nodes have content features,

we simply average the paper node content features to its
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dataset Relations(A-B) Number of A Number of B Number of A-B Feature #Target Node

ACM
Paper-Author 12499 16910 37055

1903 3025Paper-Field 12499 73 12499
Paper-Paper 12499 12499 30789

DBLP
Author-Paper 4057 14328 19645

334 4057Paper-Term 14328 8789 88420
Paper-Conf 14328 20 14328

IMDB
Movie-Director 4768 2277 4796

1269 3462
Movie-Actor 4768 5968 14639

TABLE I: Dataset Statistics

neighboring nodes. We use the paper nodes as the target

nodes and the field of papers as the labels to be predicted.

• DBLP is also an academic graph. We use a subset

of DBLP which contains four node types (paper, au-

thor, term, and conference), and three relation types

(paper-author, paper-term, and paper-conference). For this

datasets, we construct 4057 authors and their connected

nodes. For this dataset, the author features are the bag-of-

words representations of the keywords of the connected

papers. We also average the author features to its neigh-

boring nodes. We use the author nodes as the target nodes

and the area they are working on as labels to be predicted.

• IMDB is a graph in film domain. It contains three

node types (movie, director, and actor) and two relations

(movie director and movie actor). The movie features are

built by the bag-of-words representations from the plot

descriptions. We average the movie features to other node

types as well. We select 3462 movies as the target nodes

and the genres (Action, Comedy, and Drama) as the labels

to be predicted.

B. Comparison Methods and Evaluation Metrics

Our work is related to meta-path based methods and graph

neural network methods, thus we use two state-the-art hetero-

geneous graph models and two classic graph neural network

models as our baselines.

• GTN: The Graph Transformer Network (GTN) [5] selects

the edge type by 1×1 convolutional kernel, and then ag-

gregates the softly selected edges to form a big adjacency

matrix. GCN is applied to compute node embedding.

• HAN: Heterogeneous Graph Attention Network

(HAN) [13] uses pre-defined meta-paths to construct a

homogeneous graph and uses node-level and semantic

level attention mechanism to learn a concrete node

embedding.

• GCN: Graph Convolution Network (GCN) [10] is a

graph neural network for homogeneous graphs. It uses the

normalized adjacency matrix to weight the connections

and aggregates neighboring node features based on it.

• GAT: Graph Attention Network (GAT) [11] is designed

for homogeneous graphs as well. It adopts an adaptive

normalization method by multi-head attention to learn the

weights to aggregate features.

To compare the performance of all these methods, we use

F1-micro and F1-marco to evaluate node classification tasks,

adjusted random index (ARI) and normalized mutual informa-

tion (NMI) to evaluate the clustering tasks.

C. Experimental Setting

• For our HetLGN, we set the sample depth d = 2 and

sample width w = 6 for ACM dataset, sample depth

d = 2 and sample width w = 5 for DBLP and sample

depth d = 2 and sample width w = 4 for IMDB dataset.

The hidden size of all weights is 8 for ACM and IMDB, 4
for DBLP. We use GCN with three layers for all datasets.

• For the GTN model2, we follow their code use two

GTN layers, one GCN layer and two linear layers for all

datasets, and set the hidden size 24 for ACM and IMDB

datasets and 12 for DBLP.

• For the HAN, we use the same meta-paths they defined

in [13] for the three dataset. The embedding sizes are set

to 8 for ACM and IMDB, 4 for DBLP. The number of

heads are set to be 3 for all datasets.

• For GCN, we use two graph convolutional layers and the

embedding sizes of both layers are set to 24 for ACM

and DBLP, 12 for DBLP. We use one additional linear

layer to prediction the node label.

• For GAT, to make fair comparison, we need to make

sure the final embeddings have the same size as others.

Therefore, we set the embedding sizes to 8 for ACM

and IMDB, 4 for DBLP. We set the number of attention

heads to 3. We also use an additional linear layer for the

classification task.

D. Node Classification
We conduct experiments on node classification task for all

three datasets. We randomly split the dataset with 80% as the

training set, 10% as the validation set, and 10% as the testing

set. All the results are obtained by the model which has the

best validation score during training. The results are shown in

Table II.
From the table, we can see that the HetLGN model

outperforms all four previous methods on all three dataset

unanimously. This indicates the effectiveness of our method.

The number of parameters are also improved over the HAN

method, and are almost equal or only slightly worse than the

other three methods. Moreover, HetLGN achieves these good

results without any pre-defined meta-paths which makes it

more useful to many real world problems where such pre-

definition is too time-consuming and perhaps impractical.

2https://github.com/seongjunyun/Graph Transformer Networks
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Dataset Metrics GCN GAT HAN GTN Het-LGN

ACM
F1-micro 0.8421 0.7763 0.9208 0.9177 0.9473
F1-macro 0.8439 0.7770 0.9215 0.9177 0.9476

#parameter 45771 45825 94843 46977 47195

DBLP
F1-micro 0.8476 0.8083 0.9337 0.9336 0.9557
F1-macro 0.8444 0.8008 0.9292 0.9293 0.9536

#parameter 4059 4089 13940 4402 5608

IMDB
F1-micro 0.6581 0.6327 0.6676 0.6581 0.6827
F1-macro 0.6580 0.6322 0.6673 0.6593 0.6835

#parameter 30555 30609 64411 31761 31963

TABLE II: Node Classification Result

Dataset Metrics GCN GAT HAN GTN Het-LGN

ACM
NMI 0.6430 0.4138 0.7951 0.7813 0.8159
ARI 0.6970 0.3306 0.8368 0.8279 0.8607

DBLP
NMI 0.5616 0.3614 0.8056 0.8091 0.8262
ARI 0.5742 0.1718 0.8478 0.8525 0.8764

IMDB
NMI 0.2046 0.1888 0.3401 0.5632 0.6302
ARI 0.2160 0.1018 0.3765 0.6329 0.7065

TABLE III: Node Clustering Result

Besides, we make some interesting observations. GCN and

GAT are not performing well on heterogeneous graphs, and

GAT always performs inferior than GCN. This is probably

due to the fact that GAT only uses aggregation from 1-hop

neighboring nodes while GCN is stacking multiple layers.

In this way, GCN can incorporate multi-hop nodes which

enriches the information obtained from heterogeneous graphs.

Comparing HAN and GTN, it seems that when training data

is large enough, HAN always performs better than GTN

However, both HAN and GTN makes use of meta-paths and

perform better than GCN and GAT.

E. Clustering

We also conduct experiments on the clustering task to

evaluate the learned node embeddings. We utilize KMeans

algorithm as our node clustering algorithm. The number of

the clusters is set to be the number of classes in dataset. In

addition, we use the same ground truth as in node classifica-

tion. The results are shown in Table III.

From the table, we can see that HetLGN outperforms all

four previous methods on all three dataset unanimously. It

indicates that by learning from context graphs, the learned

embeddings could be utilized for node clustering task. This is

because the context graphs bring more integrated information,

which lets the similar nodes share similar neighboring nodes

and similar graph structures thus generates similar representa-

tions.

Besides, GAT performs worst among all comparison meth-

ods. This is due to the fact that GAT only considers the 1-hop

neighboring nodes rather than considering the k-hop away

information, which greatly degenerates the model effective-

ness. GCN gets better results than GAT but still worse than

other three. This indicates incorporating node heterogeneity

can improve the clustering performance as well. While GTN

and HAN have achieved comparable clustering results on two

academic graphs, e.g., ACM and DBLP, GTN reaches much

better performance than HAN on IMDB dataset. This indicates

the meta-paths defined in [13] for HAN may not be the best

meta-paths selection for IMDB dataset. And GTN benefits

from learning the meta-paths dynamically.

F. Visualization

To observe the learned embedding in an intuitive way,

we visualize the target node embeddings for four compared

methods: (a) HetLGN, (b) GTN, (c) HAN, and (d) GCN,

respectively. We use t-SNE [36] to visualize the paper em-

beddings in ACM dataset and color them by the domains they

belong to. The visualizations are shown in Figure 3.

From Figure 3a, we can see that the three node clusters are

well separated and the boundaries between clusters are also

clear. Moreover, the proposed model does not need to define

any meta path in advance, together with the clustering results,

showing the merit of the proposed model.

From Figure 3d, we can see that when using GCN all three

labels are still mixed together, especially for nodes in red

and green color. Clustering results of both GTN and HAN in

Figure 3b and Figure 3c are better than GCN, but part of nodes

in red and green color are still mixed up. The purple ones are

relative well separated, which demonstrates the effectiveness

of using meta-paths .

G. Sampling Parameter Discussion

In this section, we investigate the sampling parameter

”width” at each search depth. To better discuss the impact

of width, we fixed the sample depth as 2. The experimental

results on three datasets are shown in Table IV - Table VI.

The results shows that, for ACM dataset, setting width to

6 gets the best results. When setting width less than 6, the

performance gets better with the width increases. However, for

the other two datasets, the performance increase first and then

decrease with the increasing of width, suggesting that sampling

more nodes cannot enhance the performance anymore. There

is also a greater chance of overfitting.

Authorized licensed use limited to: Florida State University. Downloaded on May 13,2021 at 22:39:01 UTC from IEEE Xplore.  Restrictions apply. 



(a) HetLGN (b) GTN

(c) HAN (d) GCN

Fig. 3: Node Embedding Visualization

Dataset Depth Width F1-micro F1-marco

ACM 2

2 0.9342 0.9347
3 0.9309 0.9319
4 0.9375 0.9379
5 0.9375 0.9377
6 0.9473 0.9476

TABLE IV: ACM Sample Width Result

Dataset Depth Width F1-micro F1-Marco

DBLP 2

2 0.9189 0.9147
3 0.9361 0.9298
4 0.9410 0.9376
5 0.9533 0.9505
6 0.9385 0.9368

TABLE V: DBLP Sample Width Result

Dataset Depth Width F1-micro F1-Marco

IMDB 2

2 0.6601 0.6602
3 0.6742 0.6742
4 0.6827 0.6835
5 0.6260 0.6265
6 0.6232 0.6233

TABLE VI: IMDB Sample Width Result

VI. CONCLUSION

In this paper, we study the problem of heterogeneous graph

node embedding. One measure of quality for any node embed-

ding is whether it can provide a general node representation

which can be applicable to many downstream tasks, e.g. node

classification.

To improve node representations in heterogeneous graphs,

we propose a model called HetLGN. HetLGN uses a multi-

branched sampling method in order to sample context graphs

for the target nodes. It then encodes both node content and

structural features according to the node type. HetLGN uses a

GCN module to learn a target node’s context graph embedding

which is then used as the target node embedding for down-

stream tasks.

To show the effectiveness of our proposed model, we

conduct experiments on three datasets. These empirical results

demonstrate that our model outperforms the meta-path-based

methods, which have recently been used for heterogeneous

graphs, and also other graph neural network techniques, which

have been used for homogeneous graphs.

Our investigation indicates that a simple model with no a
priori meta-path designations can still achieve very good and

quite competitive results.
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