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Abstract—Representation learning for heterogeneous graphs Author Paper Term
aims at learning meaningful node (or edge) representations to
facilitate downstream tasks such as node classification, node S -

clustering, and link prediction. While graph neural networks
(GNNs) have recently proven to be effective in representation
learning, one of the limitations is that most investigations focus

Heterogeneity ty

-/

on homogeneous graphs. Existing investigations on heterogeneous . ts  Edge types:
graphs often make direct use of meta-path type structures. write
Meta-path-based approaches often require a priori designation X p“bi‘s_h

/ contain —

of meta-paths based on heuristic foreknowledge regarding the
characteristics of heterogeneous graphs under investigation.

In this paper, we propose a model without any a priori selection
of meta-paths. We utilize locally-sampled (heterogeneous) context
graphs ‘“centered” at a target node in order to extract relevant
representational information for that target node. To deal with
the heterogeneity in the graph, given the different types of nodes,
we use different linear transformations to map the features in
different domains into a unified feature space. We use the classical
Graph Convolution Network (GCN) model as a tool to aggregate
node features and then aggregate the context graph feature
vectors to produce the target node’s feature representation. We
evaluate our model on three real-world datasets. The results show
that the proposed model has better performance when compared
with four baseline models.

Index Terms—Graph Mining, Graph Neural Network, Hetero-
geneous Node Embedding

I. INTRODUCTION

Heterogeneous graphs contain multi-typed nodes and struc-
tural relations as well as abundant content associated with
nodes [1]-[3]. Many real-world applications are associated
with heterogeneous graphs [1]-[4]. For example, the academic
graph shown in Fig. 1 is an example, where papers, authors,
venues, and terms are four types of nodes. The correspond-
ing edges include author-paper (write/written), paper-venue
(publish), and paper-terms (contain). Structures of this kind
(involving multiple types of nodes and edges) give rise to new
categories of problems such as node classification, relation
inference, and personalized recommendation [1], [2], [4]-[6].

Traditionally, works on classification and representation in
heterogeneous graphs has relied on manual feature engineer-
ing. These works use graph specifications and statistics of node
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Fig. 1: An Example of DBLP Heterogeneous Graph.

type (or properties) in order to learn node embeddings which
can then be used for downstream tasks.

Starting from homogeneous graphs, many works have used
random walk-based approaches or their variants to accomplish
the target embeddings. For instance, DeepWalk [7] first sam-
ples a set of short random walk paths and then feed these
paths into a SkipGram Model to learn node embedding by
approximating the node co-occurrence probability in these
random walk paths. Later, Y. Sun, et al. [8] proposed to build
meta-paths specifically designed for heterogeneous graphs.
Meta-paths are connected sequences of node types. Other
similar works have been proposed based on such meta-path
structures. Metapath2vec [9] feeds meta-path guided random
walk paths into a SkipGram model. Recent works also utilize
Graph Neural Networks (GNNs) techniques for analyzing
heterogeneous graphs. One advantage of GNN is that it can
constantly update the node embedding by aggregating the
embedding of neighboring nodes [10], [11]. HetGNN [12]
samples a number of nodes for all node types via random
walks and it uses the bidirectional LSTM to encode node
content features. It further aggregates node content features
of selected nodes to arrive at the target node embedding.
Extensive works have been proposed for applying GNN to-
gether with meta-path. HAN [13] uses pre-defined meta-paths
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to construct homogeneous graphs for target nodes. It then
aggregates them via both node level attention (when aggre-
gating nodes connected via the same type of meta-paths) or
semantic level attention (when aggregating all the meta-paths).
MAGNN [14] makes some further improvements on HAN. It
argues that the intermediate nodes in the meta-paths also play
an important role when learning node embeddings. However,
it relies on domain experts’ pre-defining of meta-paths and
on the costly computation for obtaining all the instances of
meta-paths. As such, the automatic recognition and learning
of the meta-paths themselves becomes a meaningful challenge
along with the related node embedding that depends on them.
Graph Transformer Network (GTN) [5] selects edge types by
1 x 1 convolution kernels and multiplies the matrices of edge
types to build a matrix containing meta-path instance count.
Graph Convolutional Network [10] applies graph convolution
to aggregate node features via the learnt paths. Heterogeneous
Graph Transformer (HGT) [15] incorporates more complex
data settings of multi-type nodes and multi-relation edges
and proposes a graph transformer model for million-scale
datasets. HGT uses both node type-based self-attention and
edge type-based message passing to get to node embeddings.
Unfortunately, this model cannot easily adapt to distributed
parallel computation and requires special engineering.

To sum up, the previously proposed methods suffer from
at least one of the following limitations: (1) Purely random
walks do not capture the heterogeneity (or type) structure
in the graphs, which causes loss (or at best, discounting)
of information. (2) Meta-path-guided random walk methods,
while achieving better performance, need a priori designation
of the meta-paths. This requires manual efforts and domain
knowledge to choose the best meta-paths. It is biased to that
knowledge and maynot be able to discover or capture novel,
significant structures. (3) Current proposed models that can
automatically select meta-paths through judicious use of neural
network architectures are potentially hard to parallelize as
they often rely on the global graph matrix. On the contrary,
an architecture that only relies on local graph information
is easier for parallel training. To overcome these limitations,
we seek a novel graph neural network-based approach that
does not require a priori meta-path designation, can easily be
parallelized during training for large datasets and can scale
and maintain good performance all around.

In this paper, we propose a heterogeneous graph neural
networks (HetLGN) that only utilizes the local information to
learn the node representations without any pre-knowledge or
manual efforts for feature engineering. Our proposed approach
can be easily adapted to any parallel training systems. We
first sample a context graph for each target node, and then
obtain the corresponding node content and structural features.
To deal with the heterogeneity in the graph, we project the
features of different node types into a unified space. We
then use a common GNN module, e.g., graph convolution
networks (GCN), to learn the context graph embedding whose
aggregation produces the target node embedding. We conduct
experiments on three real-world datasets. Our results show the
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effectiveness of our proposed model.

The rest of the paper is organized as follows: We discuss
the related work in Section II. We define the notations and
problem in Section III. We give a detailed model in Section IV.
We show the experimental setting and result in Section V.
Section VI concludes the paper.

II. RELATED WORK

Our work relates to three parts: (1) graph representation
learning; (2) heterogeneous graph mining; (3) graph neural
networks.

A. Graph Representation Learning

Graph representation learning aims at learning the node or
edge representations for general tasks. Early works like [16],
[17] uses the matrix factorization (MF) method to compute the
node embedding, but the MF methods are strictly restricted
to relatively small graphs. To deal with large graphs, works
like [7], [18] use sampling based methods. DeepWalk [7]
samples a set of sequences and uses skipgram-based model
to approximate the similarity between nodes. Node2vec [18]
improves the sampling method of DeepWalk. LINE [19]
calculates the 1- and 2-hop neighbors to make it applicable
to large graphs. Many works also propose “deep learning”
(DL) techniques. SDNE [20] uses auto-encoder model as
well as a Laplacian eigenmap to learn node embedding in
a semi-supervised manner. Spectral CNN [21] proposes two
constructions, one based upon a hierarchical clustering of
the domain, and the other based on the spectrum of graph
Laplacian to learn node embedding.

B. Heterogeneous Graph Mining

Heterogeneous graph mining has been studied for over
a decade to deal with various tasks such as node classi-
fication [12], [13], item recommendation [22], [23], which
have no simple analogy in homogeneous graphs, and link
prediction [6], [24] which can be used for graph completion
or in recommendation systems. PathSim [8] proposes to use
a meta-path based similarity score to find similar nodes. With
the development of DL techniques, many DL models based on
meta-path have been proposed [2], [22]. HERec [2] uses meta-
path-based random walks in order to select node sequences.
This work uses extended Matrix Factorization (MF) to learn
the node embedding. MCRec [22] proposes a novel neural
networks with co-attention mechanism for leveraging rich
meta-path information for Top-K recommendation. HAN [13]
proposes a two level attention mechanism to fuse the meta-path
based sequences with their semantic meaning. MAGNN [14]
improves HAN by aggregating all the nodes in meta-paths
together. HetGNN [12] uses Bi-directional LSTM as a feature
encoding unit and an aggregation tool. However, its pre-
defined meta-path greatly limits the potential impact of meta-
path structures. GTN [5] selects the meta-paths by softly
selecting edge types. HGT [15] does not require pre-defined
meta-path. It proposes to use stacked multiple heterogeneous
graph transformer layers in order to co-compute the meta-paths
along with other potential tasks.
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C. Graph Neural Networks

Graph Neural Network (GNN) is a different type of neural
network compared with other deep learning models such as
CNN, LSTM. It aims at handling data represented as graph
structures.

GNNs usually take two steps during graph data processing:
(1) feature projection, and (2) aggregation An early GNN
work is Graph Convolutional Network (GCN) [10] which
calculates weights for edges and aggregates one-hop neigh-
boring nodes based on these weights. This thread of research
has been extended by other works [11], [24]-[30]. A major
difference among GNN variations lies in their propagation
methods. ClusterGCN [28] splits nodes into several clusters
and proposes an inter-propagation for clusters, which acceler-
ates the training procedure for large graphs. SimpleGCN [29]
accelerates the learning process by removing the redundant
linear transformation. Deep Graph Informax [30] learns the
node embedding by maximizing the mutual information of
nodes. GraphSAGE [26] samples neighboring nodes in order
to reduce the computation complexity for large homogeneous
graphs.

Moreover, there are some other works for graph-level
representation learning. To learn the graph representations,
GNNs adopt different types of readout or pooling function.
EigenGCN [31] uses an eigen-pooling to maintain the graph
structural information by eigen decomposition. GIN [32] pro-
poses several pooling methods and proves they have similar
powers to Weiferiler-Leman Kernel [33]. JK-Net [34] argues
that local information suffers losses during the propagation
process. It proposes skip-connections from layer to layer. A
more recent work [35] learns both node and graph representa-
tions by contrasting embedding between node representations
from one view and graph representations from another view.

III. TERMINOLOGY AND PROBLEM DEFINITION
A. Notations and Definitions

To formulate our problem, we define the heterogeneous
graph as follows. !

DEFINITION : (Heterogeneous Graph) Given a graph G =
(V, €) where V is the node set, £ is the edge set, there exists
type mapping functions 7 : V — A and ¢ : £ — R map
nodes to types A and edges to types R, respectively. A graph
is heterogeneous when satisfies constraint: |A| + |R| > 2.

B. Problem Formulation

We formulate the node representation learning problem in
heterogeneous graphs as follows.

DEFINITION 2: (Heterogeneous Node Representation
Learning) Given a heterogeneous graph G = (V, &, 7, ¢) and
associated node contents, our task is to find a mapping function
f =V, — RMIX? that maps the target nodes V; into a d-
dimensional vector space.

"Throughout the paper, we use lowercase letters (e.g., ) to denote scalars.
We use lowercase boldface letters (e.g., x) to denote vectors. We use uppercase
boldface letters X to denote matrices. The ¢-th row of the matrix X is denoted
as X(i,:) or x;.
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Fig. 2: An illustration of the HetLGN framework.

The learned node representations can be easily applied to any
downstream tasks such as node classification, node clustering,
link prediction, etc.

IV. THE PROPOSED METHOD

In this section, we present HetLGN framework illustrated
in Figure 2 to address the limitations of previous graph neural
network methods described in Section 1. The HetLGN frame-
work consists of four components: (1) context graph sampling,
(2) feature encoding, (3) context graph embedding, and (4)
prediction. These four components are further elaborated as
follows.

A. Context Graph Sampling

Most of the research works for heterogeneous node embed-
ding uses random walk paths and meta-paths as the context to
learn the node embedding. However, those path-based meth-
ods focus more on sequential information rather than graph
structural information. Although using multiple sequences may
partially capture certain graph structures, they cannot fully
exploit the graph structure and its semantics.

Besides, the purely random walk-based approaches ignore
the heterogeneity of node/edge types, and the pre-defined
meta-path based approaches require additional manual analysis
on the data. Neither are suitable for modern graph analysis
tasks over very large heterogeneous datasets.

Therefore, to enhance information obtained from the local
sub-graphs, we need to guarantee both heterogeneous and
locally dense structures that can be captured by the context
graph sampling method. Inspired by the mini-batch sampling
used in [15], we propose a multi-branched context graph
sampling algorithm which aims to sampling a dense local
structure while at the same time handling the heterogeneity
in the graph.

In order to sample more diversified type information in
graph, we follow the intuition that nodes with higher degrees
will provide less type information than those with lower
degrees when sampled with equal probability. Based on this
intuition, we employ a sampling strategy that visits nodes
based on a probability derived from a type budget” selection
function.
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In addition, to deal with the node heterogeneity, the sam-
pling probability is updated with respect to the node types.
This is done in order to ensure that the sampled context
graph can have more evenly distributed types of nodes. This
approach ensures that the context graphs avoid biases towards
branching from types of neighboring nodes with higher de-
gree. Similar to [15], we define a budget-based selection
function which guarantees the number of nodes sampled are
proportional to the corresponding node types. The detail of
this method is shown in Algorithm 2.

The multi-branched context graph sampling method obtains
a context graph around a given target node ¢. The search
process starts with node ¢. It then calculates the sampling
probabilities for all 1-hop neighboring nodes around node
1. It further randomly sample w nodes from all neighboring
nodes of node ¢ according to the calculated probabilities. It
continues to search for all the 2-hop neighboring nodes of the
previously sampled nodes. Again, it samples w nodes from
these 2-hop nodes according to the re-calculated probabilities.
Iteratively, it continues to search until the d-hop neighboring
nodes are reached. The algorithm is searching in a multi-
branched fashion as it expands the search area from all
previous sampled nodes stored in the budget B. The details
are shown in Algorithm 1.

Having sampled the nodes, we are able to construct the
context graph for node ¢, and its adjacency matrix denoted as
A;. Thus, for target node set V; = {1,--- ,n}, we are able to
compute the corresponding context graph adjacency matrices
{Aq,.., A}

B. Feature Encoding

In heterogeneous graphs, nodes are almost always asso-
ciated with abundant content information. In order to learn
good embedding, the node content features play an important
role. On the other hand, the position of a node in the context
graph with regard to a target node also reveals structural
information. (Structural features are also strong features for
inductive learning [6].) However, the features of different node
types are from various domains, which needs to be projected
into a unified space for proper feature encoding. To handle
this situation, we will first obtain the node content features,
and then get the structural features according to the relative
position with respect to the target node. Finally, we embed
both node content features and structural feature according to
the node type.

Formally, a sampled context graph A, contains context
nodes C = {i,91,92, - ,gm} Where m = w X d (sampled
w from each of the d levels) for target node i. The node
content features can be obtained in a data pre-processing stage
according to the raw content feature data types. For example,
if the raw content features involve pieces of text, we can
apply feature extractor such as transformers or word2vec. If
features are images, we can apply deep neural models such
as convolutional neural networks (CNNs) in a procedure of
pre-trained feature extraction. Therefore, by applying existing
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Algorithm 1: Multi-Branches Context Graph Sampling

Input: Adjacency matrix A, target node ¢, sample
depth d and sample width w.
Result: A set of context nodes C={i,c1,- -+, ¢y} for
the target node ¢, adjacency matrix of sampled
context graph A,; .
1 Initialize an empty context node set C = {};
2 C.add((7(7),1)) ;
3 Initialize an empty Budget B storing nodes and their
types with normalized degrees;
4 for (7(¢t),t) € C do
5 | Add-In-Budget(B, (7(t),t), A, C); // Add
neighbors of t to B
6 end
7 for [<1 to d do
8 for node t € domain B do
B[(r(1),t)]*

9 prob = [(7(8):0)] + =Bt
// Calculate sampling
probability all nodes

10 end
1 Random sample w nodes {¢;}}*; from B using
probl—1;

12
13

for node t € {c;}}_, do
C.add((7(t),t)); // Add node t as
context node
Add-In-Budget(B, (7(t),t), A, C);
B.pop((r(t).1)) :
end

14

15

16

17 end

18 Reconstruct the adjacency matrix of the sampled
context graph Ai based on sampled context node set
C;

19 return C, Ai ;

models for text or image or other content type processing, we
could construct the node content features xic), x(g? v X

For structural features, we want to maintain the distance
between the context nodes to the target node. Here, we first
compute the shortest distances between the context nodes
and the target node. After this computation, we use a one
hot encoding to encode the shortest distance of each context
node. Note that for target node itself, the distance is zero.
As illustrated in Figure 2, we can obtain the node structure
features {X,ES)7 xg‘i o 7ng),}

Combining both node content features and node structure
features, we get the complete node feature x by concatenation
as follows.

(s)

Xk = X§:) |—le ) Vk S {i7917927 e 7gm}~ (1)

Due to the node heterogeneity, we transform the node
features into a unified space according to the node types. The
projection can be denoted as

hy, = W] ®x; + b7 (™) )
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Algorithm 2: Add-In-Budget(B, (7(¢),t), A,C)

Input: Adjacency matrix A, target node ¢, and

sampled context node set C.

Result: Updated Budget B.

1 for each possible adjacent node type T and edge type
¢ do

2 Dy + 1/Z€n(A(-r,¢>,r(t))[tD; // get
normalized degree of added node
t regarding to each type triplet
(1(s),¢(e),7(t)) derived from
corresponding node triplet
(s,6,t). A(rgr)lt] represents all
node types adjacency to node t.

3 for all neighboring nodes k of node t do
4 if k is not in C then

5 | Bl(r(k),k)] < Bl(r(k), k)] + D,
6 end

7 end

9 return Updated Budget B ;

where W;(k) and b;(k) are trainable parameters of weights
and bias for node type 7(k), respectively, where 7(k) is the
type of node k. Therefore, by projecting all nodes in all
context graphs, in the same manner, we build feature matrices
{Hy,--- ,H,} for all target nodes {1,--- ,n}.

C. Context Graph Embedding

After obtaining the context graph, we aim to get the context
graph embedding and take it as the target node embedding. In
this paper, we try to utilize the context graphs containing richer
information than sequences to deal with the node embedding
problem. Using graphs to learn the node embedding is rea-
sonable due to the assumption that nodes are similar to their
neighbor nodes. Unlike sequences, which only consider the
path connections, the graph bears more structural information
and it can make use of all information within the graph. Due
to the recent development of graph neural networks, people
find an efficient way to learn both node embedding and graph
embedding for graph structured data. Potentially, any graph
neural network can be applied to learn the context graph
embedding. In this paper, we simply use the graph convolution
network (GCN) [10] to learn the graph embedding for our
context graphs.

Formally, we have a context graph adjacency matrix Ai and
the corresponding feature matrix H;. We first need to normal-
ize the context graph adjacency matrix A;. The normalized
adjacency matrix can be computed as follows.

A, =D;'?A,D;"/? 3)
where D;(j,j) = Zj A, (4,:) is a diagonal matrix. Together
with the feature matrix H;, we feed them into a GCN.
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Here, we use L layers of the GCN to learn a comprehensive
embedding as follows.

HY =AH""WlY =1 L o))
where HEO) =H, and W;lil) € R"*h denotes the trainable
variable at (I — 1)-th layer. To better fuse the features, we
adopt the idea from JK-Net [34] by concatenating all feature
matrix from L layers of the GCN network to compute the final

context graph embedding by the follow method.

ZH(I) (4, 1) uZH(” (J,:)

where the h§9 ) is the context graph embedding. For each con-
text graph fed into the learning module, our model produces
embeddings {hl(-g )|W € V;} for all target nodes in the batch.

h = )

D. Prediction

After getting all context graph embeddings, we simply use
one linear layer as a classifier, which is formulated as follows.

(6)

where ¥; € RI®! and |C| denotes the number of classes. We
use cross-entropy as the loss function. Given the ground truth
yi, the loss function is

ZZ yili

During training, HetLGN samples B (i.e., batch size) con-
text graphs for the (batch of) target nodes first and then trains
the context-embedding neural network based on GCN model.
When testing, the same forward procedure is used to predict
node labels for nodes in the test set.

yz = Wchgg) + bc

) logyi(j)) )

V. EXPERIMENT

In this section, we introduce the datasets, comparison meth-
ods, and evaluation metrics. Then we show the experimental
setting, disucss the experimental results on three real-world
datasets and provide a parameter study.

A. Dataset

To show the effectiveness of the proposed model, we per-
formed experiments on three real-world heterogeneous graph
datasets. Some basic statistics of the datasets are provided in
Table I.

¢ ACM is an academic heterogeneous graph. The node
types include paper, author, and field. The edge types
include paper-paper (citation), paper-author (write), and
paper-field (belong to). In this dataset, we select 3025
papers from three areas (Database, Wireless Communica-
tion, Data Mining) as the target nodes following the data
preprocessing as described in [13]. The content features
of paper nodes are constructed by the bag-of-words of
keywords. Since only paper nodes have content features,
we simply average the paper node content features to its
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dataset | Relations(A-B) | Number of A | Number of B | Number of A-B | Feature | #Target Node
Paper-Author 12499 16910 37055

ACM Paper-Field 12499 73 12499 1903 3025
Paper-Paper 12499 12499 30789
Author-Paper 4057 14328 19645

DBLP | Paper-Term 14328 8789 88420 334 4057
Paper-Conf 14328 20 14328
Movie-Director | 4768 2277 4796

IMDB Ve Actor | 4768 5968 14639 1269 | 3462

TABLE I: Dataset Statistics

neighboring nodes. We use the paper nodes as the target
nodes and the field of papers as the labels to be predicted.

« DBLP is also an academic graph. We use a subset
of DBLP which contains four node types (paper, au-
thor, term, and conference), and three relation types
(paper-author, paper-term, and paper-conference). For this
datasets, we construct 4057 authors and their connected
nodes. For this dataset, the author features are the bag-of-
words representations of the keywords of the connected
papers. We also average the author features to its neigh-
boring nodes. We use the author nodes as the target nodes
and the area they are working on as labels to be predicted.

« IMDB is a graph in film domain. It contains three
node types (movie, director, and actor) and two relations
(movie director and movie actor). The movie features are
built by the bag-of-words representations from the plot
descriptions. We average the movie features to other node
types as well. We select 3462 movies as the target nodes
and the genres (Action, Comedy, and Drama) as the labels
to be predicted.

B. Comparison Methods and Evaluation Metrics

Our work is related to meta-path based methods and graph
neural network methods, thus we use two state-the-art hetero-
geneous graph models and two classic graph neural network
models as our baselines.

o GTN: The Graph Transformer Network (GTN) [5] selects
the edge type by 1 x 1 convolutional kernel, and then ag-
gregates the softly selected edges to form a big adjacency
matrix. GCN is applied to compute node embedding.

« HAN: Heterogeneous Graph Attention Network
(HAN) [13] uses pre-defined meta-paths to construct a
homogeneous graph and uses node-level and semantic
level attention mechanism to learn a concrete node
embedding.

e« GCN: Graph Convolution Network (GCN) [10] is a
graph neural network for homogeneous graphs. It uses the
normalized adjacency matrix to weight the connections
and aggregates neighboring node features based on it.

o GAT: Graph Attention Network (GAT) [11] is designed
for homogeneous graphs as well. It adopts an adaptive
normalization method by multi-head attention to learn the
weights to aggregate features.

To compare the performance of all these methods, we use
Fl-micro and Fl-marco to evaluate node classification tasks,
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adjusted random index (ARI) and normalized mutual informa-
tion (NMI) to evaluate the clustering tasks.

C. Experimental Setting

o For our HetLGN, we set the sample depth d = 2 and
sample width w = 6 for ACM dataset, sample depth
d = 2 and sample width w = 5 for DBLP and sample
depth d = 2 and sample width w = 4 for IMDB dataset.
The hidden size of all weights is 8 for ACM and IMDB, 4
for DBLP. We use GCN with three layers for all datasets.

o For the GTN model?, we follow their code use two
GTN layers, one GCN layer and two linear layers for all
datasets, and set the hidden size 24 for ACM and IMDB
datasets and 12 for DBLP.

o For the HAN, we use the same meta-paths they defined
in [13] for the three dataset. The embedding sizes are set
to 8 for ACM and IMDB, 4 for DBLP. The number of
heads are set to be 3 for all datasets.

« For GCN, we use two graph convolutional layers and the
embedding sizes of both layers are set to 24 for ACM
and DBLP, 12 for DBLP. We use one additional linear
layer to prediction the node label.

o For GAT, to make fair comparison, we need to make
sure the final embeddings have the same size as others.
Therefore, we set the embedding sizes to 8 for ACM
and IMDB, 4 for DBLP. We set the number of attention
heads to 3. We also use an additional linear layer for the
classification task.

D. Node Classification

We conduct experiments on node classification task for all
three datasets. We randomly split the dataset with 80% as the
training set, 10% as the validation set, and 10% as the testing
set. All the results are obtained by the model which has the
best validation score during training. The results are shown in
Table II.

From the table, we can see that the HetLGN model
outperforms all four previous methods on all three dataset
unanimously. This indicates the effectiveness of our method.
The number of parameters are also improved over the HAN
method, and are almost equal or only slightly worse than the
other three methods. Moreover, HetLGN achieves these good
results without any pre-defined meta-paths which makes it
more useful to many real world problems where such pre-
definition is too time-consuming and perhaps impractical.

Zhttps://github.com/seongjunyun/Graph_Transformer_Networks
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Dataset Metrics GCN GAT HAN GTN Het-LGN
Fl-micro 0.8421 0.7763  0.9208 0.9177 0.9473
ACM Fl-macro 0.8439  0.7770  0.9215 09177 0.9476
#parameter | 45771 45825 94843 46977 47195
Fl-micro 0.8476  0.8083  0.9337 0.9336 0.9557
DBLP Fl-macro 0.8444  0.8008 0.9292  0.9293 0.9536
#parameter 4059 4089 13940 4402 5608
Fl-micro 0.6581 0.6327 0.6676  0.6581 0.6827
IMDB Fl-macro 0.6580 0.6322  0.6673  0.6593 0.6835
#parameter | 30555 30609 64411 31761 31963
TABLE II: Node Classification Result
Dataset | Metrics | GCN GAT HAN GTN Het-LGN
ACM NMI 0.6430 0.4138 0.7951 0.7813  0.8159
ARI 0.6970 0.3306 0.8368 0.8279  0.8607
DBLP NMI 0.5616  0.3614 0.8056 0.8091  0.8262
ARI 0.5742 0.1718 0.8478 0.8525 0.8764
IMDB NMI 0.2046  0.1888  0.3401 0.5632  0.6302
ARI 0.2160 0.1018 0.3765 0.6329  0.7065

TABLE III: Node Clustering Result

Besides, we make some interesting observations. GCN and
GAT are not performing well on heterogeneous graphs, and
GAT always performs inferior than GCN. This is probably
due to the fact that GAT only uses aggregation from 1-hop
neighboring nodes while GCN is stacking multiple layers.
In this way, GCN can incorporate multi-hop nodes which
enriches the information obtained from heterogeneous graphs.
Comparing HAN and GTN, it seems that when training data
is large enough, HAN always performs better than GTN
However, both HAN and GTN makes use of meta-paths and
perform better than GCN and GAT.

E. Clustering

We also conduct experiments on the clustering task to
evaluate the learned node embeddings. We utilize KMeans
algorithm as our node clustering algorithm. The number of
the clusters is set to be the number of classes in dataset. In
addition, we use the same ground truth as in node classifica-
tion. The results are shown in Table III.

From the table, we can see that HetLGN outperforms all
four previous methods on all three dataset unanimously. It
indicates that by learning from context graphs, the learned
embeddings could be utilized for node clustering task. This is
because the context graphs bring more integrated information,
which lets the similar nodes share similar neighboring nodes
and similar graph structures thus generates similar representa-
tions.

Besides, GAT performs worst among all comparison meth-
ods. This is due to the fact that GAT only considers the 1-hop
neighboring nodes rather than considering the k-hop away
information, which greatly degenerates the model effective-
ness. GCN gets better results than GAT but still worse than
other three. This indicates incorporating node heterogeneity
can improve the clustering performance as well. While GTN
and HAN have achieved comparable clustering results on two
academic graphs, e.g., ACM and DBLP, GTN reaches much
better performance than HAN on IMDB dataset. This indicates
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the meta-paths defined in [13] for HAN may not be the best
meta-paths selection for IMDB dataset. And GTN benefits
from learning the meta-paths dynamically.

F. Visualization

To observe the learned embedding in an intuitive way,
we visualize the target node embeddings for four compared
methods: (a) HetLGN, (b) GTN, (c) HAN, and (d) GCN,
respectively. We use t-SNE [36] to visualize the paper em-
beddings in ACM dataset and color them by the domains they
belong to. The visualizations are shown in Figure 3.

From Figure 3a, we can see that the three node clusters are
well separated and the boundaries between clusters are also
clear. Moreover, the proposed model does not need to define
any meta path in advance, together with the clustering results,
showing the merit of the proposed model.

From Figure 3d, we can see that when using GCN all three
labels are still mixed together, especially for nodes in red
and green color. Clustering results of both GTN and HAN in
Figure 3b and Figure 3c are better than GCN, but part of nodes
in red and green color are still mixed up. The purple ones are
relative well separated, which demonstrates the effectiveness
of using meta-paths .

G. Sampling Parameter Discussion

In this section, we investigate the sampling parameter
”width” at each search depth. To better discuss the impact
of width, we fixed the sample depth as 2. The experimental
results on three datasets are shown in Table IV - Table VI.

The results shows that, for ACM dataset, setting width to
6 gets the best results. When setting width less than 6, the
performance gets better with the width increases. However, for
the other two datasets, the performance increase first and then
decrease with the increasing of width, suggesting that sampling
more nodes cannot enhance the performance anymore. There
is also a greater chance of overfitting.
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Dataset | Depth | Width  Fl-micro  Fl-marco
2 0.9342 0.9347
3 0.9309 0.9319
ACM 2 4 0.9375 0.9379
5 0.9375 0.9377
6 0.9473 0.9476

TABLE IV: ACM Sample Width Result

Dataset | Depth | Width  Fl-micro  F1-Marco
2 0.9189 0.9147
3 0.9361 0.9298
DBLP 2 4 0.9410 0.9376
5 0.9533 0.9505
6 0.9385 0.9368

TABLE V: DBLP Sample Width Result

Dataset | Depth | Width  Fl-micro F1-Marco
2 0.6601 0.6602
3 0.6742 0.6742

IMDB 2 4 0.6827 0.6835
5 0.6260 0.6265
6 0.6232 0.6233

TABLE VI: IMDB Sample Width Result

VI. CONCLUSION

In this paper, we study the problem of heterogeneous graph
node embedding. One measure of quality for any node embed-
ding is whether it can provide a general node representation

which can be applicable to many downstream tasks, e.g. node
classification.

To improve node representations in heterogeneous graphs,
we propose a model called HetLGN. HetLGN uses a multi-
branched sampling method in order to sample context graphs
for the target nodes. It then encodes both node content and
structural features according to the node type. HetLGN uses a
GCN module to learn a target node’s context graph embedding
which is then used as the target node embedding for down-
stream tasks.

To show the effectiveness of our proposed model, we
conduct experiments on three datasets. These empirical results
demonstrate that our model outperforms the meta-path-based
methods, which have recently been used for heterogeneous
graphs, and also other graph neural network techniques, which
have been used for homogeneous graphs.

Our investigation indicates that a simple model with no a
priori meta-path designations can still achieve very good and
quite competitive results.
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