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Abstract—Automatic radiology report generation that inter-
prets medical images and writes their diagnostic reports is
in high demand, as the manual written-report can be labor-
intensive and error-prone. By this context so far, some radiology
report generation models have been proposed already which
can hardly detect rare diseases accurately due to insufficient
training data of such diseases. Radiology report generation
task is therefore severely challenged while involving the rare
disease. To tackle this problem, we propose a few-shot Radiology
report Generation model, namely RareGen, assembled with two
components for better semantic representations learning which
can benefit rare disease detection and their diagnosis report
generation. Specifically, a few-shot learning generative network
is introduced for generating artificial medical instances for rare
diseases. Moreover, a disease graph convolution is proposed to
model and strengthen the intrinsic correlations among diseases,
which allows knowledge transfer from regular diseases to those
rare diseases. To the best of our knowledge, this is the first
study that focuses on rare disease diagnosis report generation
from radiology data. Extensive experiments are conducted to
demonstrate the effectiveness of our model.

Index Terms—Report Generation; Few-Shot Learning; Bioin-
formatics; Data Mining

I. INTRODUCTION

Radiology images are playing a critical role in variety
diagnosis in recent years. Automatic radiology report genera-
tion [12] as one research of radiology images is to interpret
medical images and write their diagnostic reports, as shown
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Impression: Multifocal right-sided pneumonia.

Findings: There is diffuse right-sided airspace
disease, with dense consolidation in the right
base. A right upper extremity PICC is seen with
the tip in the right brachiocephalic wvein,
representing an  interval retraction of
approximately 6 cm. No pneumothorax or large
effusions. Heart size within normal limits.

Fig. 1. An example of radiology report generation. A radiology mainly
consists of impression part which is summary statement, and findings part
which describes the normal or abnormal content corresponding to visual
features of radiology images belong to a patient.

in Fig.1. Recently, radiology report generation models mo-
tivated by image caption [5] and paragraph generation [24]
have been proposed. Since the basic and core of radiology
report generation task is diseases detection, the way that
adopts classification for diseases detection so as to assist
report generation is considered as a good and also a chief
solution to the report generation task. This way based report
generation models can make full use of the feature information
in the image and also the semantic information obtained by
classification [9], [11], [12], [15]. For example, Jing et al [12]
proposed a co-attention mechanism to fuse both the visual
and semantic modalities, which explicitly enabled the model
to recognize what it was looking at. In addition, there are also
other ways for radiology report generation. E.g., Li et al [16]
proposed a hybrid model which combined a template database
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for normal sentence generation and generation module for
abnormal sentence generation. Hierarchical models inspired by
[24] for paragraph generation were also introduced [10], [13],
[15], [17], [31], and each of them payed attention to one aspect
of the problems existed in this task, e.g, semantic repetition
[15], data bias [10], [31], features fusion of images form multi
views [17], and background information incorporating, etc.

In medical research, according to [32], it was reported that
it could waste several years for patients with rare diseases
to receive the final accurate diagnosis result with the help of
8 physicians. An effective detection of rare diseases allows
the patients to receive a early and timely treatment. However,
few existing research works mentioned above can actually
work well for rare disease detection and generate the diagnosis
report from the radiology data, which will be the main task to
be studied in this paper.

Two main challenges are presented on the radiology report
generation for rare diseases:

« Rare diseases low prevalence rate. There are only quite
a small number of patient instances with rare diseases in
the dataset which will result in the poor performance in
their detection. Fig.2. shows the number of patients of
each disease class of Indiana University Chest X-ray (IU
X-Ray) [1], which is a benchmark dataset studied in the
task of radiology report generation [8]-[10], [12], [13],
[15]-[18]. It follows the long-tail distribution, and many
disease classes only have a few patient instances in the
dataset.

« Correlations among diseases. These diseases can supply
each other with complementary information so as to
benefit the rare diseases detection and their corresponding
report generation. A graph was proposed in [9] to model
the correlations among diseases, but it was not flexible
since it was designed manually by the domain expert.
Also, the potential correlations exist among some diseases
which are very important to rare diseases detection.

To tackle these challenges, we propose a few-shot
Radiology report Generation model, namely RareGen, assem-
bled with two components for better semantic representations
learning:

o A few-shot learning generative adversarial network is
introduced for generating artificial medical instances for
rare diseases. We propose a Label Generator inspired by
[33] for ICD coding, and cooperate it with generative
adversarial network, so as to make the generated artifi-
cial instances capture the semantic information of rare
diseases.

o A disease graph convolution is proposed to model and
strengthen the intrinsic correlations among diseases,
which allows knowledge transfer from regular diseases
to those rare ones. Instead of relying on domain experts,
we propose a data-driven strategy for the weight ma-
trix construction based on the historical medical report
knowledge library, which can be easily extended to other
research areas. Moreover, a mechanism is introduced
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Fig. 2. The number of patients of each disease class of IU X-Ray.

which can capture the potential correlations among some
diseases automatically.

The contributions are summarized as follows:

« We propose a novel radiology report generation model,
i.e., RareGen, for rare diseases in this paper.

o A few-shot learning generative adversarial network is in-
troduced for the few-shot instances augmentation, which
can benefit the rare diseases detection.

o A disease graph convolution is proposed to model and
strengthen the intrinsic correlations among diseases,
which allows knowledge transfer from regular diseases
to those rare diseases.

o A disease graph is integrated into the report generation
model, which ensures the model provide more accurate
reasoning.

« Extensive experiments are conducted to demonstrate the
effectiveness of our model.

II. RELATED WORK
A. Image Caption and Paragraph Generation

Image caption [5] as the first attempt of image-to-text
translation generally based on the encoder-decoder framework
which is inspired by the recent Neural Machine Transla-
tion(NMT) [3]. The image as the source text and the corre-
sponding caption as the target text. Generally, Convolutional
Neural Network(CNN) is employed as encoder to compact the
image into a lower embedding space, then Recurrent Neural
Network(RNN) as decoder combined with attention mecha-
nism accepts the visual information and outputs a sentence
with variable length [6] [7]. Considering one sentence with the
limited capacity of recapitulating every details in an image,
the task of paragraph generation, whose goal is to depict
an image in a fine-grained manner, is recently introduced
[21], [24]-[26]. In a paragraph, all the sentences should keep
continuity with each other, and also server the same or similar
theme. While report generation task pays more attention to
the abnormal or disease findings detection, especially rare
diseases, and then generates a report to describe them.

B. Radiology Report Generation

Some works have explored methods for report generation
based on deep learning recent years [8]-[18], for its value
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in both academia and industry. Christy et al [18] proposed a
graph transformer model, and it could dynamically transform
image features to high-level semantics. Prior knowledge, e.g.,
background information or medical concepts, was incorporated
to assist the model own the ability of the high-level reasoning
[13] [17]. Xue at al [8] built an recurrent model to enforce the
coherence between sentences.

C. Few Shot Learning

Recently, researchers have tried to bridge the gap between
deep learning technique and few-shot instances. GAN-based
models for few shot learning as one of potential solutions to
solve this issue have been introduced in various tasks e.g., text
classification [27], time series generation [28], object localiza-
tion [29], attribute translation [30], etc. They are to synthesis
pseudo features of few-shot cases. However, few-shot learning
has not been studied in assisting report generation task so
far. To the best of our knowledge, this is the first study that
introduces a model for few-shot instances augmentation (i.e.,
generating artificial medical instances fo rare diseases) for
assisting the radiology report generation involves rare disease.

III. NOTATIONS, TERMINOLOGY DEFINITION AND
PROBLEM FORMULATION

Prior to talking about the proposed model, we will provide
the notations, terminology definitions and problem formulation
in this section first.

A. Notations

In the sequel of this paper, we will use the lower case letters
(e.g., x) to represent scalars, lower case bold letters (e.g., x) to
denote column vectors, bold-face upper case letters (e.g., X)
to denote matrices, and upper case calligraphic letters (e.g.,
X) to denote sets or high-order tensors. Given a matrix X,
we denote X(i,:) and X(:, j) as its iz, row and jy, column,
respectively. The (i, ji,) entry of matrix X can be denoted
as either X(4, j) or X; ;, which will be used interchangeably.
We use X" and x " to represent the transpose of matrix X and

vector x. For vector x, we represent its L,-norm as [|x|[, =
O 1x@)P) » . The Frobenius-norm of matrix X is represented

as || Xz = (32, |X(i,7)2)2. The element-wise product and
concatenation of vectors x and y are represented as x ©y and
x Uy. We will denote fully connected layers parameterized
by variable matrix W as FC(-; W); sigmoid function as o(+);
softmax function as softmazx(-).

B. Terminology Definitions

Automatic radiology report generation aims to detect dis-
eases from input X-ray images and generate a textual de-
scription report automatically for patients. Several important
terminologies used in this paper can be defined as follows,
which include patient instance, rare disease and disease
graph.

Definition 1 (Patient Instance): Formally, we can denote the
sets of patients studied in this paper as P = {p1,p2, - ,Pn}-
Medical data available for each patient p; € P in our dataset
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can be denoted as a pair (I;, R;), where I; denotes the X-ray
image and and R; denotes the textual report of p;, respectively.
Definition 2 (Disease Set): Formally, we can represent the set
of diseases studied in this paper as D = {d;,ds, - ,d,, }. For
each patient instance p; in our dataset, he/she can be either
healthy (without any diseases) or sick, and we can represent
the health status of patient p; by a multi-hot label vector 1; =
(i1, li2, -+ lim], where entry [; ; € {0, 1} denotes patient p;
has disease d; or not. For the diseases with very few infected
patients, we can name them as the rare diseases in this paper.
Definition 3 (Disease Graph): Among the diseases studied
in this paper, there may exist extensive correlations, since
many diseases may co-appear in many patients. To denote such
disease correlations, we introduce the disease graph in this
paper, which can be denoted as G = (D, £). The set £ denotes
the edges among the diseases in D. For the rare diseases, via
such disease edges, information from the common diseases
can be effectively transferred and utilized to improve their
detection results.

In this paper, we will construct a unique disease graph
for each patient, and its structure can be learned with both
patient’” X-ray images representation learning and historical
report libraries, which will be introduced in detail in the
following method section. Given the medical graph G, we can
also denote its structure as the adjacency matrix M €RIPIXIPI,
where entry M(i, j) denotes the correlation between diseases
d; and d;. The concrete representation of matrix M for each
patient will be introduced in the method section as well.

C. Problem Formulation

Based on the above descriptions and terminology defini-
tions, we can formulate the problem studied in this paper as
follows:

Problem Formulation: Formally, given the patient set P, in
this paper, we aim to build a model f : I, — R; to project
the X-ray medical image to the textual medical report for each
patient p; € P in our dataset. Such X-ray medical image and
textual medical report of patients are all about diseases as
defined in set D. Different from the existing works, we cast an
extra requirements on the learned model f and the generated
medical report, which should effectively detect rare diseases
which don’t appear frequently among patients in our dataset.

IV. METHODS

In this section, we will elaborate RareGen for rare disease
report generation. As shown in Fig.3., the whole framework
of RareGen can be branched into multi-label classification
and report generation. While doing classification, a few-shot
learning generative adversarial network and the disease graph
are proposed for better semantic information learning, which
will be introduced in part A and part B. The hierarchical
decoder for report generation is introduced in Part C.

A. Few-shot Instance Generation

The few-shot learning generative adversarial network we
proposed is to generate artificial medical instances for rare
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Fig. 3. The overview of our radiology report generation for rare diseases.

diseases in the latent image space, as shown in Fig.4., for better
representations learning of both rare and regular diseases.
To avoid the problem of model collapse while training it,
WGAN-GP [22] is employed. Specifically, we transform the
discrete few-shot multi-label 1 into a real-valued vector 1’
firstly. Then, the Generator Gen, contains several stacked
de-convolution layers, takes 17, the concatenation of 1’ and
a random Gaussian noise vector n, as input to generate a
fake image I = Geen(1”,n). The discriminator Dis, contains
two-stacked linear layers followed by the activation function
LeakyReLU, takes either the fake-pair (the generated image
I and 1" ) or real-pair (the real image I and 1”) as input
to produce a real-valued score v = Dis(I/I,1") activated
by o(-), representing how realistic the pair is. Note that, we
perform convolution operation on I and I before it concatenate
with 1”. The optimization of this process can be defined as:

Lwean—gp = Dis(Gen(l',n),1") — Dis(1,1")+

8x (VDis(D,1) - 12, "

where I = v x I + (1 —~) x I, and v € (0,1) is a hyper
parameter. 3 x (|[VDis(I,1")| — 1) is the penalty term.

To further ensure the generated instance capture the seman-
tic information of its input multi-label 1, we further design a
Label Generator, contains several stacked convolution layers,
to reconstruct the label 1 from the generated instance i,

Few-shat
multi-label |

I The real inage [ v

Real or fake?

Look up

table
—_—

foir

Fig. 4. The diagram of the few-shot learning generative adversarial network.
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obtaining the reconstructed label 1. The reconstruction loss
is defined as:

2

Lyccons = —cosine_sim(1,1),
where cosine_sim(-,-) is the cosine similarity function.

B. Disease Graph Construction

(1)Weight Matrix Construction

Graph Convolution Network (GCN) has been confirmed to
be effective to learn more informative representations consid-
ering both node features and structure information among them
[23]. It is employed to enhance the semantic representations
of both rare and regular diseases. This process can be formally
defined as:

H* = ReLU (MHFW*) 3)

where M = D 2AD 2z € RV*N s adjacency matrix
defined by prior knowledge, and D € RN*V is the corre-
sponding diagonal matrix of A. For the construction of prior-
knowledge matrix M, the entry M(i, §) is set to 1 if disease
d; and disease d; appear in the same sentence of a report;
otherwise 0. In this way, the weight matrix constructed ir}
[9] can be enhanced. H®¥) ¢ RN*4 and W) ¢ Rdxd
are the node representations matrix and the trainable linear
transformation matrix of the kth layer, respectively. Here, N,
d, and d denote the number of diseases, feature dimension,
and feature dimension after projecting.

To both incorporate the prior knowledge, and explicitly
explore the potential correlations among diseases, we made
some modification of E.q(3) by breaking the weight-matrix
into two parts, one constructed by prior knowledge and the
other learned by our model automatically:

HFD — (MH’“W’“) , (4)

&)

where M € RN*N is the matrix learned by our model
automatically, and A € (0,1) is a hyper-parameter to control
the proportion of prior weights and learned weights.

M =)\M + (1 -\ M,
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In this paper, we employ self-attention [4] to dynamically
capture the correlations among diseases no matter whether
they are regular or rare, and the weight matrix M is the
multiplication of the node features matrix and its correspond-
ing transposition, followed by softmax along the column
dimension. The formulation can be defined as:

N = HO & (H(O))T, ©)
M(i,:) = exp(Mj) )
Zj exp (M”>

where H® ¢ RN*? | and each row corresponds to a
initialized feature of a node in the graph. ()T is the transpose
operation. The detailed information about obtaining H(®) is
introduced in subsection (2).

(2)Node Feature Initialization

Besides the weight matrix, the other fundamental compo-
nent of the disease graph convolution is node features. High-
quality initialization of each node can bring a lot of benefits to
the downstream task, e.g., classification and report generation
in this paper. As the original features of a image is 3-
dimensional tensor, to effectively extract feature corresponding
to a specific disease node plays a core role during node ini-
tialization process. Inspired by the convolution-deconvolution
framework proposed in [21], we propose a strategy for node
features initialization named Feature Extractor (FE) whose
main idea is to compress node feature into a low-dimensional
vector in the manner of convolution-deconvolution.

Given the feature maps Vv € R1924XW-Hexiracted by
a CNN(e.g., densenetl21 [2] in this paper), feature maps are
taken as the material to further process the node initialized
features. Specifically, a convolutional layer acts upon V"™
obtaining N node features Fj:°%s € RN*W'>H firgtly, which
is applied with convolutions.

Vcon’u _ CNN(I) c R1024XWXH, (8)
]_-(?odes _ Conv(vconv) c RNXW’XH/7 (9)

where C'onv is the convolutional layer. 1024, W and H are
the number of channel, width and height of the feature maps
the output of densenet121 after block 4. N, W' and H' are
the number of channel, width and height of feature maps after
Conv operation. The number of its kernels is equal to the
number of nodes N in the graph, since each kernel pays a
attention to a specific node visual information in the graph.

Then, a de-convolutional' layer is leveraged to reconstruct
Fpredes to the original feature maps, and smoothed L1 loss is
employed to bound the discrepancy between the reconstructed
feature maps V7°°™ and the original feature maps V" at
pixel-level.

Vdeconv _ Deconv(‘/—_-awdes) c R1024XWXH, (10)

'The more accurate name should be transpose convolution. We use decon-
volution in this paper for simplicity.
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L_node = L]nomn (Vcon'u’ Vdeconv) , (11)

where Deconv is a de-convolutional layer, and its kernel size
is same to the convolutional layer Conv. N, W' and H' are
the number of channel, width and height of feature maps after
Deconv operation.

In this way, each node initialized feature is enforced to
own representative information. FJ°%* is further reshaped
to .7-"6“’“5/ S RNX(W/'Hl), and each vector along column
dimension represents one node initialized feature.

C. Report Generation

Inspired by the hierarchical LSTM structure applied in
paragraph generation task [21] [24] [26], it is employed as
decoder for report generation. Specifically, the hierarchical
LSTM consists of a topic LSTMT, responsible for topic
generation, and a sentence LST M = responsible for its cor-
responding sentence generation, as illustrated in Fig.3.

At each time step ¢ for generating the topic vector hl, the
input vector x] of LSTM7 is defined as the concatenation
of context vector ¢/ and h] ;, since ¢! can supply the
contextual information of a sentence to be generated, and h’
ensures the dependency of two sentences at the same time.
The initialization of topic LSTM hl" and c{" are mean-pooled
image features of densenet121 after block 4 projected by two-
linear layers.

h? = LSTMT(XtTa(hzll:czj—l))v (12)

x!I' = W.(c unhl ), (13)

where W, is the transformation matrix, and L is the concate-
nation operation.

To dynamically capture the contextual information, attention
mechanism [6] is applied. Given the hidden state h! ; of
LSTMT, the normalized attention distribution over all nodes
features "%’ is obtained. The context vector cl is thus
calculated by aggregating all nodes features weighted by
attention.

an—1) = Wage[tanh(Wyh! | + W, Frodes )] (14)
a(N—1) = softmaz(a(n,—1)), (15)

N
cf =Y aminFpot, (16)

n=1

where W), , W,, and W ;; are transformation matrix for the
hidden state of LSTMT at time step t—1, node features matrix
Frodes’ and parameters of attention network, respectively.

Once the topic vector h! is obtained, it is taken as the
first input of LSTM?, which explicitly force the sentence
to be generated server the topic h?. The subsequent inputs
of LSTM® are its generated words’ embedding ey ;. The
hidden state hy of LST M is further projected to vocabulary-
sized vector normalized by softmax, and the corresponding
word with maximum probability is selected.

h{ = LSTM®(hf /ef |, (b7 ,c; ), (17)

Authorized licensed use limited to: Florida State University. Downloaded on May 13,2021 at 22:42:23 UTC from IEEE Xplore. Restrictions apply.



w? = argmazx(softmaz(W,h)), (18)

where W, is transformation matrix of a linear layer, and
argmaz is index selection operation.

Note that topic vector is also acted as a indicator to
determine the number of generated sentences. Specifically,
each topic vector is projected to a distribution over two states
{CONTINUE=0, STOP=1}, which determines whether the
sentence is the last one in a report R;.

V. EXPERIMENTS AND RESULTS
A. Dataset

We adopt the public dataset IU X-Ray [1]. It contains
3955 radiology reports, and each report is associated with two
images of different views.

For data preprocessing, we tokenize all the words in the
impression and findings sections, convert them to lower-cases,
and eliminate tokens by minimum frequency 3 obtaining a
vocabulary with 1,108 unique words. We use a special token
(unk) to represent the eliminated tokens. Each sentence is
added tokens (start) and (end) indicating the start and end
of a sentence/sequence (e.g., the baseline [5]-[8] take the
whole report contains several sentences as one sequence). The
sentence/sequence whose length is less than the pre-defined
maximum length of a sentence/sequence is padded with the
special token (pad).

To evaluate our model, we adopt a commonly used splitting
method following [9], [10], [12], [13], [16]-[18]: we randomly
split dataset into training, validation and testing by a ratio, i.e.,
8:1:1 in this paper. There is no overlap among different sets.

B. Experiment Settings

We pre-train RareGen on cheXpert [19] a public chest X-
Ray dataset, and then train it on [U X-Ray for 64 epochs with
loss function Binary Cross Entropy (BCE). Adam is used for
training, with a batch size of 16, a weight decay of le-5,
and the initial learning rate of le-4. Scheduler MultiStepLR
is employed with epoch range [15, 30, 50] and gamma 0.1.
Each image is center-cropped to 512 x 512 without data
augmentation. We extract visual features after the block 4 of
densenet121 [2], yielding 1024 x 16 x 16 feature maps. For
stable training of the few-shot learning generative adversarial
network, batch normalization is adopted. For decoder, the
topic LSTM and sentence LSTM are single-layer LSTMs with
hidden dimension of 512. Each input word is encoded as a
embedding with the dimension of 256. We set the maximum
number of sentences of a report and maximum number of
tokens in a sentence as 10 and 30. Cross Entropy is employed
as the loss function. All the implementations are based on
PyTorch and conducted on NVIDIA Tesla V100.

C. Metrics

For evaluating report generation, we follow most studies
and adopt the metrics originally developed for the evaluation
of machine translation, or text summaries, including BLEUI,
2, 3, 4, CIDEr, ROUGE-L [8]-[18]. Also, there are some
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metrics proposed for report generation, and we adopt KA [8]
as it has been used in several studies [8], [10]. Specifically,
we extract key words in the MTI annotations of IU X-Ray
dataset to construct a key-word dictionary containing 421
words. During inference, KA metric is the ratio of the number
of keywords correctly generated by the model to the number
of all keywords in the ground-truth.

However, these metrics are purely based on words occur-
rences and thus fail to examine whether the generated reports
have the correct semantic meaning. For example, the reference
sentence is "there are degenerative changes of the spine."
, and sentences generated by RareGen and CNN_RNN are
"degenerative changes are present in the spine.” and "there
are no degenerative changes of the spine.", respectively. High
BLEU score can be obtained of the pair "there are degenerative
changes of the spine." and "there are no degenerative changes
of the spine.", while the meanings they expressed are totally
different. Meanwhile, report generation performance of clas-
sification based models depends on the classification results
to large extent. Still, the meanings of these two sentences can
be demonstrated by the classification results of a certain class
among the labels. To further measure the quality of report
generation, we study the multi-label classification results of
classification. So we use Accuracy, F_1, Precision, Recall,
and Area Under the ROC Curve (AUC) to further evaluate
the performance of disease classification, and micro-average
is adopted (AUC, Precision, Recall and F_1).

D. Baselines

(1)Baselines for report generation

We compare our full model RareGen with the methods:
Feedback [8], A3FN [10], CNN-RNN [5], Soft-Att [6] and
Att-RK [7], Co-Att [12] and KG [9]>.CNN-RNN, Soft-Att and
Att-RK are state-of-the-art image caption models, and others
are radiology report generation models.

(2)Baselines for classification

Since performance of classification based models depend on
the classification results to large extent, we further classify the
baselines into:1). classification based models: Co-Att, A3FN,
KG and RareGen. 2). non-classification based models: Feed-
back, CNN-RNN, Soft-Att and Att-RK. We compare the clas-
sification results of RareGen with classification based models,
some classical Deep CNN models applied in ChestXray8 [20]
and also densenetl121 [2] the backbone in this paper.

E. Experimental Results and Analysis

(1)Results on report generation

Table I shows results of automatic evaluation comparing
RareGen with the baselines introduced before. Most impor-
tantly, RareGen outperforms all baseline models by great mar-
gins on KA metric (e.g, 17.6(RareGen) VS 7.5(CNN_RNN)),
which demonstrates that RareGen owns a stronger ability to
distill disease features by the disease graph convolution we
proposed. RareGen achieves slightly lower BLEU_1, 4 score

2Note that both the codes of Co-Att and Feedback are not released, and
we re-implement both of them.
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Fig. 5. 3 cases with two-view of chest X images. The ground truth and generated reports by RareGen, Co-Att and KG are shown.. The sentences marked in
blue are the description of rare diseases or disease with a few positive instances in the ground truth. The sentences marked in red are the precise corresponding

description generated by RareGen or baselines.

than Co-Att and A3FN. But, it doesn’t mean that RareGen
in a worse performance, since high BLUE score does not
necessarily imply the correctness of a generated sentence as we
explained before. Besides, KG, A3FN, Co-Att and RareGen
surpass CNN_RNN, Soft_Att, Att-RKand Feedback by rel-
atively large margins on almost all metrics, which indicates
classification based models are beneficial to generating struc-
tured reports comparing with non-classification based models
possibly due to the better representations that classification
based models learned.

TABLE I
PERFORMANCE COMPARISON OF REPORT GENERATION
ON IU X-RAY DATASET

Methods BLEU_I BLEU_2 BLEU_3 BLEU_4
CNN_RNN [5] 0.295 0.216 0.158 0.112
Soft_Att [6] 0.363 0.257 0.183 0.135
Att-RK [7] 0.344 0.251 0.168 0.116
Feedback [8] 0.434 0.331 0.234 0.177
Co-Att [12]* 0.455  0.288 0.205 0.154
A3FN [10]* 0.443 0.337 0.236 0.181
KG [9]* 0.441 0.291 0.203 0.147
RareGen 0.448 0.343 0.255 0.178
Methods CIDEr ROUGE-L KA(%)
CNN_RNN [5] 0.136 0.258 7.5

Soft_Att [6] 0.288 0.342 8.3

Att-RK [7] 0.192 0.358 7.8

Feedback [8] 0.312 0.351 10.1

Co-Att [12]* 0.277 0.369 11.37

A3FN [10]* 0.374 0.347 13.5

KG [9]* 0.304 0.367 15.8

RareGen 0.378 0.371 17.6

Note that *score is taken from its corresponding paper, expect for KA
metric, so the data split can be different from RareGen.

(2)Results on multi-label classification

The multi-label classification results are shown in Table II.
RareGen outperforms all baselines of disease classification on
Accuracy, F_1 and Precision, which demonstrates its effec-
tiveness and also implicitly interprets the high KA score our
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model obtained. RareGen achieves over 6% higher in accuracy
comparing with KG, demonstrating RareGen’s stronger ability
of diseases detection. We can also find that all models are with
low accuracy scores. The reason can be we impose a strong
constrain on accuracy metric, and a instance is considered to
be hitted only if all the labels of the instance are predicted
correctly. While it is meaningful to study accuracy metric since
it indicates whether a report can be generated completely and
correctly.

TABLE 1T

PERFORMANCE COMPARISON OF CLASSIFICATION ON IU X-RAY DATASET.
Methods Accuracy F_1 Precision Recall AUC
ChestXray8 [20] 0.719* - - -
DenseNet121 [2] 0.2240 0.2617  0.1617 0.6861 0.7831
TieNet [11] 0.2283 0.3259  0.2643 0.3987  0.7866
Co-Att [12] 0.2427 0.3361  0.2891 0.4014  0.7909
KG [9] 0.2205 0.3740  0.3203 0.4492  0.8222
RareGen 0.2889 0.3798 0.4580 0.3244 0.8136

(3)Ablation study

To verify the effectiveness of the components(the few-shot
learning generative adversarial network and FE), we further
do some ablation study. We compare our full mode RareGen
trained on the fused dataset(the original train dataset and the
artificial dataset generated by the few-shot learning generative
adversarial network ) with FE, with the variants RareGen(-),
trained on the fused dataset without FE, and also RareGen(-
, -) solely trained on the original dataset without FE. The
classification and report generation results are shown in Table
III and Table IV. On the whole, we can observe that both FE
and the few-shot learning generative adversarial network make
contributions to the performance improvement to the task of
classification and report generation. Most notably, RareGen(-
) increases accuracy score by near 3% and KA score by
over 3% compared to RareGen(-,-), demonstrating the crucial
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of the few-shot learning generative adversarial network in
solving the issue of few-shot learning on report generation
task. Meanwhile, RareGen achieves higher automatic evalu-
ation scores compared with RareGen(-), which confirms the
effectiveness of FE. Fig.5. shows the qualitative results of
RareGen and some baselines. It can be observed that the rare
diseases ""airspace”, "nodule", and "opacities" are accurately
detected by RareGen, while the Co-Att and KG can hardly
detect them, which demonstrates the effectiveness of RareGen
for rare diseases report generation.

TABLE III
PERFORMANCE COMPARISON OF CLASSIFICATION ON IU X-RAY DATASET
Methods Accuracy F_1 Precision Recall AUC
RareGen(-, -) 0.2462 0.3437  0.4334 0.2847  0.8084
RareGen(-) 0.2715 0.3563  0.4695 0.2870  0.8036
RareGen 0.2889 0.3798 0.4580 0.3244 0.8136
TABLE IV
PERFORMANCE COMPARISON OF REPORT GENERATION ON IU X-RAY
DATASET
Methods BLEU_1 BLEU_2 BLEU_3 BLEU_4
RareGen(-, -) 0.421 0.310 0.209 0.158
RareGen(-) 0.433 0.329 0.225 0.135
RareGen 0.448 0.343 0.231 0.178
Methods CIDEr ROUGE-L KA(%)
RareGen(-, -) 0.334 0.346 12.5
RareGen(-) 0.383 0.366 15.9
RareGen 0.378 0.371 17.6

VI. CONCLUSION

In this paper, we propose a few-shot radiology report
generation model RareGen for rare disease report generation.
RareGen obtains a better performance for rare diseases report
generation comparing with the stat-of-the-art baselines. Exten-
sive experiments are conducted demonstrating the effective-
ness of RareGen. And it can also be applied to other disease
datasets, e.g., tongue images dataset [34].
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