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ABSTRACT
Social network alignment has been an important research problem
for social network analysis in recent years. With the identified
shared users across networks, it will provide researchers with the
opportunity to achieve a more comprehensive understanding of
users’ social activities both within and across networks. Social net-
work alignment is a very difficult problem. Besides the challenges
introduced by the network heterogeneity, the network alignment
can be reduced to a combinatorial optimization problem with an
extremely large search space. The learning effectiveness and effi-
ciency of existing alignment models will be degraded significantly
as the network size increases. In this paper, we focus on study-
ing the scalable heterogeneous social network alignment problem,
and propose to address it with a novel two-stage network align-
ment model, namely Scalable Heterogeneous Network Alignment
(SHNA). Based on a group of intra- and inter-network meta dia-
grams, SHNA first partitions the social networks into a group of
sub-networks synergistically. Via the partially known anchor links,
SHNA can extract the partitioned sub-network correspondence re-
lationships. Instead of aligning the complete input network, SHNA
proposes to identify the anchor links between the matched sub-
network pairs, while those between the unmatched sub-networks
will be pruned to effectively shrink the search space. Extensive
experiments have been done to compare SHNA with the state-of-
the-art baseline methods on a real-world aligned social networks
dataset. The experimental results have demonstrated both the ef-
fectiveness and efficiency of SHNA in addressing the problem.
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1 INTRODUCTION
In recent years, a large number of online social networks have ap-
peared, which can provide people with various kinds of services. To
enjoy these different services at the same time, users nowadays are
usually involved in a number of online social networks simultane-
ously. For instance, people will join in Facebook1 to socialize with
their friends; use Linkedin2 to establish their professional profile;
rely on Twitter3 to access and comment on the latest news infor-
mation. However, in the real world, these different online social
networks are mostly isolated without any knowledge about the
shared users among them, which renders the inter-network social
network analysis a great challenge.

Recently, some research works have proposed to study the align-
ment problem [6, 27] across multiple online social networks. The
main objective of the social network alignment problem is to un-
cover the mappings of common users across networks, which are
named as the anchor links [6] formally. Social network alignment
provides researchers with the opportunity to study the users’ so-
cial activities from a global perspective. By integrating the social
activity information from multiple social sites, we can achieve a
more comprehensive knowledge about users’ social preferences.
Meanwhile, via these inferred anchor links, information can also
propagate across different social networks to improve the services
of different social networks simultaneously.

Formally, given two networks G(1) and G(2) withm and n users
respectively, we can denote the number of true anchor links ex-
isting between G(1) and G(2) as l . According to [6], the anchor
links to be inferred are usually subject to the one-to-one cardinal-
ity constraint. In other words, each user will be connected by at
most one anchor link between the networks, and we can have
l ≤ min(m,n). Social network alignment problem aims at identify-
ing these l true anchor links from them × n potential anchor links,
which will lead to a combinatorial optimization problem of time

complexity O

((
m × n

min(m,n)

))
. Most of the existing network align-

ment models are mainly proposed based on the complete input
network [6, 25, 26], which will become ineffective for large-scale
online social networks with a large number of users.
Problem Studied: In this paper, we will study the scalable on-
line social network alignment problem, where each social network
studied is of a heterogeneous structure involving multiple types of
nodes and links. To address the problem, a reduction of the search
space, i.e., these aforementionedm × n potential anchor links, is

1https://www.facebook.com
2https://www.linkedin.com
3https://twitter.com
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necessary and critical, which can not only improve the learning
effectiveness but also significantly lower down the time costs in
model learning.

The heterogeneous social network alignment problem is ex-
tremely challenging to address due to several different reasons:

• Heterogeneity: There exist various types of heterogeneous
information in social networks, which can provide critical
signals for identifying the common users across networks.
Meanwhile, properly handling such heterogeneous informa-
tion in a unified way is not an easy task.
• Scalability: For the large-sized input online social networks,
learning efficiency is a crucial factor to consider in the model
building. Few of the existing research works have ever stud-
ied this problem yet, which remains an open problem.
• Generalizability: To ensure the applicability of the proposed
model, we need to propose a general learning model that
can be extensible to various learning settings. Besides differ-
entiating the non-existing anchor links from the real ones,
the model should also incorporate the one-to-one cardinality
constraint [6] effectively.

To address these challenges aforementioned, we introduce a
novel scalable heterogeneous social network alignment framework,
namely Scalable Heterogeneous Network Alignment (SHNA), in
this paper. To effectively capture the diverse connections among
users within and across networks with heterogeneous information,
SHNA employs a group of meta diagrams in this paper. Meta di-
agram is a novel concept proposed in [16], which includes both
meta path and more complex meta structures to outline the user
correlations both within and across heterogeneous networks . As a
scalable and general solution, SHNA addresses the social network
alignment problem via two stages: network synergistic partition and
parallel sub-network alignment. SHNA proposes to partition the
large-sized input social network data into a group sub-networks
with a synergistic network partition method. The partition process
needs to take care of both the diverse intra- and inter-network user
connections, where the shared users should be partitioned into
the groups with correspondence relationships as indicated by the
partially known anchor links. Then alignment will be performed
between these identified corresponding sub-networks only in the
second stage, whose learning results will be fused to recover the
complete alignment result of the input networks.

The remaining parts of this paper are organized as follows. In
Section 2, we introduce the definitions of several important termi-
nologies and the formal problem statement. Meta diagram which
is the basis of features in this paper is introduced in Section 3.
Detailed information about the proposed model is provided in Sec-
tion 4, whose effectiveness and efficiency are verified in Section 5.
Related works are discussed in Section 6 and finally in Section 7 we
conclude this paper.
2 PROBLEM FORMULATION
2.1 Terminology Definition
The network we study is an attributed heterogeneous social network.
Definition 1 (Attributed Heterogeneous Social Network): The at-
tributed heterogeneous social network can be represented as G =
(V, E,T).V =

⋃
i Vi is the set of different nodes, while E =

⋃
i Ei

Figure 1: Schema of aligned networks.

represents the set of complex links in the network. Besides, the set
T =

⋃
i Ti represents a group of attributes attached to nodes.

Between two attributed heterogeneous social networks, if there ex-
ist shared users, we define them as aligned attributed heterogeneous
social networks
Definition 2 (Aligned Attributed Heterogeneous Social Networks):
Given the attributed heterogeneous social networks G(1), G(2) and
common users are shared between them, we can define them as the
aligned attributed heterogeneous social networks G =

(
(G(1),G(2)),A(1,2)

)
,

and A(1,2) is the set of undirected anchor links between G(1) and
G(2) which connect the common users.

Here, we take two famous online social networks Foursquare and
Twitter as an example.We represent them asG = ((G(1),G(2)),A(1,2)),
whereG(1) represents Foursquare andG(2) is Twitter. The Foursquare
networkG(1) can be represented asG(1) = (V(1), E(1),T (1)), where
V(1) is the union ofU(1) and Post (1) representing the sets of users
and posts in the network respectively. E(1) = E(1)u,u ∪ E

(1)
u,p contains

the set of social links among users and the set of write links between
users and posts. T (1) = T (1)l ∪ T

(1)
t denotes the set of attributes

extracted from the posts in Post (1) including location checkins T (1)l
and timestamps T (1)t in this example. The Twitter network can
be represented in a similar format as Foursquare, which can be
denoted asG(2) = (V(2), E(2),T (2)). User anchor links in setA(1,2)
connecting to shared users between Foursquare and Twitter can
effectively align these two networks together. In the following parts,
we illustrate the problem setting and the proposed framework based
on the aligned Foursquare and Twitter networks, i.e., G.

2.2 Problem Definition
Given aligned attributed heterogeneous social networks G, we can
represent all potential anchor links between networksG(1) andG(2)

as setH = U(1) ×U(2), whereU(1) andU(2) denote the user sets
inG(1) andG(2) respectively. For the known anchor links, we can
group them as a labeled set D = A(1,2). The remaining anchor
links with unknown labels are those to be inferred, and they can be
denoted as the unlabeled set P = H \ D. Based on both D and P,
we aim at building a mapping function f : H → Y to infer anchor
link labels in Y = {0,+1} subject to the one-to-one constraint,
where labels +1 and 0 denote the existing and non-existing anchor
links respectively.

3 META DIAGRAM
Before introducing the SHNA framework, we first introduce intra-
network meta diagram and inter-network meta diagram, which are
used to measure the proximity among users in the SHNA.
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Figure 2: Parallel Implementation of Framework SHNA
3.1 Network Schema
In order to better understand the aligned attributed heterogeneous
social networks, it is necessary to define a schema-level description.
Definition 3 (Aligned Attributed Heterogeneous Social Network
Schema): The schema of the given aligned social networks G can
be represented as SG = ((SG (1) , SG (2) ), {anchor}). Here, SG (1) =
(N
(1)
V
∪ N

(1)
T
,R
(1)
E
∪ R
(1)
A
), where N (1)

V
and N (1)

T
denote the set of

node types and attribute types in the network, whileR(1)
E

represents

the set of link types in the network, and R(1)
A

denotes the set of
association types between nodes and attributes. In a similar way, the
schema ofG(2) is SG (2) = (N

(2)
V
∪N

(2)
T
,R
(2)
E
∪R
(2)
A
). We display the

schema of the Foursquare and Twitter networks in Figure 1, where
the exact node, attribute, and link types can be found intuitively.

3.2 Inter-Network Meta Diagram
The definition of inter-network meta diagram is first proposed in
[16]. Based on our own problem, the definition of inter-network
meta diagram can be presented as follows:
Definition 4 (Inter-Network Meta Diagram): Given aligned attrib-
uted heterogeneous social networks SG = ((SG (1) , SG (2) ), {anchor}).
An inter-network meta diagram can be formally represented as a
directed acyclic subgraph ΨA = (NΨ,RΨ,Ns ,Nt ), where NΨ ⊂

(N
(1)
V
∪N

(2)
V
∪N

(1)
T
∪N

(2)
T
) and RΨ ⊂ (R

(1)
E
∪R
(2)
E
∪R
(1)
A
∪R
(2)
A
∪

{anchor}). Ns ,Nt denote the source and target node types from
G(1) and G(2) respectively.

The notaion, description and physical meanings of inter-network
meta paths used in this paper are summarized in the first section
of Table 1. Because of the problem we try to solve, we are con-
cerned about inter-network meta diagrams connecting two users
from different networks. We list several inter-network meta diagram
examples in the second section of Table 1. Now we focus on the ΨA

1
at first. It is composed of two meta paths which are both PA1 and
represent two users have two followees respectively where there
exits an anchor link between these two followees. ΨA

2 is built by PA5
and PA6 which represents two users have posts checking in the same
location and at the same time. ΨA

3 containing 3 inter-network meta
paths PA1 , PA5 and PA6 . In a more formal way, we can classify inter-
network meta paths as PAf = {P

A
1 , P

A
2 , P

A
3 , P

A
4 } containing the social

relationship based inter-network meta paths and PAa = {PA5 , P
A
6 }

representing the sets of the attribute based paths. Besides, we also
define that PA = PAa ∪PAf . We list inter-network meta diagrams used

in SHNA in Table 2. We can represent inter-network meta diagrams
as ΨA = PA ∪ ΨA

f 2 ∪ ΨA
a2 ∪ ΨA

f ,a ∪ ΨA
f ,a2 ∪ ΨA

f 2,a2 . The physical

meanings of notations (e.g. f 2) are also explained in Table 2.

3.3 Intra-Network Meta Diagram
The intra-network meta diagrams can be defined in a similar way
as inter-network meta diagrams in Section 3.2. There main differ-
ences lie in: inter-network meta diagrams connect two nodes across
two networks but intra-network meta diagrams exist in one single
network. Formally, we can define intra-network meta diagrams as:
Definition 5 (Intra-Network Meta Diagram): Given attributed het-
erogeneous social network schema SG = (NV ∪ NT ,RE ∪ RA ).
An inter-network meta diagram can be defined as a directed acyclic
subgraph ΨI = (NΨ,RΨ,Ns ,Nt ), where NΨ ⊂ (NV ∪ NT ) and
RΨ ⊂ (RE ∪ RA ), while Ns ,Nt denote the source and target node
types.

We only consider intra-network meta diagrams which Ns ,Nt ∈

{U}. We list the notaion and physical meanings of intra-network
meta paths used in this paper in the first section of Table 3. Besides,
several intra-network meta diagram examples are presented in the
second section of Table 3. Similar to the inter-network meta dia-
grams, intra-network meta diagrams can be represented as ΨI =

PI ∪ ΨI
f 2 ∪ ΨI

a2 ∪ ΨI
f ,a ∪ ΨI

f ,a2 ∪ ΨI
f 2,a2 .

Meta path [21] is a special type of the meta diagram in the shape
of the path. In the following sections, we directly use the termmeta
diagram to refer to both meta path and meta diagram.

4 PROPOSED METHOD
The structure of SHNA is shown in Figure 2. SHNA is a two-stage
framework involving network synergistic partition and parallel sub-
network alignment. Partitioned networks matching acts as a bridge
between two stages. We will introduce three parts respectively in
this section.

4.1 Network Synergistic Partition
The first stage of SHNA is network synergistic partition, and we
both exploit information within and across networks to obtain the
optimal sub-networks. We measure the proximity among users
within single network based on intra-network meta diagrams and
adjust sub-network structures synergistically with the support of
inter-network meta diagrams.

4.1.1 Intra-Network Meta Diagram based Partition. IntraMD-Pro
is defined to measure the proximity among users.
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Table 1: Summary of Inter-Network Meta Diagrams.
ID Notation Meta Diagram Semantics

PA1 U→ U↔ U← U User
f ol low
−−−−−−−−→ User

anchor
←−−−−−−→ User

f ol low
←−−−−−−−− User Common Anchored Followee

PA2 U← U↔ U→ U User
f ol low
←−−−−−−−− User

anchor
←−−−−−−→ User

f ol low
−−−−−−−−→ User Common Anchored Follower

PA3 U→ U↔ U→ U User
f ol low
−−−−−−−−→ User

anchor
←−−−−−−→ User

f ol low
−−−−−−−−→ User Common Anchored Followee-Follower

PA4 U← U↔ U← U User
f ol low
←−−−−−−−− User

anchor
←−−−−−−→ User

f ol low
←−−−−−−−− User Common Anchored Follower-Followee

PA5 U→ P→ T← P← U User
write
−−−−−−→ Post

at
−−→ Timestamp

at
←−− Post

write
←−−−−−− User Common Timestamp

PA6 U→ P→ L← P← U User
write
−−−−−−→ Post

checkin
−−−−−−−−−→ Location

checkin
←−−−−−−−−− Post

write
←−−−−−− User Common Checkin

ΨA1 (P
A
1 × PA2 ) U↔ U

anchor
←−−−−−−→ U↔ U UserUser

anchor
User

f ol low

f ollow

User

f ol low

f ollow

Common Aligned Neighbors

ΨA2 (P
A
5 × PA6 ) U P

T

L
P U User

write
−−−−−−→

Location
Timestamp

Post
checkin

at
Post

checkin

at

wr ite
←−−−−−− User Common Attributes

ΨA3 (P
A
1 × PA5 × PA6 )

U

U P
T

L
P U

U

Location
Timestamp

Post
checkin

at
Post

checkin

at

UserUser
anchor

User
write

f ol low

User
write

f ol low

Common Aligned Neighbor & Attributes

Table 2: Inter-network Meta Diagrams

Set Physical Meanings

ΨA
f 2 (PAf × PAf ) Common Aligned Neighbors

ΨA
a2 (PAa × PAa ) Common Attributes

ΨAf ,a (PAf × PAa ) Common Aligned Neighbor & Attribute

ΨA
f ,a2 (PAf × PAa × PAa ) Common Aligned Neighbor & Attributes

ΨA
f 2,a2 (PAf ×PAf ×PAa ×PAa ) Common Aligned Neighbors & Attributes

Definition 6 (IntraMD-Pro): Given DΨIi
(x ,y) to represent the set

of diagram ΨI
i starting from x to y, and DΨIi

(x , ·) to represent the
set of diagram ΨI

i which go from x to other nodes in the network.
The IntraMD-Pro of node pair (x ,y) can be defined as

IntraMD-Pro(x, y) =
∑
i
ωi

©­­«
���DΨIi

(x, y)
��� + ���DΨIi

(y, x )
������DΨIi

(x, ·)
��� + ���DΨIi

(y, ·)
��� ª®®¬ ,

where ωi is the weight of ΨI
i and

∑
i ωi = 1.

Accoriding to [23], the specific values of hyperparametersωi can
be adjusted automatically by optimizing certain learning objectives,
e.g., clustering entropy as used in [23]. We will not elaborate the
hyperparameter adjustment algorithm in this paper. What’s more,
we use Ai as the adjacency matrix which represents ΨI

i among
users in the network. The proximity score matrix among users
of ΨI

i can be represented as Si = Bi ◦
(
Ai + AT

i

)
, where the ma-

trix Bi represents the out-degree of user x and y, e.g., Bi (x ,y) =
(
∑
m Ai (x ,m) +

∑
m Ai (y,m))

−1. The ◦ represents the Hadamard
product. IntraMD-Pro matrix of the network can be represented as:

S =
∑
i
ωiSi =

∑
i
ωi

(
Bi ◦

(
Ai + AT

i

))
.

We can represent the user-cluster belonging confidence scores
as a vector hi = (hi,1,hi,2, . . . ,hi,k ), where hi, j denotes the confi-
dence score that ui ∈ U is in the sub-network Uj ∈ C (C is the set
of detected clusters), and k is the number of detected communities.
Therefore, we can define the partition results of all users inU as
the user-cluster belonging confidence matrix H, where H = [h1, h2,
. . . , hn]T and n = |U|. We choose to solve the following objective
function to minimize the normalized-cut (Ncut ) cost [9, 19] and

achieve the optimal partition result:

min
H

Tr(HTLH),

s .t . HTDH = I.

where the Laplacian matrix L = D − S, the diagonal matrix D has
D(i, i) =

∑
j S(i, j) on its diagonal, and I is an identity matrix.

4.1.2 Inter-NetworkMeta Diagram based Partition. With the help of
inter-network meta diagrams, we can represent the extra knowledge
about the aligned attributed heterogeneous networks from a more
complete and convincing view.

Inter-network meta diagrams effectively indicate the closeness
among the users across different networks, which can be quantified
with the proximity scores in this paper. Given a pair of usersu(1)x and
u
(2)
y , we denote the set of inter-network diagram ΨA

i connecting
u
(1)
x and u

(2)
y as DΨAi

(u
(1)
x ,u

(2)
y ). Formally, we represent all inter-

network meta diagram instances going out from user u(1)x (or going
into u(2)y ) as set DΨAi

(u
(1)
x , ·) (or DΨAi

(·,u
(2)
y )). The proximity score

between u(1)x and u(2)y based on ΨA
i can be defined as the following

InterMD-Pro.
Definition 7 (InterMD-Pro): Based on ΨA

i , the proximity between
u
(1)
x and u(2)y in G can be represented as:

sΨAi
(u (1)x , u (2)y ) =

2 |DΨAi
(u (1)x , u (2)y ) |

|DΨAi
(u (1)x , ·) | + |DΨAi

(·, u (2)y ) |
.

Based on the promixity of every single inter-networkmeta diagram,
InterMD-proximity between users u(1)x and u(2)y in G can be defined
as

InterMD-Pro(u (1)x , u (2)y ) =
∑
i
ωi

(
sΨAi
(u (1)x , u (2)y )

)
.

where ωi is the weight of ΨA
i and

∑
i ωi = 1.

The promixitymatrix among all users across networks can be rep-
resented as SΨA ∈ R |U

(1) |× |U(2) | , and SΨA (x ,y) = InterMD-Pro(u(1)x ,u
(2)
y ).

We can correlate users together with their cluster belonging rela-
tionships effectively across networks with the matrix SΨA . Given
one user u(1)l in G(1), we are able to calculate the user-cluster be-

longing confidence scores of u(1)l with the user-cluster belonging
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Table 3: Summary of Intra-Network Meta Diagram.
ID Notation Meta Diagram Semantics

PI1 U→ U User
f ol low
−−−−−−−−→ User Follow

PI2 U→ U→ U User
f ol low
−−−−−−−−→ User

f ol low
−−−−−−−−→ User Follower of Follower

PI3 U→ U← U User
f ol low
−−−−−−−−→ User

f ol low−1
−−−−−−−−−−→ User Common Out Neighbor

PI4 U← U→ U User
f ol low−1
−−−−−−−−−−→ User

f ol low
−−−−−−−−→ User Common In Neighbor

PI5 U→ P→ T← P← U User
write
−−−−−−→ Post

at
−−→ Timestamp

at
←−− Post

write
←−−−−−− User Posts Containing Common Timestamps

PI6 U→ P→ L← P← U User
write
−−−−−−→ Post

checkin
−−−−−−−−−→ Location

checkin
←−−−−−−−−− Post

write
←−−−−−− User Posts Attaching Common Location Check-ins

ΨI1 (P
I
1 × PI1 ) U←→ U UserUser

f ol low

f ollow

Follower and Followee

ΨI2 (P
I
5 × PI6 ) U P

T

L
P U User

write
−−−−−−→

Location
Timestamp

Post
checkin

at
Post

checkin

at

wr ite
←−−−−−− User Common Attributes

ΨI3 (P
I
1 × PI5 × PI6 ) U P

T

L
P U Location

Timestamp
Post

checkin

at
Post

checkin

at
User

write
User

write
User

f ol low

Common Attributes & Follower and Followee

Figure 3: An illustration of Discrepancy. There exists a
known anchor link between User A and User A’, also User
B and User B’. If User A and User B are partitioned into the
same sub-network, but User A’ and User B’ are partitioned
into different sub-networks, the discrepancy will arise. Syn-
ergistic partition works on eliminating the discrepancy
confidence scores from G(2). Formally, we define Transition User-
cluster Belonging Confidence Scores as follow:

h̄(1)l =
|U(2) |∑
j=1

SΨA (l, j) · h
(2)
j

By maximizing the consensus of partition results based on the
transition user-cluster belonging confidence scores, we can refine the
partition results with information from the other partially aligned
network synergistically. In this paper, we will propose the definition
of discrepancy, which measures how different the shared user pairs
are clustered across networks. We provide an illustration about
discrepancy in Figure 3.
Definition 8 (Discrepancy): Given two users u(1)l and u(1)m in G(1),

If users u(1)l and u(1)m are partitioned into the same sub-network in
G(1) but into different sub-networks based on the transition user-
cluster belonging confidence scores from G(2), then it will lead to the
discrepancy between the partition results of u(1)l , u(1)m . The confi-

dence thatu(1)l andu(1)m are in the same sub-network can be denoted

as h(1)l (h
(1)
m )
⊤. Formally, the discrepancy of u(1)l and u(1)m is defined

to be dlm (C(1)) =
(
h(1)l (h

(1)
m )
⊤ − h̄(1)l (h̄

(1)
m )
⊤
)2
. Furthermore, the

discrepancy of C(1):

d (C(1)) =
|U(1) |∑
i

|U(1) |∑
j=i+1

di j (C(1))

With the user-cluster belonging confidence matrices H(1) and H(2),
the discrepancy of G is

d (C(1), C(2)) = d (C(1)) + d (C(2))

=





H̄(1) (H̄(1))T − H(1) (H(1))T



2

F
+





H̄(2) (H̄(2))T − H(2) (H(2))T



2

F
.

Where H̄(1) = [h̄(1)1 , h̄
(1)
2 , . . . , h̄

(1)
n ]
⊤ and n = |U(1) |, and H̄(2) is the

same situation. Besides, H̄(2) =
(
SΨA

)⊤ H(1) and H̄(1) = SΨAH
(2).

4.1.3 Synergistic Partition of Multiple Networks. By taking both
Intra-Network Meta Diagram based Partition and Inter-Network Meta
Diagram based Partition into considerations, the optimal synergistic
partition results C(1) and C(2) can be achieved by minimizing both
the Ncut costs and the discrepancy simultaneously as follows:

arg min
C(1),C(2)

α · Ncut (C(1)) + β · Ncut (C(2)) + θ · d (C(1), C(2))

where α , β and θ represent the weights of these compositions. We
can replace Ncut(C(1)), Ncut(C(2)), d(C(1),C(2)) with the terms
derived before, and the joint objective function can be rewrited as:

min
H(1),H(2)

α · Tr((H(1))TL(1)H(1)) + β · Tr((H(2))TL(2)H(2))

+ θ ·




H̄(1) (H̄(1))T − H(1) (H(1))T



2

F
+ θ ·





H̄(2) (H̄(2))T − H(2) (H(2))T



2

F
,

s .t . (H(1))TD(1)H(1) = I(1), (H(2))TD(2)H(2) = I(2),

The joint objective function involves two variables: H(1) and H(2),
and the objective is not jointly convex. Besides, the objective func-
tion contains complex orthogonality constraints which are numer-
ically expensive to preserve in optimization. In order to preserve
constraints in an efficient way during the learning process, we
propose to relax the objective function as follows:

min
H(1),H(2)

α · Ncut (C(1)) + β · Ncut (C(2)) + θ · d (C(1), C(2))

+ ρ1




(H(1))TD(1)H(1) − I(1)


2

F
+ ρ2




(H(2))TD(2)H(2) − I(2)


2

F
,

By setting ρ1 and ρ2 with large values, e.g., 109, optimizing the
above function is (approximately) equivalent to the original ob-
jective function. We design an hierarchical alternative variable
updating process for solving the problem:
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• Step (1): Fix H(2), Update H(1).
Based on the Gradient Descent, we calculate H(1)k representing

H(1) after k descent steps:

H(1)k = H(1)k−1 − η1 · ∇L(H(1))

η1 is the step length, and the gradient ∇L(H(1)) is:

∇L(H(1)) =
∂L

∂H(1)

+ α ·
(
L(1)H(1) + (L(1))TH(1)

)
+ 2θ

(
XH(1) + XTH(1) + 2H(1)(H(1))TH(1)

)
+ 2θ

(
2SΨAS

T
ΨA

H(1)(H(1))TSΨAS
T
ΨA

H(1) − XH(1) − XTH(1)
)

+ 4ρ1
(
D(1)H(1)(H(1))TD(1)H(1) − D(1)H(1)

)
where X = SΨAYS

T
ΨA

and Y = H(2)
(
H(2)

)T
.

• Step (2): Fix H(1), Update H(2).
When H(1) is fixed, the method of updating H(2) with a fixed

H(1) is almost the same as Step (1):

H(2)k = H(2)k−1 − η2 · ∇L(H(2))

We iteratively operate Step (1) and Step (2), and every iteration
operates one step descent for H(1),H(2) until convergence.

Based on the learned matrix H(1), we can learn the clusters
of users in network G(1) by applying K-Means algorithms to the
learned latent vectors, i.e., rows ofmatrixH(1), and the detected clus-
ters can be represented as set C(1) = {U (1)1 ,U

(1)
2 , . . . ,U

(1)
k }. For the

users within the same cluster, we propose to extract a sub-network
formed by these users and other associated nodes/attributes. For
instance, based on the cluster U (1)l ∈ C(1), we can represent the

extracted sub-network as G(1)l . Formally, the set of extracted sub-
network from G(1) based on the clustering result C(1) can be rep-
resented as G(1) = {G(1)1 ,G

(1)
2 , . . . ,G

(1)
k }. Here, we need to add a

remark that the synergistic network partition process involves an
iterative variable updating process, which may take some time to
converge. Meanwhile, in the real-world application of the proposed
model, such a step can be done in an offline manner, where the clus-
tering results can be computed and stored in hard-drive in advance.
It will greatly improve the learning efficiency of SHNA in aligning
the large-scale social networks.

4.2 Partitioned Networks Matching
After partitioning the original networks, it’s critical to matching the
sub-networks from different networks, which is the prerequisite for
the next stage. As a bridge, the matching step should consider not
only the object of network synergistic partition but also the target of
parallel sub-network alignment. Here, we propose the sub-network
Matching Score as the metric to serve for partitioned networks
matching in SHNA.
Definition 9 (Matching Score): Given two sub-network G(1)i and
G
(2)
j , which comes from G(1) and G(2) respectively. We define

Matching Score(M-Score) between G(1)i and G(2)j as:

M-Score(G (1)i , G (2)j ) = |A(G
(1)
i , G (2)j |) ·

|A(G (1)i , G (2)j ) |

|U (1)i | · |U
(2)
j |

whereA(G(1)i ,G
(2)
j ) is the set of known anchor links betweenG(1)i

and G(2)j , and U (1)i , U (2)j are sets of user accounts belongs to G(1)i ,

G
(2)
j . In fact, the second term above is the proportion of known links

of all links across G(1)i and G(2)j . M-Score takes both the number of
known anchor users and the performance of pruning negative links
into considerations. We can match the sub-networks according
to the descending rank of M-Score to achieve the sub-network
matching resultsM = {M1,M2, . . . ,Ms }, andMi = {G

(1)
a ,G

(2)
b }.

Here, s is a parameter we set corresponding to the top s(s ≤ k) pairs
for alignment. Then SHNAwill start to focus on parallel sub-network
alignment onM.
4.3 Sub-network Alignment
In this part, we introduce the alignment model for all the sub-
network pairs inM. We takeMi = {G

(1)
a ,G

(2)
b } as an example to

illustrate the alignment process.
4.3.1 Optimization Objective Function. For all the potential anchor
links between G

(1)
a and G(2)b in set H , a set of features will be ex-

tracted based on inter-network meta diagrams. Formally, the feature
vector extracted for the link l ∈ H can be represented as vector
xl ∈ Rf , where f is the number of types of inter-network meta dia-
grams. Meanwhile, we can denote the label of link l ∈ H as yl ∈ Y,
and Y = {0,+1}, which denotes the existence of anchor link l be-
tween the networks. For the existing anchor links in setD, they will
be assigned with +1 label; while the labels of anchor links in P are
unknown. All the labeled anchor links in set D can be represented
as a tuple set {(xl ,yl )}l ∈D . The discriminative component can ef-
fectively differentiate the positive instances from the non-existing
ones, which can be denoted as mapping f (·;θf ) : Rd → {+1, 0}
parameterized by θf . In this paper, we will use a linear model to
fit the link instances, and the discriminative model to be learned
can be represented as f (xl ;w) = w⊤xl + b, where θf = [w,b]. By
adding a dummy feature 1 for all the anchor link feature vectors,
we can incorporate bias term b into the weight vector w and the
parameter vector can be denoted as θf = w for simplicity. The
introduced discriminative loss function on the labeled set D can be
represented as

L(f , D;w) =
∑
l∈D

(
f (xl ;w) − yl

)2
=

∑
l∈D

(w⊤xl − yl )2 .

Meanwhile, we also propose to utilize the unlabeled anchor links
to encourage the learned model can capture the salient structures
of all the anchor link instances. Based on the above discriminative
model function f (·;w), for an unlabeled anchor link l ∈ P, we can
represent its inferred “label” as yl = f (xl ;w). Considering that the
result of f (·;w) may not necessary the exact label values in Y, in
the generative component, we can represent the generated anchor
link label as siдn

(
f (xl ;w)

)
∈ {+1, 0}. How to determine its value

will be introduced later in the joint function. The loss function
introduced in the generative component based on the unlabeled
anchor links can be denoted as

L(f , P;w) =
∑
l∈P

(
w⊤xl − siдn

(
f (xl ;w)

) )2
.
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As introduced before, the anchor links to be inferred between
networks are subject to the one-to-one cardinality constraint. Sub-
ject to the cardinality constraint, the prediction tasks of anchor
links between networks are no longer independent. For instance,
if anchor link (u(1)i ,u

(2)
j ) is predicted to be positive, then all the

remaining anchor links incident to u(1)i and u(2)j in the unlabeled
set P will be negative by default. Viewed in such a perspective,
the cardinality constraint on anchor links should be effectively
incorporated in model building, which will be modeled as the
mathematical constraints on node degrees. To represent the user
node-anchor link relationships in networks G(1)a and G(2)b respec-
tively, we introduce the user node-anchor link incidence matrices
A(1) ∈ {0, 1} |U

(1)
a |× |H | ,A(2) ∈ {0, 1} |U

(2)
b |× |H | . Entry A(1)(i, j) = 1

iff anchor link lj ∈ H is connected withu(1)i inG(1)a , and it is similar
for A(2).

According to the analysis provided before, we can represent the
labels of links in H as vector y ∈ {+1, 0} |H | , where entry y(i)
represents the label of link li ∈ H . Based on the anchor link label
vector y, user node-anchor link incidence matrices A(1) and A(2),
the one-to-one constraint on anchor links can be denoted as the
constraints on node degrees as follows:

0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

By combining the loss terms introduced by the labeled and unla-
beled anchor links together with the cardinality constraint, we can
represent the joint optimization objective function as

min
w,y

L(f , D;w) + L(f , P;w) + γ · ∥w∥22

s .t . yl ∈ {+1, 0}, ∀l ∈ H,
0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

In fact, we can simplify the loss function as:

L(f , D;w) + L(f , P;w) = L(f , H;w) = ∥Xw − y∥22 ,

where matrix X = [x⊤l1 , x
⊤
l2
, · · · , x⊤l |H| ]

T denotes the feature matrix
of all the links in the setH .

We use a hierarchical alternative variable updating process to
solve the problem:
• Step (1): Fix y, Update w.

With y fixed, the objective function involving w is:

min
w

c
2
∥Xw − y∥22 +

1
2
∥w∥22 .

Here, the objective function is a quadratic convex function, and its
optimal solution can be represented as

w = c(I + cX⊤X)−1X⊤y,

where c(I+cX⊤X)−1X⊤ is a constant matrix. Therefore, the weight
vector w depends only on the y variable.
• Step (2): Fix w, Update y.

With w fixed, together with the constraint, we know that terms
L(f ,D;w), L(f ,P;w) and ∥w∥22 are all constant. And the objective
function will be

min
y
∥Xw − y∥22

s .t . yl ∈ {+1, 0}, ∀l ∈ H,
0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

Table 4: Properties of the Heterogeneous Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link friend/follow 164,920 76,972
write 9,490,707 48,756

It is an integer programming problem, we use the greedy link
selection algorithm proposed in [25] based on values ŷ = Xw,
which can achieve 1

2 -approximation of the optimal solution.
4.3.2 Parallel Implementation of Sub-network Alignment. The time
complexity of these two steps is related to |H | which is determined
by the number of users from two sub-networks. The alignment
for all the sub-network pairs in the setM can be implemented in
parallel, so compared with the alignment method conducted in the
whole networks directly, SHNA has the apparent advantage even
counting the time consumption of the network synergistic partition.
Finally, we have to aggregate alignment results from parallel sub-
network alignment in the sub-network pairs. In SHNA, we choose
to preserve the original results from all sub-network pairs in the
setM as the final result.

5 EXPERIMENTS
5.1 Dataset
Our dataset comes from two real-world heterogeneous networks:
Foursquare and Twitter, which are both famous online social net-
works. The key statistical data of these two networks is listed in
Table 4. Detailed information about the strategy of crawling the
dataset can be reached in [6].
5.2 Experimental Settings
5.2.1 Experimental Setup. We can obtain the set of anchor links
across Foursquare and Twitter, which will be the positive links.
The links between users from Foursquare and Twitter except for
anchor links can be treated as negative links. We apply the 2-fold
cross-validation to partition the links with the ratio 1 : 1. One fold
will be used as the training set and the other one will be treated
as the test set. The features depending on the known anchor links
like inter-network meta diagrams are extracted only on the basis of
the training set. All codes are implemented in Python, and we run
the experiments on a Dell PowerEdge T630 Server with 2 20-core
Intel CPUs and 256GB memory.
5.2.2 Comparison Methods. Comparison methods in the experi-
ments can be divided into 2 categories according to whether original
networks are partitioned or not in building models.
Comparison Methods without partition:
• IterClip-MD: IterClip-MD extends the cardinality constrained
link prediction model in [25] by incorporating meta dia-
grams.
• Mna-MD: Mna-MD extends the anchor links prediction
model in [6] by incorporating meta diagrams as features.
• DeepWalk: A randomwalk based network embeddingmethod
[15]. We utilize it to learn the representation of users merely
based on the friendship information and concatenate the
representations of two users as the feature of a potential
anchor link. Then SVM is trained to predict anchor links
based on this feature.
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Table 5: Performance comparison of different methods for
Network Alignment.

Metrics

Methods Precision Recall F1 Time (sec)

SHNA(θ = 10) 0.677±0.002 0.500±0.001 0.575±0.001 7.62
SHNA(θ = 80) 0.691±0.001 0.532±0.011 0.601±0.006 9.12
SHNA(θ = 100) 0.684±0.010 0.515±0.018 0.588±0.015 12.87

SpectralIter 0.481±0.002 0.392±0.013 0.432±0.006 450.14
KmeansIter 0.415±0.003 0.239±0.009 0.303±0.008 361.97

IterClip-MD 0.318±0.004 0.281±0.002 0.298±0.003 49393.81
Mna-MD 0.137±0.008 0.259±0.003 0.178±0.002 6480.38
DeepWalk 0.043±0.001 0.075±0.001 0.054±0.000 18756.13

Metapath2vec 0.071±0.001 0.102±0.002 0.084±0.001 21314.67

• Metapath2vec: A meta-path based heterogeneous network
embedding method [2]. Similar to DeepWalk, we use it to
learn the embeddings and predict anchor links with a SVM.
We report the best result of all intra-network meta diagrams.

Comparison Methods with partition:
• SHNA: SHNA is the model proposed in this paper.
• SpectralIter: It implements the network partition using
spectral clustering, and the sub-network alignment algo-
rithm is the same as SHNA.
• KmeansIter: In KmeansIter , we directly use k-means clus-
tering to partition the networks.

Some recent methods based on graph embedding and structural
seeds like [3, 5, 22, 28] are designed for homogeneous graph and at-
tributed networks, which are different from our problem definition.
Therefore, we do not include all of them in comparison methods.

5.3 Experimental Results with Analysis
We will evaluate network synergistic partition and parallel sub-
network alignment respectively together with partitioned networks
matching that connects them.

Figure 4: Discrepancy with different parameter θ
5.3.1 Network Synergistic Partition. To illustrate the effectiveness
of network synergistic partition, we evaluate the results of the parti-
tion before performing the alignment. First, according to Definition
8, the discrepancy of different partition methods is displayed in
Figure 4 which shows that network synergistic partition can mini-
mize the discrepancy compared to the other two methods, and the
effect of decreasing the discrepancy becomes more apparent as the
weight of θ increases.

Besides, according to M-Score defined in Section 4.2, we can ob-
serve the average M-Score of Top 20 subnetwork pairs in Figure 5.

Figure 5: The average M-Score of Top 20 sub-network pairs

It essentially demonstrates that network synergistic partition has
the best performance in the task of partitioning according to our
requirements. Here we do not apply some classic metrics which are
often used to evaluate the clustering result, because in SHNA, the
partition is used by the next stage in order to better perform the
alignment. Conventional metrics for clustering may not be effective
here. For example, the partition method obtaining a better result
based on conventional clustering metrics in every single network
does not guarantee that partitioning multiple networks simultane-
ously can obtain well-matched sub-networks. From Figure 4 and
Figure 5, we can find that as θ rises, the discrepancy is declining, but
it does not bring the monotonous rise of the average M-Score. We
will make detailed analysis through the discussion on the parameter
θ in Section 5.5.

Figure 6: The ratio of covering unknown anchor links
5.3.2 Partitioned Networks Matching. Based on the partitioned net-
works, we can select the optimal sub-network pairs to perform the
alignment and reduce the search space by ignoring links not exist in
sub-network pairs. We choose the optimal sub-network pairs based
on the ranking of M-Score, so to illustrate that our M-Score-based
ranking is reliable and effective, we present related experimental
results in Figure 6. Here, the x-axis denotes the number of selected
top sub-network pairs, i.e., x = 5 means top 5 sub-network pairs in
the ranking list are selected for alignment. For the y-axis indicator,
we use the truth of the test set where the coverage ratio represents
the coverage of positive anchor links in the test set. The reason
why the coverage ratio is important is that if the positive anchor
links in the test set are not included in selected sub-network pairs,
there will be no chance to be predicted to positive in the alignment
stage. In other words, positive anchor links are pruned as negative
links. What needs to be explained is that the truth of the test set
is only used for evaluation here. From Figure 6 we can find top
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30 sub-network pairs from network synergistic partition can cover
92.8% positive anchor links which is higher than two other methods
with the ratio 0.866 and 0.693 respectively. It proves not only the
matching policy we used is effective which guarantees that 92.8%
positive anchor links have the chance to be predicted, but also the
effectiveness of network synergistic partition. From another perspec-

Figure 7: Upward trend of potential anchor links

tive, the upward trend of the number of potential anchor links with
the rise of the coverage ratio can also reflect the performance of
negative links pruning. We display the correlation in Figure 7, and
it is obvious that the increasing rate of network synergistic partition
is the slowest. It means more impossible and meaningless links
are pruned by SHNA, which can affect both time complexity and
prediction performance badly in the alignment stage.

5.3.3 Parallel Sub-network Alignment. The experimental results of
the alignment stage are shown in Table 5. The methods we test in
experiments can all output link prediction labels, and we will use
F1, Recall and Precision as evaluation metrics. We will not present
the metric Accuracy in the tables, because in such a class-imbalance
setting of alignment tasks (the number of negative anchor links is
much larger than positive links), the value of Accuracy is not so crit-
ical in evaluation. Firstly, we focus on the comparison among SHNA
and IterClip-MD. We can find SHNA has a distinct advantage over
IterClip-MD according to all four metrics. It means the alignment
task achieves better performance after partition compared with
no partition. We insist that network synergistic partition not only
ensures the scalability but also effectively reduces the search space,
that is, pruning impossible and meaningless links. In fact, these
links will increase time complexity and affect the alignment stage
badly simultaneously. Besides, the comparison among SHNA, Deep-
Walk and Metapath2vec verifies the effectiveness of inter-network
meta diagram based features. It also reminds us that the hetero-
geneity of social networks needs to be handled in a precise way.
Meanwhile, by comparing SHNA, KmeansIter and SpectralIter , we
can demonstrate the partition stage is critical to the alignment stage.
SHNA overperforms other methods significantly which verifies the
effectiveness of network synergistic partition as well. We can ob-
serve that the Recall of KmeansIter is lower than IterClip-MD which
means the partition based on simple k-means will prune lots of
positive anchor links and miss them in the final alignment result.
5.4 Time and Convergence Analysis
The number of rounds used to convergence has a significant impact
on running time. In Figure 8, we show the label matrix y changes in
each iteration when built SHNA and IterClip-MD respectively. Here,
the x axis denotes the iterations, and the y axis denotes the changes
of y in sequential iterations i and i − 1, i.e., ∆y =



yi − yi−1


1.

Figure 8: Convergence comparison
Because the iteration steps are excuted simultaneously within each
subnetwork pair for SHNA, we set the changes of y as the sum
of the changes of subnetwork pairs, i.e., ∆y =

∑m
j=1




yij − yi−1
j





1
.

From Figure 8, we can find SHNA can reach convergence in much
fewer rounds than IterClip-MD where IterClip-MD needs more than
20 rounds to converge, but SHNA converges within 5 rounds.

The alignment time cost of different methods is listed in Table 5.
IterClip-MD can achieve better prediction results than classic clas-
sification methods such as Mna-MD, but it costs the longest time.
The reason lies in as the size of network increases, the number
of rounds required for convergence increases together with each
iteration time rises rapidly. SHNA has the best performance in the
alignment time cost compared with SpectralIter , KmeansIter , be-
cause the partition results of SpectralIter , KmeansIter are uneven
and some subnetworks are very large in size. In conclusion, SHNA
can deduct the alignment time cost significantly based on faster
convergence speed and parallel computing.
5.5 Parameter Analysis
Considering the objective function in Section 4.1.3 is composed of
3 parts, the parameters α , β , and θ reflect the extent to which each
part influences the objective function, the proportional relation-
ship among them must be more critical than the numerical values.
Therefore, we fix α = β = 1 because we assume that each network
is equally important for partition, and tune θ . From Figure 4, we can
observe that the discrepancy keeps monotonous decline with the
rising of θ . But combining with Figure 5, the average M-Score gets
the highest value when θ = 80 instead of θ = 100 which means the
value of discrepancy is not the smaller the better for the synergistic
partition. We further observe the result of partition with θ = 1000
and find that in order to make the discrepancy infinitely close to
0, most of the anchor links in the training set are concentrated in
one pair of sub-networks, and IntraMD-Pro is completely ignored.
When θ is small, the result of partitioning will approximate spectral
clustering, because InterMD-Pro will not work due to the insignifi-
cant weight. Further, the results of alignment with different θ can be
observed in Figure 9 intuitively. The results show that F1 and Recall
obtain the best performance when θ = 80. On the contrary, when
the value of θ is too large or too small, the performance becomes
worse. In conclusion, θ should be in a suitable interval to make all
parts of the objective function contribute to final results.
6 RELATEDWORK
Network alignment has become an important research topic in re-
cent years. Network alignment has concrete applications in various
areas, e.g., protein-protein-interaction(PPI) and gene regulatory
networks alignment in bioinformatics [17], chemical compound
matching in chemistry [20], graph matching in combinatorial math-
ematics [11], figure matching and merging in computer vision [1],
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(a) F1 (b) Recall (c) Precision (d) Accuracy
Figure 9: Performance Analysis with different parameter θ

and data schemas matching in data management [12]. In the field
of social networks, network alignment provides a powerful tool for
information fusion[27]. Zafarani et al. studies the cross-network
user matching problem in [24] based on both users relationships
and various attribute information. Kong et al.[6] propose to fully
align social networks with the heterogeneous link and attribute
information simultaneously based on a supervised learning setting.
Zhang et al.[25, 26] propose to study the problem based on the
PU learning setting. A manifold-based social network alignment
method is porposed in [30].

Similarity measurement on heterogeneous networks has been
widely studied. Sun introduces the concept of meta path-based sim-
ilarity in [21]. The meta path suffers from the disadvantage that
cannot describe rich semantics effectively. Meta structure [4] is pro-
posed to similarity measure problem, but entities are constrained
to the same type. Zhao [29] proposes the concept of meta graph for
the single non-attribute network and extends the idea to recom-
mendation problems.

Clustering-based community detection in online social networks
is also related to our SHNA framework. Many different techniques
are proposed to optimize certain measures, e.g., modularity function
[14], and normalized cut [19]. A comprehensive survey of corre-
lated techniques used to detect communities is given by Malliaros
et al.[10] and a detailed tutorial on spectral clustering is provided
by Luxburg [9]. These works are mostly studied based on homoge-
neous networks. Consensus clustering [7, 8, 13] is a sub-topic under
clustering closing to our paper. However, these works mostly aim
to find a single consensus clustering from fully mapped clustering
solutions. Shao et al.[18] proposeMMC which is based on collective
spectral clustering with a discrepancy penalty across sources to
deal with partially unknown mappings. In comparison, the purpose
of partition in our paper is to obtain optimal sub-network matching
instead of optimizing the discrepancy merely.
7 CONCLUSION
In this paper, we study the heterogeneous social network align-
ment problem and propose a novel two-stage framework SHNA
to solve it. In order to address the extremely large search space,
SHNA partitions the original networks with network synergistic
partition. A group of inter- and intra-network meta diagrams are
defined to constitute heterogeneous features. The metricsMatching
Score is proposed to obtain optimal sub-network matching results.
With the support of the partition stage, not only the search space is
greatly reduced, but also the alignment within sub-network pairs
can be performed in parallel. Extensive experiments are conducted
on real-world networks Foursquare and Twitter. The experiment
results demonstrate that SHNA has outstanding performance com-
pared with the state-of-the-art baseline methods in both network
synergistic partition and parallel sub-network alignment stage.
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