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ABSTRACT
Graph Neural Networks(GNNs), like GCN and GAT, have achieved
great success in a number of supervised or semi-supervised tasks in-
cluding node classification and link prediction. These existing graph
neural networks can effectively encode neighborhood information
of graph nodes through their message aggregating mechanisms.
However, there are some unsupervised and structure-related tasks
like community detection, which is a fundamental problem in net-
work analysis that finds densely-connected groups of nodes and
separates them from others in graphs. It is still difficult for these
general-purposed GNNs to learn the needed structural informa-
tion in these particular problems. To overcome the shortcomings
of general-purposed graph representation learning methods, we
propose the Community Deep Graph Infomax (CommDGI), a graph
neural network designed to handle community detection problems.
Inspired by the success of deep graph infomax in self-supervised
graph learning, we design a novelmutual informationmechanism to
capture neighborhood as well as community information in graphs.
A trainable clustering layer is employed to learn the community
partition in an end-to-end manner. Disentangled representation
learning is applied in our graph neural network so that the model
can improve interpretability and generalization. Throughout the
whole learning process, joint optimization is applied to learn the
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community-related node representations. The experimental results
show that our algorithm outperforms state-of-the-art community
detection methods.
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1 INTRODUCTION
With the boom of rich data available for researchers in real-world
networks, it is vital to analyze attributed graphs which tend to
contain more helpful information. For the past few years, graph
neural networks [9, 14, 27] have shown their striking ability to
tackle a series of representation learning related tasks such as node
classification and link prediction [33] in attributed graphs.

Despite their great success, the representations learned from
these models are not a panacea for every downstream task. Most
of the real-world networks display the community structure. Com-
munity detection, also known as graph clustering, can find such
structural feature and serve as a crucial analysis tools to have an
insight into complex networks or graphs [4, 22, 32]. A common
definition of community detection is to partition graph nodes into

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1843

https://doi.org/10.1145/3340531.3412042
https://doi.org/10.1145/3340531.3412042


several disjoint groups, where internal nodes are more similar to
each other than external nodes. Spontaneously, with the develop-
ment of network analysis, using graph neural network to explor-
ing communities in attributed graphs becomes a new trend for
researchers [7, 12, 25].

General-purposed GNN

Community detection oriented GNN

vector space of node embeddings
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B
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vector space of node embeddings
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Figure 1: An example to illustrate the shortcoming of pre-
vious representation-learning-based community detection
methods.

Community detection is generally defined as an unsupervised
task, where no label information can be used to train a graph neu-
ral network. A natural way to do community detection is to learn
node embeddings in an unsupervised manner and then perform
clustering algorithms on the node embeddings. Recently, some un-
supervised graph neural networks [23, 28] have achieved fairly
high performance on node classification tasks, like Deep Graph
Infomax (DGI) [28]. DGI extracts self information of graph as well
as each node representation and then maximize the mutual infor-
mation between graph representation and node representations.
DGI can perform self-supervised learning through introduceing
contrastive training [19, 20] methods, which help to learn effective
node representations to deal with a number of downstream tasks.

Simple clustering methods like K-means can be performed on the
learned representations to do the community detection. However,
this straightforward two-step approach brings about a problem
that the clustering step can hardly optimize the node embedding
learning.

Figure 1 is an example to illustrate the shortcoming of general-
purposed graph neural networks and two-step approaches on com-
munity detection tasks. In a general-purposed graph neural net-
work, community detection is performed sequentially so that the
encoder tend to cast the neighbor nodes to the closer vector space.
However, community detection problem requires more higher-
order structural information and the nodes in one community with-
out direct edge may be more similar to each other than the neighbor
nodes. It is necessary to perform community detection problems in
a community detection oriented graph neural network.

Some end-to-end graph neural network frameworks have been
proposed lately to replace two-step community detection approaches,
most of them are graph autoencoder [15] based and focus on the
adjacency matrix reconstruction [8]. The disadvantage of these
methods is that they directly leverage an edge-related clustering
loss to learn the data representation with high cluster cohesion
but lack an effective way to capture the higher-order structural
relationship between nodes and communities, which may still lead
to the under-expression of node representations.

In this paper, we still study community detection problems with
graph neural networks. But we want to capture community-related
characteristics more comprehensively with the help of community
oriented optimization. It is challenging due to the following reasons:

• Graph learning without labels: Generally, community de-
tection tasks are performed without labels which means
the neural work itself is expected to generate some self-
supervised information which can encourage the output of
the encoder to have desired characteristics.

• Community-independent representations: The repre-
sentations learned by general-purposed graph neural net-
works cannot capture clustering and community structural
information. It is necessary but challenging to combine the
clustering process with the graph neural network to better
handle the community detection problems.

• Entangled representations: The representations learned
by graph neural networks under matrix reconstruction ob-
jectives are entangled and has poor interpretability.

• End-to-end learning: Unifying the graph and clustering
learning is challenging but useful to a community oriented
graph neural network. The clustering assignment can help
update the node representation in a community-related way.

In order to overcome the challenging issues mentioned above, we
propose a new community oriented graph neural network, Commu-
nity Deep Graph Infomax (CommDGI). To encode node structural
and community-aware representations in our framework, mutual
information maximization [2] is used to capture local and global
structural information. Unlike DGI, our model proposes a new
mutual information maximization paradigm. Graph mutual infor-
mation, similar to the one used in DGI, is calculated between node
and graph while community mutual information is calculated be-
tween node and community (sub-graph). These two kinds of mutual
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information are maximized together to encode the graph and clus-
tering feature of each node. We also use a trainable clustering layer
in our graph neural network so that the graph neural network can
be trained in an end-to-end manner for community detection tasks,
and the classical community detection optimization goal modularity
[21] is employed to learn more structural feature with mutual infor-
mation together through the soft K-means assignment in clustering
layer.

To improve the generalization and interpretability of entangled
representations, we propose a disentangled learning method in
our graph neural network as well. Recent studies [13, 18] have
shown that disentangled representation learning is able to bring
enhanced generalization ability and be more interpretable espe-
cially in some scenarios where extracting information beyond the
local neighborhood is needed [17]. Our model assumes that the
representation of nodes can be split into multiple channels and
through the disentangled operation, the whole model can learn
more latent information.

Furthermore, the improvements mentioned above can be unified
with joint optimization, and the representation of nodes as well as
the community assignment can be learned together.

Our main contributions are summarized as follows:

• We propose a novel graph neural network Deep Community
Graph Infomax (CommDGI) for community detection. The
proposed model can effectively encode node attributes in a
self-supervised manner with the idea of DGI’s graph mutual
information maximization. To our knowledge, it is a pretty
new attempt to combine community detection with mutual
information maximization.

• We add a trainable clustering layer into the graph neural
network. We employ modularity objective and design a new
community detection objective on attributed graphs named
communitymutual information to help learn the community-
related node representations.

• We use disentangled representation while training and ag-
gregating node information in the clustering layer, which
can improve the interpretablity of the whole model.

• Our model can learn the community partition directly and
use multiple objectives to optimize the node representation.
The clustering step and node representation learning step
are optimized together.

• Experiments on real-world datasets demonstrate the superi-
ority of CommDGI in comparison with the state-of-the-art
community detection methods.

2 PRELIMINARY
Definition 1. (Attributed Graphs): An attributed graph is defined
as𝐺 = (𝑉 , 𝐸, 𝑋 ), where𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of 𝑛 nodes with
|𝑉 | = 𝑛, 𝐸 ⊆ 𝑉 ×𝑉 is the edge set, and 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} are the
attribute values where 𝑥𝑖 ∈ R𝑑 , 𝑥𝑖 is an attribute vector associated
with 𝑣𝑖 , and 𝑑 is the dimension of attribute vectors. In addition,
adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 is used to describe the observed
graph structure. If an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, 𝐴𝑖 𝑗 = 1; otherwise, 𝐴𝑖 𝑗 = 0.
Throughout this paper, we restrict our discussions on undirected
and unweighted attributed graphs.

Table 1: Descriptions of frequently-used notations in this
framework

Notation Description

𝐴𝑖 𝑗 Adjacency matrix value between node 𝑣𝑖 and node 𝑣 𝑗
𝑣𝑖 Node 𝑖 in Graph 𝐺
𝑥𝑖 Original features of node 𝑣𝑖
ℎ𝑖 Learned representations of node 𝑣𝑖
ℎ𝑖𝑘 Learned representations of node 𝑣𝑖 in the 𝑘-th channel
𝜇𝑘 The cluster center of community 𝑘
𝜇𝑘𝑘 The 𝑘-th channel of the cluster center of community 𝑘
𝑟𝑖𝑘 The degree to which node 𝑣𝑖 is assigned to cluster 𝑘

𝑅 = {𝑟𝑖𝑘 } The entire assignemnt matrix
𝑑𝑖 The degree of node 𝑣𝑖
𝑠 The summary vector of graph 𝐺
𝐷 Degree matrix
D Discriminator
E Encoder
R Readout function

Problem Definition: In this paper, we consider the community
detection problems in attributed graphs. Given an attributed graph
𝐺 and the number of communities 𝐾 , the community detection
method in this paper aims to find a function 𝑓 : 𝑉 → {1, 2, . . . , 𝐾}
such that for all nodes satisfying 𝑓 (𝑣𝑖 ) = 𝑘 belong to the 𝑘-th
community. The partition of function 𝑓 should follow these prin-
ciples: (1) The nodes in the same group are closely connected to
each other while the nodes in different groups are the opposite. (2)
The nodes in the same community tend to have similar attribute
values while the nodes in different communities may have rela-
tively diverse attribute values even they are neighbors in the graph
level. (3) Function 𝑓 can properly preserve the node attribute and
structural information of the attributed graph 𝐺 . Finally, we can
find out disjoint groups of nodes and their induced subgraphs, i.e.,
communities.

3 THE PROPOSED MODEL
In this section, we go into the details of the proposed model Com-
mDGI. For the convenience of elaboration, we provide the frequently-
used notations through this paper in Table 1. We will detail each
component of CommDGI and summarize the complete procedure
of CommDGI in pseudo code at the end of this section.

3.1 Graph Infomax Layer
To assign nodes into different communities, we should encode the
attributes of each node first. We construct the graph infomax layer
with a general unsupervised learning graph neural network. The
idea of this layer is similar to DGI that we maximize the graph MI
between the graph-level representation and node-level representa-
tions.

In order to capture node-level information, our encoder E is a
Graph Convolutional Network (GCN) [14] model with the following
propagation rule:

𝐻 = E(𝑋,𝐴) = 𝜎 (𝐷̂− 1
2𝐴𝐷̂− 1

2𝑋Θ) . (1)
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Figure 2: The conceptual framework of Community Deep Graph Infomax (CommDGI). Given an attributed graph, CommDGI
learns a hidden node representation through a deep graph infomax encoder, and manipulates it with a trainable clustering
layer, which is optimized together with the graph encoder and perform clustering assignment during training. We choose the
objectives from three scales including node level(graph MI), community level(community MI) and graph level(modularity).

Here, 𝐴 = 𝐴 + 𝐼𝑛 is the adjacency matrix with inserted self-loop
and 𝐷̂ is degree matrix where 𝐷̂𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . For the nonlinearity, 𝜎

is the parametric ReLU(PReLU) function [10] and Θ is a learnable
linear transformation applied to every node. 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑛}
represents higher-level representations ℎ𝑖 ∈ R𝑑

′
of each node 𝑣𝑖 .

We apply contrastive methods here to help urge the learned
node representations to better capture the structural similarities
of different nodes in the attributed graph. The negative sampled
adjacency matrix 𝐴̃ is the same as original adjacency matrix𝐴while
the original features 𝑋 are randomly shuffled in respective rows to
get negative sampled features 𝑋̃ . We can learn negative sampled
node representations 𝐻̃ with E(𝑋̃ , 𝐴̃).

In order to acquire graph-level representation, we leverage a
readout function R : R𝑛×𝑑

′ → R𝑑′ to summarize the node repre-
sentations into a graph-level representation 𝑠 = R(E(𝑋,𝐴)). The
choice of R in our CommDGI will be discussed in the parameter
settings (Section 4.3).

We use a discriminator to help maximize the local mutual in-
formation, D : R𝑑

′ × R𝑑′ → R, such that D(ℎ𝑖 , 𝑆) represents the
probability score assigned to this patch-summary pair (should be
higher for patches contained within the summary). Specifically, we
implement the discriminator D with a dot-product of two vectors
followed by a sigmoid function.

The graph MI objective uses a noise-contrastive type objective
[20] with a standard binary cross-entropy (BCE) loss between
the samples from the joint (positive examples) and the product
of marginals (negative examples). We propose the follow graph MI
loss:

L𝑔𝑟𝑎𝑝ℎ =
1

𝑁 +𝑀

(
𝑁∑
𝑖=1
E(𝑋,𝐴) [logD(ℎ𝑖 , 𝑠)]+

𝑀∑
𝑗=1
E(𝑋̃ ,𝐴̃) [log(1 − D(ℎ̃ 𝑗 , 𝑠))]

)
.

(2)

Here, 𝑁 and𝑀 represent the number of positive samples and nega-
tive samples.

3.2 Trainable Clustering Layer and
Community-oriented Objectives

In this clustering layer, we implement a differentiable K-means
clustering [30], which produces a soft assignment of the nodes to
clusters, along with the cluster centers in embedding space.

In community detection problems, the cluster assignment of
nodes is equivalent to assigning the nodes to communities. When
we update the model, the node assignment of clustering layer is
trained and this is the community assignment we want to learn
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from the whole framework. We first introduce the forward pass of
this layer.

Considering a node 𝑣𝑖 and ℎ𝑖 is its representation, 𝜇𝑘 is the
cluster center of cluster 𝑘 . 𝑅 = {𝑟𝑖𝑘 } is the assignment matrix of the
soft K-means, where 𝑟𝑖𝑘 is the degree to which node 𝑣𝑖 is assigned
to cluster 𝑘 . In the classic hard K-means, 𝑟𝑖𝑘 is a binary number,
but in this layer we let it be a real number satisfying

∑
𝑘 𝑟𝑖𝑘 = 1.

Specifically, we use a soft-min assignment to assign each point to
the cluster centers based on distance. We use norm ∥·∥ as negative
cosine similarity due to its strong empirical performance. 𝛿 is an
inverse-temperature hyperparameter which defines how hard to
employ the clustering process. We can optimize the cluster centers
via an iterative process analogous to the typical K-means updates
by alternately setting:

𝜇𝑘 =

∑
𝑖 𝑟𝑖𝑘ℎ𝑖∑
𝑖 𝑟𝑖𝑘

,∀𝑘 = 1, . . . , 𝐾, (3)

𝑟𝑖𝑘 =
𝑒𝑥𝑝 (−𝛿 ∥ℎ𝑖 − 𝜇𝑘 ∥)∑𝐾
𝑧=1 𝑒𝑥𝑝 (−𝛿 ∥ℎ𝑖 − 𝜇𝑧 ∥)

,∀𝑘 = 1, . . . , 𝐾 . (4)

These iterates converge to a fixed pointwhere 𝜇 remains the same
between successive updates. The backward pass of this layer can
be effectively approximated without unrolling the entire iteration
trajectory [30].

Having obtained the cluster assignment 𝑅 and the cluster cen-
ters 𝜇 in a differentiable manner, we need a way to differentiably
interpret the clustering as a soft solution to the optimization prob-
lem and differentiate a relaxation of the objective value of the
graph optimization problem in terms of that solution. We propose
a community oriented MI in our framework. Community MI can
encourage the representations to encode more community-related
characteristic of nodes in the graph learning.

Cluster centers 𝜇, node representations ℎ𝑖 and node assignment
𝑟𝑖𝑘 are already known in the layers mentioned above. We define
the Community MI objective as following equation:

L𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 =
1
𝑁

𝑁∑
𝑖=1

𝐾∑
𝑘=1
E(𝐻,𝜇) [logD(𝑟𝑖𝑘ℎ𝑖 , 𝜇𝑘 )] . (5)

Community MI in CommDGI takes node representations as the
local information and cluster centers as the community-level in-
formation. We still use a discriminator D here to represent the
probability score assigned to every patch-summary pair.

Similar to the intention of graph MI maximization, community
MI maximization estimation encourages the framework to learn
more community-level information of each node while updating
so that the learned embeddings of CommDGI can be community
detection oriented and different from the general-purposed graph
neural networks.

Modularity is a classical objective in community detection opti-
mization which estimates the quality of a partition of the network
in communities. The general expression of modularity is:

Q =
1
2𝑚

∑
𝑖 𝑗

𝐾∑
𝑘=1

(𝐴𝑖 𝑗 −
𝑑𝑖𝑑 𝑗

2𝑚
)𝑟𝑖𝑘𝑟 𝑗𝑘 , (6)

where 𝑚 is the number of edges of the network, the sum runs
over all pairs of nodes 𝑣𝑖 and 𝑣 𝑗 , 𝐴𝑖 𝑗 is the element of adjacency

matrix, 𝑑𝑖 is the degree of node 𝑖 and 𝑟𝑖𝑘 is 1 if node 𝑣𝑖 is assigned
to community 𝑘 and 0 if not. This measures the number of edges
within communities compared to the expected number if edges
were placed randomly.

We can apply the modularity objective into our clustering layer
as:

L𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
1
2𝑚

Tr[𝑅𝑇 (𝐴𝑖 𝑗 −
𝑑𝑖𝑑 𝑗

2𝑚
)𝑅], (7)

which is the expected value of a partition sampled according to
assignment 𝑅.

Modularity is a sort of distance between the actual network
and an average over random networks, ignoring altogether the
distribution of the relevant community variables, like the fractions
of edges within the clusters, over all realisations generated by the
configuration model. If the distribution is not strongly peaked, the
values of the community variables measured on the original graph
may be found in a large number of randomised networks, even
though the averages look far away from them. So we pay more
attention to the significance of the modularity maximization in our
model than to the modularity value itself.

By comparison, Graph MI and community MI pay a lot of at-
tention on the node attributes learning while modularity is more
edge-related. By employing the modularity objective in our joint
learning, CommDGI can capture more edge information and graph-
level partition information than other graph neural network comm-
nity detection approaches.

Clustering Layer Graph Infomax 

Multi-channel Node Embedding

Disentangled Aggregation

Community Centers

Figure 3: An example to illustrate the disentangled opera-
tion of CommDGI.

3.3 Disentangled Learning
The existing graph neural networks generally take a holistic ap-
proach to representation learning: the representation learned for
a node describes the node’s neighborhood as a perceptual whole.
Therefore, the nuances between the different parts of the neighbor-
hood are ignored. However, the formation of a graph always display
a community structure which indicates the node in a real-world
network usually connects with others for various reasons (e.g.,
company, interest, family), and therefore possesses a neighborhood
consisting of several different components.

In the community detection problem, a disentangled representa-
tion can be more explicable. We can naturally assume that the node
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in the same community tend to have the similar representation on
a particular aspect. And the determined aspect of representation
of different communities are diverse. A node may be assigned a
particular community due to its feature on a particular component
(we call it a special channel in this paper).

The feasibility of disentangled representation has been proved
in DisenGCN [18]. In this paper, we propose a simplified version of
disentangled representation learning aiming to effectively improve
the community detection related generalization of our graph neural
network.

We define the representation of node 𝑣𝑖 asℎ𝑖 = {ℎ𝑖1, ℎ𝑖2, . . . , ℎ𝑖𝐾 }
where ℎ𝑖 ∈ R𝑑

′
and ℎ𝑖𝑘 ∈ R

𝑑′
𝐾 represents the representation on the

k-th channel related to community 𝑘 . The representation of node
𝑣𝑖 , ℎ𝑖 , is a concat result of {ℎ𝑖1, ℎ𝑖2, . . . , ℎ𝑖𝐾 }.

The number of channels is determined by the number of com-
munities before graph learning. We rewrite the node assignment
formula of the clustering layer after applying the disentangled
operation:

𝜇𝑘𝑘 =

∑
𝑖 𝑟𝑖𝑘ℎ𝑖𝑘∑
𝑖 𝑟𝑖𝑘

,∀𝑘 = 1 . . . 𝐾 (8)

where 𝜇𝑘𝑘 donates the k-th channel of the cluster center repre-
sentation of community 𝑘 . The rest channels of 𝜇𝑘 are defined by
the mean value of each node representation. In another word, we
only aggregate the information related to community 𝑘 into the
community center embedding.

Through this disentangled representation aggregation, themodel’s
communityMI can be updated in a different way and our CommDGI
can learn the disentangled information of nodes and communities,
which is able to capture more specific community-related features
beyond the traditional learning pattern.

Algorithm 1 Community Deep Graph Infomax
Require: Graph𝐺 with 𝑛 nodes; number of communities 𝐾 ; Num-

ber of iterations 𝑖𝑡𝑒𝑟 ; Target distribution update interval 𝑇 .
Ensure: Node embeddings 𝐻 , final community detection partition

results 𝑅.
1: for 𝑙 = 1 to 𝑖𝑡𝑒𝑟 − 1 do
2: Update the node representations 𝐻 by Eq.(1);
3: Initial the cluster centers 𝜇 by K-means++ [1];
4: Aggregate the node representations𝐻 to community centers

𝜇 in a disentangled manner by Eq.(8);
5: if 𝑙%𝑇 == 0 then
6: Calculate the target community assignment 𝑅 by Eq.(4);
7: end if
8: Calculate three objective loss, graph MI, community MI and

modularity by Eq.(2) Eq.(5) Eq.(7);
9: Update the whole framework by maximizing Eq.(9);
10: end for
11: Get the clustering results with final optimization by Eq.(10).

3.4 Joint Optimization
We jointly optimize the graph representation learning and cluster-
ing layer, and define our total objective function as:

Table 2: Benchmark Graph Datasets

Dataset #Nodes #Links #Communities #Features
Cora 2,708 5,429 7 1,433

Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,378 3 500

L = 𝛼L𝑔𝑟𝑎𝑝ℎ + 𝛽L𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 + L𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦, (9)
where L𝑔𝑟𝑎𝑝ℎ is the graph MI loss, L𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 is the community
MI loss and L𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 is the modularity loss. 𝛼 and 𝛽 are the
coefficients that control the balance of three objectives. It is worth
mentioning that we could gain our community detection result
directly from the last optimized result, and the label estimated for
node 𝑖 could be obtained as:

𝑐𝑖 = argmax
𝑘
𝑟𝑖𝑘 , (10)

which is the most likely assignment from the last soft K-means
assignment distribution 𝑅.

Our method is summarized in Algorithm 1. Our algorithm has
the following advantages:

• Unsupervised Graph Learning: The graph infomax layer
can effectively aggregate the node information by contrastive
training and graph MI.

• Clustering Oriented Representations: The proposed un-
supervised learning clustering component manipulates the
embedding to improve the clustering performance.

• Disentangled Learning: The disentangled node learning
and aggregation can be leveraged to more comprehensively
describe the node relationship with every community.

• Joint & End-to-end Optimization: The framework jointly
optimizes the three parts of the loss functions, learns the
embedding and performs community detection in a unified
framework.

4 EXPERIMENTS
4.1 Datasets
Weuse three standard citation networks, Cora, Citeseer and Pubmed,
which are widely-used for assessment of attributed graph analysis
in our experiments. Detailed information of the datasets is summa-
rized in Table 2, and publications in the datasets are categorized by
the research sub-fields.

4.2 Comparison Models
We compared a total of eight algorithms with our method in the
experiments. The community detection algorithms cover the ap-
proaches that only use node attributes or adjacency matrix informa-
tion, and also include approaches that integrate both. Deep graph
representation learning-based community detection algorithms
were also compared.

Detailed community detection methods used in the experiment
are listed as follows(summarized in Table 3):

• K-means++: K-means is one of the most widely-used clus-
tering algorithm, and we use the K-means++, which employs
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Table 3: Comparision of different models

Method Node
Attributes

Edge
Information

Two
step End-to-end

K-means++
√ × √ ×

DeepWalk × √ √ ×
ComE

√ √ √ ×
CDE

√ √ × √

vGraph
√ √ × √

DAEGC
√ √ × √

AGC
√ √ × √

CommDGI
√ √ × √

the K-means with careful seeding, as a community detection
baseline algorithm here. This method only makes use of node
attributes as shown in Table 3.

• DeepWalk [24]: DeepWalk is a widely-used structural rep-
resentation learning methods based on random walk.

• ComE [6]: ComE is a node representation learning methods
based on community embedding learning.

• CDE [16]: CDE is a community structure embedding method
to encode community structures based on nonnegative ma-
trix factorization optimization.

• vGraph [26]: vGraph is a probabilistic generative model
to learn community membership and node representation
collaboratively.

• DAEGC [29]: DAEGC is a goal-directed graph clustering
approach employing an attention network to encode the
importance of the neighboring nodes to a target node and
decoder is trained to reconstruct the graph structure.

• AGC [34]: AGC is an adaptive graph convolution method for
attributed graph clustering that exploits high-order graph
convolution to capture global cluster structure and adap-
tively selects the appropriate order for different graphs.

• CommDGI: CommDGI is the proposed model of this pa-
per, which is a community detection oriented graph neural
network.

4.3 Evaluation Metrics and Parameter Settings
In our experiment, we will target on the community detection tasks
in attributed graphs and concern the performance of all the compar-
ison community detection methods. We use four clustering metrics
to evaluate the community detection result: clustering accuracy
(ACC), adjusted rand index (ARI), F-score and normalized nutual
information (NMI). A better community detection model should
lead to the higher values for all the metrics.

All the existing links in the citation networks are used to con-
struct the adjacency matrix, and sub-field labels are used as the
ground-truth community assignment.

For end-to-end baseline methods, we carefully choose the best
metrics for each model. For embedding-based baseline methods,
we apply a K-means algorithm with 300 iterations after the node
representation learning to achieve the community assignment of
each node. For ComE algorithm, we leak some label information to
learn the better node representations.

For our community detection framework CommDGI, we use an
one-layer graph convolutional network as the encoder of graph
infomax layer in the experiment. A multi-layer GCN can also work
well in our framework but may not improve the learned representa-
tion too much with the increase of training iterations. The learnable
linear transformation of the encoder computed the node features
with 𝑑 ′

𝑖 𝑗
= 64 in each disentangled channels and we calculate the

average result of the patched node representations as the readout
function R to get the graph-level representation. The initial cluster
centers are chosen by the idea of K-means++, which can help ac-
celerate the convergence of the model. Clustering coefficient 𝛿 is
set to 30 here. Objective parameters are set as 𝛼 = 2 and 𝛽 = 5. We
train our model for 1000 iterations using the Adam optimizer with
the learning rate of 0.001 and the weight decay of 0.2.

4.4 Experiment Result
In the community detection task, we compare the performance
of eight different community detection methods. Table 4 shows
the performance of our model and other seven baseline methods
evaluated by NMI, ACC, F-score and ARI, where the bold values
indicate the best performance. The framework we proposed in this
paper, CommDGI, performs better than all the other methods on
three datasets by NMI, F-score and ARI metrics simultaneously,
which shows its effectiveness in the community detection task.
CommDGI incorporates the community-oriented objectives and
disentangled representation into consideration and thus combine
the node representation learning tasks with clustering tasks.

The ACC of CommDGI beats other algorithms on Citeseer and
Pubmed datasets while is a bit lower than DAEGC on Cora dataset.
The explanation for this result is that our model pays more attention
on the community structural information learning and the other
metrics are the direct metrics of clustering performance evaluation.
The labels of three evaluated datasets is actually the label of sub-
field categories thus our CommDGI approach may not encode the
most related classification information in this aspect.

We can observe from the result table that methods using both
the adjacency matrix information and node attributes of the graph
generally work better than those using only one kind of informa-
tion. On the Cora dataset, for example, ComE, DAEGC, AGC and
our method outperform all the baselines using only one kind of
information. This observation demonstrates that both the graph
structure and node attributes contain useful information for com-
munity detection, and illustrates the significance of capturing the
combination of two-kind information.

In addition, we can observe that the graph neural network meth-
ods like GAEGC, AGC and our method perform much better than
other two-step methods. Specially, vGraph is a generative model
and is different to other optimization-based model we discuss in
this paper. This observation demonstrates that the joint optimiza-
tion of graph representation learning and clustering is effective and
can better encode the community-related graph information on
attributed graphs.

4.5 Ablation Study
We perform an ablation study to understand the importance of
each design choice of our framework based on the NMI result of
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Table 4: Performance comparison with different community detection methods.

K-means++ Deepwalk ComE CDE vGraph DAEGC AGC CommDGI

Cora

NMI 0.221 0.249 0.366 0.275 0.345 0.528 0.536 0.579

ACC 0.323 0.538 0.438 0.415 0.287 0.704 0.689 0.698

F-score 0.392 0.418 0.435 0.386 0.305 0.682 0.656 0.684

ARI 0.229 0.290 0.324 0.301 0.312 0.496 0.462 0.502

Citeseer

NMI 0.191 0.145 0.250 0.299 0.103 0.397 0.411 0.419

ACC 0.416 0.362 0.441 0.583 0.293 0.672 0.670 0.684

F-score 0.404 0.340 0.448 0.452 0.294 0.636 0.625 0.647

ARI 0.286 0.127 0.281 0.329 0.067 0.410 0.402 0.414

Pubmed

NMI 0.230 0.212 0.300 0.201 0.224 0.266 0.316 0.357

ACC 0.415 0.614 0.415 0.579 0.260 0.671 0.697 0.699

F-score 0.481 0.533 0.552 0.571 0.332 0.659 0.687 0.692

ARI 0.249 0.251 0.232 0.257 0.185 0.278 0.281 0.292

Table 5: The NMI results of ablation experiment on three
datasets.

Framework Cora Citeseer Pubmed
Only Graph MI Optimization 0.465 0.342 0.268
+ Community MI 0.552 0.380 0.319
+ Modularity 0.579 0.399 0.325
+ Disentangled Operation 0.579 0.419 0.357
Two-step DGI 0.530 0.340 0.288

three datasets with diverse characteristics. Specifically, there are
five main aspects we hope to learn:

• the importance of using DGI as the backbone unsupervised
graph neural network architecture;

• the effectiveness of adding community MI on CommDGI,
compared to the single graph MI objective design in DGI;

• the effectiveness of adding classical community detection
objective Modularity;

• the improvement of using a disentangled representation
aggregation in our framework;

• the advantage of CommDGI compared to performing the
community detection with two-step model.

We can observe from Table 5 that our framework can already
obtain a relatively high performance with a single graph MI op-
timization compared to some previous methods which illustrates
the significant power of DGI on dealing with unsupervised graph
representation learning tasks.

Examining the row 2 and row 3 of this table, we can see both
community MI and Modularity objectives clearly contribute the su-
perior performance of CommDGI over previous incomplete models.
In addition, row 4 show that disentangled operation plays an im-
portant role in CommDGI’s performance on Citeseer and Pubmed
datasets but doesn’t obviously improve the result on Cora dataset.

We can learn from this observation that the disentangled repre-
sentations tend to be helpful in more complex attributed networks
which have more nodes or features. In the small-scale network,
entangled node representations can achieve the similar result to
the disentangles representations.

The last two rows of table 5 show that the combination of graph
neural network and community detection can achieve better per-
formance than sequential methods.

Figure 4: Community Detection NMI results with different
embedding dimensions in one channel and different itera-
tions. Our model chooses 64 as a standard setting.

4.6 Parameter Analysis
In this part, we examine the influence of three key parameters in
our framework: embedding dimensions, training iterations and the
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Figure 5: Rate of convergence studywith K-means++ cluster-
ing center choice.

Figure 6: Objective parameter experiment on Cora Dataset
(The deeper the color, the higher the NMI result).

coefficient of graph MI, community MI and Modularity. We also
study the rate of convergence of the model with K-means++ cluster
center choice and the random center choice.

The two lines of sub-figures in Figure 4 show the dimension and
iteration sensitivity experiment results on the Cora and Citeseer
datasets. The sub-figures in the first line indicate that setting a
higher embedding size 𝑑 in one channel can provide a higher per-
formance on both datasets. A chosen dimension bigger than 64 will
still achieve high performance but require much more training time,
which may make the model hard to update on Pubmed dataset.

In general, our model can reach the peak of NMI result on Cora
and Citeseer datasets in 1000 iterations, more iterationsmay slightly
improve the model performance but not obvious in our iteration
experiments shown in Figure 4.

Figure 7: Objective parameter experiment on Citeseer
Dataset (The deeper the color, the higher the NMI result).

Figure 5 shows the rate of convergence of the model with K-
means++ cluster center choice and the rate of convergence of the
random choice. With K-means++ cluster center choice, we can ob-
tain a stable result in about 500 iterations and also achieve a higher
initial value, which will considerably improve the effectiveness of
our community detection framework on large-scale networks.

The parameter 𝛼 and 𝛽 donate the importance of graph MI, com-
munity MI and modularity. We choose 0.05,0.1,0.2,0.4,0.8,1.0,2.0,4.0
and 8.0 for each parameter and conduct the experiment. Figure 6
and figure 7 display the NMI result tendency of different coefficient
choice in our framework. We can observe from the table that our
algorithm is robust to different parameter settings. Specially, setting
a bigger parameter of community MI and a smaller parameter of
graph MI and Modularity will lead to the best performance.

5 RELATEDWORK
5.1 Mutual Information Estimation
The infomax principle [3] first proposes the idea of maximizing
mutual information(MI) between the inputs and outputs of neural
networks but is difficult to calculate the MI between high dimen-
sional continuous variables. Mutual Information Neural Estimation
(MINE) [2] realizes the estimation of MI on deep neural networks
through training a statistics network as a classifier of samples com-
ing from the joint distribution of two random variables and their
product of marginals. An KL-based formulation of MI is used in
MINE. Deep InfoMax (DIM) [11] trains an encoder to maximize the
mutual information between a global representation and local parts
of the input (such as patches of an image). Deep graph infomax
(DGI) [28] adapt ideas from DIM to the graph domain and obtains
remarkable performance in an unsupervised manner. Contrastive
methods and mutual information maximization are used to update
DGI model and learn the node representations.
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5.2 Deep Community Detection Methods
Deep community detection aims to combine clustering task with
deep graph learning. Deep embedding clustering (DEC) [31] de-
signs a KL-divergence loss to make the representation learned by
autoencoder surround the cluster centers closer. Improved deep
embedding clustering adds a reconstruction loss to the objective of
DEC as a constraint to help autoencoder learn a better data repre-
sentation. Deep attentional embedded graph clustering (DAEGC)
[29] applies a graph attentional autoencoder to measure the signifi-
cance of the neighborhood nodes and employs the KL-divergence
loss from DEC to help learn the assignment of graph clustering
(community detection). This kind of methods rely on adjacency ma-
trix reconstruction objective to update the graph neural networks,
which may ignore the high-order community characteristic and the
characteristic of the data itself.

To better capture data characteristic, some GCN-based methods
have been proposed recently. ClusterNet [30] propose an alternative
decision-focused learning approach that integrates a differentiable
method for common graph optimization problems as a layer in
learned system. GCN is used to encode node information, and a
differentiable version of k-means clustering is used to learn the
cluster partition. Structural Deep Clustering Network(SDCN) [5]
applies a GCN module, consisting of multiple graph convolutional
layers, to learn the GCN-specific representation. SDCN also applies
an autoencoder module to learn the autoencoder-specific represen-
tation from the raw data and uses a dual self-supervised module
to uniformly guide these two modules. These GCN-based models
can learn more node characteristic but the representations are still
entangled and not community-aware.

6 CONCLUSION
In this paper, we propose a community oriented graph neural net-
work CommDGI. Because community detection task is naturally
unsupervised, we use several self-training clustering objective so
that the model can generates soft labels from soft K-means as-
signments to supervise the embedding updating. The graph MI,
community MI and Modularity objective are jointly optimized to
simultaneously obtain both graph embedding and community de-
tection result. Disentangled representations are used to make the
model more generally and capable of handling the complex attrib-
uted networks. A comparison of the experimental results with vari-
ous state-of-the-art algorithms validate CommDGI’s community
detection performance.
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