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Abstract—Social network alignment shows fundamental im-
portance in a wide spectrum of applications. To the best of
our knowledge, existing studies mainly focus on network align-
ment at the individual user level, requiring abundant common
information between shared individual users. For the networks
that cannot meet such requirements, social community structures
actually provide complementary and critical information at a
slightly coarse-grained level, alignment of which will provide
additional information for user alignment. In turn, user align-
ment also reveals more clues for community alignment. Hence,
in this paper, we introduce the problem of joint social network
alignment, which aims to align users and communities across
social networks simultaneously. Key challenges lie in that (1) how
to learn the representations of both users and communities, and
(2) how to make user alignment and community alignment benefit
from each other. To address these challenges, we first elaborate
on the characteristics of real-world networks with the notion of
d—hyperbolicity, and show the superiority of hyperbolic space for
representing social networks. Then, we present a novel hyperbolic
embedding approach for the joint social network alignment,
referred to as PERFECT, in a unified optimization. Extensive
experiments on real-world datasets show the superiority of
PERFECT in both user alignment and community alignment.

Index Terms—Network Embedding; Network Alignment; So-
cial Network; Data Mining

I. INTRODUCTION

Nowadays, people join in multiple social networks to enjoy
more diverse services. The alignment across these social
networks benefits a wide range of applications, such as link
prediction and information diffusion [1], and thus receives
an increasing attention [2], [3], [4], [5]. To the best of our
knowledge, existing studies mainly focus on the alignment
at the individual user level, requiring abundant common in-
formation between shared individual users. However, for the
networks that cannot meet such requirements, community
structure plays an important role in understanding users’
social patterns. Community alignment enriches the information
across networks especially when individual users don’t have
enough common information for alignment. As illustrated in
Fig. 1, compared to (a), we collect more aligned users in (c)
with the additional knowledge of community alignment in (b).
Furthermore, user alignment naturally reveals more clues for
inferring community alignment, as shown in Fig. 1 (a) and (b).
That is, user alignment and community alignment are strongly
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Fig. 1. Joint social network alignment: Different networks are shown in
different colors. Black lines link aligned users. Community members are
grouped in the disk. Community alignment helps user alignment. It is
impossible to distinguish the counterpart of C between C” and D’ with network
structure in (a). Further knowing both C between C’ are users of data mining
community in (b), C is more likely to be aligned with C’ rather than D’ in
(c). In turn, aligned users across communities facilitate community alignment.

correlated. Hence, we rethink that: can we jointly align users
and communities across different social networks?

To this end, we introduce the problem of joint social net-
work alignment in this paper. It is facing following challenges:

e How to learn the representations of both users and com-

munities in an appropriate embedding space? Accurate
alignment is possible only if embeddings can capture
faithful information. Existing methods for network align-
ment explicitly or implicitly work with Euclidean space
[6], [3], [7]. However, Euclidean space tends to render
reconstruction error when embedding real-world social
networks [8]. Hence, it calls for a promising embedding
space for both users and communities.
How to make user alignment and community alignment
benefit from each other? To our knowledge, user align-
ment is widely studied while community alignment has
rarely been touched before. Though user alignment and
community alignment are strongly correlated as shown in
Fig. 1, it still remains open to make user alignment and
community alignment benefit from each other.

To address these challenges, in this paper, we propose a
novel unified hyPERbolic embedding approach For the joint
usEr and Community alignmenT, referred to as PERFECT. Its
essential novelty lies in that we for the first time close the
loop of user alignment and community alignment so that they
benefit from each other in a unified optimization.

To address the first challenge mentioned above, we work
with hyperbolic space. To elaborate on the choice of represen-
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(b) Hyperbolic Embedding (c) Euclidean Embedding

Fig. 2. We embed the Zachary karate club network in (a) via the proposed
hyperbolic embedding approach and the corresponding Euclidean one in 2D
space with the same experimental settings, shown in (b) and (c), respectively.
In (b), nodes of high degree, e.g., nodes 1 and 2, reside close to the origin
and nodes of low degree, e.g., nodes 5 and 6, are positioned close to the
boundary of the disk, revealing the latent hierarchy, while this does not hold
in the Euclidean space in (c). Moreover, communities are separable in (b).
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tation space, we first give a toy example in Fig. 2: we embed
the example network in (a) with both a hyperbolic embedding
approach and the corresponding Euclidean one in 2D space,
whose results are shown in (b) and (c), respectively. Compared
against Euclidean space, hyperbolic space tends to present
the latent hierarchies among nodes in the input network.
We observe that the hierarchical characteristic is common
for social networks [9] and, more importantly, has shown
to be crucial for user alignment [2] and benefits community
discovery [10]. Furthermore, we demonstrate the hierarchical
characteristic of several real-world networks with the metric of
Gromovs &-hyperbolicity [8], [11]. Fortunately, the hyperbolic
space is well-suited to embed the latent hierarchical structures
[12], [13], [14]. Thus, in PERFECT, we embed both users
and communities of each network in hyperbolic space. We
then construct a common hyperbolic subspace, and finally
formulate the unified optimization to jointly align users and
communities across social networks.

Meanwhile, to address the second challenge, we propose
an alternating Riemannian optimization algorithm so that
user embeddings and community embeddings are mutually
refined in the common hyperbolic subspace for the joint align-
ment. Specifically, we update community embeddings and
user embeddings in an alternating approach. When updating
community embeddings, we incorporate the knowledge of
user embeddings via expectation-maximization in Riemannian
manifold for community alignment. On the other hand, when
updating user embeddings, we incorporate the knowledge of
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community embeddings by conducting exponential map with
Riemannian gradient for user alignment. Furthermore, we give
solid theoretical analyses on the proposed algorithm.

Finally, we summarize the key contributions as follows:

« To our knowledge, this is the first attempt to jointly align
users and communities across social networks.

To this end, we work with hyperbolic space and propose
a novel hyperbolic embedding approach with a unified
optimization, PERFECT, closing the loop of community
alignment and user alignment.

To address this optimization, in PERFECT, we design a
novel Riemannian alternating optimization algorithm with
solid theoretical analyses.

We empirically evaluate the hyperbolicity of several
real-world social networks and show the superiority of
PERFECT. Our code is available at https://github.com/
NetAligner/perfect.

II. PROBLEM STATEMENT

Notations: We use lowercase x, bold lowercase @ and bold
uppercase X to denote scalar, vector and matrix, respectively.
a” denotes the transpose of . ||-|| and (-, -) denote the usual
Euclidean norm and inner product throughout this paper.

A social network is described as G = (V, &), where V =
{(v;)} is the user set of size N = |V| and £ = {(v;,v;)} is
the edge set. A community is a subset of users C, C V with
the same community label, where C,, (C, = O for any C,, and
Cq, and {J,C, = V. We consider a pair of social networks:
G* is the source network and G¢ is the target network. We use
superscript x to indicate variables associated with G*, x €
{s,t}. We use subscripts i, j, k and n to denote indexes of
the users, and subscripts p and ¢ to denote indexes of the
communities. The source and target networks are linked by
anchor users, whose definition is given as follows:

Definition 1 (Anchor User). The user who has accounts v;
in the source network G* and v}, in the target network G* is
termed as anchor user; and (v, vl) is called an anchor link.

The set of anchor users known in advance between G* and
G*® is referred to as A, which can be collected from user
profiles or third-party platforms.

Definition 2 (Anchor Community). Community C; discov-
ered from G° and community CZ discovered from G' are said
to be anchor community iff at least T proportion of the users
in them are anchor users connecting C,, and Cé.

For instance, between C; and Cé, the anchor links existing
among the users in them can be denoted as A, , C A. Then,
we have 7 =2| A4, 4|/(IC5] + |CL|). Now, we formally define
the problem of joint social network alignment as follows:

The Problem of Joint Social Network Alignment. Given a
pair of social networks G° and G* with the anchor user set
A, the aim of joint social network alignment is to identify:
(1) all anchor users {(vi,vi)} (i.e., user alignment) and
(2) all anchor communities {(C;,Cl)} (i.e, community
alignment) simultaneously between the pair of social networks.
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III. PERFECT: MODEL

To address this problem, we propose a novel hyperbolic
embedding approach, PERFECT, with a unified optimization.
We first elaborate on why we work with hyperbolic space,
and then embed both users and communities in this embedding
space. Finally, we introduce the formulation of the unified opti-
mization so that community embeddings and user embeddings
are mutually refined for the joint social network alignment.

A. Why hyperbolic embedding?

Here, we explain why hyperbolic space is a promising
embedding space. Recall the example in Fig. 2. Compared
against the Euclidean space, embeddings in hyperbolic space
encode the latent hierarchy among the users, i.e., users of
higher centrality tend to reside closer to the origin. Such
hierarchical characteristic is of significance.

For real-world graphs, the study [9] elaborates on the
formation of their hierarchical characteristic in general. More
importantly, the hierarchical characteristic has shown to be
crucial for user alignment [2] and benefits community dis-
covery [10]. Additionally, we demonstrate the latent hierarchy
on several real-world graphs. In order to measure the hierar-
chical characteristic quantitatively, we introduce the Gromov
d—hyperbolicity [11], [8], a metric from geometric group the-
ory. Note that, a lower value of J indicates a better hierarchical
structure. Specifically, we use the following datasets:

e Zachary karate dataset: The example network in Fig. 2.

o Twitter-Quora dataset: We collect two friendship net-
works, Twitter and Quora, linked by common users. We
use users’ registered affiliations as community labels.

e DBLP-AMiner dataset: DBLP and AMiner [2] are two
coauthor networks linked by common authors. Authors’
research areas denote their community labels.

The statistics are given in Table 1 and the corresponding
d—hyperbolicity shows their latent hierarchy.

Can we incorporate such latent hierarchy? Fortunately, we
find that hyperbolic space is well suited to embed graphs
with latent hierarchical structure [12], [13], [14]. Let’s take
an extreme example, the tree. We give the fact that the
d—hyperbolicity of a tree is 0. The d—hyperbolicity of the
hyperbolic space (Poincaré ball model in Section III-B) is
log(1 + \/5), while 6 = oo for Euclidean spaces [11]. Tt is
obvious that hyperbolic space better matches the § of a tree
than the Euclid. Indeed, any tree can be embedded in a 2-
dimensional Poincaré ball with arbitrary low reconstruction er-
ror [15], while this is not true for Euclidean spaces even when
an unbounded dimension is allowed. All these facts motivate
us to leverage hyperbolic space as the representation space.
Furthermore, we will examine the effects of d—hyperbolicity
with experimental results in Section V-A and V-B.

B. The Poincaré ball Model of Hyperbolic Space

Now, we introduce the preliminaries of hyperbolic space for
our work. The hyperbolic space is a kind of isotropic space
with constant negative curvature, and there are several models
proposed for reasoning in hyperbolic space [16]. We prefer
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TABLE 1
STATISTICS AND §—HYPERBOLICITY OF THE DATASETS

Network | #(Node) #(Comm.) #(Link) #(Anchor) )
Zachary 34 2 78 - 1
Twitter 19,438 60 201,063 10.232 3.5

Quora | 10,638 60 46,969 ' 4

DBLP 13,211 12 46,278 12.913 2.5
AMiner 13,213 12 46, 189 ’ 3

to work with the widely used Poincaré ball model owing to
its conformality (angle-preserving w.r.t. Euclidean space) and
convenient parameterization [12], [13], [14], [17].

The Poincaré ball model of dimension d is formally defined
as a smooth manifold B¢ = {z € R? ||z|| < 1} endowed
with a Riemannian metric:

B 2 * B 2 B
which is a collection of inner product in the tangent space
T,B% of x € B¢ )\, = ﬁ is the conformal factor,
and g is the Euclidean metric tensor under usual Cartesian
coordinates of R?. The Poincaré ball is conformal but wrapped
(distance curving) w.r.t. the Euclidean space. The distance
between two points [14], e.g., ¢,y € B, is given as follows:

Az — yl?
0 P - Hyll"’)) @

We derive its partial derivatives w.r.t. y as follows:

d(e,y) = cosh™ (1 +

ddy) 4 (||y|22<y,w>+1 z) 3
T N ara)

where o = 1 —[ly[|*, 8 = 1~ ||=|* and v = 1+ Fly —=|*.
C. Hyperbolic User Embedding

We learn user embeddings 67 in hyperbolic space, a
Poincaré ball B¢. The basic idea is that, for each graph GZ,
x € {s,t}, the proximity between users is preserved in the
hyperbolic distance between user embeddings.

First, we conduct random walks to extract the proximity
between users. In a random walk, the neighborhood ./\/'f of
node vy is named as its “context”. Intuitively, two nodes
sharing more contexts are of higher proximity, and thus have
similar embeddings [18]. In this case, each node is treated as
a node for itself and a context for some other nodes. Hence,
to differentiate the user embedding 87 for itself, we introduce
a context embedding 0¥’ € B? for each node as well.

Then, we leverage the hyperbolic distance to preserve the
proximity in B?. Specifically, we define the probability of
having v as a context of a given vj via the hyperbolic distance
in Eq. (2) as follows:

Pr(vi|vf) = o[—d(6]",67)], (4)

where o(z) = m is the sigmoid function. For G* and
G!, we minimize the negative log-likelihood as follows:
Ouser = - Z Z Z IOg Pr(vjz'|vim)7
ze{s,t} vy EVT vFENT
i.e., we aim to construct the neighborhood of random walks
via the hyperbolic distance between user embeddings.

&)
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D. Hyperbolic Community Embedding

With hyperbolic user embeddings above, we further learn
community embeddings p;, in this Poincaré ball B¢, where
p € [1,C%] and C* is the number of communities in G*.

Inspired by model-based clustering, we consider that user
embeddings {67} are drawn from the mixture of multivariate
distribution {Pr(-|4;) g:l in hyperbolic space, where vy, is
the distribution parameter to be described in details later. Each
distribution Pr(-[);;) corresponds to a community C?, and the
community embedding g, is given as the location of Pr(-|1;)
in the hyperbolic space. Then, for all user embeddings {6%}
in G*, we have the likelihood as follows:

l—L 12 (©)

where Z;), is the probability of user v; belonging to community
CP, and thus we have Z;, € [0,1] and 0" Z;, = 1.

We leverage (generalized) hyperbolic distribution to model
communities in hyperbolic space whose PDF is given as

r—d/2
7,3TA_1(971J,) w+§0 2
(2m)% A2 <w + BTA‘lﬁ)
K,_g (Vo BTATTB)(w+ b))
Kr(w) 7
(N
where 89 = (0 — p)TA7(O — p). B € B and p € B are
skewness and location vectors, respectively. w is the concen-
tration factor. A € R4*? is the positive definite scatter matrix
capturing Riemannian metric, and |A| is its determinant. K,.(-)
is the modified Bessel function of (-) with order r. Then, we
have :_ (ky, Ay, By, y,wy) for each z € {s,t}, and
67 ~ Z 1 ZE PTH(G‘”MN) Thus, with user embeddings
{67}, we mlmmlze the negative log hkehhood as follows:

> IOgZZ Pry(67; 1), (8)

wef{s,t}vFeEV®
so that we learn the community embeddlng and users’ com-
munity membership simultaneously.

Z;, Pr( 0””\1/19”)

e

Pry(0; u, A, B, r,w) =

Ocommunity =

E. Hyperbolic Common Subspace

We embed both users and communities for each network.
Then, across G° and G*, we construct a common hyperbolic
subspace where we can jointly align users and communities.

Specifically, the common hyperbolic subspace is constructed
via aligning embedding spaces of G* and G' on anchor users,
so that the user embedding of v! is transfered via anchor link
(vg,vt) to predict embeddings 6%’ in the neighborhood of its
counterpart v;. We minimize the negative log-likelihood:

Z (Z log Pr(vj|vf,) + Z log Pr( t\v )
viENF

(vg,vh)eA CH teN}
)

For each anchor user (v§,v%) € A, the first term is to predict
embeddings in the neighborhood N of v¢ in G* using 6% of
G" and the second term is to predict embeddings in A using
6. In this common subspace, communities as well as users
are to be aligned via the hyperbolic distance.

Oalign =
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F. Objective Function

Finally, we formulate the unified optimization of PERFECT
jointly aligning users and communities in the common hyper-
bolic subspace. We adopt the negative sampling [19] to define
the optimization objective, i.e., we replace the log term in
Ouyser and Ogiign with the right hand side of the following
equation and have OY3_ and ONS

user align®

o loga[—d(8Y,6;)]+

> e Eon [1oga[d(0;’,0;

where the probability of negative sample v,, being selected is
as proposed in the study [19], and NSf is defined as a set
of K negative samples being selected randomly, (v,,v;) ¢
E. Eq. (10) holds for identical superscripts of v; and v; as
well. Incorporating Egs. (5), (8) and (9), we finally obtain the
objective function of PERFECT:

log Pr(vt|v7) 10
iiE

97$$ZJO = user + O51(/)co’m’munity + OQC)allgn
st. AT =0,p=1,2 CI-ZCT ZT =1,Yz € {s,t}
b P — 7p ) 9t 9, p:l p ) ) )

. . an
where o and a are two nonnegative weight parameters.

In the common subspace induced by optimizing Eq. (11),
user embeddings will learn from community embeddings in
both networks and, in turn, community embeddings learn from
all user embeddings for the joint social network alignment.

Algorithm 1: Alternating Riemannian Optimization
Input: graph pair (G%,G?, A), #(community) C*, Ct,
embedding dimension d, #(negative sample) K
Output: user embeddings 8%, community embeddings
p® and membership Z? for = € {s,t}
1 Conduct random walks for each social network;
2 Initialize % and 6’ via min ONS,_ for each
xz € {s,t};
while not converging do
forall social network do
forall community Cg in each G* do
Calculate the expectations in Eq. (12);
Obtain community membership Z7;
Update {1#;}321 via Eq. (13);

forall node vy in each G* do
Update 87 via Egs. (19)-(21) ;
| Update 0%’ via Egs. (22)-(23);

3
4
5
6
7
8

9
10
11

IV. PERFECT: OPTIMIZATION

To address the optimization in Eq. (11) , we first decompose
this optimization problem into two subproblems, i.e., commu-
nity embedding subproblem w.r.t. (¢, Z) and user embedding
subproblem w.r.t. (6,0’). Then, we propose an alternating
Riemannian optimization algorithm. The main idea is that
we alternatively optimize one subproblem while fixing the
parameters of the other. The overall process is summarized
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in Algorithm 1. In each iteration (Line 4-10), community
embeddings and user embeddings are mutually refined in the
common hyperbolic subspace for the joint alignment. Every
time we obtain the embeddings, the alignment is naturally
revealed in the hyperbolic distance. We finally output the joint
alignment results together until they cannot refine each other.

A. Community Embedding Subproblem

Given user embeddings, we update community embeddings
for community alignment. To facilitate the optimization, we
first introduce auxiliary random variables of inverse Gaussian
W ~ Z(w,1,r), W € R, and Gaussian g ~ N (0,A), g € R%.
Then, a random variable @ of the hyperbolic distribution with
parameter ¥ = (u,A,3,7,w) is equal to the combination
w+ WpB + VvWg [20]. Then, under the reformulation of
this combination, we optimize (Z*, {1y }) via expectation-
maximization algorithm. Take G* for instance.

In the expectation-step, we require following expectations:

Z5 Pry (05]95)

=E [ZS |95} = Cs )
2p=1 Z3Pry (0714;)
vt~ B (W6, 25, — 1] — i) 2
p (ws) ws’
P P
K, w?
B [1/W3107. 25, — 1] = 1),
Kys(wy)
1 aKrs (ws)
c;p, = E [log(W3)16;, Z;, = 1] = p P
P [ } Kr;(w;) 87“;

(12)
where Z7) is the membershlp of it" user to p commumty
Then, we deﬁne n, ZZ 1 Zp, p = Cg Zl 1 25,03,

Zz 1Zzspb:p and cp =1 zp ;p

In the maximization-step, we derlve the updating rules of
hyperbolic distribution parameters as follows:

o 1pre:< 3, — 1)

Zz 1 Z (apbzsp 1) ’

o 1Z;pe; (% - v:,)

i 2, (@b b=l ’

-5 (5 - uz) — (@, -m3) B, + a0
Z Z3,b5, (0; — ) (0; — )", (13)

where 0'p Cq e 1 prﬂf We employ the strategy in the
study [20] to update (r®,w®) and omit them due to the limit
of space. The updating rules in network G! are obtained by

replacing the superscript s with ¢.

My =

8=

S_

Correctness: Note that, we estimate the hyperbolic distribu-
tion parameter ¥ = (w, A, 3,7, w) without considering the
positive definite constraint of scatter matrices A. Next, we
prove that the positive definiteness is naturally guaranteed,

e., Theorem 1 (Positive Definiteness), and thus show the
correctness of the given updating rules.
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Theorem 1 (Positive Definiteness). All scatter matrices of A}
and A; under updating rules in Eq. (13) are positive definite.

Proof. The proofs of A} and A; are the same, thus we use A}
for the elaboration. To prove the positive definiteness of A?,
we first introduce an auxiliary matrix A} defined as follows:

1 N*® I@S ﬁs T
As _ 25 bS 05 — s — P S _ 4,8 ~p .
(14)
Note that, aj, = E[W;|0;,Z;,=1] and b;, =
E[1/W;)107, Z;, = 1]. Based on Tensen’s inequality, we have
1/E[W;)] S]ETI/ ] for all , i.e., 1/aj, < b7,, and thus
1 4z
s ip
P Zsz ZPlP*ZsZ s (15)
P =1 P j=1 "w
Finally, we have the following hold:
- B 1 Z3,
A—A;+<a§—zgz p)ﬁ,@ (16)
il

With the fact that T is positive definite for any € R,
we ensure the positive definiteness of Aj as well as A;. O

B. User Embedding Subproblem

With community embeddings fixed, we focus on updating
user embeddings for user alignment. These user embeddings
live in the common Poincaré ball B¢, a smooth unit manifold
with Riemannian metric g®(@). In this manifold, the back-
propagated gradient is Riemannian gradient and usual (Eu-
clidean) gradient makes no sense as the operator of addition
is not completely defined [21].

We optimize {0%} and {6%'} via exponential map with
Riemannian gradient. Take G*® for instance. We first compute
Riemannian gradient V.7 of user 6; to identify optimizing

direction in TgisBd, and then leverage exponential map 6; <+

€XPys (fpvgzsj ) to move 6; along the mapped geodesic
in the common Poincaré ball B¢ with a step size p [21].

Fortunately, owing to the conformality of 5%, Riemannian
gradient V.7 is obtained by rescahng the Euclidean gradient

VEPT, ie, VET = (&
expy(a) at @ € B? is defined in the following fraction [14]:

)\9) VEJ The exponential map
bW (cosh Oollal) + <a, ﬁ> sinh (AgH(LH)) + 2y sinh (Ao al))

1+ (Mg — 1) cosh (Mglal]) + Ao <9, ﬁ> sinh (M\ol|a|)
a7
The remaining challenge lies in the challenge of obtaining
Euclidean gradients owing to summation within logarithm. To
address this challenge we optimize an upper bound objective
function J; = ONS, + alOcommumty + a20alzgn instead of
Jo. Specifically, we replace Ocommunity With its upper bound

O munity defined as follows:
ce
O ity = — 2 > > Zilog Pray(07:47).
z€{s,t} vFEV® p=1
(18)
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It is easy to be verified via the log-concavity:

logz ZZPPT’H i) > Z Zip log Pry,(0;;1;,).

Thus we have the partial derivative of [J; wrt. 67,

00, community a¢ NS
865 Ji o= “5me + oy 601 ity 4 ol e vk)EA%,
8055{,7 0 (9;,792)
80: - 71}%’ ( d(g 870: a
s/ 03
Z E, g[fd(02l70;)]m 7
" 0%
v, ENSK i
(19)
%:7§:w5 (A5) 1B + <60g)+010gKC5—(V\/;TH7J
00; = P p T » 0
(20)
90 ign — R
06; = old(05,67)]——5— 96;
vteNY
t ! s
> E,, [of-d(6;, 95)}@ _’
0%
v, ENSK i

@n

where v5 = wi+857 (A3) 7165, (5 = r5—d/2, 0 = 05 —ps,
dps = dgs + w, and o(z) is the standard sigmoid function.
() returns 1 iff the condition (-) is true; otherwise,
Iy = 0. 248%) i given in Eq. (3). Utilizing the fact
DK, (x) r(x) — K,.—1(x), we give the partial

derivative of log K¢s (

x

1/559;) w.r.t. 67 as follows:

dlog K¢s(1/vsde: ) ¢ v K¢, (\/v3007) -1 7
e~ 57+ P e (45) 6.
i 0; 0; Ke,—1(y/v500:)

o o7 _ 903, 904ign
Similarly, for 0‘, we have 80;1, = 507 + o 057 )
aogfu s/ ps 6d(08/’0f)

o =~ 5, (vrevottor G0
J viEVS J
o s010d(05 08
Z »Evn {Hv;:vi‘f[—d(gn ,6; )](80;3’)]) »
v, ENSE )
(22)
6(95,57 " 8d(0°f’702)
80;5] =- Z ]Ivje/\/—fo-[d(ej/7 Bi)]wi
(vivh)eA J
. ad(es’, 6!
> B [Tosol-ae o) 20|
v, ENSK "
(23)

Note that, Iy is defined above. The updating rules in network
G are obtained by swapping the superscript s and t.
Remarks: In the common Poincaré ball, Eq. (20) encourages
users to join in their corresponding communities, the alignment
of which is inferred by user embeddings within the commu-
nity. Hence, user embeddings and community embeddings are
mutually refined for the joint social network alignment.
Computational Complexity: We analyze the computational
complexity of Algorithm 1. First, we generate random walks
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(Line 1), costing O(Nhl), N := max{N*, N}, where h is
the number of walks per node and [ is the walk length. Then,
we solve two subproblems alternatively, which tends to be
converged in a few iterations. Specifically, updating the param-
eters of community embedding subproblem (Line 5-7) costs
O(C?%d?), where C := max{C?® C*}, and O(Nhl(cKd +
Cd?)) for user embedding subproblem (Line 8-10), where €
is the size of the node neighborhood. To sum up, the overall
complexity of PERFECT is linear to the number of users V.

V. EXPERIMENTS

In PERFECT, we jointly align communities and users in
the hyperbolic space. Thus, we evaluate the performance of
PERFECT with baseline methods on both community align-
ment and user alignment in the experiments, whose results
are reported in Sections V-A and V-B, respectively. Datasets
are introduced in Section III-A. We repeat each experiment 10
times and report the mean with 95% confidence interval.

A. Experiments on Community Alignment

In this part, we provide the performance of PERFECT com-
pared against comparison methods on community alignment.

1) Comparison Methods: To the best of our knowledge,
the only method [22] considering community alignment is
designed for attributed networks specifically, which will not
work for normal networks without node attributes and thus is
not comparable in our experiments. Specifically, the baseline
methods compared here include both classic network embed-
ding methods, e.g., DeepWalk and LINE and the latest ones
with considerations of community structures, i.e., CommGAN:

o CommGAN [23]: It is a recent method using a minimax
game to update node embeddings for community discov-
ery. For each network, we perform CommGAN and cal-
culate mean embedding in each community. Community
alignment is obtained by calculating Euclidean distance.

o DeepWalk [18]: For each network, we perform DeepWalk
to obtain node embeddings and then employ K-Means
to discover communities. We align communities by Eu-
clidean distance between mean embeddings.

e LINE [24]: We embed each network via LINE and use
K-Means to discover communities, which will be aligned
by Euclidean distance between mean embeddings.

To further evaluate PERFECT, we design several variants of it:

o PERFECT—: To demonstrate the superiority of unified
optimization, we design a two-step method, i.e., we learn
the common subspace and community embeddings sep-
arately. Specifically, we first learn the common subspace
via optimizing ONs,, +ONS 4n @nd then obtain community
embeddings via optimizing (’)mmmum,y

EucAlign: To demonstrate the superiority of hyperbolic
space, we consider the corresponding Euclidean version
of PERFECT. We only replace the hyperbolic distance
d(x,y) in PERFECT with Euclidean distance.
EucAlign—: 1t is the Euclidean version of PERFECT—
where the Euclidean distance is used.
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2) Evaluation Metric:

N
o Accuracy Nic P successT(C;,C;), where Ng

is the number of groundtruth anchor communities.
successT(CIs),Cé) returns 1 iff groundtruth anchor com-
munity (C3, CY) is successfully identified w.r.t. the thresh-
old 7; otherwise, it returns 0.

Quality = 2E;{o[—dist(u}, u!)]}, where the sigmoid
o(-) is for normalization. p? and p! are community
embeddings of groundtruth anchor community C; and
Cé, respectively. We use Quality to evaluate community
alignment in the embedding space, and dist(-,-) is the
distance function of corresponding comparison methods.

3) Experimental Results and Discussions: First, we eval-
uate the performance under different overlap rates 7. The
overlap rate 7 is defined as 2|A|/(N® + N'), where |A|,
N* and N? are the number of anchor users, source network
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users and target network users, respectively. An n—overlap
dataset is generated by randomly deleting users according to
the overlap rate from the dataset. Fixing embedding dimension
d = 64, we report results under n = {20, 30,40, 50, 60}(%)
in terms of Accuracy and Quality on both datasets in Fig.
3. Second, we discuss the effect of embedding dimension d.
Specifically, embedding dimension d takes different values in
[8,16,32,64,128] and we report results under = 60% in
terms of Accuracy and Quality in Fig. 4. Note that, the
alignment threshold 7 of Accuracy is set to 60% in the
experiments above. Next, we study the parameter sensitivity
of 7 and report results under d = 64 and n = 60% in Fig. 5.
Finally, we summarize our findings and discuss the reasons:
o PERFECT consistently outperforms its competitors. The
reason is that PERFECT enjoys the strengths of hyperbolic
space and the unified optimization closing the loop of
community alignment and user alignment.
The models of hyperbolic space consistently beat the
Euclidean ones as shown in both Figs. 3 and 4. Moreover,
we obtain better performance on the dataset of higher
hyperbolicity. (Refer to Section III-A and Table 1.) The
reason is that hyperbolic space better matches the inher-
ent hyperbolicity of these datasets than the Euclid, and
hyperbolic space benefits community alignment.
The models of unified optimization perform better in
general as shown in both Figs. 3 and 4. The reason is that,
in a unified optimization, community alignment and user
alignment benefit each other, while community alignment
neglects the effect of user alignment and vice versa in the
two-step methods.
The proposed hyperbolic model, PERFECT, with low-
dimensional embeddings (e.g., 16) outperforms Euclidean
ones with high-dimensional embeddings (e.g., 128) as
shown in Fig. 4. The reason is that, well suited for net-
works with latent hierarchy, PERFECT generates faithful
embeddings with a few dimensions in hyperbolic space
while it is not true for Euclidean ones.
PERFECT shows better robustness regarding threshold T
as shown in Fig. 5. The reason is that, in PERFECT,
there tends to be more anchor users among aligned
communities, i.e., better results regardless of 7.

B. Experiments on User Alignment

In this part, we will illustrate the learning performance of
PERFECT compared against the comparison methods on user
alignment.
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TABLE II

THE PRECISION OF USER ALIGNMENT ON DBLP-AMINER AND TWITTER-QUORA DATASETS (%)

Dataset Method k=10 k=15 k=20 k=25 k=30
PALE 24.57 £ 2.23 31.36 £ 1.31 46.22 £+ 0.98 52.37 £1.33 57.81 £ 1.51
DBLP IONE 29.05 +1.13 35.21 £1.45 48.63 £ 1.58 53.45 +£1.13 59.59 £+ 1.41
& SNNA 32.46 +£1.78 37.53 £1.85 43.26 £ 2.17 57.42 £ 2.04 63.09 + 1.82
AMiner MOANA 26.82 +£1.37 35.46 £1.13 44.53 +£1.33 55.81 £ 1.49 64.86 £ 1.35
DeepLink 34.61 £ 1.69 54.25 + 1.59 59.12 £ 1.29 62.68 £ 1.61 66.78 £ 1.12
PERFECT 44.53 +1.23 61.28 - 0.93 67.85 +1.11 70.76 + 0.68 72.33+0.73
PALE 25.36 £ 1.74 29.43 +£1.01 44.72 £0.75 51.03 £ 1.05 56.80 £ 1.14
Twitter IONE 27.71 £ 0.87 33.57 £ 1.14 45.39 £ 1.23 50.92 4+ 0.93 56.37 &+ 1.06
& SNNA 31.05+1.36 34.20 £ 1.45 39.55 £1.75 52.86 + 1.66 59.49 + 1.47
Quora MOANA 25.85 +1.04 34.59 +£0.94 43.12 +£1.23 54.07 £1.13 62.48 + 1.05
DeepLink 36.21 £1.33 53.67 £ 1.29 57.93 +£1.01 61.52 £ 1.21 66.23 + 0.86
PERFECT 42.12 4+ 0.93 58.35 +0.70 66.67 - 0.91 69.24 + 0.53 71.02 £ 0.55

TABLE III
THE MAP OF USER ALIGNMENT ON DBLP-AMINER AND TWITTER-QUORA DATASETS (%)

Dataset Method k=10 k=15 k=20 k=25 k=30
PALE 11.13 = 0.65 11.75 £ 0.38 12.67 + 0.29 12.96 + 0.46 13.16 + 0.50
DBLP IONE 12.38 4 0.37 12.93 + 0.56 13.76 + 0.62 13.99 + 0.40 14.22 +0.48
& SNNA 13.24 + 0.51 13.66 + 0.69 14.00 + 0.72 14.63 £ 0.78 14.84 + 0.59
AMiner MOANA 11.67 £ 0.55 12.43 +0.43 12.99 + 0.50 13.52 +0.44 13.86 + 0.48
DeepLink 16.45 + 0.60 18.13 £ 0.44 18.41 + 0.40 18.58 + 0.47 18.73 +0.43
PERFECT 18.86 + 0.47 20.38 +0.37 20.79 + 0.36 20.93 £ 0.21 20.99 £+ 0.22
PALE 10.87 £ 0.61 11.24 +0.35 12.19 £ 0.27 12.49 4+ 0.37 12.71 £ 0.39
Twitter IONE 12.05 +0.33 12.56 4 0.40 13.28 + 0.51 13.53 + 0.31 13.74 4 0.42
& SNNA 12.93 +0.52 13.23 £ 0.59 13.57 + 0.63 14.22 + 0.62 14.48 4+ 0.57
Quora MOANA 13.68 + 0.39 14.47 +0.33 15.01 +0.37 15.52 + 0.47 15.84 + 0.37
DeepLink 16.26 £+ 0.55 17.83 +0.48 18.09 + 0.35 18.26 + 0.50 18.43 + 0.33
PERFECT 17.55 + 0.38 18.98 + 0.25 19.51 £ 0.31 19.64 +£0.18 19.70 £ 0.20

1) Comparison Methods: We chose several state-of-the-art
methods on user alignment as follows:

e IONE [25]: It embeds social networks together with
anchor links in the Euclidean subspace to align users.

e PALE [6]: It first embeds each network and then matches
users via the Euclidean metric.

o DeepLink [7]: It leverages dual learning to refine the Eu-
clidean subspace where network alignment is performed.

e SNNA [26]: It proposes a weakly-supervised adversarial
learning method for alignment from the distribution level.

e MOANA [27]: It introduces a coarsen-align-interpolate
method via matrix analysis to find node correspondence.

2) Evaluation Metric: We employ the widely used
Precision@QK and M APQK as the evaluation metric.

3) Experimental Results and Discussions: First, we eval-
uate the performance of user alignment in terms of
Precision@k and M APQFk on both datasets, whose experi-
mental results are shown in Table II and Table III, respectively.
Specifically, k takes different values in [10,15,...,30] and
embedding dimension is set to 64. Our findings are two-fold:
(1) PERFECT consistently outperforms its comparison meth-
ods. The reasons lie in that, besides the structural information
encoded in typical embedding methods, e.g., DeepLink, IONE,
PALE, user embeddings in PERFECT incorporate the commu-
nity structure explicitly and latent hierarchy among users in
hyperbolic space implicitly, and thus own more discriminative
information for user alignment. Additionally, this demonstrates
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Fig. 6. User alignment under different dimensions

that hyperbolic space benefits the user alignment.
(2) The performance gain of PERFECT is correlated to the
network hyperbolicity. The proposed approach achieves higher
performance on the dataset of higher hyperbolicity (DBLP-
AMiner), and beats Euclidean methods on both datasets.
Second, we discuss the effect of embedding dimension d.
We take different values in [8,16, 32, 64, 128], and report the
performance of user alignment in terms of Precision@30 and
M AP@30 on both datasets in Fig. 6. We omit the performance
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Fig. 7. The common Poincaré disk of DBLP-AMiner dataset

of MOANA as it is not an embedding method. We find that as
shown in Fig. 6, PERFECT consistently outperforms its com-
petitors in all dimensions, and obtains dramatic performance
gain with low-dimensional embeddings.

C. Case Study

In this part, we will give a case study on DBLP-AMiner
dataset to demonstrate the performance of PERFECT on both
user alignment and community alignment.

We visualize the common Poincaré disk of PERFECT in
Fig. 7 (b) by setting d 2. We filter the embeddings
of each network for clarity. The embeddings of DBLP and
AMiner are plotted in Fig. 7 (a) and (c), respectively, where
communities are labeled as illustrated in the legend. In this
common Poincaré disk, we have three main findings:

(1) The latent hierarchy among users is generally preserved
in the two-dimensional embeddings. We find that authors of
high impact, e.g., Philip S. Yu and Christos Faloutsos, are
positioned closer to the origin, while those of relative low
impact are pushed to the boundary of the disk.

(2) User embeddings of the same user in different networks
locate closely. Zoom in the community of data mining. The
user embedding of Philip S. Yu in DBLP, shown in Fig. 7 (a),
is nearly the same as that in AMiner, Fig. 7 (c). Thus, user
alignment is easy to be inferred via PERFECT.

(3) Centripetal regions of corresponding communities are
naturally aligned. We find that user embeddings of the same
community cluster into a centripetal region, which is also
reported in the study [28], and it is obvious that most of
centripetal regions of the same research area are aligned. That
is, both users and communities are aligned in the common
Poincaré disk, verifying the basic idea of our approach.

VI. RELATED WORKS

We briefly summarize the related works in following areas:

Network embedding is to map the nodes of a network into a
vector space [29], [30]. Here, we roughly classify the literature
by the embedding space. Most existing studies [18], [24],
[31] explicitly or implicitly work with the Euclidean space.
Some studies [32], [33] focus on exploiting in the static or
temporal network structure, while others [34], [35] attempt to
incorporate other attributes. However, is Euclidean space the
appropriate embedding space? Recent advances uncover the
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hyperbolicity of some real-world networks, and researchers
attempt to facilitate network embedding in hyperbolic space.
Some studies [12], [13] suggest the superiority of hyper-
bolic geometry for network embedding. Recently, some neural
networks on graphs [8], [36], [37] learn node embeddings
underpinned by hyperbolic space. Distinguishing from these
methods, PERFECT is tailored for network alignment.

User alignment, or anchor link prediction, is to align users
across different social networks according to the underlying
identity. To address this problem, some studies [38], [3]
leverage attribute information, such as screen name pattern
and user behaviors, to discover the identity consistency, while
some studies [6] exploit network topology to link user iden-
tities. Moreover, there exist studies [39] considering both
topology and attribute information. The study [40] gives a
comprehensive survey. Recently, HGANE [41] incorporates
attentive mechanism to induce the common subspace. GAlign
[42] performs network alignment in an unsupervised way.
Note that, similar to our prior works [43], [44], [45], [46], all
of methods in the literature work with the Euclidean space,
while PERFECT works with hyperbolic space. Additionally,
beyond user alignment, PERFECT jointly considers community
alignment in a unified approach.

Communities play a fundamental role in social network
analysis. To the best of our knowledge, most existing studies
[10] focus on community discovery in an isolated social
network. Various types of methods have been proposed,
such as modularity optimization [47] and spectral algorithms
[48]. Generative methods are often explored as well, such
as community affiliation models [49], model-based clustering
and GAN [23]. Actually, social networks are correlated and
partially aligned on their common users. Some studies [50]
facilitate community discovery with the information of its
counterpart network. Recently, the study [22] considers the
community structure to facilitate user alignment across social
networks. Different from these studies, we for the first time
close the loop of community alignment and user alignment so
that they mutually enhanced each other.

VII. CONCLUSION

In this paper, we present a novel hyperbolic optimization
framework, namely PERFECT, to jointly align users and com-
munities in hyperbolic space. To address the optimization
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of PERFECT, we propose a novel alternating Riemannian
optimization algorithm with solid theoretical analyses so that
user alignment and community alignment benefit from each
other. Extensive experiments show the superiority of PERFECT
in both user alignment and community alignment.
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