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Abstract—Social network alignment shows fundamental im-
portance in a wide spectrum of applications. To the best of
our knowledge, existing studies mainly focus on network align-
ment at the individual user level, requiring abundant common
information between shared individual users. For the networks
that cannot meet such requirements, social community structures
actually provide complementary and critical information at a
slightly coarse-grained level, alignment of which will provide
additional information for user alignment. In turn, user align-
ment also reveals more clues for community alignment. Hence,
in this paper, we introduce the problem of joint social network
alignment, which aims to align users and communities across
social networks simultaneously. Key challenges lie in that (1) how
to learn the representations of both users and communities, and
(2) how to make user alignment and community alignment benefit
from each other. To address these challenges, we first elaborate
on the characteristics of real-world networks with the notion of
δ−hyperbolicity, and show the superiority of hyperbolic space for
representing social networks. Then, we present a novel hyperbolic
embedding approach for the joint social network alignment,
referred to as PERFECT, in a unified optimization. Extensive
experiments on real-world datasets show the superiority of
PERFECT in both user alignment and community alignment.

Index Terms—Network Embedding; Network Alignment; So-
cial Network; Data Mining

I. INTRODUCTION

Nowadays, people join in multiple social networks to enjoy

more diverse services. The alignment across these social

networks benefits a wide range of applications, such as link

prediction and information diffusion [1], and thus receives

an increasing attention [2], [3], [4], [5]. To the best of our

knowledge, existing studies mainly focus on the alignment

at the individual user level, requiring abundant common in-

formation between shared individual users. However, for the

networks that cannot meet such requirements, community

structure plays an important role in understanding users’

social patterns. Community alignment enriches the information

across networks especially when individual users don’t have

enough common information for alignment. As illustrated in

Fig. 1, compared to (a), we collect more aligned users in (c)

with the additional knowledge of community alignment in (b).

Furthermore, user alignment naturally reveals more clues for

inferring community alignment, as shown in Fig. 1 (a) and (b).

That is, user alignment and community alignment are strongly

† Corresponding Author

Fig. 1. Joint social network alignment: Different networks are shown in
different colors. Black lines link aligned users. Community members are
grouped in the disk. Community alignment helps user alignment. It is
impossible to distinguish the counterpart of C between C’ and D’ with network
structure in (a). Further knowing both C between C’ are users of data mining
community in (b), C is more likely to be aligned with C’ rather than D’ in
(c). In turn, aligned users across communities facilitate community alignment.

correlated. Hence, we rethink that: can we jointly align users
and communities across different social networks?

To this end, we introduce the problem of joint social net-
work alignment in this paper. It is facing following challenges:

• How to learn the representations of both users and com-
munities in an appropriate embedding space? Accurate

alignment is possible only if embeddings can capture

faithful information. Existing methods for network align-

ment explicitly or implicitly work with Euclidean space

[6], [3], [7]. However, Euclidean space tends to render

reconstruction error when embedding real-world social

networks [8]. Hence, it calls for a promising embedding

space for both users and communities.

• How to make user alignment and community alignment
benefit from each other? To our knowledge, user align-

ment is widely studied while community alignment has

rarely been touched before. Though user alignment and

community alignment are strongly correlated as shown in

Fig. 1, it still remains open to make user alignment and

community alignment benefit from each other.

To address these challenges, in this paper, we propose a

novel unified hyPERbolic embedding approach For the joint

usEr and Community alignmenT, referred to as PERFECT. Its

essential novelty lies in that we for the first time close the

loop of user alignment and community alignment so that they

benefit from each other in a unified optimization.

To address the first challenge mentioned above, we work

with hyperbolic space. To elaborate on the choice of represen-
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(a) Zachary’s karate club network

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

 1
 2 3

 5
 6 7

 9

 11

 13

 17

 22

 15
 19

 21
 23

 25

 27
 33

 29

 31

(b) Hyperbolic Embedding
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(c) Euclidean Embedding

Fig. 2. We embed the Zachary karate club network in (a) via the proposed
hyperbolic embedding approach and the corresponding Euclidean one in 2D
space with the same experimental settings, shown in (b) and (c), respectively.
In (b), nodes of high degree, e.g., nodes 1 and 2, reside close to the origin
and nodes of low degree, e.g., nodes 5 and 6, are positioned close to the
boundary of the disk, revealing the latent hierarchy, while this does not hold
in the Euclidean space in (c). Moreover, communities are separable in (b).

tation space, we first give a toy example in Fig. 2: we embed

the example network in (a) with both a hyperbolic embedding

approach and the corresponding Euclidean one in 2D space,

whose results are shown in (b) and (c), respectively. Compared

against Euclidean space, hyperbolic space tends to present

the latent hierarchies among nodes in the input network.

We observe that the hierarchical characteristic is common

for social networks [9] and, more importantly, has shown

to be crucial for user alignment [2] and benefits community

discovery [10]. Furthermore, we demonstrate the hierarchical

characteristic of several real-world networks with the metric of

Gromovs δ-hyperbolicity [8], [11]. Fortunately, the hyperbolic

space is well-suited to embed the latent hierarchical structures

[12], [13], [14]. Thus, in PERFECT, we embed both users

and communities of each network in hyperbolic space. We

then construct a common hyperbolic subspace, and finally

formulate the unified optimization to jointly align users and

communities across social networks.

Meanwhile, to address the second challenge, we propose

an alternating Riemannian optimization algorithm so that

user embeddings and community embeddings are mutually

refined in the common hyperbolic subspace for the joint align-

ment. Specifically, we update community embeddings and

user embeddings in an alternating approach. When updating

community embeddings, we incorporate the knowledge of

user embeddings via expectation-maximization in Riemannian

manifold for community alignment. On the other hand, when

updating user embeddings, we incorporate the knowledge of

community embeddings by conducting exponential map with

Riemannian gradient for user alignment. Furthermore, we give

solid theoretical analyses on the proposed algorithm.

Finally, we summarize the key contributions as follows:

• To our knowledge, this is the first attempt to jointly align

users and communities across social networks.

• To this end, we work with hyperbolic space and propose

a novel hyperbolic embedding approach with a unified

optimization, PERFECT, closing the loop of community

alignment and user alignment.

• To address this optimization, in PERFECT, we design a

novel Riemannian alternating optimization algorithm with

solid theoretical analyses.

• We empirically evaluate the hyperbolicity of several

real-world social networks and show the superiority of

PERFECT. Our code is available at https://github.com/

NetAligner/perfect.

II. PROBLEM STATEMENT

Notations: We use lowercase x, bold lowercase x and bold

uppercase X to denote scalar, vector and matrix, respectively.

xT denotes the transpose of x. || · || and 〈·, ·〉 denote the usual

Euclidean norm and inner product throughout this paper.

A social network is described as G = (V, E), where V =
{(vi)} is the user set of size N = |V| and E = {(vi, vj)} is

the edge set. A community is a subset of users Cp ⊂ V with

the same community label, where Cp
⋂ Cq = Ø for any Cp and

Cq , and
⋃

p Cp = V . We consider a pair of social networks:

Gs is the source network and Gt is the target network. We use

superscript x to indicate variables associated with Gx, x ∈
{s, t}. We use subscripts i, j, k and n to denote indexes of

the users, and subscripts p and q to denote indexes of the

communities. The source and target networks are linked by

anchor users, whose definition is given as follows:

Definition 1 (Anchor User). The user who has accounts vsi
in the source network Gs and vtk in the target network Gt is
termed as anchor user, and (vsi , v

t
k) is called an anchor link.

The set of anchor users known in advance between Gt and

Gs is referred to as A, which can be collected from user

profiles or third-party platforms.

Definition 2 (Anchor Community). Community Csp discov-
ered from Gs and community Ctq discovered from Gt are said
to be anchor community iff at least τ proportion of the users
in them are anchor users connecting Csp and Ctq .

For instance, between Csp and Ctq , the anchor links existing

among the users in them can be denoted as Ap,q ⊂ A. Then,

we have τ =2|Ap,q|/(|Csp| + |Ctq|). Now, we formally define

the problem of joint social network alignment as follows:

The Problem of Joint Social Network Alignment. Given a
pair of social networks Gs and Gt with the anchor user set
A, the aim of joint social network alignment is to identify:

(1) all anchor users {(vsi , vtk)} (i.e., user alignment) and
(2) all anchor communities {(Csp, Ctq)} (i.e., community

alignment) simultaneously between the pair of social networks.
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III. PERFECT: MODEL

To address this problem, we propose a novel hyperbolic

embedding approach, PERFECT, with a unified optimization.

We first elaborate on why we work with hyperbolic space,

and then embed both users and communities in this embedding

space. Finally, we introduce the formulation of the unified opti-

mization so that community embeddings and user embeddings

are mutually refined for the joint social network alignment.

A. Why hyperbolic embedding?

Here, we explain why hyperbolic space is a promising

embedding space. Recall the example in Fig. 2. Compared

against the Euclidean space, embeddings in hyperbolic space

encode the latent hierarchy among the users, i.e., users of

higher centrality tend to reside closer to the origin. Such

hierarchical characteristic is of significance.

For real-world graphs, the study [9] elaborates on the

formation of their hierarchical characteristic in general. More

importantly, the hierarchical characteristic has shown to be

crucial for user alignment [2] and benefits community dis-

covery [10]. Additionally, we demonstrate the latent hierarchy

on several real-world graphs. In order to measure the hierar-

chical characteristic quantitatively, we introduce the Gromov

δ−hyperbolicity [11], [8], a metric from geometric group the-

ory. Note that, a lower value of δ indicates a better hierarchical

structure. Specifically, we use the following datasets:

• Zachary karate dataset: The example network in Fig. 2.

• Twitter-Quora dataset: We collect two friendship net-

works, Twitter and Quora, linked by common users. We

use users’ registered affiliations as community labels.

• DBLP-AMiner dataset: DBLP and AMiner [2] are two

coauthor networks linked by common authors. Authors’

research areas denote their community labels.

The statistics are given in Table 1 and the corresponding

δ−hyperbolicity shows their latent hierarchy.

Can we incorporate such latent hierarchy? Fortunately, we

find that hyperbolic space is well suited to embed graphs

with latent hierarchical structure [12], [13], [14]. Let’s take

an extreme example, the tree. We give the fact that the

δ−hyperbolicity of a tree is 0. The δ−hyperbolicity of the

hyperbolic space (Poincaré ball model in Section III-B) is

log(1 +
√
2), while δ = ∞ for Euclidean spaces [11]. It is

obvious that hyperbolic space better matches the δ of a tree

than the Euclid. Indeed, any tree can be embedded in a 2-

dimensional Poincaré ball with arbitrary low reconstruction er-

ror [15], while this is not true for Euclidean spaces even when

an unbounded dimension is allowed. All these facts motivate

us to leverage hyperbolic space as the representation space.

Furthermore, we will examine the effects of δ−hyperbolicity

with experimental results in Section V-A and V-B.

B. The Poincaré ball Model of Hyperbolic Space

Now, we introduce the preliminaries of hyperbolic space for

our work. The hyperbolic space is a kind of isotropic space

with constant negative curvature, and there are several models

proposed for reasoning in hyperbolic space [16]. We prefer

TABLE I
STATISTICS AND δ−HYPERBOLICITY OF THE DATASETS

Network #(Node) #(Comm.) #(Link) #(Anchor) δ
Zachary 34 2 78 - 1
Twitter 19, 438 60 201, 063

10, 232
3.5

Quora 10, 638 60 46, 969 4
DBLP 13, 211 12 46, 278

12, 213
2.5

AMiner 13, 213 12 46, 189 3

to work with the widely used Poincaré ball model owing to

its conformality (angle-preserving w.r.t. Euclidean space) and

convenient parameterization [12], [13], [14], [17].
The Poincaré ball model of dimension d is formally defined

as a smooth manifold Bd = {x ∈ R
d| ||x|| < 1} endowed

with a Riemannian metric:

gB(x) =
(

2

1− ‖x‖2
)2

gE = (λx)
2
gE , (1)

which is a collection of inner product in the tangent space

TxBd of x ∈ Bd. λx = 2
1−‖x‖2 is the conformal factor,

and gE is the Euclidean metric tensor under usual Cartesian

coordinates of Rd. The Poincaré ball is conformal but wrapped

(distance curving) w.r.t. the Euclidean space. The distance

between two points [14], e.g., x,y ∈ Bd, is given as follows:

d(x,y) = cosh−1

(
1 +

2||x− y||2
(1− ||x||2)(1− ||y||2)

)
. (2)

We derive its partial derivatives w.r.t. y as follows:

∂d(x,y)

∂y
=

4

β
√

γ2 − 1

(‖y‖2 − 2〈y,x〉+ 1

α2
y − x

α

)
, (3)

where α = 1−‖y‖2, β = 1−‖x‖2 and γ = 1+ 2
αβ ‖y−x‖2.

C. Hyperbolic User Embedding
We learn user embeddings θxi in hyperbolic space, a

Poincaré ball Bd. The basic idea is that, for each graph Gx,

x ∈ {s, t}, the proximity between users is preserved in the

hyperbolic distance between user embeddings.
First, we conduct random walks to extract the proximity

between users. In a random walk, the neighborhood N x
i of

node vxi is named as its “context”. Intuitively, two nodes

sharing more contexts are of higher proximity, and thus have

similar embeddings [18]. In this case, each node is treated as

a node for itself and a context for some other nodes. Hence,

to differentiate the user embedding θxi for itself, we introduce

a context embedding θxi
′ ∈ Bd for each node as well.

Then, we leverage the hyperbolic distance to preserve the

proximity in Bd. Specifically, we define the probability of

having vxj as a context of a given vxi via the hyperbolic distance

in Eq. (2) as follows:

Pr(vxj |vxi ) = σ[−d(θxj ′,θxi )], (4)

where σ(x) = 1
exp(−x)+1 is the sigmoid function. For Gs and

Gt, we minimize the negative log-likelihood as follows:

Ouser = −
∑

x∈{s,t}

∑
vx
i ∈Vx

∑
vx
j ∈Nx

i

logPr(vxj |vxi ), (5)

i.e., we aim to construct the neighborhood of random walks

via the hyperbolic distance between user embeddings.

503

Authorized licensed use limited to: Florida State University. Downloaded on May 13,2021 at 23:04:01 UTC from IEEE Xplore.  Restrictions apply. 



D. Hyperbolic Community Embedding
With hyperbolic user embeddings above, we further learn

community embeddings μx
p in this Poincaré ball Bd, where

p ∈ [1, Cx] and Cx is the number of communities in Gx.
Inspired by model-based clustering, we consider that user

embeddings {θx· } are drawn from the mixture of multivariate

distribution {Pr(·|ψx
p )}C

x

p=1 in hyperbolic space, where ψx
p is

the distribution parameter to be described in details later. Each

distribution Pr(·|ψx
p ) corresponds to a community Cp, and the

community embedding μx
p is given as the location of Pr(·|ψx

p )
in the hyperbolic space. Then, for all user embeddings {θx· }
in Gx, we have the likelihood as follows:∏Nx

i=1

∑Cx

p=1
ZipPr(θxi |ψx

p ), (6)

whereZip is the probability of user vi belonging to community

Cp, and thus we have Zip ∈ [0, 1] and
∑Cx

p=1Zip = 1.
We leverage (generalized) hyperbolic distribution to model

communities in hyperbolic space whose PDF is given as

PrH(θ;μ,Δ,β, r, ω) =
e−β

TΔ−1(θ−μ)

(2π)
d
2 |Δ| 12

(
ω + δθ

ω + βTΔ−1β

)r−d/2
2

Kr− d
2

(√
(ω + βTΔ−1β)(ω + δθ)

)
Kr(ω)

,

(7)

where δθ = (θ − μ)TΔ−1(θ − μ). β ∈ Bd and μ ∈ Bd are

skewness and location vectors, respectively. ω is the concen-

tration factor. Δ ∈ R
d×d is the positive definite scatter matrix

capturing Riemannian metric, and |Δ| is its determinant. Kr(·)
is the modified Bessel function of (·) with order r. Then, we

have ψx
p = (μx

p ,Δ
x
p ,β

x
p , r

x
p , ω

x
p ) for each x ∈ {s, t}, and

θxi ∼
∑Cx

p=1Z
x
ipPrH(θxi |ψx

p ). Thus, with user embeddings

{θxi }, we minimize the negative log-likelihood as follows:

Ocommunity = − ∑
x∈{s,t}

∑
vx
i ∈Vx

log
Cx∑
p=1

Zx
ipPrH(θxi ;ψ

x
p ), (8)

so that we learn the community embedding and users’ com-

munity membership simultaneously.

E. Hyperbolic Common Subspace
We embed both users and communities for each network.

Then, across Gs and Gt, we construct a common hyperbolic

subspace where we can jointly align users and communities.
Specifically, the common hyperbolic subspace is constructed

via aligning embedding spaces of Gs and Gt on anchor users,

so that the user embedding of vtk is transfered via anchor link

(vsi , v
t
k) to predict embeddings θs·

′ in the neighborhood of its

counterpart vsi . We minimize the negative log-likelihood:

Oalign =−
∑

(vs
i ,v

t
k)∈A

⎛
⎝ ∑

vs
j∈N s

i

logPr(vsj |vtk) +
∑

vt
j∈N t

k

logPr(vtj |vsi )
⎞
⎠ .

(9)

For each anchor user (vsi , v
t
k) ∈ A, the first term is to predict

embeddings in the neighborhood N s
i of vsi in Gs using θtk of

Gt and the second term is to predict embeddings in N t
k using

θsi . In this common subspace, communities as well as users

are to be aligned via the hyperbolic distance.

F. Objective Function

Finally, we formulate the unified optimization of PERFECT

jointly aligning users and communities in the common hyper-

bolic subspace. We adopt the negative sampling [19] to define

the optimization objective, i.e., we replace the log term in

Ouser and Oalign with the right hand side of the following

equation and have ONS
user and ONS

align.

logPr(vtj |vsi ) ∝ log σ[−d(θtj ′,θsi )]+∑
vn∈NSK

i

Evn

[
log σ[d(θtn

′
,θsi )]

]
,

(10)

where the probability of negative sample vn being selected is

as proposed in the study [19], and NSK
i is defined as a set

of K negative samples being selected randomly, (vn, vi) /∈
E . Eq. (10) holds for identical superscripts of vi and vj as

well. Incorporating Eqs. (5), (8) and (9), we finally obtain the

objective function of PERFECT:

min
θ,θ′,ψ,Z

J0 = ONS
user + α1Ocommunity + α2ONS

align

s.t. Δx
p � 0, p = 1, 2, ..., Cx;

∑Cx

p=1
Zx

ip = 1, ∀x ∈ {s, t},
(11)

where α1 and α2 are two nonnegative weight parameters.

In the common subspace induced by optimizing Eq. (11),

user embeddings will learn from community embeddings in

both networks and, in turn, community embeddings learn from

all user embeddings for the joint social network alignment.

Algorithm 1: Alternating Riemannian Optimization

Input: graph pair (Gs,Gt,A), #(community) Cs, Ct,

embedding dimension d, #(negative sample) K
Output: user embeddings θx, community embeddings

μx and membership Zx for x ∈ {s, t}
1 Conduct random walks for each social network;

2 Initialize θx and θx′ via minONS
user for each

x ∈ {s, t};
3 while not converging do
4 forall social network do
5 forall community Cxp in each Gx do
6 Calculate the expectations in Eq. (12);

7 Obtain community membership Zx;

8 Update {ψx
p}C

x

p=1 via Eq. (13);

9 forall node vxi in each Gx do
10 Update θxi via Eqs. (19)-(21) ;

11 Update θxi
′ via Eqs. (22)-(23);

IV. PERFECT: OPTIMIZATION

To address the optimization in Eq. (11) , we first decompose

this optimization problem into two subproblems, i.e., commu-

nity embedding subproblem w.r.t. (ψ,Z) and user embedding

subproblem w.r.t. (θ,θ′). Then, we propose an alternating

Riemannian optimization algorithm. The main idea is that

we alternatively optimize one subproblem while fixing the

parameters of the other. The overall process is summarized
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in Algorithm 1. In each iteration (Line 4-10), community

embeddings and user embeddings are mutually refined in the

common hyperbolic subspace for the joint alignment. Every

time we obtain the embeddings, the alignment is naturally

revealed in the hyperbolic distance. We finally output the joint

alignment results together until they cannot refine each other.

A. Community Embedding Subproblem

Given user embeddings, we update community embeddings

for community alignment. To facilitate the optimization, we

first introduce auxiliary random variables of inverse Gaussian

W ∼ I(ω, 1, r), W ∈ R, and Gaussian g ∼ N (0,Δ), g ∈ R
d.

Then, a random variable θ of the hyperbolic distribution with

parameter ψ = (μ,Δ,β, r, ω) is equal to the combination

μ + Wβ +
√
Wg [20]. Then, under the reformulation of

this combination, we optimize (Zx, {ψx
p}) via expectation-

maximization algorithm. Take Gs for instance.

In the expectation-step, we require following expectations:

zsip = E
[
Zs

ip|θsi
]
=

Zs
pPrH

(
θsi |ψs

p

)
∑Cs

p=1Z
s
pPrH

(
θsi |ψs

p

) ,
asip = E

[
W s

ip|θsi ,Zs
ip = 1

]
=

Krsp+1(ω
s
p)

Krsp(ω
s
p)

− 2rsp
ωs
p

,

bsip = E
[
1/W s

ip|θsi ,Zs
ip = 1

]
=

Krsp+1(ω
s
p)

Krsp(ω
s
p)

,

csip = E
[
log(W s

ip)|θsi ,Zs
ip = 1

]
=

1

Krsp(ω
s
p)

∂Krsp(ω
s
p)

∂rsp
,

(12)

where Zs
ip is the membership of ith user to pth community.

Then, we define: ns
p =

∑Ns

i=1Z
s
ip, asp = 1

Cs

∑Ns

i=1Z
s
ipa

s
ip,

b
s

p = 1
Cs

∑Ns

i=1Z
s
ipb

s
ip and csp = 1

Cs

∑Ns

i=1Z
s
ipc

s
ip.

In the maximization-step, we derive the updating rules of

hyperbolic distribution parameters as follows:

μs
p =

∑Ns

i=1Z
s
ipθ

s
i

(
aspb

s
ip − 1

)
∑Ns

i=1Z
s
ip

(
aspb

s
ip − 1

) ,

βs
p =

∑Ns

i=1Z
s
ipθ

s
i

(
b
s

p − bsip

)
∑Ns

i=1Z
s
ip

(
aspb

s
ip − 1

) ,

Δs
p = −βs

p

(
θ
s

p − μs
p

)T

−
(
θ
s

p − μs
p

)
βs
p
T + aspβ

s
pβ

s
p
T

+
1

Cs

∑Ns

i=1
Zs

ipb
s
ip

(
θsi − μs

p

) (
θsi − μs

p

)T
, (13)

where θ
s

p = 1
Cs

∑Ns

i=1Z
s
ipθ

s
i . We employ the strategy in the

study [20] to update (rs, ωs) and omit them due to the limit

of space. The updating rules in network Gt are obtained by

replacing the superscript s with t.

Correctness: Note that, we estimate the hyperbolic distribu-

tion parameter ψ = (μ,Δ,β, r, ω) without considering the

positive definite constraint of scatter matrices Δ. Next, we

prove that the positive definiteness is naturally guaranteed,

i.e., Theorem 1 (Positive Definiteness), and thus show the

correctness of the given updating rules.

Theorem 1 (Positive Definiteness). All scatter matrices of Δs
p

and Δt
p under updating rules in Eq. (13) are positive definite.

Proof. The proofs of Δs
p and Δt

p are the same, thus we use Δs
p

for the elaboration. To prove the positive definiteness of Δs
p,

we first introduce an auxiliary matrix Δ̃s
p defined as follows:

Δ̃s
p =

1

np

Ns∑
i=1

zsipb
s
ip

(
θsi − μs

p −
βs
p

bsip

)(
θsi − μs

p −
βs
p

csip

)T

.

(14)
Note that, asip = E

[
W s

ip|θsi ,Zs
ip = 1

]
and bsip =

E[1/W s
ip|θsi , Zs

ip = 1]. Based on Jensen’s inequality, we have

1/E
[
W s

ip

] ≤ E
[
1/W s

ip

]
for all i, i.e., 1/asip ≤ bsip, and thus

asp =
1

Zs
p

Ns∑
i=1

Zs
ipa

s
ip ≥

1

Zs
p

Ns∑
i=1

Zs
ip

bsip
. (15)

Finally, we have the following hold:

Δs
p = Δ̃s

p +

(
asp −

1

Zs
p

Ns∑
i=1

Zs
ip

bsip

)
βs
pβ

sT

p . (16)

With the fact that xxT is positive definite for any x ∈ R
d,

we ensure the positive definiteness of Δs
p as well as Δt

p.

B. User Embedding Subproblem
With community embeddings fixed, we focus on updating

user embeddings for user alignment. These user embeddings

live in the common Poincaré ball Bd, a smooth unit manifold

with Riemannian metric gB(θ). In this manifold, the back-

propagated gradient is Riemannian gradient and usual (Eu-

clidean) gradient makes no sense as the operator of addition

is not completely defined [21].
We optimize {θxi } and {θxi ′} via exponential map with

Riemannian gradient. Take Gs for instance. We first compute

Riemannian gradient ∇R
θs
i
J of user θsi to identify optimizing

direction in Tθs
i
Bd, and then leverage exponential map θsi ←

expθs
i

(
−ρ∇R

θs
i
J
)

to move θsi along the mapped geodesic

in the common Poincaré ball Bd with a step size ρ [21].

Fortunately, owing to the conformality of Bd, Riemannian

gradient ∇R
θ J is obtained by rescaling the Euclidean gradient

∇E
θ J , i.e., ∇R

θ J =
(

1
λθ

)2

∇E
θ J . The exponential map

expθ(a) at θ ∈ Bd is defined in the following fraction [14]:

λθθ
(
cosh (λθ‖a‖) +

〈
θ, a
‖a‖

〉
sinh (λθ‖a‖)

)
+ a
‖a‖ sinh (λθ‖a‖)

1 + (λθ − 1) cosh (λθ‖a‖) + λθ

〈
θ, a
‖a‖

〉
sinh (λθ‖a‖)

.

(17)
The remaining challenge lies in the challenge of obtaining

Euclidean gradients owing to summation within logarithm. To

address this challenge, we optimize an upper bound objective

function J1 = ONS
user + α1OUP

community + α2ONS
align instead of

J0. Specifically, we replace Ocommunity with its upper bound

OUP
community defined as follows:

OUP
community = −

∑
x∈{s,t}

∑
vx
i ∈Vx

Cx∑
p=1

Zx
ip logPrH(θxp ;ψ

x
p ).

(18)
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It is easy to be verified via the log-concavity:

log
∑Cx

p=1
ZipPrH(θxp ;ψ

x
p ) ≥

∑Cx

p=1
Zip logPrH(θxp ;ψ

x
p ).

Thus, we have the partial derivative of J1 w.r.t. θsi , i.e.,
∂

∂θs
i
J1 =

∂ONS
user

∂θs
i

+ α1
∂OUP

community

∂θs
i

+ α2I(vs
i ,v

t
k)∈A

∂ONS
align

∂θs
i

,

∂ONS
user

∂θsi
=−

∑
vs
j∈N s

i

(
σ[d(θsj

′,θsi )]
∂d(θsj

′,θsi )
∂θsi

−

∑
vn∈NSK

i

Evn

[
σ[−d(θsn′,θsi )]

∂d(θsn
′,θsi )

∂θsi

]⎞⎠ ,

(19)

∂OUP
community

∂θsi
=−

Cs∑
p=1

πs
p

⎛
⎝(Δs

p)
−1(βs

p +
ζsp θ̃

s
i

δ̃θs
i

) +
∂ logKζs

p
(
√
νsp δ̃θs

i
)

∂θsi

⎞
⎠,

(20)

∂ONS
align

∂θsi
=−

∑
vt
j∈N t

k

(
σ[d(θtj

′
,θsi )]

∂d(θtj
′
,θsi )

∂θsi
−

∑
vn∈NSK

i

Evn

[
σ[−d(θsn′,θsi )]

∂d(θtn
′
,θsi )

∂θsi

]⎞⎠ ,

(21)

where νsp = ωs
p+β

s
p
T (Δs

p)
−1βs

p, ζsp = rsp−d/2, θ̃si = θsi−μs
p,

δ̃θs
i
= δθs

i
+ ωs

p and σ(x) is the standard sigmoid function.

I(·) returns 1 iff the condition (·) is true; otherwise,

I(·) = 0.
∂d(θ1,θ2)

∂θ1
is given in Eq. (3). Utilizing the fact

∂
∂xKr(x) = − r

xKr(x) − Kr−1(x), we give the partial

derivative of logKζs
p
(
√
νsp δ̃θs

i
) w.r.t. θsi as follows:

∂ logKζs
p
(
√
νsp δ̃θs

i
)

∂θsi
= −

⎛
⎝ ζsp

δ̃θs
i

+

√
νsp

δ̃θs
i

Kζp(
√
νsp δ̃θs

i
)

Kζp−1(
√
νsp δ̃θs

i
)

⎞
⎠(

Δs
p

)−1
θ̃si .

Similarly, for θsj
′, we have ∂J1

∂θs
j
′ =

∂ONS
user

∂θs
j
′ + α1

∂ONS
align

∂θs
j
′ ,

∂ONS
user

∂θsj
′ =−

∑
vs
i∈Vs

(
Ivs

j∈N s
i
σ[d(θsj

′,θsi )]
∂d(θsj

′,θsi )
∂θsj

′ −

∑
vn∈NSK

i

Evn

[
Ivs

j=vs
n
σ[−d(θsn′,θsi )]

∂d(θsn
′,θsi )

∂θsn
′

]⎞⎠ ,

(22)

∂ONS
align

∂θsj
′ =−

∑
(vs

i ,v
t
k)∈A

(
Ivs

j∈N s
i
σ[d(θsj

′,θtk)]
∂d(θsj

′,θtk)
∂θsj

′ −

∑
vn∈NSK

i

Evn

[
Ivs

j=vs
n
σ[−d(θsn′,θtk)]

∂d(θsn
′,θtk)

∂θsn
′

]⎞⎠ .

(23)
Note that, I(·) is defined above. The updating rules in network

Gt are obtained by swapping the superscript s and t.
Remarks: In the common Poincaré ball, Eq. (20) encourages

users to join in their corresponding communities, the alignment

of which is inferred by user embeddings within the commu-

nity. Hence, user embeddings and community embeddings are

mutually refined for the joint social network alignment.

Computational Complexity: We analyze the computational

complexity of Algorithm 1. First, we generate random walks

(Line 1), costing O(Nhl), N := max{Ns, N t}, where h is

the number of walks per node and l is the walk length. Then,

we solve two subproblems alternatively, which tends to be

converged in a few iterations. Specifically, updating the param-

eters of community embedding subproblem (Line 5-7) costs

O(C2d2), where C := max{Cs, Ct}, and O(Nhl(εKd +
Cd2)) for user embedding subproblem (Line 8-10), where ε
is the size of the node neighborhood. To sum up, the overall

complexity of PERFECT is linear to the number of users N .

V. EXPERIMENTS

In PERFECT, we jointly align communities and users in

the hyperbolic space. Thus, we evaluate the performance of

PERFECT with baseline methods on both community align-

ment and user alignment in the experiments, whose results

are reported in Sections V-A and V-B, respectively. Datasets

are introduced in Section III-A. We repeat each experiment 10
times and report the mean with 95% confidence interval.

A. Experiments on Community Alignment

In this part, we provide the performance of PERFECT com-

pared against comparison methods on community alignment.

1) Comparison Methods: To the best of our knowledge,

the only method [22] considering community alignment is

designed for attributed networks specifically, which will not

work for normal networks without node attributes and thus is

not comparable in our experiments. Specifically, the baseline

methods compared here include both classic network embed-

ding methods, e.g., DeepWalk and LINE and the latest ones

with considerations of community structures, i.e., CommGAN:

• CommGAN [23]: It is a recent method using a minimax

game to update node embeddings for community discov-

ery. For each network, we perform CommGAN and cal-

culate mean embedding in each community. Community

alignment is obtained by calculating Euclidean distance.

• DeepWalk [18]: For each network, we perform DeepWalk

to obtain node embeddings and then employ K-Means

to discover communities. We align communities by Eu-

clidean distance between mean embeddings.

• LINE [24]: We embed each network via LINE and use

K-Means to discover communities, which will be aligned

by Euclidean distance between mean embeddings.

To further evaluate PERFECT, we design several variants of it:

• PERFECT−: To demonstrate the superiority of unified

optimization, we design a two-step method, i.e., we learn

the common subspace and community embeddings sep-

arately. Specifically, we first learn the common subspace

via optimizingONS
user+ONS

align and then obtain community

embeddings via optimizing OUP
community .

• EucAlign: To demonstrate the superiority of hyperbolic

space, we consider the corresponding Euclidean version

of PERFECT. We only replace the hyperbolic distance

d(x,y) in PERFECT with Euclidean distance.

• EucAlign−: It is the Euclidean version of PERFECT−
where the Euclidean distance is used.
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Fig. 3. Community alignment under different overlaps
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Fig. 4. Community alignment under different dimensions

2) Evaluation Metric:

• Accuracy = 1
NC

∑NC

i=1 successτ (Csp, Ctq), where NC

is the number of groundtruth anchor communities.

successτ (Csp, Ctq) returns 1 iff groundtruth anchor com-

munity (Csp, Ctq) is successfully identified w.r.t. the thresh-

old τ ; otherwise, it returns 0.

• Quality = 2Ei{σ[−dist(μs
p,μ

t
q)]}, where the sigmoid

σ(·) is for normalization. μs
p and μt

q are community

embeddings of groundtruth anchor community Csp and

Ctq , respectively. We use Quality to evaluate community

alignment in the embedding space, and dist(·, ·) is the

distance function of corresponding comparison methods.

3) Experimental Results and Discussions: First, we eval-

uate the performance under different overlap rates η. The

overlap rate η is defined as 2|A|/(Ns + N t), where |A|,
Ns and N t are the number of anchor users, source network
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Fig. 5. Parameter sensitivity of the threshold τ

users and target network users, respectively. An η−overlap

dataset is generated by randomly deleting users according to

the overlap rate from the dataset. Fixing embedding dimension

d = 64, we report results under η = {20, 30, 40, 50, 60}(%)
in terms of Accuracy and Quality on both datasets in Fig.

3. Second, we discuss the effect of embedding dimension d.

Specifically, embedding dimension d takes different values in

[8, 16, 32, 64, 128] and we report results under η = 60% in

terms of Accuracy and Quality in Fig. 4. Note that, the

alignment threshold τ of Accuracy is set to 60% in the

experiments above. Next, we study the parameter sensitivity

of τ and report results under d = 64 and η = 60% in Fig. 5.

Finally, we summarize our findings and discuss the reasons:

• PERFECT consistently outperforms its competitors. The

reason is that PERFECT enjoys the strengths of hyperbolic

space and the unified optimization closing the loop of

community alignment and user alignment.

• The models of hyperbolic space consistently beat the
Euclidean ones as shown in both Figs. 3 and 4. Moreover,

we obtain better performance on the dataset of higher

hyperbolicity. (Refer to Section III-A and Table I.) The

reason is that hyperbolic space better matches the inher-

ent hyperbolicity of these datasets than the Euclid, and

hyperbolic space benefits community alignment.

• The models of unified optimization perform better in
general as shown in both Figs. 3 and 4. The reason is that,

in a unified optimization, community alignment and user

alignment benefit each other, while community alignment

neglects the effect of user alignment and vice versa in the

two-step methods.

• The proposed hyperbolic model, PERFECT, with low-
dimensional embeddings (e.g., 16) outperforms Euclidean
ones with high-dimensional embeddings (e.g., 128) as
shown in Fig. 4. The reason is that, well suited for net-

works with latent hierarchy, PERFECT generates faithful

embeddings with a few dimensions in hyperbolic space

while it is not true for Euclidean ones.

• PERFECT shows better robustness regarding threshold τ
as shown in Fig. 5. The reason is that, in PERFECT,

there tends to be more anchor users among aligned

communities, i.e., better results regardless of τ .

B. Experiments on User Alignment

In this part, we will illustrate the learning performance of

PERFECT compared against the comparison methods on user

alignment.
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TABLE II
THE PRECISION OF USER ALIGNMENT ON DBLP-AMINER AND TWITTER-QUORA DATASETS (%)

Dataset Method k=10 k=15 k=20 k=25 k=30

DBLP
&

AMiner

PALE 24.57± 2.23 31.36± 1.31 46.22± 0.98 52.37± 1.33 57.81± 1.51
IONE 29.05± 1.13 35.21± 1.45 48.63± 1.58 53.45± 1.13 59.59± 1.41
SNNA 32.46± 1.78 37.53± 1.85 43.26± 2.17 57.42± 2.04 63.09± 1.82

MOANA 26.82± 1.37 35.46± 1.13 44.53± 1.33 55.81± 1.49 64.86± 1.35
DeepLink 34.61± 1.69 54.25± 1.59 59.12± 1.29 62.68± 1.61 66.78± 1.12
PERFECT 44.53± 1.23 61.28± 0.93 67.85± 1.11 70.76± 0.68 72.33± 0.73

Twitter
&

Quora

PALE 25.36± 1.74 29.43± 1.01 44.72± 0.75 51.03± 1.05 56.80± 1.14
IONE 27.71± 0.87 33.57± 1.14 45.39± 1.23 50.92± 0.93 56.37± 1.06
SNNA 31.05± 1.36 34.20± 1.45 39.55± 1.75 52.86± 1.66 59.49± 1.47

MOANA 25.85± 1.04 34.59± 0.94 43.12± 1.23 54.07± 1.13 62.48± 1.05
DeepLink 36.21± 1.33 53.67± 1.29 57.93± 1.01 61.52± 1.21 66.23± 0.86
PERFECT 42.12± 0.93 58.35± 0.70 66.67± 0.91 69.24± 0.53 71.02± 0.55

TABLE III
THE MAP OF USER ALIGNMENT ON DBLP-AMINER AND TWITTER-QUORA DATASETS (%)

Dataset Method k=10 k=15 k=20 k=25 k=30

DBLP
&

AMiner

PALE 11.13± 0.65 11.75± 0.38 12.67± 0.29 12.96± 0.46 13.16± 0.50
IONE 12.38± 0.37 12.93± 0.56 13.76± 0.62 13.99± 0.40 14.22± 0.48
SNNA 13.24± 0.51 13.66± 0.69 14.00± 0.72 14.63± 0.78 14.84± 0.59

MOANA 11.67± 0.55 12.43± 0.43 12.99± 0.50 13.52± 0.44 13.86± 0.48
DeepLink 16.45± 0.60 18.13± 0.44 18.41± 0.40 18.58± 0.47 18.73± 0.43
PERFECT 18.86± 0.47 20.38± 0.37 20.79± 0.36 20.93± 0.21 20.99± 0.22

Twitter
&

Quora

PALE 10.87± 0.61 11.24± 0.35 12.19± 0.27 12.49± 0.37 12.71± 0.39
IONE 12.05± 0.33 12.56± 0.40 13.28± 0.51 13.53± 0.31 13.74± 0.42
SNNA 12.93± 0.52 13.23± 0.59 13.57± 0.63 14.22± 0.62 14.48± 0.57

MOANA 13.68± 0.39 14.47± 0.33 15.01± 0.37 15.52± 0.47 15.84± 0.37
DeepLink 16.26± 0.55 17.83± 0.48 18.09± 0.35 18.26± 0.50 18.43± 0.33
PERFECT 17.55± 0.38 18.98± 0.25 19.51± 0.31 19.64± 0.18 19.70± 0.20

1) Comparison Methods: We chose several state-of-the-art

methods on user alignment as follows:

• IONE [25]: It embeds social networks together with

anchor links in the Euclidean subspace to align users.

• PALE [6]: It first embeds each network and then matches

users via the Euclidean metric.

• DeepLink [7]: It leverages dual learning to refine the Eu-

clidean subspace where network alignment is performed.

• SNNA [26]: It proposes a weakly-supervised adversarial

learning method for alignment from the distribution level.

• MOANA [27]: It introduces a coarsen-align-interpolate

method via matrix analysis to find node correspondence.

2) Evaluation Metric: We employ the widely used

Precision@K and MAP@K as the evaluation metric.

3) Experimental Results and Discussions: First, we eval-

uate the performance of user alignment in terms of

Precision@k and MAP@k on both datasets, whose experi-

mental results are shown in Table II and Table III, respectively.

Specifically, k takes different values in [10, 15, ..., 30] and

embedding dimension is set to 64. Our findings are two-fold:

(1) PERFECT consistently outperforms its comparison meth-
ods. The reasons lie in that, besides the structural information

encoded in typical embedding methods, e.g., DeepLink, IONE,

PALE, user embeddings in PERFECT incorporate the commu-

nity structure explicitly and latent hierarchy among users in

hyperbolic space implicitly, and thus own more discriminative

information for user alignment. Additionally, this demonstrates
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Fig. 6. User alignment under different dimensions

that hyperbolic space benefits the user alignment.

(2) The performance gain of PERFECT is correlated to the
network hyperbolicity. The proposed approach achieves higher

performance on the dataset of higher hyperbolicity (DBLP-

AMiner), and beats Euclidean methods on both datasets.

Second, we discuss the effect of embedding dimension d.

We take different values in [8, 16, 32, 64, 128], and report the

performance of user alignment in terms of Precision@30 and

MAP@30 on both datasets in Fig. 6. We omit the performance
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Fig. 7. The common Poincaré disk of DBLP-AMiner dataset

of MOANA as it is not an embedding method. We find that as
shown in Fig. 6, PERFECT consistently outperforms its com-
petitors in all dimensions, and obtains dramatic performance
gain with low-dimensional embeddings.

C. Case Study

In this part, we will give a case study on DBLP-AMiner

dataset to demonstrate the performance of PERFECT on both

user alignment and community alignment.

We visualize the common Poincaré disk of PERFECT in

Fig. 7 (b) by setting d = 2. We filter the embeddings

of each network for clarity. The embeddings of DBLP and

AMiner are plotted in Fig. 7 (a) and (c), respectively, where

communities are labeled as illustrated in the legend. In this

common Poincaré disk, we have three main findings:

(1) The latent hierarchy among users is generally preserved
in the two-dimensional embeddings. We find that authors of

high impact, e.g., Philip S. Yu and Christos Faloutsos, are

positioned closer to the origin, while those of relative low

impact are pushed to the boundary of the disk.

(2) User embeddings of the same user in different networks
locate closely. Zoom in the community of data mining. The

user embedding of Philip S. Yu in DBLP, shown in Fig. 7 (a),

is nearly the same as that in AMiner, Fig. 7 (c). Thus, user

alignment is easy to be inferred via PERFECT.

(3) Centripetal regions of corresponding communities are
naturally aligned. We find that user embeddings of the same

community cluster into a centripetal region, which is also

reported in the study [28], and it is obvious that most of

centripetal regions of the same research area are aligned. That

is, both users and communities are aligned in the common

Poincaré disk, verifying the basic idea of our approach.

VI. RELATED WORKS

We briefly summarize the related works in following areas:

Network embedding is to map the nodes of a network into a

vector space [29], [30]. Here, we roughly classify the literature

by the embedding space. Most existing studies [18], [24],

[31] explicitly or implicitly work with the Euclidean space.

Some studies [32], [33] focus on exploiting in the static or

temporal network structure, while others [34], [35] attempt to

incorporate other attributes. However, is Euclidean space the

appropriate embedding space? Recent advances uncover the

hyperbolicity of some real-world networks, and researchers

attempt to facilitate network embedding in hyperbolic space.

Some studies [12], [13] suggest the superiority of hyper-

bolic geometry for network embedding. Recently, some neural

networks on graphs [8], [36], [37] learn node embeddings

underpinned by hyperbolic space. Distinguishing from these

methods, PERFECT is tailored for network alignment.
User alignment, or anchor link prediction, is to align users

across different social networks according to the underlying

identity. To address this problem, some studies [38], [3]

leverage attribute information, such as screen name pattern

and user behaviors, to discover the identity consistency, while

some studies [6] exploit network topology to link user iden-

tities. Moreover, there exist studies [39] considering both

topology and attribute information. The study [40] gives a

comprehensive survey. Recently, HGANE [41] incorporates

attentive mechanism to induce the common subspace. GAlign

[42] performs network alignment in an unsupervised way.

Note that, similar to our prior works [43], [44], [45], [46], all

of methods in the literature work with the Euclidean space,

while PERFECT works with hyperbolic space. Additionally,

beyond user alignment, PERFECT jointly considers community

alignment in a unified approach.
Communities play a fundamental role in social network

analysis. To the best of our knowledge, most existing studies

[10] focus on community discovery in an isolated social

network. Various types of methods have been proposed,

such as modularity optimization [47] and spectral algorithms

[48]. Generative methods are often explored as well, such

as community affiliation models [49], model-based clustering

and GAN [23]. Actually, social networks are correlated and

partially aligned on their common users. Some studies [50]

facilitate community discovery with the information of its

counterpart network. Recently, the study [22] considers the

community structure to facilitate user alignment across social

networks. Different from these studies, we for the first time

close the loop of community alignment and user alignment so

that they mutually enhanced each other.

VII. CONCLUSION

In this paper, we present a novel hyperbolic optimization

framework, namely PERFECT, to jointly align users and com-

munities in hyperbolic space. To address the optimization
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of PERFECT, we propose a novel alternating Riemannian

optimization algorithm with solid theoretical analyses so that

user alignment and community alignment benefit from each

other. Extensive experiments show the superiority of PERFECT

in both user alignment and community alignment.
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