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ABSTRACT

Citing comprehensive and correct related work is crucial in
academic writing. It can not only support the author’s claim-
s but also help readers trace other related research papers.
Nowadays, with the rapid increase in the number of scientific
literatures, it has become increasingly challenging to search
for high-quality citations and write the manuscript. In this
paper, we present an automatic writing assistant model, Au-
toCite, which not only infers potentially related work but al-
so automatically generates the citation context at the same
time. Specifically, AutoCite involves a novel multi-modal en-
coder and a multi-task decoder architecture. Based on the
multi-modal inputs, the encoder in AutoCite learns paper
representations with both citation network structure and
textual contexts. The multi-task decoder in AutoCite cou-
ples and jointly learns citation prediction and context gener-
ation in a unified manner. To effectively join the encoder and
decoder, we introduce a novel representation fusion compo-
nent, i.e., gated neural fusion, which feeds the multi-modal
representation inputs from the encoder and creates outputs
for the downstream multi-task decoder adaptively. Extensive
experiments on five real-world citation network datasets val-
idate the effectiveness of our model.
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1 INTRODUCTION

Figure 1: The differences between contextual cita-
tion generation and conventional methods. (a) Sim-
ple link prediction infers potential citations in ci-
tation networks. (b) Context-aware methods take a
completed context as a query to predict related pa-
pers in marked placeholders ‘[?]’. (c) Our contextual
citation generation captures both network structure
and semantic information to predict potential cita-
tions (e.g., related work [8], [9]) and generate new
contexts simultaneously.

Have you ever had difficulties in finding suitable citations
when writing an academic paper? It is crucial to cite cor-
rect work in academic writing, which can not only strongly
support the claims of the author but also help readers trace
other related papers with similar topics. However, with the
rapid increase in the number of scientific literatures, it has
become increasingly challenging for researchers to search for
and cite comprehensive related work nowadays.

Some work proposes to utilize citation networks to help
authors find the missing related work [12, 17]. As shown in
Figure 1(a), citation recommendation can be regarded as
a link prediction task in citation networks. However, most
link prediction methods [8, 21] can only capture the net-
work structure but ignore the semantic information of pa-
pers. To explore the semantic relevance among papers, ex-
tensive context-aware citation prediction methods attempt
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to recommend related research for authors [9, 10, 24]. Fig-
ure 1(b) shows a paragraph of related work containing un-
known citation placeholders marked as ‘[?]’. To replace these
placeholders with appropriate research papers, conventional
context-aware methods [9, 10, 24] utilize a specific context
that consists of several sentences as the query to predict ci-
tations or a suggested list.

Although such methods provide citations that are relat-
ed to the complete manuscript, replacing only placeholder-
s in a manuscript cannot generate more related work that
the author may has missed. Especially without considering
the associated sentences generation may not help much in
assisting manuscript writing. Some interesting application-
s attempt to write the academic paper automatically, e.g.,
generating abstracts based on titles [27] or writing key ele-
ments of a new paper based on predicted related entities for
input [26]. Due to the huge amount of literatures, even for
senior researchers with lots of experiences, it is also difficult
to know all relevant research papers and cite them within ap-
propriate contexts [11]. Therefore, besides inferring research
papers for the placeholders, generating appropriate sentences
(i.e., the citation context) describing the related work tends
to be more important. As illustrated in Figure 1(c), in this
paper, we introduce a novel research problem to predict po-
tential citations (e.g., related work [8] in Figure 1(c)) that
the author may ignore and generate corresponding citation
contexts at the same time.

Citation networks consist of nodes representing papers
and directed edges representing citation relationships, where
each edge is associated with a textual attribute as its cita-
tion context. It is observed that papers citing (or cited by)
the same citations may be relevant. Such citation relevance
is multi-modal, which is revealed in both the similar local
topology of network structure and semantic information of
textual contexts. As mentioned in [30], descriptive text on
edges can encode rich semantic information and structural
relationship between networks. It motivates us to exploit
both network structure and context semantics in a multi-
modal way to generate high-quality citations in this paper.
Different from the existing citation prediction tasks [9, 24],
we formulate a novel contextual citation generation problem
that predicts potential citations and automatically generates
citation contexts at the same time. Essentially, it is a kind
of link inference task with textual attributes, which aims to
infer links and the attributed contexts simultaneously.

However, achieving the goal of contextual citation gener-
ation is challenging due to the following reasons:
• Multi-modal. In citation networks, the local topology
reveals structural characteristics of nodes, and textual con-
texts on edges encode rich semantic information of nodes.
It is essential but challenging to capture complex interac-
tion between information from different modalities and learn
multi-modal representations.
• Multi-task. Our objective is a multi-task learning prob-
lem, which calls for not only citation link prediction but also
context generation. Such a multi-task problem needs infor-
mation from all uni-modality but with specific task-oriented

adaption requirements. Thus, how to design an effective fu-
sion strategy to integrate multi-modal representations for
downstream tasks adaptively is challenging.
• Diverse roles. Since citation links in networks are direct-
ed from the outer-citer (papers cite others) to the inner-citer
(papers cited by others), it corresponds to the different roles
of nodes. For a specific node, the contextual citation point-
ing to it and from it both reveal its characteristics in various
aspects, which need to be captured crucially.

To solve the challenges mentioned above, we propose an
automatic writing assistant model AutoCite to address the
contextual citation generation task. Specifically, AutoCite
involves a novel multi-modal encoder and multi-task decoder
architecture, where the encoder learns multi-modal represen-
tations of papers with both citation network structure and
textual contexts, and the decoder coherently achieves cita-
tion link prediction and context generation in a unified man-
ner. To join the encoder and decoder effectively, we introduce
a novel gated neural fusion component. It feeds the multi-
modal representation inputs and creates outputs for the mul-
tiple downstream tasks, which realizes the feature cross of
modalities and meet specific task-oriented adaptation re-
quirements adaptively. Furthermore, to deal with diverse
roles challenge, the encoder in AutoCite improves atten-
tion networks to capture critical characteristics with differ-
ent roles. Extensive experiments on five real-world datasets
validate the effectiveness of our model. Our contributions are
summarized as follows:

• We propose a novel multi-modal multi-task learning
model for contextual citation generation problem.

• We introduce a gated neural fusion mechanism to inte-
grate multi-modal representations and control features
transfer for downstream tasks adaptively.

• Our model captures the characteristic differences of n-
odes acting in diverse roles. It includes dual-role graph
attention for network structure and co-attention for
context semantics.

• Extensive experiments are conducted on five real-world
datasets, and the results demonstrate the superiority
of our model over other state-of-the-art methods.

2 PRELIMINARIES

In this section, we provide some background and formally
define the problem of contextual citation generation.

Definition 1. (Contextual Citation Network): We for-
mally define a contextual citation network as a directed
graph G = (V, E , f), where V = {v1, v2, ..., vn} consists of
a set of paper node instances, E ⊂ V × V is a set of edges
representing the citation relationships between nodes in V.
Edge eij ∈ E represents a citation link from node vi to node
vj . Each edge is associated with a textual citation context
f(eij) = Dij , where Dij consists of a sequence of words.

For node vi ∈ V, it may cite others or be cited by others.
We denote the node that cites others as outer-citer, and
the node cited by others as inner-citer conversely.
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Problem Definition: The contextual citation generation
problem studied in this paper includes predicting citation
links and generating corresponding contexts simultaneously.
Formally, given a contextual citation network G = (V, E , f),
we represent unknown links in G as a set Ê = {V × V}/E .
Our task is to capture network structure and context seman-
tic information of nodes to predict the probability that links

may exist between node-pairs in Ê . More importantly, our
model also generates the corresponding context on the cita-

tion link when it does exist. For each node-pair (vi, vj) in Ê ,
AutoCite predicts the probability Pr(vi, vj) that outer-citer
vi may cite inner-citer vj , and automatically generates the
possible context Dij when vi cites vj .

3 METHODOLOGY

In this section, we will introduce the multi-modal repre-
sentation learning model in detail. Figure 2 illustrates the
overview of AutoCite, which consists of a multi-modal en-
coder, gated neural fusion, and a multi-task decoder.

3.1 Multi-Modal Encoder

To deeply explore the relevance of nodes in contextual ci-
tation networks, we propose a novel multi-modal encoder,
including two components, i.e., a graph structure encoder
and a textual context encoder.

3.1.1 Graph Structure Encoder. Since the node roles in cita-
tion networks are diverse, each node is cooperatively charac-
terized by the information of both other nodes it cites, and
other nodes cite it. We propose dual-role graph attention to
accurately capture directed graph structure information to
learn node representations.

Formally, each node vi is represented as a structural fea-
ture vector vi ∈ Rd. Here, d denotes the dimension of node
embeddings. We define the nodes cited by vi as its outer-
neighbors N⊢

vi = {vj |(vi, vj) ∈ E}, and nodes cite vi as its

inner-neighbors N⊣
vi = {vj |(vj , vi) ∈ E}. Next, we introduce

the dual-role graph attention.
Outer-graph attention. For the target outer-citer vi

and its outer-neighbor vj ∈ N⊢
vi , the outer-cite attention

score of vj to vi is defined as:

α⊢
g (vi, vj) = LeakyReLU

(
(a⊢

g )
T [W⊢

gvi||W⊣
gvj ]

)
, (1)

where ·T represents transpose and || is the concatenation op-

eration. (a⊢
g )

T ∈ R2d is a single-layer attention network and

subscript ·g denotes “graph” for short. Superscript ·⊢ and ·⊣
represent the outer-citer and inner-citer roles, respectively.
W⊢

g (or W⊣
g ) ∈ Rd×d is a shared weight matrix for all nodes.

Inner-graph attention. To capture the impact of nodes
citing vi, we also define inner-graph attention. For the target
inner-citer vi and its inner-neighbors vj ∈ N⊣

vi , the inner-cite
attention score of vj to vi is defined as:

α⊣
g (vi, vj) = LeakyReLU

(
(a⊣

g )
T [W⊣

gvi||W⊢
gvj ]

)
, (2)

where notations are similarly defined as above. Then, the at-
tention coefficients across all outer- and inner-neighbors are

normalized based on a unified softmax function α·
g(vi, vj) =

Softmaxj(α
·
g(vi, vj))vj∈N ·

vi
. We aggregate the outer-neighbor

contributions from vj to outer-citer vi as a vector:

e⊢
g (vi, vj) = α⊢

g (vi, vj)W
⊢
gvj . (3)

Also, the inner-neighbor contributions from vj to inner-
citer vi is aggregated as a vector e⊣

g (vi, vj) in the same way.
Then, we combine the contributions of all neighbors to vi. In-
spired by [25], we also employ multi-head attention to learn
a more stable graph-modal representation:

êi =

Kwww
k=1

σ
( ∑

vj∈N⊢
vi

e⊢
g (vi, vj)

(k)
+

∑
vj∈N⊣

vi

e⊣
g (vi, vj)

(k)
)
, (4)

whereK denotes multiple independent attention mechanisms,

and σ is the sigmoid activation. e·
g(vi, vj)

(k) are contribu-

tions of neighbors computed by the k-th attention (a·
g)

(k).

The output vector êi ∈ Rd denotes the graph-modal rep-
resentation of node vi. Our graph structure encoder can
capture characteristics differences of nodes playing different
roles in sub-networks through attention coefficients.

3.1.2 Textual Context Encoder. Except for graph structure
characteristics, the textual contexts on edges encode rich
semantic information of nodes [30]. For outer-citer vi, we
denote {D⊢

i1, ...,D⊢
il} as its textual citation contexts that vi

cites others, where l indicates the maximum number of con-
texts. Equally, {D⊣

j1, ...,D⊣
jl} represents the textual contexts

of inner-citer vj from citations of others cite vj .
Each context is encoded into a semantic embedding based

on the last hidden state of Bi-directional Long Short-term
Memory: d⊢

ij = BiLSTM⊢(D⊢
ij) and d⊣

ij = BiLSTM⊣(D⊣
ij).

d·
ij ∈ Rd where d is the same dimension as node embeddings.

After that, we get the corresponding semantic embeddings
D⊢

vi = [d⊢
i1, ...,d

⊢
il] for outer-citer vi and D⊣

vj = [d⊣
j1, ...,d

⊣
jl]

for inner-citer vj , respectively. Since each context has dif-
ferent priorities to characterize the semantic relevance be-
tween nodes, we apply co-attention to identify the more
important context. Formally, the (r, c)-th entry in the co-
attention weight matrix M ∈ Rl×l is defined as:

Mr,c =
(
F⊢(d⊢

ir)
)T

Wco

(
F⊣(d⊣

jc)
)
, (5)

where Wco ∈ Rl×l is a weight matrix and the subscript ·co
denotes “context” for short. F · are feed-forward neural net-
works. By taking the row- and column-wise maximum sum
of matrix M, the co-attention is able to select the contexts
with maximum correlations:

m⊢
co(vi, vj) = Mu⊢ and m⊣

co(vj , vi) = (u⊣)TM, (6)

where u⊢ (or u⊣)∈ Rl is a constant vector with all values
of 1. m⊢

co(vi, vj) (or m⊣
co(vj , vi)) ∈ Rl indicates the impor-

tance distribution of D⊢
vi (or D⊣

vj ). Then, we utilize a soft-
max function to normalize the importances and compute the
context-modal representations:

ẽi =
(
m⊢

co(vi, vj)
)T

D⊢
vi and ẽj =

(
m⊣

co(vj , vi)
)T

D⊣
vj .

(7)
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Figure 2: The framework of AutoCite. Given the contextual citation network G and a node-pair (vi, vj), we
aim to predict the citation from outer-citer vi to inner-citer vj. (a) The multi-modal encoder first captures
both the network structure and semantic information of vi and vj. (b) Then, a gated neural fusion integrates
the multi-modal representation for different tasks adaptively. (c) Finally, the multi-task decoder predicts the
probability of the citation link that exists and generates the corresponding context.

Here, ẽi ∈ Rd and ẽj ∈ Rd denote the context-modal rep-
resentation of outer-citer vi and inner-citer vj , respectively.
The textual context encoder is capable of capturing the se-
mantic differences in the context of different roles.

3.2 Gated Neural Fusion

To solve auxiliary tasks, the information of different modal-
ities should be integrated into a compact multi-modal rep-
resentation [32]. Most existing fusion methods [19, 29] are
oriented to a single task, ignoring the inherent feature cross
between modalities and tasks, and cannot be directly applied
to our model.

For the complex multi-task problem, we need to capture
the multi-modal information differences for specific task-
oriented information adaption requirements. Therefore, we
propose a novel gated neural fusion, where the gates can
control the features cross between modalities and help specif-
ic tasks capture critical information adaptively. Take outer-
citer vi as an example, for the citation link prediction task,
the multi-modal representation of vi is formally defined as:

ĝvi
= σ(x̂vi), (8)

pi = ĝvi
⊗ êi + (1− ĝvi

)⊗ ẽi, (9)

where x̂vi ∈ Rd is the node-independent link prediction ori-
ented neural parameter of vi to be learned. ĝvi

denotes the
task-driven gate, which controls the weight of uni-modal rep-
resentation by bit-wise granularity. ⊗ is hadamard product
operation and pi ∈ Rd indicates the multi-modal represen-
tation for node vi. For context generation task, the multi-
modal representation of vi is formally defined as:

g̃vi
= σ(x̃vi), (10)

qi = (1− g̃vi
)⊗ êi + g̃vi

⊗ ẽi, (11)

where x̃vi ∈ Rd is node-independent context generation ori-
ented parameter of vi, and g̃vi

controls the weight of uni-
modal representation for context generation task adaptively.

The proposed gated neural fusion realizes either intra- or
inter-modality feature cross, combining multiple information
into a multi-modal representation without requiring manual
tuning. Such task-driven fusion couples multiple tasks tight-
ly, capturing critical information for specific task-oriented
adaption requirements.

3.3 Multi-Task Decoder

To realize the citation link prediction and context generation
simultaneously, we propose a multi-task decoder. Through
gated neural fusion, we integrate four types of multi-task
oriented multi-modal representations: p⊢

i and q⊢
i for outer-

citer vi, p
⊣
j and q⊣

j for inner-citer vj .
Citation Link Prediction. For node-pair (vi, vj), we de-
fine the probability of citation link from outer-citer vi to
inner-citer vj that exists as:

Pr(vi, vj) = σ(p⊢
i · p⊣

j ). (12)

Following previous methods [5, 18], we train the citation
link prediction model with negative sampling, and the ob-
jective is defined as:

Lg =
∑

(vi,vj)∈E

(
logPr(vi, vj)+

∑
(v̂i,v̂j)∈N

log (1− Pr(v̂i, v̂j))
)
,

(13)
where N is the set of negative samples. Specifically, we ran-
domly replace vi (or vj) in positive node-pair (vi, vj) among
other nodes in V to construct the negative set.
Context Generation. We adopt the frequently used deep
neural language model Gated Recurrent Unit (GRU) [6] to
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generate citation contexts. For the citation from vi to vj , q
⊢
i

and q⊣
j are incorporated into the initial hidden state h0 first:

h0 = tanh(W⊢
0q

⊢
i +W⊣

0q
⊣
j + b0). (14)

Here, tanh is the activation function. W·
0 ∈ Rd×d and

b0 ∈ Rd are parameters to be learned. The hidden state ht

at time t is calculated recursively:

ht = GRU(ht−1,wt), (15)

where wt ∈ Rd is the word embedding generated at time t.
At each step, ht is transformed into word probability distri-
bution:

ot = Softmax(Woht + bo), (16)

where Wo ∈ R|V |×d and bo ∈ R|V | are weight matrices, |V |
is the vocabulary size. ot ∈ R|V | indicates the probability of
words being selected as the generated word at time t. Beam
search [26] is applied to generate a reasonable context Dij .
Finally, the objective of context generation is defined as:

Lco =
∑
Dij

(∑
t

− log(ot,wt)
)
. (17)

The multi-modal encoder in AutoCite is sharing by d-
ifferent downstream tasks. We jointly train the multi-task
objectives into a unified framework:

L(Θ) = Lco + λLg + γLreg, (18)

where Θ contains all parameters of AutoCite, and λ denotes
the weight to balance the priorities of different losses. We also
apply L2 regularization Lreg of the model with parameter γ
to avoid overfitting. By coupling citation link prediction and
context generation through parameter sharing, both the two
tasks can learn from each other effectively.

Table 1: Statistics of five public datasets.

# Papers # Citations # Words

aan 7,019 11,911 77
peer 4,872 16,790 62
cora-pro 36,743 64,036 52
cora-os 25,605 45,014 53
cora-db 13,320 21,462 50

4 EXPERIMENTS

To investigate the effectiveness of AutoCite, we compare it
with baselines on real-world citation network datasets.

4.1 Dataset

In our experiment, we have selected three representative
publicly citation datasets as follows.

• ACL Anthology Network 1 provides extracted ci-
tations and collaboration networks of papers and au-
thors. We utilize the citation network aan [12] with
contexts constructed by Jeong et al.

1http://aan.eecs.umich.edu

• PeerRead 2 consists of over 14K paper drafts submit-
ted in the artificial intelligence field. We use the public
dataset peer [12] that includes citation contexts.

• Cora 3 contains numerous papers of seven categories,
where the edges with context between nodes represen-
t citations. We choose three categories datasets: pro-
gramming (pro), operation systems (os), and data-
base (db) according to different sizes and themes.

For each dataset, we intercept the sentences before and
after each citation mark in raw manuscripts as its textual
context. The statistics of the five datasets are summarized
in Table 1.

4.2 Comparison Methods

To evaluate the performance of citation link prediction,
we compare AutoCite with the following methods:

• CTM [10] models the citations and contexts as paral-
lel data, through translation to predict citation links.

• NMF [18] learns the probability of citation link exist-
ing between node-pairs based on matrix factorization.

• DeepWalk [21] captures node-pairs via uniform ran-
dom walks on a graph to learn node representations.

• Node2Vec [8] modifies a biased random walk strategy
to explore the neighborhood architecture efficiently.

• GAT [25] utilizes graph neural networks to learn em-
beddings by leveraging contributions of neighbors.

• CAML [5] is an explainable recommendation that
predicts the score and generates the user’s review. We
replace its score prediction to citation link prediction.

To evaluate the performance of context generation, we
compare AutoCite with the following methods:

• WordRNN [23] builds only a word-level language
generation model but ignoring the network structure.

• Net2Text [30] generates contexts for related papers
conditioned on both words and network structure.

• Seq2Seq [2] is an encoder-decoder framework that
translates the source context into a matching context.

• CAML [5] generates contexts based on the predict-
ed score and nodes’ textual contexts. It achieves both
citation link prediction and context generation.

4.3 Experimental Settings

For citation link prediction, we regard it as a binary classi-
fication task, to judge whether there is a link between node-
pairs. All existing links form the positive links set, and we
randomly replace each one of the nodes in positive links to
construct a negative set. Following previous works [8, 21], we
use the Area Under ROC Curve (AUC) metric to evaluate
the performance. For context generation, the model outputs
the probability of |V | words that may be selected at each
time step. The generation process will stop when the generat-
ed context reaches the threshold length of T or when encoun-
tering a terminator. The widely used metric BLEU [2, 26, 30]

2https://github.com/allenai/PeerRead
3http://www.research.whizbang.com/data
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Table 2: Performance comparison for citation link prediction on five datasets.

Datasets
Baselines Our Methods

CTM NMF DeepWalk Node2Vec GAT CAML AutoCite-P AutoCite

aan 70.30 83.28 86.70 87.52 89.25 86.94 91.94 92.25
peer 69.34 82.47 85.12 84.89 88.26 82.48 92.45 92.74
cora-pro 70.65 76.04 87.69 87.15 88.73 80.89 90.06 91.76
cora-os 69.07 75.20 83.61 84.01 86.34 80.54 89.46 90.64
cora-db 68.15 74.88 85.28 86.31 87.67 77.61 88.25 89.23

Table 3: Performance comparison for context generation on five datasets.

Datasets Metrics
Baselines Our Methods

WordRNN Net2Text Seq2Seq CAML AutoCite-G AutoCite

aan
BLEU-1/2 23.8/19.8 33.2/25.8 49.6/39.5 53.5/44.2 56.2/44.7 56.3/45.2
BLEU-3/4 16.0/10.6 16.7/12.2 30.8/21.8 33.5/24.3 33.1/24.8 33.3/25.1

peer
BLEU-1/2 20.6/17.9 31.2/24.0 45.9/36.6 52.7/41.5 53.7/42.5 54.3/43.0
BLEU-3/4 13.3/9.19 17.4/13.9 23.4/19.2 29.4/21.3 30.6/22.0 33.8/22.7

cora-pro
BLEU-1/2 24.6/18.6 32.3/24.5 48.6/37.0 50.3/36.2 53.1/41.1 53.2/41.4
BLEU-3/4 13.5/10.5 16.7/12.0 26.3/19.3 25.4/18.5 28.9/20.6 21.2/20.8

cora-os
BLEU-1/2 28.1/21.8 33.6/27.0 47.7/37.0 50.0/44.4 54.2/42.8 54.9/42.3
BLEU-3/4 15.6/11.2 19.0/14.3 26.5/19.3 29.3/22.1 30.4/21.6 30.9/22.3

cora-db
BLEU-1/2 29.6/23.1 32.8/24.1 48.9/38.5 52.8/43.5 56.9/45.2 56.5/44.4
BLEU-3/4 15.7/10.6 17.7/12.8 28.0/20.7 31.0/23.2 32.3/22.9 31.8/23.5

is applied to measure the similarity between the generated
context and the ground-truth. We compute BLEU-1/2/3/4
to evaluate the performance in different granularities.

For all baselines above, we have chosen the optimal hyper-
parameters carefully or follow the original settings. We ran-
domly choose 80% of samples as the training data and re-
maining as test data. The word(or node) embeddings are
randomly initialized with dimension d = 128. We uniform-
ly sample l textual contexts of each node, and the value
of l is tested in [1,2,3,4]. The graph attention head K =
4, learning rate lr = 3e-3, coefficient γ = 5e-4 of L2 reg-
ularization, and probability p = 0.4 of dropout for all pa-
rameters. The harmonic weight λ of loss function is set to
0.05, and the window size of beam search is set to 2. Dur-
ing training, we train for 50 epochs using Adam optimizer
[15]. We will discuss how the key hyper-parameters affect
performance in section 4.6. The source code is available at
https://github.com/qqingwang/AutoCite.

4.4 Experimental Results

Table 2 and Table 3 respectively show the results of cita-
tion link prediction and context generation on five datasets,
where the best results are boldfaced.

In Table 2, AutoCite-P means we train only a single link
prediction task and remove the context generation loss. In
general, our model has achieved the best performance on all
datasets, and the variant of a single task decoder gets sub-
optimal results. It shows that the multi-task learning decoder

helps to improve both sub-tasks. NMF obtains better results
than CTM in all cases. CAML integrates context informa-
tion into matrix factorization and achieves a higher AUC.
Still, none of the above methods capture the citation net-
work structure, and they perform poorly than other methods
based on network structure, e.g., Deepwalk, Node2vec and
GAT. Among all the structure-based methods, GAT gets
the best results on all datasets, only inferior to our mod-
el. This finding suggests that our dual-role graph attention
can improve link prediction by exploring the characteristics
differences of direction.

For context generation, the results are presented in Ta-
ble 3, where AutoCite-G means that we consider only the
context generation task. Our model explores multi-modal
representations and has achieved a significant improvement
over baseline methods. Among all the baselines, WordRNN
generates context based on only a few words but ignoring the
network structure and gets the worst performance. Net2Text
captures the network structure and achieves slightly better
results. However, Net2Text only considers the network struc-
ture and performs poorly than other models that integrate
context information, e.g., Seq2Seq and CAML. It shows that
semantic information of nodes is critical for generating con-
texts. In most cases, the performance of the multi-task de-
coder AutoCite exceeds the single-task decoder AutoCite-G.
Experimental results confirm our hypothesis: the crossing of
multi-modal representations and the sharing of information
between multiple tasks are beneficial.
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Figure 3: Influence of multi-modal representation.
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Figure 4: Effectiveness of gated neural fusion.

4.5 Study of Different Variants

Influence of multi-modal representation. We have con-
ducted an ablation study to verify the effectiveness of multi-
modal representation learning. As shown in Figure 3, “w/o
C” denotes that we remove context-modal representations,
and “w/o G” means the graph-modal representations have
been removed. In both tasks, “w/o C” gets the worst effect,
while “w/o G” achieves better results. The results indicate
that semantic information may be more important, and the
best results have been attained by considering both multi-
modal information in network structure and contexts.

Influence of diverse roles. We have designed compara-
tive experiments to verify the effectiveness of diverse roles in
the encoder. As shown in Table 4, “g-w/o” indicates that we
replace the dual-role graph attention with a vanilla graph
attention, and “t-w/o” means concatenating the semantic
embeddings of nodes in context encoder. The results show
that without considering the diverse roles of nodes in captur-
ing network structure or semantic contexts will affect both
tasks’ performance. Besides, “t-w/o” achieves the best con-
text generation on the cora-db dataset, but the proposed
model gets the best performance in all other cases. Thus, it
is necessary to capture the role diversity of nodes.

Effectiveness of gated neural fusion. To effectively
join the encoder and decoder, we introduce the gated neu-
ral fusion to integrate multi-modal representations. Figure 4
shows the results with other widely used fusion methods.
Concat [29] represents concatenation with a linear network,
and Add [19] replaces it with an addition operation. Our
gated neural fusion allies gates to control the contribution of
uni-modality for multiple downstream tasks. In most cases,
our gated neural fusion has achieved better and robust re-
sults. It suggests a simple but effective feature fusion method
for multi-task that can be used in many other fields.

4.6 Parameters Analysis

In this section, we evaluate how different values of dimension
size d, weight λ of link prediction, and sample number l of
contexts affect the performance, while other parameters are

Table 4: Influence of diverse roles.

Link Prediction Context Generation

Datasets g-w/o t-w/o with g-w/o t-w/o with

aan 92.68 90.02 92.25 55.8 52.2 56.4
peer 92.03 91.54 92.26 52.1 51.9 54.3
cora-pro 89.85 91.36 91.83 52.3 52.1 53.2
cora-os 87.44 89.12 90.34 53.7 54.0 54.9
cora-db 87.77 89.61 89.67 54.6 56.3 56.2
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Figure 5: Hyperparameter analysis.

fixed. Figure 5 shows the sensitivity analysis of parameters
on five datasets. The first two subfigures present the results
with different dimension sizes d. With the increase of d, the
model gets better performance. After d increases to 64, the
result of link prediction is relatively stable, while the result
of context generation is still changing. Overall, our model
can achieve a decent performance when d = 128. λ controls
the harmonic weight of two tasks. It is observed that when λ
is near 0.05 to 0.1, both citation link prediction and context
generation are relatively stable and achieve better results. In
general, as λ increases, the context generation task is mildly
affected, but the citation link prediction is still stable. For
the number l of sample contexts, the optimal value is in
[2, 3] according to the last two subfigures. The change of
l has a slight impact on the link prediction task but may
stabilize the context generation task, which indicates the
semantic information is important. Besides, since the cora-
db dataset is sparse and the learned node representations
may be smooth, which leads to the unstable performance.
As the results show, although the above parameters have a
slice of influence on results, they are still robust.
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Table 5: Comparison of generated contexts with ground-truth.

Case 1

Truth
In particular, convolutional neural networks and recurrent neural networks can efficiently
capture the sequentiality of texts. And these methods are typically applied directly dis-
tributed embedding words or characters without any knowledge.

AutoCite
To the first language model that translates texts’ character level representations, convolu-
tional neural networks have been proven capable of representing any various tasks such as
syntactic analysis and sentence parse.

Case 2

Truth
Techniques modeling and analysis based classical algebraic topology conjunction with dis-
tributed simulation methods have brought about significant progress in our understanding
computability problems asynchronous distributed setting.

AutoCite
Regarding the algorithm of distributed agreement problem and mutual exclusion problem,
many mathematical algorithms maintain the ability to interact with potentially equivalent
provide a solution.

Case 3
Truth

This work has been directed towards parsing languages that allow specification pretty print-
ing are rare, and they arise generators for software engineering environments the ergo support
the programming system generator and the synthesizer generator.

AutoCite
Ceres uses language flowcharts with the adl language, which first defines functional program-
ming and functional programming methodology.

4.7 Case Study

To better understand the meaning of AutoCite, we present
some contexts generated by it. As shown in Table 5, we
randomly sampled three real cases from different datasets.
“Truth” represents the ground-truth context, and red words
indicate highly semantically related text.

Case 1 is sampled from the peer dataset, where the ground-
truth context mainly introduces that neural networks can
model the sequentiality of texts. In our generated context,
AutoCite correctly predicts the same keywords (e.g., con-
volutional neural networks) and semantically related words
(e.g., character level representations) as the original text. In
case 2, the ground-truth context describes previous methods
of techniques modeling and analysis. It is inferred that the
citation may be a classic piece of related work. Although the
conjunction of techniques is not described accurately, the
output context captures the key point “distributed” skill-
fully. Next, the generated sentence in case 3 looks short in
length. Still, the context also accurately provides importan-
t information, e.g., “language” and “programming”. More-
over, both the generated and the original context focus on
the same topic: “programming language”. Through the anal-
ysis of the above real cases, our model can generate rea-
sonable contexts. AutoCite can recommend comprehensive
related work to authors, and help them write persuasive a-
cademic articles.

5 RELATED WORK

Link prediction is a widely used task that was applied in
many scenarios[1, 13, 16, 28]. Link prediction in networks
was usually based on node embeddings. Conventional graph
representation learning methods [8, 21, 25] aimed to learn
low-dimensional dense vectors for each node while preserving
the original graph structure information. Such methods solve

only the link prediction problem in simple networks, which
cannot be directly applied to our task. For citation predic-
tion, some works aimed at a given complete manuscript to
provide a list of other references [14, 17, 22], and other re-
search utilized a specific context as the query to generate
short suggested lists [9, 24]. However, all of these methods
only predicted citations without generating context.

Natural language generation models were widely used in
machine translation [2], text summarization [3], and speech
recognition [7]. Feed-forward Neural Network [4] was the first
language model based on deep learning, which predicts the
next word on a few previous words. Mikolov et al. [4] intro-
duced the Recurrent Neural Network (RNN) to model text
sequences. To alleviate the problem of gradient vanishing
in RNN, Long-Short Term Memory (LSTM) [23] and Gated
Recurrent Unit (GRU) [6] were proposed later. Recently, the
sequence-to-sequence model [2] has received much attention,
which models language in an encoder-decoder architecture.

In academic writing, Wang et al. [27] attempted to gener-
ate the abstract based on a given title. PaperRobot [26] was
proposed to predict related entities for input and write a
new paper. The above are all language models for uni-modal
text inputs. However, many artificial intelligence problems
involve more than one input modality [32]. In recent years,
researchers began to devote to modeling multi-modal data.
Combining image and text modality has attracted great at-
tention. Yan et al. [31] proposed to generate an image for
the specific text. The image caption [20] attempted to gen-
erate language texts based on image inputs. Most existing
multi-modal research was image-oriented or text-oriented,
which cannot be applied to networks. Net2Text [30] integrat-
ed node embeddings of network structure into personalized
review generation. However, it ignored the differences in net-
work characteristics and cannot integrate context effectively.
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6 CONCLUSION

In this paper, we present an academic writing assistant, Au-
toCite, which can provide authors with more comprehen-
sive related work with generated high-quality citation con-
text. Specifically, AutoCite involves a novel multi-modal en-
coder and multi-task decoder architecture. The multi-modal
encoder in AutoCite captures the characteristic differences
when a paper node cites others, or it is cited by others.
The multi-task decoder in AutoCite jointly learns citation
link prediction and context generation in a unified manner.
Furthermore, to effectively join the encoder and decoder,
we propose a gated neural fusion to integrate multi-modal
representations for downstream tasks adaptively. Extensive
experiments are conducted on five real-world datasets, and
the results demonstrated the superiority of AutoCite.
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