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Abstract—Linear nested codes, where two or more sub-codes
are nested in a global code, have been proposed as candidates
for reliable multi-terminal communication. In this paper, we
consider nested array-based spatially coupled low-density parity-
check (SC-LDPC) codes and propose a line-counting based
optimization scheme for minimizing the number of dominant
absorbing sets in order to improve its performance in the high
signal-to-noise ratio regime. Since the parity-check matrices of
different nested sub-codes partially overlap, the optimization of
one nested sub-code imposes constraints on the optimization of
the other sub-codes. To tackle these constraints, a multi-step
optimization process is applied first to one of the nested codes,
then sequential optimization of the remaining nested codes is
carried out based on the constraints imposed by the previously
optimized sub-codes. Results show that the order of optimization
has a significant impact on the number of dominant absorbing
sets in the Tanner graph of the code, resulting in a trade-
off between the performance of a nested code structure and
its optimization sequence: the code which is optimized without
constraints has fewer harmful structures than the code which
is optimized with constraints. We also show that for certain
code parameters, dominant absorbing sets in the Tanner graphs
of all nested codes are completely removed using our proposed
optimization strategy.

Keywords: LDPC codes, belief propagation, nested codes, spa-
tially coupled codes, absorbing sets, optimization.

I. INTRODUCTION

Linear nested codes are error correcting codes where mul-
tiple information words are encoded separately and then
are algebraically superimposed at the physical layer prior
to transmission [2], [3]. Nested codes are commonly used
for error correction in wireless multi-terminal networks. In
nested coding, each information word is associated with a
codeword which belongs to a different code, also called a
sub-code. Suppose, for example, there are two information
words u1 and u2 of length k1 and k2, respectively. A codeword
corresponding to each information word, xi ∈ Fn2 , i ∈ {1, 2},
is generated via a generator matrix Gi, or parity-check matrix
Hi, respectively. Here, xi belongs to a different sub-code
Ci, and the transmitted codeword x is an element of the
global code C . For example, the generator matrix G of the
global code is obtained by stacking the individual G1 and G2

matrices vertically as
[
G1

G2

]
.

This material is based on work supported by the National Science Founda-
tion under Grant Nos. ECCS-1710920, ECCS-1711056, OIA-1757207, and
HRD-1914635. This paper has been presented in part at the 2019 IEEE
Information Theory Workshop, Visby, Sweden [1].

The construction of nested regular and irregular low-density
parity-check block codes (LDPC-BCs) have been considered
in [4] and [5]. Irregular LDPC-BCs can be optimized to
outperform regular LDPC-BCs in the waterfall region under
belief propagation (BP) decoding; however, they generally
suffer from an early onset of an error-floor, a flattening of the
bit error rate (BER) performance curve in the high signal-to-
noise ratio (SNR) region, and are not implementation friendly
[6]. In comparison, regular LDPC-BCs generally have better
error-floor performance as a result of their minimum distance
and graph properties [7], [8] and lower decoder complexity;
however, their performance deteriorates with increasing graph
density under BP decoding [9], making them undesirable for
the construction of nested codes that require a higher graph
density than the non-nested ones.

Spatially coupled LDPC (SC-LDPC) codes [6], [10], on
the other hand, are known to approach the capacity of binary
input memoryless channels under BP decoding as the graph
density increases [11]. Hence, regular SC-LDPC codes are
good potential candidates for nested code constructions. SC-
LDPC codes are obtained by coupling, or connecting, multiple
Tanner graphs corresponding to an underlying LDPC-BC. One
potential obstacle of graph-based codes is that Tanner graphs
contain small sub-structures called absorbing sets (ABSs) [12]
which are known to cause the BP decoder to fail. These fail-
ures are responsible for the error-floor phenomenon. However,
since spatial coupling is able to reduce or eliminate many of
these harmful ABSs [13], SC-LDPC codes have superior error-
floor performance when compared to their BC counterparts.

The optimization of SC-LDPC codes for magnetic recording
channels is considered in [14], which generalizes [15] for
ABSs of type (4, 4(γ − 2)), where γ is the column weight.
Moreover, [16] analyzes the conditions to avoid cycles of
lengths 6 and 8 in SC-LDPC codes. An array-based (AB) SC-
LDPC code is constructed from the Tanner graph of an AB-
LDPC-BC by applying an edge-spreading technique [17], [18],
[15]. AB-SC-LDPC codes possess a regular quasi-cyclic (QC)
structure that makes them more attractive for hardware imple-
mentation because different regions on the Tanner graph of
AB-LDPC codes can be decoded in parallel, which improves
the decoding throughput and lowers the decoding latency.
Moreover, their structure also guarantees a certain minimum
distance [19] and a girth of 6 (they are free of 4-cycles).
These features, in turn, guarantee the non-existence of certain
harmful ABSs [12]. Due to these advantages, we investigate
the construction of nested AB-SC-LDPC codes, which, to the
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best of our knowledge, has not been addressed in the open
literature so far.

Our objective for finite length nested code design is to
ensure that each nested sub-code and the global code have a
small number of dominant ABSs in the Tanner graph when
compared to the underlying LDPC-BCs. In this paper, we
propose an adapted line-counting (ALC) technique to optimize
the design of nested AB-SC-LDPC codes. In contrast to the
line counting approach of [20], the presented ALC technique
allows the enumeration of 6-cycles in arbitrary column weight-
3 sub-matrices (of nested parity-check matrices) that form the
dominant ABSs in polynomial time, facilitating a tractable
nested code optimization. Since the parity-check matrices of
different nested sub-codes partially overlap, the null-spaces
for these sub-codes intersect. Consequently, an optimization of
one nested sub-code affects other nested sub-codes, and thus
imposes constraints on the optimization. Since multiple design
constraints must now be jointly satisfied, the construction of
nested codes for the multi-terminal setting is more challenging
than for the point-to-point case. We demonstrate that, by using
ALC, it is possible to minimize/eliminate dominant ABSs in
certain nested AB-SC-LDPC codes, irrespective of the row and
column weight of the overall parity-check matrix containing
all the nested matrices. We also show that, for certain code
parameters, dominant absorbing sets in the Tanner graphs of
all nested codes are completely removed using our proposed
optimization strategy. Simulation results are provided that
confirm the improved nested code performance promised by
the approach.

II. PRELIMINARIES

A. Protograph and Array-Based LDPC Codes

An LDPC-BC with parity-check matrix H ∈ Fl×n2 , where
l ≥ n − k and k is the length of a message block, is often
designed based on a protograph [21], [22], which is a small
Tanner graph consisting of p VNs and γ CNs, p ≥ γ, with a
design rate given by R = 1− γ

p . Let B = [Bi,j ]γ×p represent
the base matrix corresponding to the Tanner graph of proto-
graph GB, where Bi,j denotes the number of edges connecting
CN i to VN j. By applying a graph lifting procedure with
lifting factor p, that is by replacing each non-zero entry of
B with a sum of Bi,j non-overlapping permutation matrices
of size p × p, and each zero entry with an all-zero matrix of
size p × p, we construct an LDPC matrix H ∈ Fγp×p

2

2 . The
resulting rate is R ≥ 1 − γ

p , with equality if and only if the
parity-check matrix is full-rank. In the case of an AB-LDPC-
BC, B is a γ × p all-ones matrix, where p is prime [23].
The parity-check matrix H(γ, p) of an AB-LDPC-BC parity-
check matrix consists of circulant matrices, where the entries
of a circulant matrix σz is obtained by circularly left-shifting
the non-zero entries of the identity matrix I by z mod p [12],
[24]. Note that γ is also the column weight of H(γ, p).

Let q ∈ {0, 1, . . . , γ − 1} and s ∈ {0, 1, . . . , p− 1} denote
the row group number, and the row number within a particular
row group of H(γ, p), respectively. For example, by q = 0
we refer to the row group of I matrices in H(γ, p). Also, let
j ∈ {0, 1, . . . , p − 1} and k ∈ {0, 1, . . . , p − 1} represent

the column group number and the column number inside
a particular column group of an AB-LDPC matrix H(γ, p).
Therefore, each row (resp., column) of an AB matrix is given
by r = qp+s (resp., c = jp+k). In this way, the location of an
entry of an AB matrix (r, c) may be written as (q, s; j, k). Note
that when referring to multiple row groups, we use subscripts
q0, q1, . . . , and so on where qi ∈ {0, 1, . . . , γ−1}, with similar
subscript use for multiple row numbers, column groups, and
column numbers.

B. Array-Based SC-LDPC Codes

AB-SC-LDPC codes can be constructed from AB-LDPC-
BCs by coupling L copies of the Tanner graph GH via
edge-spreading [25]. In terms of matrices, edge-spreading is
equivalent to splitting H(γ, p) into a sum of m+1 component
block matrices of the same dimension as H(γ, p), such that
H(γ, p) = H0 + H1 + · · · + Hm, where m denotes the
memory of the code. The construction involves a spreading
matrix Bm ∈ Fγ×pm+1, where an entry g ∈ {0, 1, . . . ,m} in
position (i, j) of this matrix indicates that the p× p circulant
block in row group i, column group j, of H(γ, p) is copied
to its corresponding position in Hg [18]. The resulting time-
invariant parity-check matrix of a terminated SC-LDPC code
is denoted H(γ, p, L) ∈ Fγp(L+m)×Lp2

2 and is given as

H(γ, p, L) =



H0

H1
. . .

...
. . . H0

Hm H1

. . .
...

Hm


, (1)

where L > m + 1 is the number of column blocks (each
containing p column groups), called the coupling length, and
ν = (m+ 1)p2 is the constraint length of H(γ, p, L). We can
also label the row and column blocks y ∈ {0, 1, . . . , L+m−1}
and v ∈ {0, 1, . . . , L−1} in a similar way to AB-LDPC-BCs,
where an individual entry (r, c) in an AB-SC-LDPC code may
then be written as (y, q, s; v, j, k).

C. Nested Codes
A nested code consists of a group of M sub-codes Ci, i =

1, 2, . . . ,M , M ≥ 2, nested in a global code C of rate k/n
with the property Ci ⊂ C , ∀i. Nested codes are used to jointly
encode M different information vectors ui ∈ Fki2 , ki < k,
to generate an overall codeword x ∈ Fn2 , which is a linear
combination of all the codewords xi obtained from each of
the sub-codes. The process of obtaining x via nested coding
is expressed as

xT = [uT1 ,u
T
2 , . . . ,u

T
M ]


G1

G2

...
GM

 = [uT1 ,u
T
2 , . . . ,u

T
M ]G

= uT1 G1 ⊕ uT2 G2 ⊕ · · · ⊕ uTMGM = xT1 ⊕ xT2 ⊕ · · · ⊕ xTM ,

where ⊕ denotes the bitwise XOR operation and Gi ∈ Fki×n2 ,
G ∈ Fk×n2 are the generator matrices of sub-code Ci and
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global code C , respectively, with k =
∑M
i=1 ki. Note that each

codeword xi is encoded at a rate ki/n, whereas the overall
codeword x is encoded at a rate k/n.

In comparison, nested dual codes of the above mentioned
codes are defined using parity check matrices Hi ∈ Fli×n2 ,
li ≥ n − ki, and H ∈ Fl×n2 , l ≥ n − k, corresponding
to the nested codes Ci and C , respectively, which form the
null spaces of matrices Hi and H, respectively. Note that
the matrices Hi, ∀i, and H are considered as (potentially
overlapping) sub-matrices of a larger Ĥ ∈ Fb×n2 matrix, where
li < b ≤ n , ∀i, and l < b ≤ n, respectively. The construction
details of Hi and H from Ĥ are discussed in [4] for LDPC-
BCs.

In the remainder of the paper, we consider Hi and H to be
the parity-check matrices of nested regular LDPC codes. We
refer to the column weight ωi (resp., ω) of sub-code Ci (resp.,
global code C ) as the column weight of its corresponding
(regular) parity-check matrix Hi (resp., H). This is the con-
struction used in the rest of the paper.

D. Absorbing Sets
In GH, suppose X ⊂ V and let N (X) be the set of all

neighbors of X . Let O(X) be the set of neighbors of X with
odd degree in the subgraph induced by X ∪N (X).

Definition 1 ([12]). For a > 1, b ≥ 0, an (a, b) ABS X is a
set of VNs with |X| = a, |O(X)| = b, and the property that
each VN in X has strictly fewer neighbors in O(X) than in
C \ O(X). An (a, b) ABS is a fully ABS if, additionally, all
nodes in V \ X have strictly fewer neighbors in O(X) than
in C \ O(X). A minimal (a, b) ABS refers to an ABS which
has the smallest possible existing value for a in a given LDPC
Tanner graph, and where b is the smallest possible value for
the given a.

Definition 2. A block k-cycle in an AB-LDPC code is a
collection of p cycles of length k, where each cycle in the
collection spans the same row and column groups of the
parity-check matrix.

Remark 1. A (3, 3) ABS is the minimal ABS that can exist in a
column weight-3 AB-LDPC-BC code [12]. For γ = 4, a (4, 4)
ABS is the minimal ABS in an AB-LDPC-BC for p = 5, 7;
whereas, a (5, 4) ABS is the minimal ABS in an AB-LDPC-
BC for the case p = 11, 19; finally, (6, 4) ABSs exist in an
AB-LDPC-BC for p > 5, and it is the minimal ABS for all
p > 19 [12]. For γ = 5, the minimal ABS in AB-LDPC-BCs
is of size (4, 8), and (5, 9) and (6, 8) ABSs are also dominant
[26].1

From the structure of dominant ABSs discussed in [12], [26],
we note the following.

Remark 2. For γ = 3, a (3, 3) ABS in an AB-LDPC code
corresponds to a 6-cycle and a (4, 2) ABS consists of two
(3, 3) ABSs. Moreover, for γ = 4 (resp., γ = 5), the (4, 4),
(5, 4) and (6, 4) (resp., (4, 8), (5, 9) and (6, 8)) ABSs in an
AB-LDPC code all contain at least one 6-cycle. Consequently,

1By “dominant”, we mean those ABS(s) which are empirically observed
to cause the majority of failures in the high SNR regime.

by minimizing the number of 6-cycles in AB-SC-LDPC codes,
we also minimize the related ABSs discussed in Remark 1.

E. Line-counting

A 6-cycle must span three distinct row and column groups
of an AB matrix [16], [20]. As shown in Fig. 1, suppose that
the columns of a 6-cycle have indices c1, c2, c3 and that they
exist in distinct column groups j1, j2, j3, respectively. Simi-
larly, suppose that the rows of a 6-cycle have indices r1, r2, r3
and they exist in distinct row groups q1, q2, q3, respectively.
In [24], (3, 3) ABSs are enumerated by computing the area
of a 2D polytope lying on the (j, j′) plane, j 6= j′, where a
data point (coordinate) in this polytope corresponds to a (3, 3)
ABS (and hence a 6-cycle).2 This technique, however, has two
drawbacks: first, it is only applicable to AB-SC-LDPC codes
constructed via the cutting-vector scheme [13], and secondly,
it only works for column weight-3 AB-LDPC codes. To allow
more general codes, such as the ones obtained via general
edge-spreadings [18], a (3, 3) ABS enumeration technique,
namely line-counting, was proposed in [20] which enumerates
(3, 3) ABSs by counting 6-cycles on the (c1, c2) plane.

In this paper, we propose a variant of line-counting, called
adapted line-counting (ALC), in conjunction with an opti-
mization algorithm (more details in Section IV) to recursively
optimize the entries of a Bm spreading matrix in order to
ensure that the resulting H(γ, p, L) matrix contains as few
harmful ABSs as possible. In order to facilitate presentation
of our ALC scheme later in Section III, the line-counting
method of [20] is briefly reviewed. We refer to a matrix region
R that consists of at least six (not necessarily contiguous)
circulant matrices spread across three row groups and at most
p column groups, with one row group being a row group of I
matrices only. A row block from a H(γ = 3, p, L) matrix in
the case of AB-SC-LDPC codes, contains a row group of I
matrices and two row groups consisting of σfz mod p matrices
for 0 ≤ z ≤ p − 1 and f = 1, 2. W.l.o.g., for any 6-cycle in
R, we have the following [20] (row and column block indices
in the case of AB-SC-LDPC codes are fixed and dropped for
clarity):
• c2 > c1 and w1p ≤ c1 < w2p, w3p ≤ c2 < w4p, where
w1, w2, w3, w4 are integers satisfying 0 ≤ w1 ≤ p − 2,
1 ≤ w2 ≤ p − 1, w1 + 1 ≤ w3 ≤ p − 1, and w2 + 1 ≤
w4 ≤ p. If the 6-cycle row r1, incident to columns c1 and
c2 (see Fig. 1), exists in a row group of I matrices, we
obtain c2− c1 = np, where n = {1, 2, . . . , w4−w1−1};

• αp ≤ c3 < βp, where α and β are integers satisfying
0 ≤ α ≤ p− 1, 1 ≤ β ≤ p, and α < β.

The circulant matrix σz , z ∈ {0, 1, . . . , p− 1}, has its non-
zero elements located at (s, k), where s = z + k mod p.
W.l.o.g., let q2 (resp., q3) represent the index of the row
group containing all the σ2z mod p (resp., σz) circulant matrices
(q2 = 2 and q3 = 1 in an AB-LDPC-BC). The edges (ones in

2We note that line counting is performed on column weight-3 parity-check
matrices throughout the paper, consequently there is an equivalence between
6-cycle and a (3, 3) ABS and we refer to them interchangeably. In general,
a 6-cycle corresponds to a (3, 3(γ − 2)) trapping set in a column weight γ
parity-check matrix [15].
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Fig. 1: The structure of a 6-cycle in an AB-LDPC matrix.

the parity-check matrix) corresponding to (r2, c3) and (r2, c2)
are in rows s2 = 2j3 + k3 mod p and s2 = 2j2 + k2 mod p
within their row group r2. Since these rows are identical,
2j2 + k2 = 2j3 + k3 mod p, which are rearranged as

k3 − k2 = 2j2 − 2j3 mod p. (2)
Now, considering (r3, c1), we note that, s3 = j1 + k1 mod p,
and s3 = j3 + k3 mod p. Since these rows are also identical,
we get j1 + k2 = j3 + k3 mod p, which are rearranged as

j1 − j3 = k3 − k2 mod p. (3)
Substituting (2) in (3), and after rearranging, we obtain

j3 = 2j2 − j1 mod p. (4)
Now, if the roles of q2 and q3 are interchanged, we obtain (via
a similar procedure)

j3 = p+ 2j1 − j2 mod p. (5)
Finally, by invoking the inequality α ≤ j3 ≤ β − 1 and by
taking into account the corresponding 6-cycle column value
c3 as a function of c1 and c2, we obtain the range of c3 in R
as [20]

αp

2
≤ c2 −

1

2
c1 <

βp

2
,

p2 + αp

2
≤ c2 −

1

2
c1 <

p2 + βp

2
,

(6a)

p2 − βp < c2 − 2c1 ≤ p2 − αp, or − βp < c2 − 2c1 ≤ −αp,
(6b)

where the inequalities in (6a) are obtained from (4), and the
ones in (6b) are obtained from (5).

Consider Fig. 2 for an illustration. The grey area in Fig. 2(a)
is an example of a region R in an H0 matrix containing a 6-
cycle (in red) with column (resp., row group) indices c1, c2,
and c3 (resp., q1, q2, and q3) of H0. The white region in Fig.
2(a) indicates all-zero circulant matrices, and the horizontal
arrows represent the range of values of the columns c1, c2, and
c3 of the 6-cycle. These ranges generate vertical, horizontal
and diagonal boundaries, respectively, on the (c1, c2) plane
in Fig. 2(b), and the area enclosed within these boundaries
is shown in grey. In particular, the red diagonal boundaries
are obtained from the first inequality in (6a). A 6-cycle with
columns c1 and c2 exists in R if a coordinate (c1, c2) on
the line c2 − c1 = np lies within the grey region L on the
(c1, c2) plane. Consequently, the number of 6-cycles in R is
determined by the number of integer points on the line c2 −
c1 = np within L .

Note that the inequalities in (6a) and (6b) only hold for
column weight-3 AB matrices where the circulant matrix shift
factor is f = 1, 2. Consequently, the line-counting method
of [20] is not applicable for arbitrary column weight-3 AB-
LDPC-BC matrices (for the case f > 2), which will be
encountered during nested code optimization. To allow for
f > 2, we introduce ALC in Section III-E which generalizes

these inequalities. This will facilitate the nested code optimiza-
tion considered in Section IV-B.

III. NESTED AB-SC-LDPC CODES

In this section, we discuss the construction procedure of
nested AB-SC-LDPC codes from the corresponding nested
AB-LDPC-BCs. For nested AB-SC-LDPC codes with ωi =
3, 4, or 5, whose dominant ABSs are known to contain 6-
cycles (see Remark 2), ALC can be used directly as a tool in
the construction.3

A. General Construction

We form a nested AB-LDPC-BC sub-code Ci, i ∈
{1, 2, . . . ,M}, and a global code C from sub-matrices
Hi(wi, p) ∈ Fpωi×p2

2 and H(3, p), respectively, where ωi > 3.
Let Ωi be the number of possible sub-codes Ci for col-
umn weight ωi ≥ 4. To simplify our analysis, we sup-
pose that Hi(wi, p) (resp., H(3, p)) consists of row groups
(0, 1, . . . , ωi − 2, ωi − 1 + hi), hi ∈ {0, 1, . . . ,Ωi − 1},
(resp., (0, 1, 2)) of Ĥ, but generalizations of this selection are
possible. It follows from the array structure [23] that there
are Ωi = γ − ωi + 1, γ ≥ 5, possible sub-codes, and hence
γ should be chosen sufficiently large to construct the desired
M sub-codes. Note that the design rate Ri = 1 − ωi

p of Ci
decreases with increasing ωi. As a result, constructing high
rate nested codes with large ωi also requires a relatively large
p compared to a nested code with smaller ωi. In turn, this
also makes each sub-code optimization more computationally
intensive as M increases.

Example 1. We construct the Ĥ(γ, p) AB-LDPC-BC matrix
with γ = 5, p = 5, and M = 2, where

Ĥ(5, 5) =


I I I I I
I σ σ2 σ3 σ4

I σ2 σ4 σ σ3

I σ3 σ σ4 σ2

I σ4 σ3 σ2 σ

 .
There are Ωi = 2 possible sub-codes of column weight
ωi = 4 in our construction. This matrix consist of sub-
matrices: H1(4, 5) (black and blue row groups 0, 1, 2, and
3, with h1 = 0), H2(4, 5) (black and red row groups 0, 1,
2, and 4, with h2 = 1), and H(3, 5) (black row groups 0, 1,
and 2) with corresponding column weight 4 nested sub-codes
C1, C2, and a column weight-3 global code C , respectively.
Explicitly, the resulting nested sub-matrices are

3If for ωi > 5, the dominant ABSs in the code’s Tanner do not contain
6-cycles, then ALC as stated here would not be applicable. Nonetheless, the
method discussed in this section is still useful provided that a similar ABS
enumeration scheme is employed for scenarios where the dominant ABSs in
nested codes do not contain 6-cycles.
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Fig. 2: An example of a configuration of a 6-cycle corresponding to columns c1, c2, and c3 in region R is shown in part (a), where the
white region indicates all-zero circulant matrices and the horizontal arrows represent the range of values of the columns c1, c2, and c3 of
this 6-cycle configuration. Part (b) shows the corresponding boundaries for such a configuration with these ranges, where a blue dot on the
line c2 − c1 = np within the shaded region L corresponds to this 6-cycle.

H(3, 5) =




I I I I I
I σ σ2 σ3 σ4

I σ2 σ4 σ σ3


 ,

H1(4, 5) =




I I I I I
I σ σ2 σ3 σ4

I σ2 σ4 σ σ3

I σ3 σ σ4 σ2


 , and

H2(4, 5) =




I I I I I
I σ σ2 σ3 σ4

I σ2 σ4 σ σ3

I σ4 σ3 σ2 σ


 .

(7)

�Nested AB-SC-LDPC matrices are constructed in a similar
way, with parity-check matrices denoted as Hi(ωi, p, L) and
H(3, p, L) obtained by edge-spreading Hi(ωi, p) and H(3, p)
via spreading matrices Bi,m ∈ Fωi×p

m+1 and Bm ∈ F3×p
m+1,

respectively, where the row indices of Bi,m correspond to the
row group indices of Hi(wi, p). Since the codes are nested, the
same relationship between Hi(wi, p) and H(3, p) also holds
for the edge-spreading matrices, i.e., Bm is a sub-matrix of
Bi,m. An example of creating nested AB-SC-LDPC codes
from the nested AB-LDPC-BCs in Example 1 is given below
in Example 2.

Example 2. For memory m = 1, we first generate an edge-
spreading matrix

B1 =




1 0 0 0 1
1 1 1 0 0
0 0 1 1 0


 ∈ F3×p

2 , (8)

which can be used to form global AB-SC-LDPC matrix
H(3, 5, L) with components (see (1))

H0 =




0 I I I 0
0 0 0 σ3 σ4

I σ2 0 0 σ3


 , (9)

H1 =




I 0 0 0 I
I σ σ2 0 0
0 0 σ4 σ 0


 , (10)

and corresponding global code C . Similarly, H1(4, 5) from
(7) can be used to generate the nested AB-SC-LDPC matrix
H1(4, 5, L), using the example edge-spreading matrix

B1,1 =




1 0 0 0 1
1 1 1 0 0
0 0 1 1 0
1 0 0 1 0


 ∈ F4×p

2 , (11)

with components

H0 =




0 I I I 0
0 0 0 σ3 σ4

I σ2 0 0 σ3

0 σ3 σ 0 σ2


 , (12)

H1 =




I 0 0 0 I
I σ σ2 0 0
0 0 σ4 σ 0
I 0 0 σ4 0


 , (13)

and corresponding nested code C1. Note that H1(4, 5, 2)
contains the (global) H(3, 5, 2) matrix, shown in black. The
sub-matrix H2(4, 5, 2) is constructed in a similar fashion from
the spreading matrix B2,1 ∈ F4×p

2 . �

Note that the order of optimization determines how good the
sub-codes or the global code will be in terms of the number
of harmful ABSs. We will see later in Section IV-B that for
column weight-3, 4, or 5 nested AB-SC-LDPC codes, where
harmful ABSs are known to contain 6-cycles, ALC can be
employed effectively to speed-up the optimization procedure.

The optimization of nested AB-SC-LDPC codes may be
performed in several ways. In any method, the spreading of
all row groups S = {0, 1, . . . , γ − 1} must be determined,
but the results will vary depending on the order of the
optimization. In the following, we consider two general
exemplary methods. An example and a discussion will follow
in Section III-B.
Method 1: First, optimize the Bm matrix, containing
row groups S0 = {0, 1, 2}, to construct the global ma-
trix H(3, p, L) from H(3, p). Then, pick an ordering of
{1, 2, . . . ,M}, denoted t = (t1, t2, . . . , tM ), and by incor-
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porating the constraints given by Bm, sequentially optimize
for i = 1, 2, . . . ,M , the remaining rows of each Bti,m

matrix containing row groups Sti ⊆ S , i.e., those row groups
Sti ∩ (S \∪i−1j=1Stj ) in Sti that have not yet been determined,
to construct Hti(ωi, p, L) from Hti(ωi, p).4

Method 2: Again, pick an ordering t = (t1, t2, . . . , tM ) of
{1, 2, . . . ,M}. Here, we first optimize the nested Bt1,m ma-
trix, with row groups St1 = {0, 1, 2, . . . , wt1−2, wt1−1+ht1}
to construct Ht1(ωt1 , p, L) from Ht1(ωt1 , p) (note that this
nested matrix contains the global matrix corresponding to
S0 = {0, 1, 2}, and thus the global code is not indepen-
dently optimized). Given the constraints of the newly gen-
erated Bt1,m matrix, sequentially optimize the matrix Bti,m,
i = 2, 3, . . . ,M , by determining the spreading of any row
groups in Sti∩(S\∪i−1j=1Stj ), to construct Hti(ωti , p, L) from
Hti(ωti , p).

B. Constrained Optimization

Suppose that Bt1,m is optimized first (i.e., without con-
straints) using Method 2. This unconstrained optimization
determines any edge-spreading matrix Bti,m, for i 6= 1, with
a set of row indices Sti ⊂ St1 , and partially determines any
edge-spreading matrix Bti,m, i ∈ {2, 3, . . . ,M} with a set of
row indices Sti 6⊂ St1 , but Sti ∩St1 6= ∅. The row(s) of Bti,m

that are not optimized yet are determined via constrained
optimization. Although the order of constrained optimization
may be chosen in an ad hoc manner, the freedom in choosing
the entries of Bti,m may diminish as more edge-spreading
matrices are determined prior to it. An example is provided
in the following to demonstrate the constrained optimization
process (which is applicable to both Methods 1 and 2, but
shown only for Method 2).

Example 3. Fig. 3 shows the row group indices of four
nested AB-LDPC-BC sub-codes using four colored boxes. The
indices enclosed within the blue, red, green and black boxes,
correspond to respective row groups S1 = {0, 1, . . . , ω − 1},
S2 = {0, 1, . . . , ω, γ − 3}, S3 = {0, 1, . . . , γ − 4, γ − 2}, and
S4 = {0, 1, . . . , γ − 3, γ − 1} of H(γ, p), and they form the
respective sub-matrices H1(ω, p), H2(ω+2, p), H3(γ−2, p),
and H4(γ − 1, p) of H(γ, p), with respective column weights
ω, ω+2, γ−2, and γ−1, and corresponding respective nested
sub-codes C1, C2, C3, and C4, where C2,C3 ⊂ C1, C4 ⊂ C2,
and 3 < ω < γ. To construct an associated AB-SC-LDPC
code, we select an optimization order, suppose t = (2, 1, 3, 4).
First, spreading matrix B2,m is determined. Note that this
determines B1,m since S1 ⊂ S2. Next, B3,m is partially
determined, but row groups ω + 1, ω + 2, . . . , γ − 4, γ − 2
must now be optimized. Finally, B4,m is partially determined
by both B2,m and B3,m, and the only remaining row group
to optimize is γ − 1. Note that, here, the global code C
corresponds to the sub-matrix H(3, p) of H(γ, p) with row
groups 0, 1, and 2. The edge-spreading matrices are now used
to construct H1(ω, p, L), H2(ω+2, p, L), H3(γ−2, p, L) and
H4(γ − 1, p, L), respectively, as described in Section IV-A.

4Note that the order t of sub-codes can be changed depending on priority.
If codes have no overlapping row groups (other than S0), the order can be
chosen arbitrarily with no effect in results.

Fig. 3: An example of row group indices for four nested AB-
LDPC-BC parity-check matrices shown using blue, red, green, and
black boxes corresponding to nested sub-codes C1, C2, C3, and C4,
respectively. The grey box contains the row group indices of the
global code C .

Recall that the goal of our nested code optimization is to
minimize the number of dominant ABSs in the sub-code’s Tan-
ner graph. In terms of sub-codes, the constrained optimization
order in this example would give the most freedom to code C2,
and we would expect that code to have relatively fewer harmful
ABSs. On the other hand, the nested code C4 does not have
much freedom since it contains only one undetermined row
group prior to optimization, and thus it may exhibit relatively
more harmful ABSs. Depending on the application, t should
be chosen carefully. 2

C. Terminal Lift

QC codes are well known to facilitate hardware imple-
mentation [6]. To simplify our code search for good nested
code designs, we choose to apply a circulant-based graph
lifting after the steps described in Sections III-A and III-B,
which we refer to as a terminal lift with lifting factor
J . This results in quasi-cyclic LDPC-BCs (QC-LDPC-BCs)
and QC-SC-LDPC codes. A similar lifting procedure has
been shown to be very effective for constructing QC codes
[27]. The parity-check matrices obtained by applying a ter-
minal lift to Hi(ωi, p, L) and H(3, p, L) are denoted as
Hi(ωi, p, L, J) ∈ FωipJ(L+m)×JLp2

2 , i = 1, 2, . . . ,M , and
H(3, p, L, J) ∈ F3pJ(L+m)× JLp2

2 , respectively, with con-
straint length ν′ = Jν. A terminal lift serves two purposes:
first it helps us generate sufficiently long nested codes to
achieve good performance for typical applications, and second,
we are able to further reduce the multiplicity of, or even
eliminate, any residual ABSs in the nested Tanner graphs
of Hi(ωi, p, L) and H(3, p, L) that remain after the edge-
spreading construction. Note that, for comparison, we will
also construct a terminally lifted LDPC-BC matrix, denoted
as H(γ, p, J(m + 1)) ∈ FγpJ(m+1)×J(m+1)p2

2 , by lifting the
block matrix H(γ, p) by a larger lifting factor J(m+ 1). By
incorporating m + 1 in the lifting factor we ensure that the
length (number of columns) of the BC matrix is identical to
the constraint length of the SC matrix. This will be helpful
for comparing the performances of QC-LDPC-BCs and QC-
SC-LDPC codes in Section V.

D. 6-cycles and Dominant ABSs in AB-LDPC Codes

We now state some useful results concerning dominant objects
of AB-SC-LDPC codes.

Remark 3. From Remarks 1 and 2 it is easy to note that
by eliminating all 6-cycles via spatial coupling, we can also
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eliminate all the dominant ABSs in γ = 3, 4, 5 AB-SC-LDPC
codes.

Note that a 6-cycle in an AB-SC-LDPC matrix spans 3 row
groups and it spans at most m+1 contiguous column blocks of
(1) [18]. Let µe, e = 1, 2, . . . ,m+1, represent the total number
of 6-cycles present in precisely e contiguous column blocks
of (1), and let µ be the total number of 6-cycles in H(γ, p, L).
From the repeated structure of H(γ, p, L) it follows that the
total number of 6-cycles in H(γ, p, L) is µ =

∑m+1
e=1 (L− e+

1)µe [18].

E. Adapted Line Counting (ALC)

The line-counting method discussed in Section II-E is
restricted to the enumeration of 6-cycles in H(3, p, L), i.e.,
only to row groups 0, 1, and 2. To overcome this shortcoming,
we propose an ALC scheme to enable 6-cycle enumeration in
general row group triples {0, q2, q3} of the larger parity-check
matrix Ĥ.

1) Choosing Column weight-3 Sub-matrices for ALC:
To optimize the nested construction, we need to optimize
each row group. Our method involves optimization with
row groups of weight-3. We begin by enumerating the re-
quired sub-matrices involved in the optimization. Let ζ =

{H(1)
i (3, p),H

(2)
i (3, p), . . . ,H

(Z)
i (3, p)} be the set of all Z =(

ωi

3

)
−
(
ωi−1

3

)
column weight-3 sub-matrices of Hi(ωi, p) hav-

ing the row group 0 in common. We first select a sub-
set ζ ′ = {H(z1)

i (3, p),H
(z2)
i (3, p), . . . ,H

(zZ′ )
i (3, p)} ⊆ ζ,

z1, z2, . . .,zZ′ ∈ {1, 2, . . . , Z}, Z ′ = b(ωi − 1)/2c, where
each matrix in ζ ′ consists of a common row group 0 and
a distinct row group pair (q, q′) from all other elements of
ζ ′. If ωi − 1 is odd, there is one more row group that has
not appeared in any matrix in ζ ′, and we need to select an
additional matrix H

(zZ′+1)

i (3, p) in ζ \ ζ ′ with row groups
{0, q′′, q′′′}, where either the row group q′′ or q′′′ is not shared
with a matrix in ζ ′. The number of possible H

(zZ′+1)

i (3, p)
matrices is Z ′′ = (ωi−1) mod 2, and it follows that we must
select T = Z ′ +Z ′′ distinct column weight-3 sub-matrices in
Hi(ωi, p) that have a common row group 0 in order to include
all of the row groups of Hi(ωi, p). Therefore, to optimize the
nested SC matrix Hi(ωi, p, L) corresponding to Hi(ωi, p), it
is sufficient to enumerate 6-cycles in the T sub-matrices of ζ
detailed above using ALC (details to follow in Section IV-B).

Example 4. We provide an example for choosing the required
column weight-3 sub-matrices in a nested matrix for ALC,
with nested column weights ωi = 4 and 5. In the first case,
the Hi(4, p) matrix has row groups 0, 1, 2, and 3. The set ζ
contains Z = 2 column weight-3 sub-matrices with a common
row group 0: ζ = {H(1)

i (3, p),H
(2)
i (3, p)}, with respective

row groups {0, 1, 2} and {0, 1, 3} of Hi(4, p). Hence, we
select T = Z ′ + Z ′′ = 1 + 1 = 2 matrices to include
all row groups, e.g., ζ ′ = {H(1)

i (3, p)}, and we select the
additional matrix H

(2)
i (3, p) from ζ \ ζ ′. In the second case,

the Hi(5, p) matrix has row groups 0, 1, 2, 3, and 4. The
set ζ contains Z = 6 column weight-3 sub-matrices with a
common row group 0: ζ = {H(1)

i (3, p),H
(2)
i (3, p),H

(3)
i (3, p),

H
(4)
i (3, p),H

(5)
i (3, p),H

(6)
i (3, p)}, with respective row groups

{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, and {0, 3, 4}
of Hi(5, p). We must select T = Z ′+Z ′′ = 2+0 = 2 matrices
to include all row groups, e.g., ζ ′ = {H(1)

i (3, p),H
(6)
i (3, p)}.

2

2) Description of ALC: Recall from Section II-E that R is
contained in a column weight-3 sub-matrix of an AB parity-
check matrix, and c1, c2, c3 are the column indices of a 6-cycle
in R. We begin by extending (6) to a general column weight-3
matrix containing row group 0.

Lemma 1. For ALC, the range of c3 in R is expressed via c1
and c2 as(

1− q3
q2

)
αp+

λp2

q2
≤ c2 −

q3
q2
c1 <

(
1− q3

q2

)
βp+

λp2

q2
,

(14)
where c2 > c1, λ ∈ {2−2p, . . . , 2p−2}, q2, q3 ∈ {1, . . . , γ−
1} and q2 6= q3.

The proof is given in Appendix A. Note that (6) is a special
case of (14) because, for parameters (λ, q2, q3) taking on the
values (0, 2, 1), (1, 2, 1), (1, 1, 2), and (0, 1, 2), we recover all
inequalities in (6).

Proposition 1. Based on the principles of Cartesian geometry,
the total number of 6-cycles in R, NR, is given by

NR =


√

(σ2x−σ1x)2+(σ2y−σ1y)2

2 ,

if some boundary conditions5 hold,
0, otherwise,

(15)

where the boundary conditions in (15) (stated in (32)) are
related to the (c1, c2) plane and the line c2 − c1 = np, n =
1, 2, . . . , w4−w1−1, whose length is determined by the points
(σ1x, σ1y), (σ2x, σ2y) within these boundaries.
The proof of this proposition, including the boundary condi-
tions, is given in Appendix B. In general, suppose a k-cycle
has a row ri, i ∈ {1, 2, . . . , k2 −1}, in the q0 row group. If this
row is connected to columns ci and ci′ , i, i′ ∈ {1, 2, . . . , k2−1}
and i 6= i′, we can obtain a line ci − ci′ = np on the
(c1, c2, . . . , c k

2−1
) plane, which passes through a (k2 − 1)-

dimensional region L, enclosed by the boundaries generated
by the k-cycle column values. Thus, any integer point lying
on this line will represent that k-cycle, allowing line-counting
to be further adapted to detect and enumerate cycles of length
longer than six.

Let N denote the number of regions in an AB-LDPC
matrix required by ALC to compute all the 6-cycles, which
is independent of p but may depend on m. In case of AB-
LDPC-BCs, N = 1 as R is the entire parity-check matrix.
However, N > 1 for column weight-3 AB-SC-LDPC parity-
check matrices since there are multiple matrix regions with
distinct row group triples and no two regions share a 6-cycle.
For code optimization, these triples need to be considered
only for coupling length L = m + 1, since a 6-cycle does
not span more than m + 1 contiguous column blocks of
a column weight-3 AB-SC-LDPC parity-check matrix (see
Section III-D).

5These boundary conditions are stated in (32) but omitted here for brevity.
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Proposition 2. N is upper bounded by (3m+2)

((
2(m+1)

2

)
−

2
(
m+1
2

))
.

The proof is given in Appendix C. An example of determining
N in the case of a column weight-3 and memory m = 1 AB-
SC-LDPC matrix is provided in the following.

Example 5. Determining N for memory m = 1: Note that
in this case, it is necessary to optimize only two contiguous
column blocks of a column weight ω = 3 (time-invariant)
AB-SC-LDPC matrix H

(z)
i (3, p, L). Hence, it is sufficient to

consider coupling length L = 2. Note that, for L = 2, there are
three copies of the distinct row groups 0, q2, q3 from H(γ, p)

in H
(z)
i (3, p, 2). Recall that we locate a copy of a row group by

the ordered pair (y, q), where, y ∈ {0, 1, . . . , L+m− 1 = 2}
is the row block index and q is the row group index. Here,
we slightly abuse notation and identify the row group index
as q ∈ {0, q2, q3}, where it is understood that q2 identifies
the second row group in a row block of H

(z)
i (3, p, 2) and q3

identifies the third, respectively. We choose to do this because
the values of q2 and q3 (corresponding to the row groups and
circulants of H(γ, p)) will be used in ALC as described in
Section III-E2.

There are two possible region configurations. The
first is a single column block [H>0 H>1 ]> (i.e., matrix
(1) with L = 1). Here, a 6-cycle may exist in any
of the 8 regions R1,R2, . . . ,R8 with row group
triples {(0, 0), (0, q2), (0, q3)}, {(0, 0), (0, q2), (1, q3)},
{(0, 0), (0, q3), (1, q2)}, {(0, 0), (1, q2), (1, q3)}, {(1, 0),
(0, q2), (0, q3)}, {(1, 0), (0, q2), (1, q3)}, {(1, 0), (0, q3), (1, q2)},
and {(1, 0), (1, q2), (1, q3)}, respectively. Each of these
regions span p column groups and can be viewed as a block
matrix similar to H(3, p) but with one or more all-zero
circulant matrices.

A 6-cycle may also span an “L” shaped matrix region
configuration [

H0

H1 H0

]
or
[
H1 H0

H1

]
.

Seven regions of this category exist, denoted as
R9,R10, . . . ,R15, with row group triples
{(0, 0), (1, q2), (1, q3)}, {(0, q2), (1, 0), (1, q3)}, {(0, q3), (1, 0),
(1, q2)}, {(1, 0), (1, q2), (1, q3)}, {(1, 0), (1, q2), (2, q3)},
{(1, 0), (1, q3), (2, q2)}, and {(1, q2), (1, q3), (2, 0)},
respectively, with 2p column groups in each region.
The total number of 6-cycles is obtained by enumerating
the number of 6-cycles in each of the N = 15 regions as
R1,R2, . . . ,R15. 2

Note that, in a column weight-3 AB-LDPC matrix region
R, there are at most p2 − p block cycles6 of length 6, and
each of them generate a separate “block-cycle region” Ly ,
y ∈ {1, 2, . . . , p2 − p}, on the (c1, c2) plane which the line
c2− c1 = np may intersect. The location of Ly is determined
by the range of values of c1, c2, and c3 associated with

6There are p2(p−1) 6-cycles in a column weight-3 AB-LPDC-BC matrix
[24], where there are p2 − p block cycles of length 6 with each block
containing p 6-cycles.

the corresponding block 6-cycle. If R does not contain all-
zero matrices, i.e., R is the H(3, p) matrix, then regions
L1,L2, . . . ,Lp2−p combine to form a single consecutive
region L on the (c1, c2) plane. Therefore, the total number
of 6-cycles in R will be identical to the length of the line
c2 − c1 = np passing through L , and hence, only a single
line computation will be necessary to compute NR. However,
if R contains one or more all-zero matrices, i.e., R is one of
the matrix regions R1,R2, . . . ,R15 discussed in Example 5,
then, one or more region(s) from L1,L2, . . . ,Lp2−p will be
eliminated, depending on which block cycle(s) of R is/are
eliminated due to the presence of the all-zero matrices(s).
Consequently, in this case, NR will be identical to the total
number of integer points lying on the line c2 − c1 = np
within the existing block-cycle regions which may not be
consecutive anymore. As a result, multiple line computations
may be necessary to determine NR, depending on how many
(disjoint) block-cycle regions the line c2− c1 = np intersects.

3) Complexity: The conventional cycle counting method
discussed in [28] has computational complexity of
O(gE2/p) = O(gγ2p3) for AB-LDPC-BCs, where g is
the girth and E = γp2 is the number of edges in the graph,
respectively.

Since a column weight-3 matrix region R generates p2− p
block-cycle regions on the (c1, c2) plane, the number of line
computations necessary for determining NR via ALC scales
with O(p2) since the number of arithmetic operations involved
in a single line computation (corresponding to a single block-
cycle region) is independent of the code parameters. Thus,
due to a significantly reduced 6-cycle enumeration complexity
compared to standard cycle counting algorithms, ALC is more
desirable for the optimization of nested codes.

IV. AB-SC-LDPC NESTED CODE OPTIMIZATION
PROCEDURE

In this section, we discuss the optimization strategy for
nested AB-SC-LDPC codes in example scenarios where the
nested codes have column weights ωi = 4 or 5, and the global
code has column weight-3. First, a numerical optimization
scheme is employed to determine the entries of the edge-
spreading matrices Bi,m and Bm to construct parity-check
matrices Hi(ωi, p, L) and H(ω = 3, p, L) from Hi(ωi, p) and
H(ω = 3, p), respectively. ALC is used at each optimization
step to compute (and minimize) the number of 6-cycles in
the nested AB-SC-LDPC parity-check matrices. Finally, a
terminal lift is applied to further reduce residual ABSs in
the Tanner graphs of optimized Hi(ωi, p, L) and H(3, p, L)
matrices.

A. ALC-Based Guided Search

An overview of the search mechanism for determining the
entries of the spreading matrices is provided in the following.
For ease of notation, we refer to a given AB-LDPC-BC parity-
check matrix H(3, p) or Hi(ωi, p) as H, the corresponding
undetermined edge-spreading matrix Bm or Bi,m as B, and
the resulting matrix H(3, p, L) or Hi(ωi, p, L) obtained by
edge-spreading H according to B as Hsc. Entries in B that
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have been determined by optimization of another nested code
(see the constrained optimization discussion in Section III-B)
are copied into B and cannot be changed, the remaining entries
are initially set to zero (i.e., the corresponding circulants exist
in sub-matrix H0 of (1)) and designated to be “unfixed”.
In each search iteration `, either an unfixed entry of B is
determined, or “fixed”, referred to as forward-search, or a
fixed entry of B is erased and re-evaluated, referred to as
back-tracking. In a forward-search step, an integer from the
set S ′ = {0, 1, . . . ,m−1} is assigned to an unfixed entry (i, j)
of B, and the number of 6-cycles in the corresponding Hsc

matrix is computed via ALC. This procedure is repeated for all
the remaining elements in S ′, and the one that contributes to
the least number of 6-cycles in Hsc is chosen for entry (i, j) of
B and designated fixed. Note that there may be more than one
value in S ′ which corresponds to the same number of 6-cycles
for entry (i, j). In this case, entry (i, j) is set to be one of those
values that minimizes the cycles from S ′ randomly, and the
remaining candidates are stored for back-tracking. After each
round ` of forward-search, the number of 6-cycles in Hsc is
given by the integer ρ`. If ρ` ≥ ρ`−1, then a back-tracking
step is applied. In this phase, the most recently assigned entry
(i, j) is designated unfixed, then the forward-search is applied
and a new value is chosen for the unfixed entry randomly
from the previous set of saved candidates for that entry. The
optimization procedure terminates if no more back-tracking
is possible, or after a maximum number of search iterations
(`max) elapse, or if ρ` = 0, whichever occurs first.

B. Construction of Optimized Nested AB-SC-LDPC Codes

We outline the approach of Method 1 using ALC, which
first optimizes H(3, p, L) and then the Hti(ωi, p, L) matrices
based on the constraints given by H(3, p, L) and the ordering
t, as described in Section III-A. The optimization requires the
following three steps:
• Step 1: Inputs to the ALC based optimization algorithm

are the H(3, p) matrix and the undetermined Bm matrix.
The guided search is allowed to run as described in
Section IV-A until either the number of 6-cycles in
H(3, p, L) obtained in an optimization iteration is 0,
or until the number of optimization iterations exceed a
predetermined threshold `max, whichever occurs first. At
the end of this step we obtain Bm, and the spreading for
row groups 0, 1, and 2 is permanently fixed.

• Step 2: For a given sub-code index ti, inputs to the ALC
based optimization algorithm are H

(z)
ti (3, p), consisting

of row groups {0, q, q′}, and a matrix B
(z)
ti,m ∈ F3×p

2

which contains the rows corresponding to row groups
{0, q, q′} of Bti,m. Note that the row 0 of B(z)

ti,m has been
fixed already and cannot be changed; if the row(s) cor-
responding to the row groups q and/or q′ of B(z)

ti,m are/is
unfixed, then they/it will be fixed in this step. The guided
search algorithm of Section IV-A is now allowed to run
until either all the 6-cycles in H

(z)
ti (3, p, L), obtained by

edge-spreading H
(z)
ti (3, p) using B

(z)
ti,m, are eliminated or

the number of optimization iterations exceed a threshold
`max, whichever occurs first. This optimization step is

repeated for all possible values of z from {2, 3 . . . , T}. At
the end of this step, we obtain the complete Bti,m matrix.
This step is repeated until all sub-codes i = 1, 2, . . . ,M
are set.

• Step 3: Finally, the Hi(ωi, p, L) and H(3, p, L) matrices
are constructed by edge-spreading according to Bi,m.

Method 2 largely follows the approach in Method 1, but
here Hi(ωi, p, L) is optimized first instead of H(3, p, L) (as
described in Section III-A).

Example 6. We demonstrate ALC based optimization for
Method 1 using the AB-LDPC-BC from Example 1 with
nested matrix Ĥ(5, 5), coupling length L = 2, and memory
m = 1. In Step 1, we input an all-zero 3 × 5 B1 matrix and
return the optimized B1 matrix shown earlier in (8). This is
used to generate the optimized global SC matrix H(3, 5, 2),
whose components are shown in (9), from H(3, 5). In Step 2,
we select t = (1, 2) and first optimize the matrix B1,1 that will
be used to spread the edges of H1(4, 5) from (7) to construct
the optimized (with constraints) nested AB-SC-LDPC code
C1.7 Note that, for this code, H1(4, 5) consists of row groups
0, 1, 2, and 3, of which 0, 1, and 2 (black rows) are fixed in
Step 1. Here, T = 2 and the two matrices H(z)

1 (3, p), z = 1, 2,
can be chosen, say, to have row groups {0, 1, 2} and {0, 2, 3},
respectively. Since H

(1)
1 (3, p) is completely determined and

there is only on row group (with index 3) to fix, we require
only one optimization (z = 2). The inputs in Step 2 are the
sub-matrix

H
(2)
1 (3, 5) =

 I I I I I
I σ2 σ4 σ σ3

I σ3 σ σ4 σ2

 (16)

of H1(4, 5) and the matrix B
(2)
1,1, where the first two rows

of B
(2)
1,1, corresponding to row groups 0 and 2, were already

determined in Step 1 as rows 0 and 2 of B1 in (8), and the
third row is set to all-zeros. The output is the optimized matrix

B
(2)
1,1 =

 1 0 0 0 1
0 0 1 1 0
1 0 0 1 0

 . (17)

The blue row in italics of (17) represents the only row of B(2)
1,1

that has been optimized in this step. Now, combining B1 and
B

(2)
1,1, all the row groups 0, 1, 2, and 3 have been fixed and

we obtain the optimized edge-spreading matrix B1,1 shown
in (11), that is used to construct the optimized nested SC
matrix H1(4, 5, 2), whose components are shown in (12). The
sub-matrix H2(4, 5, 2) is constructed in a similar fashion to
complete Step 2. Finally, the nested matrices are constructed
as described in Step 3. 2

C. Optimization Complexity

Let x ∈ {1, 2, . . . , ω′}, ω′ ∈ {3, ωi}, be the number of
undetermined rows of a B matrix input to the ALC-based
optimization scheme. For a given column weight-3 AB-LDPC-
BC parity-check matrix H, the scheme needs to search over at

7Note that, since row groups 0, 1, and 2 are fixed in Step 1, t = (1, 2),
and t = (2, 1) would have the same outcome.
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most (m+ 1)xp possible choices of the xp entries belonging
to the undetermined rows of B, to determine the choices that
minimize/eliminate the number of 6-cycles in Hsc. Moreover,
during a search, ALC is invoked for enumerating 6-cycles in
Hsc. Recall that N column weight-3 matrix regions are taken
into account by ALC to compute all the 6-cycles in Hsc, and
therefore at most p2 − p line computations may be necessary
for each region. Therefore, the complexity of our nested code
optimization scheme for a given B is O(Np2(m+1)xp). Due
to the high optimization complexity for large p, it may be more
beneficial to choose a small value of p and then subsequently
apply terminal lifting to design longer SC codes.

D. Terminal Lift

The terminal lifted matrices Hi(ωi, p, L, J), i =
1, 2, . . . ,M , and H(3, p, L, J) may now be obtained by lift-
ing the non-zero (resp., zero) entries of Hi(ωi, p, L) and
H(3, p, L) via randomly generated circulant (resp., all-zero)
matrices of size J × J . The goal of the terminal lift is to
break as many remaining 6-cycles as possible in the Tanner
graphs of Hi(ωi, p, L) and H(3, p, L). In this paper, we use
an exhaustive search to select circulants for the first m + 1
contiguous column blocks of (1), searching until either all 6-
cycles are eliminated or a maximum time duration is elapsed.
Many other approaches could be considered, e.g., [29], [30].
These permutations are repeated periodically for the remaining
L − (m + 1) column blocks to form the complete matrix.
This is first performed for any i, i.e., on Hi(ωi, p, L, J), and
then repeated for the additional row groups in the parity-
check matrices of the remaining nested codes C1,C2, . . . ,CM .
Note that terminally lifted QC-LDPC-BC matrices, denoted
H(3, p, J(m + 1)) and Hi(ωi, p, J(m + 1)), are obtained in
similar fashion by lifting the non-zero (resp., zero) entries of
H(3, p) and Hi(ωi, p) via circulant (resp., zero) matrices with
dimension J(m+ 1)× J(m+ 1).

V. NUMERICAL RESULTS

We now demonstrate the effectiveness of the procedure
outlined in Section IV using nested AB-SC-LDPC matrices
H(3, p, L), H1(4, p, L), and H4(5, p, L), with corresponding
BC matrices H(3, p), H1(4, p), and H4(5, p) obtained from
row groups {0, 1, 2}, {0, 1, 2, 3} and {0, 1, 2, 3, 4}, respec-
tively, of a nested Ĥ(6, p) AB-LDPC matrix. We provide
6-cycle enumeration results with syndrome former memories
m = 1 and 2 in Section V-A, and computer simulation results
in Section V-B with m = 2.

A. ALC Enumeration Results

We first present results obtained only with the ALC-based
optimization described in Section IV-B, i.e., without a terminal
lift. In the case of AB-SC-LDPC codes with memory m,
we compute the asymptotic average number of 6-cycles per
VN given by Am = limL→∞

∑m+1
e=1

(L−e+1)µe

Lp2 =
∑m+1
e=1

µe

p2

[18]. The asymptotic average results for nested AB-SC-LDPC
matrices constructed via ALC based optimization with Meth-
ods 1 (M1) and Method 2 (M2), respectively, are shown in
Table I. The maximum number of search iterations for the

ALC based optimization scheme was set to `max = 104. The
asymptotic average results for random (Ran) nested AB-SC-
LDPC matrices (non-optimized) are also presented in Table
I, where randomly generated Bm and Bi,m matrices were
selected. As another benchmark for comparison, we compute
the asymptotic average number of 6-cycles per VN for AB-
LDPC-BCs, given by A(BC) = µ/p2, where µ is the total
number of 6-cycles in the AB-LDPC-BC. The values of A(BC)

in the matrix H(3, p) are computed as 12, 18, and 30, for
p = 5, 7, and 11, respectively, for H1(4, p) these values are
48, 72, and 120, respectively, whereas for H4(5, p), the A(BC)

values are 60 and 100, respectively, for p = 7 and 11.

By comparing the results obtained using Method 1 and 2 in
Table I to the uncoupled matrices (A(BC) values), we note that
spatial coupling is able to significantly reduce the number of 6-
cycles, and hence dominant ABSs. Moreover, Method 1 results
in a lower Am for the global SC-LDPC matrix H(3, p, L),
but has a larger Am for the nested SC-LDPC matrices. Using
Method 2, on the other hand, shows the opposite behavior - a
smaller Am for the nested codes, but a moderate Am for the
global code. From the Method 2 results shown in Table I, we
also note that, for p = 5 and m = 2, the asymptotic average
is zero in all optimized column weight-3 or column weight-
4 nested codes. From Table I, we observe that, on average,
the randomly generated nested SC-LDPC matrices possess a
significantly larger value of Am (and hence they contain a
larger number of dominant ABSs) when compared to nested
AB-SC-LDPC matrices obtained via ALC based optimization,
but still show a significant reduction when compared to AB-
LDPC-BCs (A(BC) values). Note that for p = 5, the rate of
the column weight-5 nested BC is zero, and hence the results
for H4(5, 5, L) are excluded.

Finally, we note that by applying the terminal lift described
in Section IV-D, even for small J , it is possible to significantly
reduce, or even eliminate dominant ABSs. For example, with
p = 5, 7, m = 1, 2, and p = 11,m = 2, and a lifting factor
of only J = 5, we are able to completely eliminate all 6-
cycles. This means that, after a terminal lift of the AB-SC-
LDPC nested codes obtained via Method 1 and 2 in Table
I the corresponding (3, 3), (4, 4), (5, 4) and (6, 4) ABSs as
described in Remark 1 are removed. Note that, by removing
6-cycles in these AB-SC-LDPC codes, we are also able to
significantly reduce the number of 8-cycles and any ABSs
connected to them.

B. Simulated Code Performance

We now consider the BP decoding performances of termi-
nally lifted column weight-3, 4, and 5 QC-SC-LDPC nested
parity-check matrices. To demonstrate the behavior, we con-
struct H(3, p, L = 99, J = 5), H1(4, p, L = 99, J = 5), and
H4(5, p, L = 99, J = 5) nested QC-SC-LDPC codes, with
memory m = 2 and p = 7, 11, as described in Section V-A,
and compare their performances to random (non-optimized
before terminal lift) QC-SC-LDPC codes and terminally lifted
nested QC-LDPC-BC parity-check matrices H(3, p, J ′(m +
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p
H(3, p, L) H1(4, p, L) H4(5, p, L)

A1 A2 A1 A2 A1 A2

M1 M2 Ran M1 M2 Ran M1 M2 Ran M1 M2 Ran M1 M2 Ran M1 M2 Ran
5 0 0.6 1.33 0 0 0.67 2.80 4.80 5.06 0.80 0 2.66 n/a n/a n/a n/a n/a n/a
7 0.43 0.86 1.48 0 0.57 0.64 4.71 3.43 8.12 2.85 1.46 4.57 20.98 17.70 29.83 19.21 9.35 23.26
11 0.99 1.82 3.36 0 0.73 1.70 9.45 8.18 13.0 4.87 2.54 6.74 38.88 38.01 52.06 26.68 23.33 55.09

TABLE I: Values of A1 and A2 obtained for nested AB-SC-LDPC matrices using Method 1 (M1), Method 2 (M2), and random generation
(Ran), as L→∞.

1)), H1(4, p, J ′(m+ 1)), and H4(5, p, J ′(m+ 1)).8

Computer simulation results are obtained over a binary
additive white Gaussian noise (AWGN) channel. A sliding
window BP decoder is used for decoding nested SC codes [31],
where the window attempts to decode one block of p2J target
symbols in each decoding instant, then the decoder shifts one
block right and one block down the parity-check matrix (1),
thereby decoding the entire frame after L shifts. The window
length W of the decoder was selected as 4ν′ symbols, and 50
iterations were performed per window position. The terminally
lifted QC-LDPC-BCs were decoded with a standard flooding
BP decoder with a maximum of 50 iterations and a syndrome
check stopping rule. The block length of the short LDPC-BC,
obtained using J ′ = 5, is identical to the constraint length
ν′ = p2J(m + 1) of the SC code, whereas the long LDPC-
BC, obtained using J ′ = 20, has block length equal to the
window length 4ν′.

The bit error rate (BER) results are shown in Fig. 4. As
expected from the enumeration results in Section V-A, the
performance of the nested QC-SC-LDPC codes, irrespective
of the column weight or construction method, is much better
when compared to the performance of the corresponding
nested regular QC-LDPC-BCs. We observe a significant gain
in the waterfall for the optimized QC-SC-LDPC codes at-
tributed to threshold saturation effect, and no indication of an
error floor. The random SC-LDPC codes do appear to display
the beginning of an error floor at 2.5 dB for p = 7. When
comparing the performance of the two optimization strategies,
it is noticeable that both the optimized column weight-4 and
5 nested QC-SC-LDPC codes perform better under Method
2 optimization when compared to Method 1. In case of the
column weight-3 code, we see the same behavior for p = 7,
which can be attributed in part to the terminal lift and resulting
code realization. Note that the lower bound on the decoding
error probability of message passing algorithms is known to
decrease linearly with the multiplicity of harmful ABSs in
SC codes [32]. Hence, the optimized nested QC-SC-LDPC
codes are expected to have better error-floor performance
when constructed via Method 1 or 2 compared to randomly
generated QC-SC-LDPC codes.

VI. CONCLUSION

In this paper, we have considered the construction of finite
length nested AB-SC-LDPC codes from nested AB-LDPC-
BCs. During code construction, we ensured that each nested

8Note that Ĥ(6, p) also consists of nested sub-matrices H2(4, p),
H3(4, p), and H5(5, p) with row groups {0, 1, 2, 4}, {0, 1, 2, 5} and
{0, 1, 2, 3, 5}, respectively, but the numerical results for Hi′ (4, p, L), i′ ∈
{2, 3}, and H5(5, p, L) are not shown as they are similar to the results for
H1(4, p, L), and H4(5, p, L), respectively.

SC sub-code and the global code have a small number of dom-
inant ABSs in the Tanner graph when compared to the under-
lying LDPC-BCs. An ALC based optimization technique was
utilized to optimize the design of nested AB-SC-LDPC codes.
This optimization scheme allows the enumeration of dominant
ABSs (by counting 6-cycles) in arbitrary column weight-3
sub-matrices of the nested parity-check matrices, facilitating
a tractable nested code optimization. We demonstrate that,
by using ALC, it is possible to minimize/eliminate dominant
ABSs in certain nested AB-SC-LDPC codes, irrespective of
the row and column weight of the overall parity-check matrix
containing all the nested matrices. We also show that, for some
specific codes, dominant absorbing sets in the Tanner graphs
of all nested codes are completely removed using our proposed
optimization strategy. Simulation results verify the improved
nested code performance under ALC based optimization.

APPENDIX A
PROOF OF LEMMA 1

Recall the labeling of a 6-cycle shown in Fig. 1 in case of
AB matrices with parameters qi, ji, and ki, i ∈ {1, 2, 3}. The
edges corresponding to (r2, c3) and (r2, c2) both exist in row
s2, hence we get s2 = q2j3 + k3 mod p = q2j2 + k2 mod p.
As a result,

q2j2 + k2 = q2j3 + k3 mod p. (18)

Similarly, considering (r2, c3) and (r3, c1) it is noted that s3 =
q3j1 + k1 mod p = q3j3 + k3 mod p, which gives

q3j1 + k2 = q3j3 + k3 mod p, (19)

where j1 < j2. Note that (18) and (19) can be rearranged as

k3 − k2 = q2j2 − q2j3 mod p, (20)
and

k3 − k2 = q3j1 − q3j3 mod p, (21)
respectively. Equations (20) and (21) can also be written as

k3 − k2 = q2j2 − q2j3 − λ1p, (22)
and

k3 − k2 = q3j1 − q3j3 − λ2p, (23)

respectively, where λ1, λ2 ∈ {1 − p, 2 − p, . . . , p − 1}. By
substituting (22) in (23), and after rearranging we get

j3 =
q2j2 − q3j1 − λp

q2 − q3
, (24)

where j2 > j1, q2, q3 ∈ {1, 2, . . . , γ − 1} and λ = λ1 − λ2.
In general, α ≤ j3 ≤ β− 1, where 0 ≤ α ≤ p− 1, 1 ≤ β ≤ p
and α < β. Using this inequality and from (24) we have

α ≤ q2j2 − q3j1 − λp
q2 − q3

≤ β − 1. (25)
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Fig. 4: BER results obtained for nested QC-LDPC-BC and QC-SC-LDPC codes for p = 7, and window size W = 2940: (a) global codes,
(b) column weight-4 nested codes, and (c) column weight-5 nested codes, and for p = 11, and W = 7260: (d) global codes, (e) column
weight-4 nested codes, and (f) column weight-5 nested codes.
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From (25) we obtain the range of values of column group
j3 which contains column c3 of the AB parity-check matrix.
Multiplying through (25) by p and using the relations j1p =
c1 − k1 and j2p = c2 − k2, c2 > c1, yields

αp ≤ q2c2 − q3c1 + q3k1 − q2k2 − λp2

q2 − q3
≤ βp− p. (26)

Now, considering that both c1 and c2 are associated with a
row group of I matrices only, we obtain k1 = k2. Then (26)
simplifies as

αp ≤ q2c2 − q3c1 + (q3 − q2)k1 − λp2

q2 − q3
≤ βp− p. (27)

Simplifying (27) further yields

αp ≤ q2c2 − q3c1 − λp2

q2 − q3
− k1 ≤ βp− p

⇒ αp+ k1 ≤
q2c2 − q3c1 − λp2

q2 − q3
≤ βp− p+ k1.

(28)

Since 0 ≤ k1 < p, (28) is rewritten as

αp ≤ q2c2 − q3c1 − λp2

q2 − q3
< βp. (29)

By rearranging (29), the range of c3 is expressed in terms of
c1 and c2 as(

1− q3
q2

)
αp+

λp2

q2
≤ c2 −

q3
q2
c1 <

(
1− q3

q2

)
βp+

λp2

q2
,

(30)
where c2 > c1, λ ∈ {2 − 2p, 3 − 2p, . . . , 2p − 2}, q2, q3 ∈
{1, . . . , γ − 1} and q2 6= q3. 2

APPENDIX B
PROOF OF PROPOSITION 1

From the lower bound of (30), we obtain a line c2 =
q3
q2
c1 +

(
1− q3

q2

)
αp + λp2

q2
on the (c1, c2) plane, where q3

q2

is the gradient of the line and
(

1− q3
q2

)
αp + λp2

q2
is its

vertical intercept. Let this line be labeled as l1. Similarly,
from the upper bound of (30) we obtain another line c2 =
q3
q2
c1 +

(
1− q3

q2

)
βp + λp2

q2
, and let this line be labeled as

l2. Now, let l3, l4, l5, l6, and l7, respectively, be the labels of
the lines c1 = w1p, c1 = w2p, c2 = w3p, c2 = w4p and
c2 − c1 = np, on the (c1, c2) plane. These lines are shown in
Figs. 5(a) and 5(b).9 Recall from Section II-E that a (c1, c2)
integer pair on l7 in the grey region, L , represents a 6-cycle
in the corresponding matrix region R. Hence, the total number
of 6-cycles in R is equal to the length of line l7 within L .

Let φ1, φ2, θ1, θ2, θ3, and θ4, be the points of intersection
of line l7 with lines l1, l2, l3, l4, l5, and l6, respectively. Note
that the points φ1, θ1, θ3 and φ2, θ2, θ4 are close to each other
on the (c1, c2) plane, and hence we call them “neighbors”.
Any two points, selected from each neighbor, producing the
shortest length of l7 within the rectangular boundary im-
posed by l3, l4, l5, and l6, are denoted as σ1 and σ2. That

9Note that Figs. 5(a) and 5(b) reveal the difference in steepness of lines
l1 and l2 as their gradient (q3/q2) changes from less than 1 in Fig. 5(a), to
more than 1 in Fig. 5(b).
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(b)

Fig. 5: Illustration of the (c1, c2) plane for the case (a) q3 < q2 and
(b) q3 > q2. The blue point on l7 represents a 6-cycle.

is, σ1x = max(φ1x, θ1x, θ3x), σ1y = max(φ1y, θ1y, θ3y),
σ2x = min(φ2x, θ2x, θ4x), σ2y = min(φ2y, θ2y, θ4y), where
the x and y subscripts indicate the x and y coordinates,
respectively, on the (c1, c2) plane. Hence, in Figs. 5(a) and
(b), σ1 = θ3 and σ2 = θ2. From the principles of Cartesian
geometry, the number of integer points lying on straight line

connecting σ1 and σ2 is given as
√

(σ2x−σ1x)2+(σ2y−σ1y)2

2 .
Let the y-coordinates of the points of intersection between
lines l4 and l1, and lines l3 and l2, be denoted as ν1 and
ν2, respectively. Then, the total number of 6-cycles in R is
expressed as

NR =

{√
(σ2x−σ1x)2+(σ2y−σ1y)2

2 , if (32) hold,

0, otherwise.
(31)

The boundary conditions that ensure line l7 will intersect the
shaded region L in Fig. 5 are

θ1y < ν2, θ2y > ν1 if q3 < q2, or
w3p < φ2y, w4p > φ1y if q3 > q2, and

θ1x ≤ {σ1x, σ2x} ≤ θ2x, θ1y ≤ {σ1y, σ2y} ≤ θ2y,
(32)

where ν1 = αp + (w2 − α) q3q2 p + λp
2

q2
, ν2 = βp + (w1 −

β) q3q2 p + λp
2

q2
, φ1y = q2

q2−q3

[
αp− q3

q2
p(n+ α) + λp2

q2

]
, and

φ2y = q2
q2−q3

[
βp− q3

q2
p(n+ β) + λp2

q2

]
. 2
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APPENDIX C
PROOF OF PROPOSITION 2

A 6-cycle exists in two possible region configurations within
m+1 contiguous column blocks of a column weight-3 AB-SC-
LDPC parity-check matrix. The first configuration is a single
column block H′ = [H>0 H>1 , · · · , H>m]>, and the other one
is an “L” shaped matrix region configuration

H′′ =


H0

H1 H0

...
...

. . .
Hm Hm−1 · · · H0

 , or (33)

H′′′ =


Hm Hm−1 · · · H0

Hm · · · H1

. . .
...

Hm

 . (34)

Fix a single row group of I (identity) matrices within H′,
and randomly select a pair of row group indices from the
remaining 2(m+ 1) non-I matrix row group indices in H′ to
create a triple (representing the row group indices of a column
weight-3 sub-matrix in H′). There are

(
2(m+1)

2

)
possible ways

of generating these triples, with a common row group index of
I matrices. However, 2

(
m+1
2

)
of these triples contain a pair of

non-I matrix row group indices (q, q′) such that q = q′ mod 3,
and row groups with these triples do not contain any 6-cycles.
Thus, for a given index of an I-matrix row group in H′,
we obtain κ =

(
2(m+1)

2

)
− 2
(
m+1
2

)
distinct column weight-

3 matrix regions containing 6-cycles. Since there are m + 1
row group of I matrices in H′, the total number of distinct
column weight-3 matrix regions in H′ (containing 6-cycles)
is (m+ 1)κ.

Now, note that the combination of the two “L” shaped matrix
regions have in total 2m+1 row groups containing I matrices
only, and hence there are (2m+ 1)κ column weight-3 matrix
regions (containing 6-cycles) which span one or more column
blocks of H′′ or H′′′. Since at least one of these regions is
already in H′, the number of distinct column weight-3 matrix
regions (containing 6-cycles) spanning more than one column
block of H′′ or H′′′ is upper-bounded by (2m+1)κ. Therefore,
we obtain N < (m+ 1)κ+ (2m+ 1)κ = (3m+ 2)κ. 2
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