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Understanding howgoals control behavior is a question ripe
for interrogation by new methods from machine learning.
These methods require large and labeled datasets to train
models. To annotate a large-scale image dataset with ob-
served search �xations, we collected 16,184 �xations from
people searching for eithermicrowaves or clocks in a dataset
of 4,366 images (MS-COCO).We then used this behaviorally-
annotated dataset and themachine learningmethod of inverse-
reinforcement learning (IRL) to learn target-speci�c reward
functions and policies for these two target goals. Finally,
we used these learned policies to predict the �xations of
60 new behavioral searchers (clock = 30, microwave = 30)
in a disjoint test dataset of kitchen scenes depicting both
a microwave and a clock (thus controlling for di�erences
in low-level image contrast). We found that the IRL model
predicted behavioral search e�ciency and �xation-density
maps using multiple metrics. Moreover, reward maps from
the IRL model revealed target-speci�c patterns that sug-
gest, not just attention guidance by target features, but also
guidance by scene context (e.g., �xations along walls in the
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search of clocks). Using machine learning and the psycho-
logically meaningful principle of reward, it is possible to
learn the visual features used in goal-directed attention con-
trol.
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1 | INTRODUCTION

Ever since Yarbus’ seminal demonstration of how a goal can control attention [24], understanding goal-directed at-
tention control has been a core aim of psychological science. This focus is justi�ed. Goal-directed attention underlies
everything that we try to do, making it key to understanding cognitively-meaningful behavior. Like Yarbus, we too
demonstrate goal-directed control of eye-movement behavior, but here these overt attention movements are made
by a deep-network model that has learned di�erent goals.

Three factors distinguish our approach from previous work. First, it is image-computable and uses learned, rather
than handcrafted, features. Our model therefore inputs an image but is not told anything about its features ("vertical",
"clock", etc.), which all must be learned. This factor distinguishes the current model frommost others in the behavioral
literature on attention control [22, 25, 3], and makes our approach more aligned with recent computational work. [28,
27] Second, the goal-directed behavior that we study is categorical search, the visual search for any exemplar of a
target-object category. [20, 8, 26] We adopt this paradigm because categorical search is the simplest (and therefore,
best) goal-directed behavior to computationally model—there is a target-object goal and the task is to �nd it. A
third and unique contribution of our approach is that we predict categorical-search �xations using a policy that was
learned, through many observations of search-�xation behavior during training, to maximize the goal-speci�c receipt
of reward. Using inverse-reinforcement learning (IRL), we obtain these reward functions and use them to prioritize
spatial locations to predict the �xationsmade by new people searching for the learned target categories in new images.
Doing this required the creation of a search-�xation-annotated image dataset su�ciently large to train deep-network
models (see Methods). We show that this model successfully captured several patterns observed in goal-directed
search behavior, not the least being the guidance of overt attention to the target-category goals.

1.1 | Inverse-Reinforcement Learning

Reinforcement learning, like supervised and unsupervised learning, is a basic machine learning method where agents
make actions in a context for the purpose of maximizing the accumulation of reward. In reinforcement learning,
knowledge of the reward is assumed and the goal is to predict the action, which in the current context is the search
saccade. In inverse-reinforcement learning, knowledge of the action is assumed and the goal is to learn the reward
function. In the current context, this knowledge of the action corresponds to training on the search �xation behavior.

IRL is an imitation-learning method from the machine-learning literature that learns, through observations of an
expert, a reward function and policy for mimicking expert performance. We extend this framework to goal-directed
behavior by assuming that the image locations �xated by searchers constitute the expert performance that the model
learns to mimic. The speci�c IRL algorithm that we use is Generative Adversarial Imitation Learning (GAIL [11]), which
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makes reward proportional to the model’s ability to generate state-action pairings that imitate observed state-action
pairings. Here, the action is a shift of �xation location in a search image (the model’s saccade), and the state is the
search context (all the information available for use in the search task). The state includes, but is not limited to, the
visual features extracted from an image and the learned visual representation of the target category. Over training,
and through the greedymaximization of total-expected reward, themodel learns a policy for mapping states to actions
that can be used to predict new actions (saccades) given new states (search images).

2 | METHODS

2.1 | Model Methods

The IRL model framework is illustrated in Fig. A1. Model training can be conceptualized as a policy generator (G) and a
discriminator (D) locked in an adversarial process [11]. The generator generates fake eyemovements (actions) with the
goal of fooling the discriminator into believing that these actions weremade by a person, while the discriminator’s goal
is to discriminate the real eye movements from the fake. More speci�cally, the generator consists of an actor-critic
model [14] that learns a policy for maximizing total expected reward over all possible sequences of �xations, with
greater reward given to the generator when it produces person-like actions that the discriminator miss-classi�es as
real (the logarithm of the discriminator output). This reward-driven adversarial process plays out during training using
proximal policy optimization (PPO) [21], with the result being a generator that becomes highly adept at imitating the
behavioral �xations made during categorical search. At testing, this learned Policy for mimicking people’s categorical
search �xations is used to predict the �xation behavior of new people searching for the same target categories in new
images. These �xation predictions are quanti�ed by what we call a saccade map, which is a priority map re�ecting the
total reward expected if saccades were to land at all the di�erent locations in an image input. Note that this reward-
based prioritization, by imitating the behavioral search �xations, captures the pursuit of reward that we assume to
be driving search behavior, along with any other biases that systematically a�ect gaze control during search. So,
although the IRL model and people are rewarded for di�erent things, the end result is that the model recovers the
reward functions that people use to guide their search behavior.

Training

State Action

GD
Fake Data

Discriminator Generator

State Action

Real Data

Reward Learned Policy

Testing

State / Action
Fixation Prediction

Saccade 
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Training Data 

Test Images 
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F IGURE 1 The model’s adversarial imitation learning algorithm. During training it learns from �xation-annotated
images a reward function and policy for predicting new search �xations in unseen test images.
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2.2 | States and Actions: Cumulative Movements of a Foveated Retina

Broadly speaking, the state is the internal visual representation that is used for search, and a big part of this are the
features extracted from the image input. To obtain a robust core state representation we pass each image through
a pre-trained ResNet-50 [10] to get a reasonably-sized feature map output (2048x10x16). However, human search
behavior is characterized by movements of a foveated retina, and each of these search �xations dramatically changes
the state by re-positioning the high-resolution fovea in the visual input. We captured this �xation-dependent change in
state in two steps. First, we gave the IRLmodel a simpli�ed foveated retina. We did this using themethod fromGeisler
and Perry [19] to compute a retina-transformed version of the image input (ReT-image), which in our implementation
is an image having high resolution within a central 3� "fovea" (32x32 in the resized 512x320 pixel image) but is blurred
outside of this fovea to approximate the loss of resolution that occurs with increasingly eccentric viewing in the visual
periphery. Second, we accumulate these high-resolution foveal views, each a di�erent ReT-image, over 6 new �xations
in a process that we refer to as cumulative foveation. With each new "eye movement", the fovea is re-positioned in
the image, thereby progressively de-blurring what was an initially fairly blurred visual input. Note that by adopting
this cumulative-foveation state encoder we are not suggesting that people have a similar capacity to maintain high-
resolution visual information once the fovea moves on, and indeed this is known not to be the case [12]. Rather, we
used this �xation-by-�xation state encoder simply as a tool to integrate a dynamically changing state into the IRL
method. Figure 2 shows cumulative ReT-images obtained at three successive �xation locations (0,1,2) for a sample
scene, with the 7-�xation sequence of these images comprising a dynamic state representation that is input to the
IRL model. The pre-trained ResNet-50 was dilated and �ne-tuned on ReT-images prior to this state encoding. See the
appendix on supplemental model methods for additional details.

0 0 0

1 1

2

F IGURE 2 The formation of a cumulative retina-transformed image over the �rst three �xations (0,1,2).

The IRLmodel learns to associate states with actions, but these actions must be de�ned in some space. We obtain
an action space by �rst resizing a ReT-image input to 512x320 pixels, which we then discretize into a 10x16 grid of
32x32 pixel cells. The center of each cell becomes a potential �xation location, a computational necessity imposing
a resolution limit on the model’s oculomotor behavior. For each of the 6 new �xations generated by the model, the
cumulative ReT-image input is prioritized by the saccade map and one of the 160 possible grid locations is selected
for an eye movement.

2.3 | The Microwave-Clock Search Dataset

The currently most predictive models of complex �xation behavior are in the context of a free-viewing task, where the
best of these models (e.g., DeepGaze II [15]) are pre-trained on SALICON [13]. SALICON is a crowd-sourced dataset
consisting of images that were annotated with human mouse clicks indicating salient image locations. Without SALI-
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CON, DeepGaze II and models like it would not have been possible, and our understanding of free-viewing behavior,
widely believed to re�ect bottom-up attention control (i.e., control solely by features extracted from the visual input),
would be diminished. To date, however, there has been no comparable dataset for categorical search, and this has
hindered the computational modeling of goal-directed attention control. Those suitably-sized and �xation-annotated
image datasets that do exist either did not use a standard search task [17, 18], used a search task but had people
search for multiple targets simultaneously [9], or used only one target category (people) [7]. Here we introduce the
Microwave-Clock Search (MCS) dataset, which is now among the largest datasets of images that have been anno-
tated with goal-directed �xations. TheMCS dataset makes it possible to train deep-network models on human search
�xations to predict how people will move their attention in the pursuit of target-object goals.

F IGURE 3 Representative training images (top) and testing images (bottom) in the MCS dataset.

Half of the MCS dataset consists of COCO2014 images [16] depicting either a microwave or a clock (based on
COCO labels), from which we created disjoint training and testing datasets. The training dataset was selected entirely
from COCO’s training images; the testing dataset was selected from COCO’s training and validation images (in order
to maximize the number of images selected). In selecting the training images we excluded scenes depicting people
and animals (to avoid attention biases to these categories), and digital clocks in the case of the clock target category.
This latter constraint was introduced because the features of analog and digital clocks are very di�erent, and we were
concerned that this would introduce unwanted variability in the search behavior. No additional exclusion criteria
were used to select the training images, with our goal being to include as many images for training as possible. These
criteria left 1,494 analog clock images and 689 microwave images, which we should note varied greatly in terms
of their search di�culty (see Fig. 3, top). It was necessary to tolerate this variability in order to obtain a su�cient
number of images for model training. Selection of the test images was more tightly controlled, resulting in the test
dataset being far smaller (n=40). In addition to the exclusion criteria used in the selection of the training images, test
images were further constrained to have: (1) depictions of both a microwave and a clock (enabling di�erent targets
to be designated in the identical images, the perfect control for di�erences in bottom-up saliency), (2) only a single
instance of the target, (3) a target area less than 10% of the image area, and (4) targets that do not appear at the
image’s center (no overlap between the target and the center cell of a 5x5 grid). The latter two criteria were aimed at
excluding really large targets or targets appearing too close to the center starting-gaze position, with the goal of both
being to achieve a moderate level of search di�culty (see Fig. 3, bottom).
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F IGURE 4 The categorical search paradigm used for behavioral data collection.

The above-described selection criteria were speci�c to target-present (TP) images, but an equal number of target-
absent (TA) images (n=2183) were selected as well so as to create a standard TP versus TA search context. These
imageswere selected randomly fromCOCO,with the constraints that: (1) none depicted the target, and (2) all depicted
at least two instances of the target category’s siblings. COCO de�nes the siblings of a microwave to be: ovens,
toasters, refrigerators, and sinks, all under the parent category of “appliances”. Clock siblings are de�ned as: books,
vases, scissors, hairdryers, toothbrushes, and teddy bears, under the parent category of “indoor”. Sibling membership
was used as a selection criterion so as to discourage TA responses from being based on scene type (e.g., a street scene
is unlikely to contain a microwave), and this criterion seemed to work well; the overwhelming majority of selected TA
scenes were kitchens that did not depict a target.

The large size of the training dataset (4366 images) required data collection to be distributed over groups of
searchers. Eachmicrowave training image was searched by 2-3 people (n=27); each clock training image was searched
by 1-2 people (n=26). After removing incorrect trials and TP trials in which the target was not �xated (it is not desirable
to train on these), 16,184 search �xations remained formodel training. Test imageswere each searched by a newgroup
of 60 participants, 30 searching for a microwave target and the other 30 searching the same images for a clock target
in a between-subjects design. To achieve a power and e�ect size of .8, based on a t-test comparing target guidance to
chance (as de�ned in Fig. 5), we determined that a sample of 25 participants per target condition would be adequate.
However, we chose to test 30 participants per condition in case of loss due to attrition or unusable eye-tracking data.

2.4 | Behavioral Search Procedure

A standard categorical search paradigm was used for both training and testing (Fig. 4). TP and TA trials were ran-
domly interleaved within target type, and searchers made a speeded TP or TA manual response terminating each
trial. Search display visual angles were 54� ⇥ 35� for testing; for training angles ranged between 12 � 28.3� in width
and 8 � 28.3� in height. Eye position was sampled at 1000 Hz using an EyeLink 1000 (SR Research) in tower-mount
con�guration (spatial resolution 0.01� rms). All participants provided informed consent in accordance with policies set
by the institutional review board at Stony Brook University responsible for overseeing research conducted on human
subjects.

3 | RESULTS

3.1 | Search Behavior

Table 1 provides the mean percent button-press errors and the average number of �xations made before the button-
press response (which includes the starting �xation) on correct search trials. Note that the roughly doubled error rates
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in the training data should be interpreted with caution, as many of these errors were due to incorrectly labelled target-
object regions in COCO that create errors given correct search judgments. Rather than correcting these mislabelled
objects (which would be changing COCO), we instead decided to tolerate an in�ated error rate and to exclude these
error trials from all analyses and interpretation.

Target Category
Training Dataset Testing Dataset

Error (%) Mean (SD) Fixations Error (%) Mean (SD) Fixations

target-present
microwave 18 5.46 (±2.6) 9 6.76 (±2.1)

clock 15 4.52 (±3.5) 6 5.33 (±1.8)

target-absent
microwave 8 7.95 (±4.1) 4 14.36 (±2.5)

clock 10 11.14 (±6.8) 5 15.85 (±2.3)
TABLE 1 Summary statistics showing mean errors and number of search �xations in the Microwave-Clock
Search dataset.

Focusing �rst on the TP test data, Figure 5 plots the cumulative probability of �xating the target with each saccade
made during search. The central behavioral data pattern (the topmost red and blue lines) is that attention, as measured
by overt gaze �xation, is strongly guided to both the microwave and clock targets. This guidance is evidenced by the
fact that 24% of the initial saccades landed on targets (averaged over microwaves and clocks). This probability of
target �xation is well above chance, which we quanti�ed using two object-based chance baselines consisting of: (1)
the probability of �xating the clock when searching for a microwave (Behavior baseline - Clock), and (2) the probability
of �xating the microwave when searching for a clock (Behavior baseline - Microwave). We con�rmed above-chance
target guidance by comparing the slopes of regression lines �t to the target and baseline data (microwave: target slope
= 0.15, baseline slope = 0.03, t(58) = 26.31, p = 6.20e-34 < .001; clock: target slope = 0.17, baseline slope = 0.004,
t(58) = 52.65, p = 1.14e-50 < .001). Also evident from this analysis is the importance of the �rst six saccades made
during the search tasks. If the target was going to be �xated, it is highly likely that this would happen by the sixth
eye movement. Collectively, these results indicate that there are strong microwave and clock guidance signals in the
behavioral test data to predict.

3.2 | Model Performance

To determine whether the IRL model’s behavior is reasonable, we conducted two initial qualitative analyses. The top
row in Figure 6 shows cumulative ReT-images for the starting �xation (0 in the yellow scanpath) and the �xations
following the �rst two saccades (1, 2). Note that the left ReT-image, because it was computed based on a center initial
�xation position, is blurred on both the left and right sides. The middle and right ReT-images were computed based on
the landing positions of the �rst and second saccades, respectively. The microwave target is indicated in each panel
by the red box. The bottom row shows the saccade maps corresponding to these ReT-images, where a bluer color
indicates greater total reward expected by moving �xation to di�erent image locations. The model initially expected
the greatest total reward by �xating the stove (left saccade map), but after that saccade, and the resulting change
in state (top middle), the model then selected the microwave target as the location o�ering the greatest expected
reward (bottom middle), which was �xated next (right panels). Note that the model, because it was forced to make
six saccades (discussed below), continued to prioritize space even after �xating the target. This qualitative analysis
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F IGURE 5 Cumulative probability of �xating the microwave (red) or clock (blue) targets on target-present trials.
Behavioral participants are indicated by lines with error bars (standard error of the mean), the IRL model is indicated
by lines without error bars. Microwave (orange) and clock (cyan) search is indicated for Deep Gaze II (lines without
error bars) and Behavior baseline models (lines with error bars; see text for details).

shows that the model learned an association between a state (which includes the features of a microwave) and an
action, and this enabled it to guide its �xations during the search of a new image for this target-category goal.

F IGURE 6 Cumulative ReT-images (top row) and corresponding saccade maps (bottom row) for the initial and
�rst two new �xations (left to right) made by the IRL model in a microwave search task.

Figure 7 shows another qualitative evaluation, this time comparing �xation-density maps (FDMs) from people
searching for a microwave (n=30) or a clock (n=30) to FDMs generated by the IRL model (sampling from probabilistic
policy) as it searched for the same targets in the same two test images. In both examples, the model and behavioral
searchers e�ciently found the target (bright red). More interesting, however, is that they both searched the scenes
di�erently depending on the target category. When searching for a microwave (leftmost four panels) the model and
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behavioral searchers tended to look at counter-tops, but when searching for a clock (rightmost four panels) they
tended to look higher up on the walls. Future work will more fully explore the potential to learn and predict these
e�ects of scene context on search.

F IGURE 7 Model and behavioral �xation density maps computed for microwave (left four) and clock (right four)
searches in two trials (top, bottom).

A more quantitative comparison of the IRL model to behavior appears in Figure 5. This comparison occurred on
an image-by-image and �xation-by-�xation basis, but was limited to the �rst six movements of gaze. We introduced
this limitation on the number of search saccades to reduce model computation time, but believe that it is justi�ed
given the clear adequacy of the �rst six saccades in revealing the goal-directed behavior of interest. The cumulative
probability of target �xation over saccades is perhaps the clearest measure of search e�ciency, and by this measure
the model was able to guide its high-resolution foveal window to the microwave and clock targets much like how
our participants controlled their search behavior. Both made between 20% and 30% of their initial saccades directly
to the target, regardless of target type. The probability of �xating the target by the second saccade also increased
sharply, but less so for the IRL model, whose performance was lower overall. The IRL model tended to either �xate
the targets very e�ciently in its �rst two new �xations, or not at all. To obtain a performance baseline that does
not re�ect goal-directed control, we also ran DeepGaze II [15] on the test images and compared its performance to
the IRL model and search behavior. The behavior of this model was similarly limited to only six saccades, sampled
probabilistically, although its input was full-resolution images instead of ReT images so as to maximize its prediction
success. In contrast to the highly e�cient initial saccades observed in the behavior and for the IRL model, DeepGaze
II selected the target in its initial movement 10% or less of the time, which was no greater than chance. Note that
the model was more likely to �xate microwaves than clocks because microwave targets tended to be larger, the same
reason why the chance baseline is higher for this target category. The probability of DeepGaze II �xating the target
increasedwith each saccade, but this was due to inhibitory spatial tags inserted at previously selected locations forcing
samples to be taken from di�erent locations in the image. Collectively, we interpret these results as suggesting that
the IRL model was successful in learning how to control its early search saccades to di�erent target-object goals, far
more so than baselines but slightly less e�ciently than human searchers.

Table 2 compares model performance to participant behavior using several metrics applied to the test data. The
�rst column of values indicates search accuracy (ACC), where “accuracy” refers here to the proportion of trials in
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Microwave ACC" AvgSaccades# AUC" NSS" MM"

Behavior 0.808 2.283 0.794 2.175 0.846
IRL 0.673 2.170 0.676 0.928 0.798
DG2 0.468 3.224 0.648 0.828 0.790

Clock ACC" AvgSaccades# AUC" NSS" MM"

Behavior 0.847 2.277 0.774 1.981 0.852
IRL 0.731 2.858 0.576 0.848 0.826
DG2 0.258 3.519 0.605 0.602 0.792

TABLE 2 Evaluation of the IRL and Deep Gaze II (DG2) models against behavior using multiple metrics. Arrow
direction indicates better performance. ACC: Proportion of trials in which the target was �xated in the �rst six
saccades (�xated-in-6 accuracy). Avg Saccades: Average number of saccades to the target on the �xated-in-6 trials.
The values of Behavior for these two metrics indicate actual observed behavior. AUC: Success in predicting FDMs
using the Judd Area-Under-the-Curve metric. NSS: Success in predicting �xation locations using the Normalized
Scanpath Saliency metric. The values of Behavior for these two metrics indicate a Subject model computed by
having a �xation-density map from half of the participants predict the FDM from the other half of the participants.
MM: Predictions of search scanpaths using average MultiMatch similarity. For this metric the value for Behavior
indicates a Subject model computed by averaging pairwise scanpath comparisons.

which the target was �xated in the �rst six eye movements (�xated-in-6 accuracy). The IRL model was about 10-
13% less successful than participants in locating targets within six saccades, which was also clear from the lower
performance ceiling in Figure 5. Chance �xated-in-6 accuracy is less than .25, based on a shu�ing of eye data and
images within each participant, and this is far lower than �xated-in-6 accuracy for the IRL model (microwave: t(58)
= -31.74, p = 2.34e-38 <.001, Cohen’s d = 8.20; clock: t(58) = -75.87, p = 9.73e-60 <.001, Cohen’s d = 19.59). The
IRL model performance can be contrasted with DeepGaze II, which managed to select the microwave target on less
than half of the trials and the clock target on only about a quarter of the trials, no better than chance. Because the
other performance metrics use data only from trials in which the target was �xated in the �rst six saccades, the poor
�xated-in-6 accuracy of DeepGaze II compromises its comparison to the IRL model or behavior; the reported results
will be from those few trials where DeepGaze II managed to �xate the target, which will be biased to include trials
having salient target objects. For this reason we do not interpret the results of DeepGaze II for the other Table 2
metrics, although we include them for the interested reader.

The other data columns in Table 2 show the results of analyses of the accurate �xated-in-6 trials. The second
column is the mean number of saccades needed to �nd the target (Avg Saccades). By this measure, the IRL model
tended to �nd the target as e�ciently as the participants, needing only about half a �xation more in the case of clocks.
The third and fourth columns of the table showmetrics for comparing the spatial �xation predictions of the models to
behavior on the �xated-in-6 trials. The AUC metric has a scale between 0 and 1, where higher values indicate better
success in predicting the behavioral FDMs [2, 4]. Higher values for the NSS metric also indicate better predictive
success [2, 4]. The "Behavior" values for the AUC and NSS metrics refer to Subject models, which are useful to obtain
a practical noise limit on a model’s ability to predict group behavior [4]. For both metrics, the Subject model was
created by randomly splitting the 30 subjects into two groups of 15 (exploration of di�erent random splits made little
di�erence), then having FDMs from one group predict the FDMs from the other group. These analyses show good
model predictions of behavioral �xation locations in the test images, with the greater room for improvement being
in the clock search task. Finally, AUC and NSS aggregate the �xations made during the search of an image, and are
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therefore purely spatial metrics, but search �xations happen over time, ultimately producing a scanpath. Because
the models also make sequences of �xations, we were able to compare their 6-saccade scanpaths to the 6-saccade
scanpaths from the behavioral searchers. We conducted this scanpath comparison using MultiMatch [6], excluding
the metric’s �xation duration component. The rightmost table column is average MultiMatch similarity of the �xated-
in-6 scanpaths, where the IRLmodel did a very good job in predicting the spatio-temporal sequences of �xationsmade
by the behavioral searchers in their �rst six saccades, nearly as well as could be expected from the behavioral data.
We determined this using a Subject model computed by averaging the pairwise scanpath comparisons for a given
image. This improved prediction, relative to the Subject model for the spatial metrics, underscores the importance of
spatio-temporal information in the prediction of search behavior.

4 | DISCUSSION

Models of search behavior have traditionally aimed at describing relatively coarse patterns (e.g., set-size e�ects) in
highly simpli�ed contexts [22, 25], limitations that were imposed by a reliance on handcrafted features to create
a guidance signal. In this study we adopted the radically di�erent approach of training a model simply on many
observations of search behavior. We found that the policy learned by this model predicted multiple measures of overt
goal-directed attention control. The success of these predictions is signi�cant in that it requires a re-setting of the
goal posts with respect to model evaluation. While once computational methods limited attention models to �tting
patterns of search data in simple contexts, with deep networks it is possible to predict individual �xations made in
the search for categories of objects in realistic scenes.

Training this model required creating the Microwave-Clock Search dataset, which is among the only datasets of
goal-directed attention (search �xations) large enough to train deep-network models. We encourage people to down-
load this dataset from https://you.stonybrook.edu/zelinsky/datasetscode/ and use it in their own predictive-
modeling work, citing this publication. Our hope is that the availability of this dataset will promote greater model
development and comparison, which is needed to meaningfully advance the understanding of goal-directed attention
control 1.

The visual search for an object category is a goal-directed behavior of unique importance, shared by pigeons and
people and most species in between. Because of its fundamental role in survival, search is likely to use the most
basic of control processes—reward. [1] Using the MCS dataset and inverse-reinforcement learning, we showed that
the target-speci�c reward functions learned by our model predicted the goal-directed �xations made by new people
searching new images for the learned target categories. With this machine learning method it is now possible to learn
the reward functions underlying goal-directed attention control. In future work we plan to manipulate the di�erent
types of reward used in model training, explore the potential of learning scene context e�ects, and apply IRL to

1During the course of bringing the currently-described work to publication, related work from our group was presented at the Computer Vision and Pattern
Recognition annual meeting [23]. Similar to the present study, that work aimed to apply IRL to the prediction of �xations made during object-category search.
However, both chronologically and conceptually the work described in the present study came �rst. Our focus in this initial e�ort was to demonstrate the
plausibility of using IRL to study goal-directed attention, which we did by showing that the di�erent microwave and clock representations learned by the
IRL model could predict the di�erent search behaviors observed to these two target classes. We also de�nitively ruled out bottom-up saliency in explaining
these behavioral di�erences by using test images depicting instances of both a microwave and a clock. With these validations, the goal of the CVPRwork was
to explore new state representations in the context of a larger dataset of search behavior, needed to train more powerful IRL models. This dataset is COCO-
Search18 [23, 5], which consists of approximately 300,000 �xations from 10 people searching for 18 di�erent categories of target objects in 6202 images
of natural scenes. COCO-Search18 is larger than the MCS dataset, and contains more target categories, but these datasets also di�er in that each MCS test
image depicted an instance of both a microwave and a clock whereas no such requirement was used to select the COCO-Search18 test images. The training
images from the two datasets also only partially overlap with respect to their microwave and clock target categories. Because these are di�erent datasets
aimed at di�erent model evaluations, and given the largely simultaneous progression of these e�orts, we do not include in the present study comparisons
to models trained using COCO-Search18.

https://you.stonybrook.edu/zelinsky/datasetscode/
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questions in individual-di�erence learning.

data availability

The dataset described in this paper is available in theMicrowave-Clock Search (MCS) dataset repository: https://you.
stonybrook.edu/zelinsky/datasetscode/.
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Appendix: Supplemental Model Methods
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| Network Architecture

The method we used is generative adversarial imitation learning (GAIL [1]). Figure A1 shows the pipeline and detailed
architecture of ourmodel. It has three primary components: 1) the state encoder that extracts the state representation
from a cumulative foveated image (blue dotted box); 2) the generator (policy) that tries to imitate human gaze behavior
by generating scanpaths similar to those of the behavioral participants (green dotted box); and 3) the discriminator
(reward function) that gives high reward to generated scanpaths (represented by state-action pairs) that are similar to
human behavior and low value to those that are not (red dotted box).

The state encoder, here a ResNet-50 pre-trained on ImageNet, inputs a foveated image and outputs a 2048⇥10⇥
16 feature map. This is the state representation used for model training and testing. However, before this feature
extraction could occur the model had to �rst learn to "see" through a foveated retina. The problem is that ImageNet
consists of full-resolution images, makingmodels trained on ImageNet completely unfamiliar with images transformed
to approximate a foveated retina. We therefore needed to �ne-tune the model on foveated images, which we created
by �rst randomly selecting a location in each training image and then applying the retina-transformation method
from Perry & Geisler [3] at this location. We did this for each epoch during the �ne-tuning of the dilated ResNet-50
[6] (pre-trained on ImageNet). The task used for �ne-tuning was to predict from these foveated images the target
locations (from ground-truth labels) and behavioral FDMs. This pre-training was done on both tasks simultaneously
(i.e. predicting FDMs and target locations for an image) so that the encoded features contained information for both
tasks. The features extracted from foveated images by this �ne-tuned ResNet-50 make up the state representation
passed on to the generator and discriminator.

The generator consists of two parts: the Actor network and the Critic network. The Actor network maps a
2048 ⇥ 10 ⇥ 16 state to a 10 ⇥ 16 action map (saccade map), from which we sample an action (make a saccade) and
generate the next state. The Critic network maps the state to a value indicating the expected return (accumulated
long-term reward) of being in that state. The Actor network consists of two 1 ⇥ 1 convolutional layers and a softmax
layer. The Critic network is an 1⇥1 convolutional layer followed by a fully-connected layer. The policy is trained using
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a Proximal policy optimization algorithm (PPO) [4] and an Actor-Critic algorithm [2], with rewards provided when the
generator generates �xations that fool the discriminator.

The discriminator outputs the log probability that a given state-action pair (S , a) corresponds to human behavior
(true data), as opposed to the IRL agent (fake data). Changes in �xation location are encoded as the spatio-temporal
sequence of changing foveated images. Each �xation is evaluated separately by the discriminator, but is conditioned
on all previous �xations in the emerging scanpath by the accumulation of the non-blurred (foveal) pixels from all
previously �xated locations (cumulative retina-transformed image; Figure 2 in the main text).

We also used a self-attentionmodule [5] with our reward function to augment the local image features extracted
by the model with features capturing a more global context. We did this to exploit any non-local contextual depen-
dencies that may exist during visual search, although we did not explore the contribution of this global context here.
Speci�cally, the image feature vector xa at location a of state S is �rst embedded into a 32-dimensional query vector
qa . The image features (state) are mapped into a key feature space f and value feature space g using 11 convolution,
respectively, where f (S ) 2 “32⇥10⇥16 and g (S ) 2 “2048⇥10⇥16. A contextual feature vector ca is computed as the
weighted sum of the value ca =

Õ
j ↵j g (sj ) , where sj is a 32-dimensional feature vector at a spatial location j of the

1016 image grid. The attention weights are calculated as

↵j =
exp(q>a f (Sj ))Õ
j exp(q>f (Sj ))

. (1)

Inspired by human attention control, known to be a combination of top-down contextual biases and bottom-up biases
from image features, we combine the contextual feature vector ca with the image feature vector using a learnable
weight �: za = �ca + xa . The feature vector za is then mapped into a probability using two fully-connected layers and
a sigmoid function. The reward is computed as:

r (S , a) = log(sigmoid(linear(ReLU(linear(za ))) .

| Model Training

Let D and G denote the discriminator and the generator, respectively. The discriminator aims to di�erentiate human
state-action pairs from fake state-action pairs generated by the policy. Hence, it is trained bymaximizing the following
objective function:

D =≈r [log(D (S , a)) ] + ≈f [log(1 � D (S , a)) ]

� �≈r [ k+D (S , a)) k2 ] . (2)

The generator aims to fool the discriminator, and its objective is to maximize the log likelihood of the generated
state-action pairs, i.e., to maximize:

G = ≈f [log(D (S , a)) ] = ≈f [r (S , a) ] (3)

The generator is an RL policy, meaning its objective can be equivalently reformulated as an RL objective and optimized
by Proximal Policy Optimization (PPO) [4].
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⇡ = ≈⇡ [log(⇡ (a |S ))A (S , a) ] + H (⇡), (4)

where A (S , a) = Q (S , a) �V (S ), (5)

H (⇡) = �≈⇡ [log(⇡ (a |S )) ] . (6)

In the above, A is the advantage function – the di�erence between the state-action value function Q and the state
value functionV in reinforcement learning. H is the entropy in max-entropy inverse reinforcement learning [7].
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