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Abstract

Numerical models of rupture dynamics provide great insights into the physics of fault failure.
However, resolving stress interactions among multiple faults remains challenging numerically. Here,
we derive the elasto-static Green’s functions for stress and displacement caused by arbitrary slip
distributions along multiple parallel faults. The equations are derived in the Fourier domain, providing
an efficient means to calculate stress interactions with the fast Fourier transform. We demonstrate the
relevance of the method for a wide range of applications by simulating the rupture dynamics of single
and multiple parallel faults controlled by a rate- and state-dependent frictional contact using the
spectral boundary integral method and the radiation-damping approximation. Within the anti-plane
strain approximation, we show seismic cycle simulations with a power-law distribution of rupture
sizes and, in a different parameter regime, sequences of seismogenic slow-slip events. Using the in-
plane strain approximation, we simulate the rupture dynamics of a restraining step-over. Finally,
we describe cycles of large earthquakes along several parallel strike-slip faults in three-dimensions.
The approach is useful to explore the dynamics of interacting or isolated faults with many degrees of
freedom.

Key points

• We expand the spectral boundary integral method for fault modeling to multiple parallel faults.

• The method allows simulations of fault dynamics within step-overs and across distant faults.

• The approach enables seismic cycle simulations within a plate boundary fault network.

Introduction

The seismic phenomenon includes a wide variety of ruptures styles with slip velocities ranging from
nanometers to meters per second (Leeman et al., 2016; Obara and Kato, 2016). Deep insights into
the physics of faulting has come from interconnected studies of natural outcrops, laboratory faults,
seismo-geodetic remote sensing, and modeling. Numerical simulations of slow-slip events and seismogenic
ruptures is complicated by the wide spectrum of spatial scales involved to resolve the rupture front,
nucleation size, and seismic wave length on the one hand, and the overall dimension of the faults involved
on the other (e.g., Matsuzawa et al., 2010; Barbot et al., 2012). Seismic cycles also involve a broad range of
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time scales, from seconds during dynamic rupture, to centuries during interseismic loading, to geological
epochs during which the structural layout of plate boundaries takes shape (Dinther et al., 2013; Van Zelst
et al., 2019).

Much effort has focused on simulations of single ruptures to better understand source processes, the
characteristics of seismic waves, and how they may affect the built environment (e.g., Madariaga, 1976;
Andrews , 1976). These simulations often rely on finite difference (Day , 1982; Oglesby and Day , 2002;
Kase and Day , 2006; Duan, 2010), finite element (Aagaard et al., 2001; Oglesby and Archuleta, 2003; Tago
et al., 2012; Aagaard et al., 2013; Rezakhani et al., 2020), or spectral element (Puente et al., 2009; Pelties
et al., 2012; Gabriel et al., 2012) methods with internal boundaries representing faults. The maturity
and versatility of these volume methods afford geometrically complex ruptures spanning several fault
branches (Uphoff et al., 2017; Wollherr et al., 2019; Ulrich et al., 2019), but the associated computational
burden makes simulations of long sequences of ruptures challenging (e.g., Duan and Oglesby , 2005; Luo
et al., 2020), unless within a two-dimensional approximation (Kaneko et al., 2008; Ma et al., 2019; Thakur
et al., 2020).

The boundary integral method provides an efficient means to incorporate complex fault geometry
as only the fault interface must be discretized numerically, the bulk elastic behavior being captured by
analytic Green’s functions (e.g., Aochi and Fukuyama, 2002; Bhat et al., 2007; Ando and Kaneko, 2018;
Noda et al., 2020). The boundary integral method may capture wave-mediated stress transfer (e.g.,
Andrews , 1985; Bouchon et al., 1989; Chen and Zhang , 2006; Otani et al., 2007; Tada, 2009; Ando, 2016)
or operate under the quasi-dynamics approximation (Tse and Rice, 1986; Rice, 1993; Liu and Rice, 2005;
Liu et al., 2012; Dublanchet et al., 2013; Ong et al., 2019; Barbot , 2019b). The integral method may also
be extended to represent plastic deformation in the bulk (Kato, 2002; Lambert and Barbot , 2016; Barbot ,
2018b, 2020a; Shi et al., 2020), thermo-mechanical effects (Noda and Lapusta, 2010; Wang and Barbot ,
2020), or localized deformation associated with folding (Sathiakumar et al., 2020). Currently, many
flavors of Green’s functions are used based on rectangle (Fukuyama and Madariaga, 2000), triangle (Li
and Liu, 2016, 2017), and other polygonal surface elements (Hori and Miyazaki , 2011; Ohtani et al.,
2014) conforming to planar and curvilinear faults. However, resolving the stress evolution in mechanical
systems with many degrees of freedom remains challenging because the number of interactions increases
algebraically. Technical improvements on the boundary integral method for better numerical efficiency
include the hierarchical matrix (Bradley , 2014) and the fast multipole (Romanet et al., 2018) methods,
but geophysical applications have been limited.

A leap in numerical efficiency that enables modeling large faults comes from the spectral boundary
integral method, whereby the stress interactions are evaluated in the Fourier domain (Geubelle and Rice,
1995; Perrin et al., 1995; Bouchon and Streiff , 1997; Lapusta et al., 2000; Gallovič, 2008; Lapusta and
Liu, 2009; Dublanchet , 2019). The appeal of the method hinges on the algorithmic efficiency of the fast
Fourier transform that reduces the numerical complexity from O(N2) to O(N logN), where N is the
system size. However, the approach is limited to planar fault geometry. The spectral boundary integral
method has made possible many studies of fault dynamics that resolve all phases of the seismic cycle
on finite faults (e.g., Lapusta and Rice, 2003; Chen and Lapusta, 2009; Barbot et al., 2012; Lapusta and
Barbot , 2012; Jiang and Lapusta, 2016; Dublanchet , 2020) including slow-slip events (Veedu and Barbot ,
2016; Veedu et al., 2020; Dal Zilio et al., 2020).

While an important control of fault dynamics is wave-mediated stress transfer, the effect of seismic
waves can be neglected in many problems of fundamental interest in geophysics, for example, creep waves,
afterslip, slow-slip events, and earthquake nucleation. In addition, some problems are so numerically
demanding that including seismic waves is still impractical, for example faults with a velocity-weakening
region that dramatically outsizes the nucleation size (Lapusta and Rice, 2003; Wu and Chen, 2014;
Barbot , 2019b; Cattania, 2019) or faults with large aspect ratios. The radiation damping approximation
should be employed in these cases (Rice, 1993), with well-understood caveats (Thomas et al., 2014).

To expand the range of application of the spectral boundary integral method, we develop the elasto-
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static Green’s functions for multiple-parallel faults in two and three-dimensional media. We take the novel
approach of directly Fourier-transforming the space-domain elasto-static Green’s functions, providing the
closed-form solutions for the displacement and stress along parallel planes in the Fourier domain. The
approach is still limited to planar faults, but there may be arbitrarily many faults, possibly offset along-
strike. Considering planar faults makes the fast Fourier transform applicable, maintaining the numerical
efficiency of the spectral boundary integral method, but relaxing the limitation of a single fault plane.

In the next section, we derive the Green’s function for stress interactions in the Fourier domain for a
three-dimensional unbounded space, starting with the representation theorem for a dislocation of finite
size. Although we do not discuss this further, the solution for a half-space for vertical faults may be
approximated using the method of images. We then derive the Fourier-domain solution for the anti-plane
and in-plane strain two-dimensional cases, starting with the respective space-domain Green’s functions.
In the following section, we illustrate the efficiency of the approach by simulating seismic cycle simulations
in numerically challenging cases. We use the anti-plane strain approximation to simulate long sequences
of ruptures that exhibit a quasi power-law distribution of seismic moment across four orders of magnitude.
We then illustrate the emergence of seismogenic slow-slip events whereby the underlying slow rupture
is interspersed with numerous small seismic events. Next, we use the in-plane strain setup to simulate
the dynamics of a restraining fault step-over involving two fault branches. Finally, we consider the case
of finite faults in a three-dimensional medium by simulating the interaction of four parallel strike-slip
faults with a separation distance of the order of crustal depth, a layout typical of the termination of large
continental transform faults. The proposed approach may be useful to simulate seismic cycles on single
and multiple interacting faults involving many degrees of freedom.

Fourier-domain Green’s functions

Analytic Green’s functions afford efficient ways to connect source processes to observations and vice-versa
without numerical sampling of the intervening space (e.g., Okada, 1992; Bouchon and Sánchez-Sesma ,
2007; Barbot , 2018a). Fourier-domain Green’s functions constitute a subset where the interaction can
be described by a transfer function between source and receivers. While the range of applicability is
reduced, the advantage is a dramatically faster computation, which has been exploited in many areas
of crustal dynamics (Steketee, 1958; Sato and Matsu’ura, 1973; Wang et al., 2003; Smith and Sandwell ,
2004; Fukahata and Matsu’ura , 2005; Wang et al., 2006; Barbot et al., 2009; Barbot and Fialko, 2010;
Barbot et al., 2017).

A classical approach for deriving Fourier-domain Green’s functions in elasticity has been to solve the
governing equation for any wavenumber, involving propagator matrices (Gilbert and Backus , 1966; Pan,
2019). We take an alternative approach where we directly Fourier-transform the space-domain Green’s
function. This allows for a simpler derivation involving only scalar quantities. We start by deriving the
Fourier-domain Green’s functions for a three-dimensional space, then derive simpler expressions for the
two-dimensional cases of anti-plane and in-plane strain.

Three-dimensional formulation

We consider a full elastic space cut by an internal boundary representing a fault plane. We define a
right-handed orthonormal reference system centered on the fault where the basis vectors e1 and e2 are
fault-parallel and the remaining vector e3 is fault-perpendicular (Figure 1). We seek to express the stress
field in the elastic medium due to an arbitrary slip distribution on the fault plane, where slip is defined
as a displacement discontinuity. For this derivation, we consider only one fault plane, as the solution for
multiple ones can be obtained by linear superposition.
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We associate slip on the fault with a distribution of plastic strain

εi =
1

2
(s⊗ e3 + e3 ⊗ s) , (1)

where s is the slip distribution and ⊗ represent the dyadic product between vectors. We only consider
the case of shear cracks, for which we have s = s1 e1 + s2 e2. We consider the slip distribution a function
of three-dimensional space, with si(x) = si(x1, x2) δ(x3), for i = 1, 2, where δ(x) is the delta function.

We invoke the representation theorem of elasticity (e.g., Aki and Richards , 1980, Chapter 3) that
associates any deviatoric plastic strain with the distribution of equivalent body-force f = −2µ∇ · εi,
where µ is the shear modulus (Barbot , 2018a). Using the plastic strain of equation (1) leads to

f = −µ
[
s1 δ,3(x3) e1 + s2 δ,3(x3) e2

+ (s1,1 + s2,2) δ(x3) e3

]
,

(2)

where the comma subscript represents differentiation. The terms with the derivative of delta functions
correspond to fault-parallel force couples and the terms with delta functions are the double couples in the
fault-perpendicular direction. The displacement field is obtained by a convolution with the elasto-static
Green’s functions, expressed as

ui =

∫
Ω

gji(x− y)fj(y) dy , (3)

where Einstein’s summation convention is used and the components of the Green’s function tensor are
given by

gij =
1

8πµ

[
(2− α)

1

R
δij + α

rirj
R3

]
, (4)

where

α =
1

2(1− ν)
=

λ+ µ

λ+ 2µ
(5)

is an elastic constant depending on the Lamé parameters λ and µ and ri = xi − yi. The radial distance
from a source is defined as R2 = (xk − yk)(xk − yk) using Einstein’s summation convention. We consider
the two-dimensional Fourier transform defined by the integral

f̂(k1, k2) =

∫∫ ∞
−∞

f(x1, x2) e−i2π(k1x1+k2x2) dx1dx2 , (6)

where k1 and k2 are the wavenumbers in the directions parallel to e1 and e2, respectively, and we use the
notation f̂ = F [f ] to denote the corresponding two-dimensional integral transform. We also introduce
the notations ω1 = 2πk1, ω2 = 2πk2, and ω = ω1

2 + ω2
2 to simplify the following expressions.

We seek to evaluate the convolution in the Fourier domain, taking advantage of the convolution theo-
rem of the Fourier transform. The displacement field can be obtained by conducting several convolutions,
specifically

1

µ
ui(x) = −

∫∫∫ ∞
−∞

g1i(x− y) s1(y1, y2)
∂δ(y3)

∂y3
dy

−
∫∫∫ ∞

−∞
g1i(x− y) s2(y1, y2)

∂δ(y3)

∂y3
dy

−
∫∫∫ ∞

−∞
g3i(x− y)s1,1(y1, y2)δ(y3) dy

−
∫∫∫ ∞

−∞
g3i(x− y)s2,2(y1, y2)δ(y3) dy .

(7)

4



Making use of the properties of the delta function, the convolution theorem, and other common properties
of the Fourier transform, the displacement field in the Fourier domain simplifies to

1

µ
ûi(k1, k2, x3) =

∂

∂y3

{
F [g1i]

}∣∣,y3=0
ŝ1

+
∂

∂y3

{
F [g2i]

}∣∣,y3=0
ŝ2

−F [g3i]∣∣,y3=0
(iω1ŝ1 + iω2ŝ2) .

(8)

We are left to express the Fourier transforms of the Green’s function components to find the closed-form
solution.

We first derive a result that, if not important on its own, will be useful for the following developments.
Consider the Green’s function of the three-dimensional harmonic equation, i.e., the solution to ∇2f(x) =
δ(x) given by

f(x) = − 1

4πR
, (9)

which is obtained by integrating twice in spherical coordinates. Consider the same harmonic equation,
but after a two-dimensional Fourier transform, given by[

∂2

∂x3
2
− ω2

]
f̂(x3) = δ(x3) . (10)

The solution can be obtained by the method of variation of parameters, considering the radiation condition
at distant x3 ≥ 0, to get

f̂(x3) = − 1

2ω

{∫ ∞
−∞

eωx3δ(x3)dx3

}
e−ωx3

= − 1

2ω
e−ωx3 .

(11)

Then, considering the properties of the Fourier transform with respect to differentiation and integration,
we obtain the following key results

F
[

1

R

]
= 2π

1

w
e−ωr3 ,

F
[ r1

R3

]
= −i2πω1

w
e−ωr3 ,

F
[
r2
1

R3

]
= 2π

ω2
2 − ω1

2ωr3

w3
e−ωr3 ,

F
[r1r2

R3

]
= −2π

ω1ω2

ω3
(1 + ωr3) e−ωr3 ,

(12)

for r3 ≥ 0. Some components of the Green’s function constitute linear combinations of the above terms
and their derivatives. Others can be derived in a similar manner by substituting the indices 1 and 2.

Let us consider the displacement component

1

µ
û1 =

∂

∂y3

{
F [g11]

}∣∣y3=0
ŝ1

+
∂

∂y3

{
F [g21]

}∣∣y3=0
ŝ2

−F [g31]∣∣y3=0
(iω1ŝ1 + iω2ŝ2)

(13)
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with the Green’s function components

µg11 =
1

8π

[
(2− α)

1

R
+ α

r1
2

R3

]
,

µg21 =
α

8π

r1r2

R3
,

µg31 =
α

8π

r1r3

R3
.

(14)

Exploiting the results of equation (12), we obtain

µ
∂

∂y3
{F [g11]}∣∣y3=0

=
1

4ω

[
2ω − αx3ω1

2
]
e−ωx3 ,

µ
∂

∂y3
{F [g21]}∣∣y3=0

= − α

4ω
ω1ω2x3 e

−ωx3 ,

−iµF [g31]∣∣y3=0
= − α

4ω
ω1x3 e

−ωx3 .

(15)

Collecting the terms, we obtain the displacement components

û1 =
−1

2ω

{[
αω2

1x3 − ω
]
ŝ1 + αω1ω2x3 ŝ2

}
e−ωx3

û2 =
−1

2ω

{
αω1ω2x3 ŝ1 +

[
αω2

2x3 − ω
]
ŝ2

}
e−ωx3 ,

(16)

where the solution for û2 has been obtained by exploiting the symmetry of the problem, simply permuting
the indices 1 and 2.

We now consider the remaining component of displacement

1

µ
û3 =

∂

∂y3

{
F [g13]

}∣∣y3=0
ŝ1

+
∂

∂y3

{
F [g23]

}∣∣y3=0
ŝ2

−F [g33]∣∣y3=0
(iω1ŝ1 + iω2ŝ2) ,

(17)

with the Green’s function components

µg13 =
α

8π

r1r3

R3
.

µg23 =
α

8π

r2r3

R3
,

µg33 =
1

8π

[
(2− α)

1

R
+ α

r3
2

R3

]
.

(18)

Deriving the following results by considering equation (12)

µ
∂

∂y3
{F [g13]}∣∣y3=0

= − α

4ω
iω1(ωx3 − 1)e−ωx3

µ
∂

∂y3
{F [g23]}∣∣y3=0

= − α

4ω
iω2(ωx3 − 1) e−ωx3

−iµ {F [g31]}∣∣y3=0
= − α

4ω
ω1x3 e

−ωx3 ,

(19)
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we obtain the fault-perpendicular displacement component

û3 =
−i
2ω

{
[(1− α)ω1 + αω1ωx3] ŝ1

+ [(1− α)ω2 + αω2ωx3] ŝ2

}
e−ωx3 .

(20)

The solution displacement so far only considered x3 ≥ 0 to simplify the treatment. The solution for
the whole space can be obtained by considering the symmetry of displacement with regard to a planar
dislocation. Fault-parallel displacement must be anti-symmetric with respect to the fault plane, such that
u1 and u2 are odd functions of x3. In contrast, fault-perpendicular displacements must be symmetric
with respect to the fault plane, such that u3 is an even function of x3. In addition, the displacement
field must decay exponentially on both sides of the fault. This provides us with the full space solution
displacement

û1 =
−1

2ω

{[
αω2

1x3 − sign(x3)ω
]
ŝ1

+ αω1ω2x3 ŝ2

}
e−ω|x3|

û2 =
−1

2ω

{
αω1ω2x3 ŝ1

+
[
αω2

2x3 − sign(x3)ω
]
ŝ2

}
e−ω|x3| ,

û3 =
−i
2ω

{
[(1− α) + αω|x3|]ω1ŝ1

+ [(1− α) + αω|x3|]ω2ŝ2

}
e−ω|x3| ,

(21)

where we used the function sign(x) for the sign of x3. The relevant stress components that affect the
traction on parallel faults are obtained by linear combinations of derivatives of displacement, following
Hooke’s law for an isotropic elastic material, with σij = λuk,kδij+µ(ui,j+uj,i), where δij is the Kronecker
delta. After some algebra, they simplify to

σ̂13 =
−µ
2ω

{[
ω2

2 + 2αω1
2(1− ω|x3|)

]
ŝ1

+ [(2α− 1)− 2αω|x3|]ω1ω2 ŝ2

}
e−ω|x3|

σ̂23 =
−µ
2ω

{
[(2α− 1)− 2αω|x3|]ω1ω2 ŝ1

+
[
ω1

2 + 2αω2
2(1− ω|x3|)

]
ŝ2

}
e−ω|x3|

σ̂33 = µαωx3 (iω1ŝ1 + iω2ŝ2) e−ω|x3| ,

(22)

where, because of the symmetry about the fault plane, σ13 and σ23 are even functions of x3 and σ33 is
an odd function of x3. The components σ̂13 and σ̂23 can be obtained from each other by permutation of
the indices 1 and 2. The change of confining stress, an odd function of x3,

1

3
σkk = µ

4α− 1

3
sign(x3) (iω1ŝ1 + iω2ŝ2) e−ω|x3| (23)
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may also be of interest. Along the fault, the traction components simplify to

σ̂13 =
−µ
2ω

[(
ω2

2 + 2αω1
2
)
ŝ1 + (2α− 1)ω1ω2 ŝ2

]
σ̂23 =

−µ
2ω

[
(2α− 1)ω1ω2 ŝ1 +

(
ω1

2 + 2αω2
2
)
ŝ2

]
σ̂33 = 0 ,

(24)

which is the result described by Geubelle and Rice (1995) and (Lapusta and Liu, 2009, Equation 5).
Other stress components do not affect the traction on any parallel fault and are ignored.

The displacement and stress components of equation (21) and (22) are shown in the Supplementary
Materials for the case of a uniform distribution of slip in the x1 direction within a 4 × 4 km square
patch. The displacement and stress are calculated at a distance x3 = 2 km from the fault. As the
Fourier-domain solution is not defined at the ω = 0 wavenumber without further information, we assume
zero mean displacement and zero mean stress. The displacement field shows the typical convergence and
divergence pattern near the fault tips with compressional deformation in the compressional quadrant.
However, the change of normal stress is only subtle.

We compare the Fourier-domain solutions with the corresponding analytic solution (Okada, 1992) for
the case of dip-slip motion (Supplementary Materials). The comparison reveals major differences due
to the periodicity of the discrete Fourier transform and the assumption of zero mean stress, with long-
wavelength residuals emanating from the four corners for the σ13 component and more widely distributed
residuals for the σ23 component. These differences decay with increasing domain size, but remain within
a few percents for realistic domain sizes in practical applications, which is typical for Fourier-domain
solutions of elasto-static problems (Barbot and Fialko, 2010). These differences highlight that the dis-
crete Fourier-domain and space-domain formulations are solutions to problems with different boundary
conditions.

Anti-plane strain stress interaction

We now consider cases where variations along a given direction can be neglected, starting with anti-plane
strain, which is relevant for long faults with strike-slip motion. We assume that derivatives with respect
to x1 can be neglected and that fault slip can be written as s(x) = s1(x2) δ(x3) e1. The equivalent
body-force simplifies to

f(x) = −µ s1(x2)
∂δ(x3)

∂x3
e1 , (25)

and the governing equation reduces to Poisson’s equation, following

∇2u1(x2, x3) + f1(x2, x3) = 0 . (26)

The solution displacement can be obtained by convolution with the Green’s function

u1(x) =

∫∫ ∞
−∞

g11(x− y)f1(y) dy

= µ

∫ ∞
−∞

∂

∂y3

{
g11(x− y)

}∣∣y3=0

s1(y2) dy2 ,
(27)

with the Green’s function tensor component

g11 =
−1

2πµ
lnR , (28)

8



with R2 = (x2−y2)2 +(x3−y3)2. However, we seek a closed-form solution of equation (26) in the Fourier
domain, considering the one-dimensional Fourier transform

f̂(k2) =

∫ ∞
−∞

f(x2) e−i2πk2x2 dx2 . (29)

Applying the convolution theorem of the Fourier transform, the solution can be expressed as

û1(k2, x3) = µ
∂

∂y3

{
F [g11]

}∣∣y3=0

ŝ1 , (30)

and we are left with identifying the Fourier transform of the Green’s function component g11.
Before we proceed with the derivation, we describe a general result for Poisson’s equation

∇2f = δ(x2, x3) (31)

that will be useful for two-dimensional problems in this and the next section. The solution to equation (31)
can be obtained by integrating twice in a cylindrical coordinate system and by taking advantage of the
special properties of the delta function, to arrive at

f(x2, x3) =
1

2π
lnR , (32)

where R2 = x2
2 +x3

2. After a one-dimensional Fourier transform, Poisson’s equation can also be written[
∂2

∂x3
2
− ω2

2

]
f̂ = δ(x3) . (33)

As in the previous section, the solution can be obtained by the method of variation of parameters, as
follows

f̂(x3) = −e
−ω2x3

2ω2

∫
eω2x3δ(x3)dx3

= − 1

2ω2
e−ω2x3 ,

(34)

for x3 ≥ 0 and ω2 ≥ 0. We only consider the case of ω2 ≥ 0 because only the positive part of the
spectrum is sampled in real-to-complex and complex-to-real discrete Fourier transforms in numerically
efficient applications. The extension of (34) and subsequent equations to the negative side of the spectrum

is simply the complex conjugate, e.g., f̂(−ω2) = f̂(ω2).
In light of equations (32) and (34), and considering the common properties of the Fourier transform

with regard to derivatives, we obtain additional key results for the two-dimensional case

F
[

lnR
]

= − π

ω2
e−ω2x3

F
[
x2

2

R2

]
= −πx3 e

−ω2x3

F
[x2x3

R2

]
= −iπx3 e

−ω2x3

F
[
x3

2

R2

]
= +πx3 e

−ω2x3 ,

(35)

where the integral transform F refers to equation (29).
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Given the results of equation (35), the Fourier-domain Green’s function in anti-plane strain is

ĝ11(x3) =
1

2µω2
e−ω2x3 (36)

for x3 ≥ 0 and ω2 ≥ 0. Considering the symmetry of the displacement with respect to the fault plane,
the solution displacement in the Fourier domain for the whole domain is

û1(x3) =
1

2
sign(x3)ŝ1 e

−ω2|x3| (37)

and the only non-zero traction component is given by

σ̂13 = −µω2
ŝ1

2
e−ω2|x3| , (38)

which is compatible with previous inferences (Idini and Ampuero, 2020; Segall , 2010, Chapter 4.7) for
x3 = 0. The displacement and traction for anti-plane strain of equations (37) and (38) can be obtained
from the three-dimensional solution of equations (21) and (22), respectively, taking ŝ2 = 0, ω1 = 0, and
using limω1→0 ω = |ω2|, providing an alternative derivation.

In-plane strain stress interaction

Finally, and for completeness, let us consider the case of two-dimensional in-plane strain, in which the
displacement is in the plane of interest with u1 = 0. Using the plastic strain tensor from equation (1)
with s1 = 0, the equivalent body-force simplifies to

f = −µ
(
s2
∂δ(x3)

∂x3
e2 +

∂s2

∂x2
δ(x3) e3

)
. (39)

The solution displacement can be obtained by convolution with the Green’s function tensor, as follows

ui(x) =

∫∫ ∞
−∞

gji(x− y)fj(y) dy , (40)

where the summation is over the indices 2 and 3 and the Green’s function components for in-plane strain
in a full space are given by

µ gij =
1

4π

[ α
R2

(
rirj − δijR2

)
− δij(2− α) lnR

]
(41)

for i = 2, 3 and j = 2, 3. Combining equations (39) and (40), the displacement field can be expressed as
follows

1

µ
u2(x) =

∫ ∞
−∞

∂

∂y3
g22(x− y)∣∣y3=0

s2 dy2

−
∫ ∞
−∞

g32(x− y)∣∣y3=0

∂s2

∂y3
dy2

1

µ
u3(x) =

∫ ∞
−∞

∂

∂y3
g23(x− y)∣∣y3=0

s2 dy2

−
∫ ∞
−∞

g33(x− y)∣∣y3=0

∂s2

∂y2
dy2 .

(42)
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After Fourier transforming in the x2 direction based on equation (29), we find

1

µ
û2 =

∂

∂y3

{
F [g22]

}
ŝ2 −F [g32]∣∣y3=0

iω2ŝ2

1

µ
û3 =

∂

∂y3

{
F [g23]

}
ŝ2 −F [g33]∣∣y3=0

iω2ŝ2 .

(43)

The Fourier transform of the Green’s function components can be obtained by considering the results of
equation (35), giving

µĝ22 =
1

4ω2
[(2− α)− αω2x3] e−ω2x3

µĝ23 = µĝ32 = −iα
4
x3 e

−ω2x3

µĝ33 =
1

4ω2
[(2− α) + αω2x3] e−ω2x3 ,

(44)

for x3 ≥ 0 and ω2 ≥ 0. Combining equations (43) and (44), and considering the symmetry of displacement
about the fault plane and the radiation condition for distant x3, we obtain the displacement in the full
space

û2 =
ŝ2

2
[sign(x3)− αω2x3] e−ω2|x3|

û3 = −i ŝ2

2
[(1− α) + αω2|x3|] e−ω2|x3| .

(45)

The relevant traction components are obtained by application of Hooke’s law, to provide

σ̂23 = −µαω2ŝ2 (1− ω2|x3|) e−ω2|x3|

σ̂33 = µiαω2ŝ2 ω2x3 e
−ω2|x3| .

(46)

The displacement and traction components for in-plane strain can be obtained from the three-dimensional
solution of equations (21) and (22) with ŝ1 = 0, ω1 = 0, and taking limω1→0 ω = |ω2|, thereby demon-
strating consistency of the independent derivations.

Applications

The spectral boundary integral method finds a wide range of applications in rupture dynamics to study
source processes within seismic cycles. We consider the case of fault slip controlled by a rate- and state-
dependent frictional contact. We assume that a quasi-dynamic balance of shear stress and frictional
resistance operates at all times. Friction depends on the history of sliding following a physics-based
constitutive law that captures the evolution of contact area on the fault plane (Barbot , 2019a). The
frictional resistance is written as a power-law relationship between stress and slip rate, as follows

V = V0

(
τ

µ0σ̄

)µ0
a
(
θV0

L

)− ba
, (47)

where V is the norm of the sliding velocity vector, V0 is a reference rate, τ is the norm of the shear
traction vector, µ0 is the reference friction, σ̄ is the effective normal stress modulated by the pore-fluid
pressure, L is the characteristic weakening distance, and the non-dimensional parameters a and b are
power exponents. The formulation (47) is preferable to previous formulations due to the underlying
physical model (Barbot , 2019a) and its validity at vanishing slip-rate. We assume that the state variable
follows the aging law in isothermal conditions (Ruina, 1983),

θ̇ = 1− V θ

L
. (48)
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The quasi-static force balance is described by considering the stress interaction integral equation

ṫi =

∫
∂Ω

Kji ∗ (Vj − V Lj ) dA− µ

2Vs
V̇i , (49)

where the components of the shear traction are related to the frictional resistance by τ2 = t1
2 + t2

2 and
V Lj are the j components of the loading rate, possibly heterogeneous. We further assume that the shear
traction and sliding velocity vectors are coaligned. The first term on the right-hand side of (49) is a
convolution with the stress kernels over the area ∂Ω of multiple faults and is performed in the Fourier
domain, using the transfer function (22) or its two-dimensional equivalents (38) and (46) for anti-plane
and in-plane strain, respectively. The stress experienced by any fault is the sum of the self stress and of
the one caused by other faults. The second term is the radiation damping corresponding to shear waves
radiating away from the fault plane at the speed Vs.

The combination of equations (47-49) forms a closed set describing the evolution of slip and stress.
For time stepping, we use four/fifth-order Runge-Kutta explicit time steps (Press et al., 1992). The mean
stress-rate is undefined in the Fourier domain without additional constraints, so the driving forces can be
specified independently. The mechanical system could be driven by a uniform stress-rate (e.g., Dublanchet
et al., 2013), but this would lead to a non-uniform long-term slip accumulation. A specific heterogeneous
background stress-rate could also be chosen to produce a uniform long-term slip-rate, but the spatial
distribution of stress would be sensitive to the geometry of the fault. Larger faults would slip faster than
smaller ones for the same background stress rate. To simplify the model setup, we enforce the long-term
loading using a fixed sliding velocity corresponding to the long-term fault slip-rate at the boundary of the
domain of integration. In those domains where the velocity is imposed, we do not evaluate the friction
law (Figure 1). We conduct simulations for an unbounded space and we do not attempt to approximate
a free-surface boundary condition. This simplification is appropriate for the cases considered whereby
the seismogenic zone is confined within the middle crust on a vertical fault. We use a discrete Fourier
transform to evaluate the stress interactions in the Fourier domain, which introduces a periodicity in the
x1 and x2 directions, but not in the x3 direction. We mitigate this issue by padding the computational
domain to increase the separation distance between the seismogenic zone with its periodic image. We
evaluate the discrete Fourier transforms using the FFTW3 library (Frigo and Johnson, 2005) with multi-
threaded shared-memory parallelism for the two-dimensional cases that involve one-dimensional Fourier
transforms, and with message-passing distributed-memory parallelism for the three-dimensional case that
requires two-dimensional Fourier transforms.

The style of ruptures within seismic cycles is controlled by the parameter regime, which can be
captured by mostly two non-dimensional parameters describing the properties of the velocity-weakening
region (Barbot , 2019b). The first is the Dieterich-Ruina-Rice number

Ru =
W

h∗
, (50)

corresponding to a ratio of the seismogenic width W to a characteristic nucleation size h∗, defined as

h∗ =
µL

(b− a)σ̄
, (51)

where µ is the shear modulus. The actual nucleation size in seismic cycles may vary systematically from
the above estimate, but equation (51) is nevertheless useful to define the parameter regime. The second
controlling non-dimensional parameter of relevance

Rb =
b− a
b

, (52)

controls the ratio of static to dynamic stress drops during rupture, affecting the source characteristics.
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Seismic cycles for a single velocity-weakening asperity embedded in a velocity-strengthening region
will exhibit different styles of rupture and different succession of events depending on the coordinates of
the physical parameters in the phase space (Ru, Rb). At intermediate 0.2 < Rb < 1, the seismic cycle is
mainly controlled by the Ru number, with slow-slip events taking place in the range 1 ≥ Ru ≥ 2, and
slow, periodic bilateral ruptures occurring at higher values 2 ≥ Ru ≥ 10, transitioning to cycles of full and
partial ruptures for Ru ≥ 20. For large Ru � 1 numbers, the seismic cycle becomes increasingly complex,
producing ruptures of increasingly varied sizes including foreshock and aftershock sequences (Barbot ,
2019b; Cattania, 2019). For Rb < 0.1, the seismic cycle transitions to a regime of slow-slip and slow
earthquakes. In particular, slow-slip events become seismogenic for 0 < Rb < 0.1 and Ru � 1 (Barbot ,
2019b).

Exploration of fault dynamics for large Ru numbers, whether for small or intermediate Rb values, is
challenging because numerical models must resolve the smallest value taken by the cohesion length (Di-
eterich, 1992, 1994; Rubin and Ampuero, 2005)

Lb =
GL

bσ̄
, (53)

which is often many times smaller than the nucleation size in velocity-weakening domains. Parameter
regimes leading to vanishing Rb > 0 at high Ru number are particularly demanding numerically because
they correspond to vanishingly small cohesion size. In the next sub-section, we will illustrate models of
seismic cycles corresponding to these parameter regimes for a single fault using a two-dimensional setting.

Sequences of partial and full ruptures

In this section, we describe the evolution of fault slip on two-dimensional faults within the anti-plane
strain approximation. We first consider the case of a long strike-slip fault with a single velocity-weakening
asperity with a comparatively much smaller characteristic nucleation size. Specifically, we consider the
combination of physical properties µ0 = 0.6, a = 10−2, b = 1.4× 10−2, L = 250 µm, σ̄ = 100 MPa in the
velocity-weakening region leading to Ru = 266 and Rb = 0.285. In the velocity-strengthening region, we
have b = 6× 10−3. The cohesion size is Lb = 5.35 m and the width of the velocity-weakening asperity is
W = 5 km. We discretize the fault with 215 elements with a sampling size of 0.5 m and simulate the fault
slip evolution for a period of 300 years encompassing 220 seismic ruptures, representing 8,000,000 time
steps. We dedicate 100 samples at both ends of the domain to enforce a long-term slip-rate of 1 nm/s.
This loading rate, equivalent to 31.5 mm/yr, is representative of geological slip rates on major continental
strike-slip faults. The simulation takes 46 hours running on 8 parallel cores.

The seismic cycle exhibits much complexity, with rupture size varying within fractions of the velocity-
weakening asperity width (Figure 2a). All ruptures initiate close to the transition from velocity-weakening
to velocity-strengthening. Most ruptures feature a sharp pulse-like front with occasional back-propagating
fronts that cause multi-pulse ruptures. Tiny events occur during the postseismic period of large earth-
quakes while afterslip spreads in the velocity-strengthening region. Ruptures initiate on both sides of the
seismogenic zone, but the cycle includes full and partial ruptures succeeding in an aperiodic sequence.
The partial ruptures most often reside within a half of the seismogenic zone, starting on either side. The
distribution of rupture sizes, expressed in moment per unit length because of the two-dimensional setting,
approaches a power law (Figure 2c).

These results highlight the complexity that emerges for certain parameter regimes, here, for Ru � 1.
While the spectral boundary integral method dramatically improves the numerical efficiency compared
to the space-domain method, exploring the behavior of faults with even higher Ru numbers will still
constitute a major challenge.
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Seismogenic slow-slip events

We now explore another end-member frictional parameter regime corresponding to seismogenic slow-slip
events. While it is widely recognized that aseismic slow-slip events occur spontaneously within velocity-
weakening asperities with dimensions commensurate with the nucleation size (e.g. Liu and Rice, 2005,
and references therein), seismogenic slow-slip events develop in a broad range of parameters leading
to vanishing Rb > 0 and Ru � 1 (Barbot , 2019b). However, simulations of seismic cycles in this
parameter range are particular challenging because resolving the small cohesion size while capturing the
overall domain size requires exceedingly many degrees of freedom. We present numerical simulations of
seismogenic slow-slip events in this numerically demanding parameter regime.

We consider a single homogeneous velocity-weakening asperity embedded in a velocity-strengthening
fault. The physical properties µ0 = 0.6, a = 8 × 10−2, b = 8.163 × 10−2, L = 70 µm, σ̄ = 20 MPa in
the velocity-weakening region lead to Ru = 77 and Rb = 0.02. The cohesive size is Lb = 1.29 m and the
width of the velocity-weakening domain is W = 5 km. We discretize the domain with 216 elements using
a sampling size of 0.2 m, resolving the cohesive zone by a factor of 6.4. We load the system at a rate of
1 nm/s in the far-field for a period of 20 years. The simulation requires 3,000,000 time steps and takes
35 hours using 4 shared-memory cores.

The simulation produces an aperiodic sequence of 8 slow-slip events characterized by up-dip and
down-dip migrating rupture fronts that cause localized seismogenic ruptures when they meet and coalesce
(Figure 2). The sequence includes 22 events with peak velocity above 0.1 m/s, firmly in the seismogenic
range. However, the background ruptures last between 0.4 and 0.9 years with recurrence times between
1.3 and 3 years, clearly the hallmark of slow slip. Because of the complex interactions between slow
and fast slip, the sequence is chaotic, with the details of successive slow-slip events ever changing. Each
slow-slip event starts with a pair of rupture fronts converging inward, provoking a seismic event when
they coalesce. The collision of the rupture fronts sparks diverging rupture fronts that subsequently trigger
back-propagating creep fronts. The coalescence of these rupture fronts occasionally triggers other seismic
ruptures that allow the cascade of anastomosing creep waves to continue for weeks, until the background
slow slip reaches the boundary of the tremorgenic zone.

These results confirm the need for numerically efficient numerical methods to explore important regions
of the parameter space that will otherwise remain overlooked. The quasi-dynamic spectral integral method
will be key to explore the dynamics of seismogenic slow-slip events because of its numerical efficiency and
the predominance of aseismic slip.

Restraining step-over

In this section, we illustrate the capability of the spectral boundary integral method to include several
parallel faults. We use the in-plane strain approximation to simulate fault dynamics across a restraining
step-over consisting of the two left-lateral strike-slip faults separated by an offset with overlap (Figure 3b).
Contractional steps represents an idealization of restraining bends and push-up structures commonly
found at segment boundaries across continental transforms that have been modeled extensively (Harris
et al., 1991; Harris and Day , 1993; Lozos et al., 2011; Oglesby , 2005, 2008; Duan and Oglesby , 2006; Bai
and Ampuero, 2017; Romanet et al., 2018). The faults overlap horizontally by 5 km and are separated by
a perpendicular distance of 2.5 km, as commonly observed (Wesnousky , 2006). The velocity-weakening
regions are 6.5 km long and their horizontal overlap is 3 km. We consider different properties for each
fault, so that they would develop distinct seismic cycles if operating in isolation. Common parameters
include a = 10−2, L = 5 mm, a rigidity of 30 GPa, µ0 = 0.6 and b = 6×10−3 in the velocity-strengthening
region. For fault A, we use σ̄ = 100 MPa, leading to Ru = 17.33 and Rb = 0.285. For fault B, we use
σ̄ = 125 MPa, leading to Ru = 21.66 and Rb = 0.285. We use different normal stress, which controls the
recurrence time of earthquakes, to avoid automatic synchronization of the ruptures on both sides. Each
fault is discretized with 2048 elements of 10 m length. We construct the step-over by pinning the regions
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beyond the overlap, as they must be included in the stress calculation for the Fourier-domain solution
to work properly. The pinned regions are included in the stress interaction calculation, but not in the
evaluation of the constitutive law. Simulating over 300 years of fault slip evolution with 200,000 time
steps take 30 minutes with a dual core computer.

When considered in isolation, the seismic cycle on these faults is quite different, as they operate under
different parameter regimes in the (Ru, Rb) space. Fault A converges to a limit cycle with a period-four
sequence of full ruptures of the seismogenic zone alternating with either a slow-slip event or a seismic
partial rupture (Figure 3a). Fault B falls into a period-two sequence of full ruptures alternating with a
partial rupture with consistent nucleation sites (Figure 3c). When the mechanical interactions between
the two faults are taken into account, they both follow an aperiodic sequence of full and partial ruptures
punctuated by occasional slow-slip events (Figure 3b). We find that no rupture jumps across the step-over,
compatible with previous findings for a contractional step-over with such separation distance (Oglesby ,
2008; Bai and Ampuero, 2017), but the perturbation of the seismic sequence within the step-over in terms
of rupture styles and recurrence patterns is considerable.

While further studies of fault dynamics at step-overs within seismic cycles are warranted to explore
a wide parameter space, the current results illustrate the potential of the spectral boundary integral
method to resolve long sequence of fault evolution on two-dimensional fault systems with geometrical
complexity with a reasonable computational burden.

Parallel strike-slip faults of finite dimension

Finally, we illustrate the capability of incorporating multiple parallel faults in three-dimensional models
of fault dynamics with the spectral boundary integral method. We consider the case of multiple parallel
strike-slip faults, as is found at the termination of continental strike-slip faults in California, Anatolia,
and New Zealand. We consider a case inspired by the structural layout of the Southern California section
of the San Andreas Fault where the relative motion between the Pacific and North American plates
is partitioned among the Inglewood-Newport-Rose Canyon, Elsinore, San Jacinto, and San Andreas
faults (e.g., Barbot , 2020b).

For simplicity, we consider fault segments with identical physical properties. The four faults are
102.4 km long, each discretized with 210 elements along strike and 28 elements with depth, with a sampling
size of 200 m (Figure 4). The seismogenic zone extends 75 km along-strike and 10 km down-dip. We use
40 elements around the rectangle domain to impose an identical loading on all faults as a boundary
condition. When considering a single fault in isolation, we use a loading rate of 1 nm/s (i.e., 31.5 mm/yr).
When the four faults accommodate slip partitioning, we use a loading of 0.25 nm/s on all faults, such
that the long-term cumulative deformation is equivalent across one or four faults. The fault separation
distances are 41, 37, and 36 km, commensurate with the Southern California system.

We first compare the responses of the single-fault and partitioned systems using identical frictional
properties. We use the common parameters µ0 = 0.6, a = 10−2, b = 1.4 × 10−2, σ̄ = 100 MPa, and
L = 25 mm, and a uniform elastic Poisson’s solid with a rigidity of 30 GPa. This leads to Ru = 5.33 and
Rb = 0.285. We sample the cohesive zone by a factor of 5.4 using a sampling size of 100 m. We simulate
fault dynamics for a period of 300 years. The calculation represents close to 700,000 time steps, which
takes 10 hours for a single fault and 55 hours with four faults, using 16 cores in both cases.

The seismic cycle on a single, isolated fault with these properties already exhibits some complexity,
due to the two characteristics length scales present in the system associated with the large aspect ratio
of the velocity-weakening region (Figure 4a). When the fault is decoupled from its neighbors, the seismic
cycle initiates with a series of through-going ruptures of moment magnitude 7.0. This is soon followed by
more complex sequences of partial ruptures that break the sides and central sections of the seismogenic
zone, followed by slow-slip episodes representing failed nucleations. The cycle of full ruptures and rapid
sequences of partial ruptures are relatively constant with recurrence times of about 80 years (Figure 4e).
However, many seismic clusters occur, corresponding to rapid successive failures of small portions of the
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seismogenic zone corresponding to moment magnitude 6.5 earthquakes. The complexity of seismic cycles
on elongated faults is well recognized (e.g., Hirose and Hirahara, 2002, 2004; Weng and Ampuero, 2019),
but elastic coupling between parallel faults adds further features (Figure 4b,d). With quasi-static stress
transfer among faults, the sequence includes long hiatus (up to 185 years), short aseismic periods (down
to just 10 years) between subsequent ruptures on some faults, and overall more complexity in recurrence
patterns.

We then illustrate the impact of frictional properties on the degree of interactions of parallel faults.
We consider identical frictional properties on all faults, but we simulate cases with L = 25, 18.5, and
12.5 mm, corresponding to Ru numbers of 5, 7, and 10, respectively. The simulations for the smallest
characteristic weakening distance are more challenging and take 75 hours for four faults. For Ru = 5,
the interaction among faults is week, with only a few large earthquakes occurring shortly after another
on a neighboring fault (Figure 5a). For Ru = 7, all large earthquakes are clustered, following each other
only by a few years (Figure 5b). For Ru = 10, the mechanical interactions are much stronger, leading to
synchronization of ruptures between neighboring faults (Figure 5c). Increasing Ru numbers correspond
to reducing characteristic nucleation size, making the faults more unstable, and more susceptible to
triggering. These simulations show the strong control of frictional properties on the recurrence pattern
of large earthquakes on parallel faults, with increasing Ru leading to stronger fault interactions within
the network, towards tight synchronization of seismicity.

These results illustrate the potential of the spectral boundary integral method to simulate quasi-static
stress transfers among parallel finite faults with high enough numerical efficiency to capture the geometry
of large fault systems at tectonic plate boundaries.

Conclusions

The study derives the quasi-dynamic spectral boundary integral method for multiple parallel faults for
finite faults and in two-dimensional approximations. The method is effective to simulate single faults
with many degrees of freedom, which is relevant for challenging parameter regimes, or to model networks
of faults. The method expands the range of applicability of the spectral boundary integral method to
a network of multiple parallel faults while maintaining the numerical efficiency associated with the fast
Fourier transform. The approach should be useful for many problems of geophysical interest involving
geometrical complexity or mechanical interactions within a fault network, as is found at many continental
tectonic plate boundaries.
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Figure 1: Reference system tied to parallel faults used to express fault slip, displacement, and surface
traction. The stress component σ33 is positive for extension. Slip corresponds to the displacement offset
across a fault. No opening is allowed. A traction/slip-rate constitutive relationship can be used to
evaluate seismic-cycle simulations. Some areas of a fault can be subject to velocity boundary conditions
to enforce a geological slip-rate or to pin the regions that are permanently locked.
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Figure 2: Seismic-cycle simulation of complex slow and fast ruptures in two-dimensional anti-plane strain. A)
Fault dynamics for a single fault with Ru = 266 and Rb = 0.285, with a 300 year aperiodic sequence of full and
partial ruptures, including aftershocks in the postseismic period. Bottom) Corresponding distribution of rupture
size, approaching that of a power-law (black line, y ∝ 10−0.34x). B) Cycle of seismogenic slow-slip events with
Ru = 77 and Rb = 0.02 for approximately 20 years. The slow-slip rupture follows multiple fronts that coalesce
into short seismic events when they meet. Bottom) Time series of peak velocity (black solid profile), velocity at
x2 = 0 (dashed black profile), and at x2 = −1.3 km (dashed red profile) showing the propagation of the creep font
over several days and the sudden bursts of seismicity. The velocity-weakening region is marked by white dashed
profiles in A and B. The color scale is for both A) and B).
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Figure 3: Seismic-cycle simulation of ruptures through a fault step-over with the in-plane strain approximation.
A) Fault dynamics of a single fault with Ru = 17.33 and Rb = 0.285, with period-four cycles of partial and full,
slow and fast, ruptures. B) Seismic cycle on the coupled faults in A and C across a 2.5 km step-over showing
aperiodic cycles of slow and fast ruptures. The schematic indicates the geometrical arrangement of the two faults,
where the dashed rectangles indicate where the faults are pinned in the numerical model. C) Seismic-cycle on a
single fault with Ru = 21.66 and Rb = 0.285 with period-two sequences of partial and full ruptures. D) Time
series of fault peak and central velocity for the step-over system. E) Same for fault A in isolation. F) Same for
fault B in isolation.
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Figure 4: Rupture dynamics on 4 parallel finite faults in three-dimensions. A) Rupture dynamics for a single
100 × 25 km fault showing semi-period cycles of Mw 6.5 to 7.0 ruptures with 22 partial and full ruptures of the
velocity-weakening region within 1000 years. B) Seismic cycle simulation of the coupled dynamics of 4 parallel
faults with identical physical properties as fault A, showing 76 seismic events from Mw 5 to 7.0 in the same time
period. The velocity field is showed along a profile running across the center of the velocity-weakening region
(delineated by white dashed lines). The bottom panels illustrate the rupture process at the time indicated by the
dashed red line. C) Dimension of the fault with a 75 × 25 km velocity-weakening region (red) surrounded by a
velocity-strengthening region (blue). A fixed slip rate of 1 nm/s is enforced as a boundary condition in the yellow
region. D) Moment magnitude and recurrence time of earthquakes on the four faults in B. E) Same for the single
fault A.
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Figure 5: Effect of frictional properties on the degree of seismic synchronicity among parallel faults. A) Peak slip
velocity for faults with Ru = 5. Detail of this simulation is shown in Figure 4. B) and C) Same for Ru = 7 and
Ru = 10, respectively. The peak velocity for a single, isolated fault with identical physical properties is shown in
black. Peak velocity for coupled parallel faults is shown in colors: green for fault 1, light blue for fault 2, orange for
fault 3, and yellow for fault 4. Reducing the nucleation size, corresponding to increasing Ru numbers, increasing
the degree of mechanical interactions among faults towards seismic clustering and tighter synchronization.


