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Key Points:

« We compile finite slip distributions for slow and fast earthquakes to quantify static source prop-
erties.

« The potency density varies systematically with rupture style, tectonic setting, and centroid depth.

¢ The moment-duration scaling of slow-slip events is affected by large variability in potency den-

sity.
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Abstract

The source characteristics of slow and fast earthquakes provide a window into the mechanical prop-
erties of faults. In particular, the average stress drop controls the evolution of friction, fault slip, and
event magnitude. However, this important source property is typically inferred from the analysis of
seismic waves and is subject to many epistemic uncertainties. Here, we investigate the source prop-
erties of 52 earthquakes and 17 slow-slip events on thrust and strike-slip faults in various tectonic set-
tings using slip distributions constrained by geodesy in combination with other data. We determine
the width, potency, and potency density of slow and fast earthquake source based on static slip dis-
tributions. The potency density, defined conceptually as the ratio of average slip to rupture radius,

is a measure of anelastic deformation with limited bias from rigidity differences across depths and tec-
tonic settings. Strike-slip earthquakes have the highest potency density, varying from 20 to 500 mi-
crostrain, with no discernible trend. The potency density is on average lower on continental thrust
faults and megathrusts, from 10 to 200 microstrain, with an algebraic decrease with centroid depth,
indicative of systematic changes in dominant rupture processes with depth. Slow slip events repre-
sent an end-member style of rupture with low potency density and large rupture width. Significant
variability in potency density of slow-slip event affects their moment-duration scaling. The variations
of source properties across tectonic settings, depth, and rupture styles can be used to better constrain
numerical simulations of seismicity and to assess the source characteristics of future earthquakes and

slow slip events.

Plain Language Summary

Natural earthquakes reduce the stress that accumulates on faults due to plate tectonics. To bet-
ter understand the variability of seismic hazards around active faults, we survey the properties of slow
and fast earthquakes around the world. The potential of faults to concentrate large slip in the rup-
ture area differs depending on the geological setting, the depth of the source, and the type of rup-
ture. Earthquakes in a continental setting condense more slip in a given rupture area, particularly
in transform faults like the San Andreas fault. Subduction zone earthquakes, although some of the
largest events on Earth, generally distribute less slip over a wider area, but this varies as a function

of depth. Slow earthquakes represent an extreme case of little slip distributed over a large area. The
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propensity of rupture characteristics to vary with fault type and depth may help forecast the haz-

ards posed by future seismicity.

1 Introduction

The earthquake phenomenon includes a wide spectrum of rupture styles associated with differ-
ent source characteristics (Beroza & Ide, 2011; Obara & Kato, 2016; Veedu & Barbot, 2016; Leeman
et al., 2016; Scuderi et al., 2017; Barbot, 2019b). The stress change on a fault produced by an earth-
quake is one of the fundamental physical properties that govern the seismic cycle, impacting the style
of rupture, i.e., slow or fast earthquake, and the magnitude of the event (Aki, 1967, 1979; Kanamori
& Anderson, 1975; Kanamori et al., 1993; Venkataraman & Kanamori, 2004; Ye et al., 2016a; Poli
& Prieto, 2016). The scaling relationship between stress drop and various other source parameters
depends on the tectonic setting (e.g., Scholz et al., 1986; Walsh & Watterson, 1988; Romanowicz, 1992)
and on the rupture style (N. Beeler et al., 2001; Liu-Zeng et al., 2005; Peng & Gomberg, 2010; Kato,
2012; Gomberg et al., 2016; Cocco et al., 2016; Cattania & Segall, 2018). Current estimates of stress
drop for fast earthquakes typically rely on seismological data, whereby the corner frequency of the
source moment-rate function provides rupture duration (e.g., Allmann & Shearer, 2009; Shearer et
al., 2006; Vallée, 2013; Ye et al., 2016b; Courboulex et al., 2016) and a theoretical model is used to
estimate an effective rupture length (Brune, 1970; Madariaga, 1976, 1977; Kaneko & Shearer, 2014).
However, stress drop estimates based on seismological approaches are subject to large uncertainties (Prieto
et al., 2006; Baltay et al., 2011), for example, due to trade-offs between rupture velocity and rise time,
the amplitude of high-frequency waves and attenuation (Baltay & Hanks, 2014), and between the rup-
ture velocity and the overall slip area. Additional bias, especially for large events, may also arise from

overly simplifying assumptions about the rupture process including directivity, single versus multi-

pulse ruptures, geometry (Kaneko & Shearer, 2015), estimation of the overall duration of the event (Courboulex

et al., 2016) and unknown variations in elastic properties of the surrounding rocks.

To mitigate these issues, we consider finite slip distributions of slow and fast earthquakes con-
strained by geodetic data, along with other measurements. Inversion of geodetic data for the spatial
distribution of slip on a fault is also subject to fundamental limitations, notably due to the St-Venant

principle that implies a decreasing resolution with increasing distance between source and observa-
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tions. However, the deployment of increasingly large and dense geodetic observatories, the develop-
ment of better analytic standards in inverse theory (Yabuki & Matsu’ura, 1992; Fukahata & Wright,
2008; Aster et al., 2012; Funning et al., 2014; Nocquet, 2018; Hang et al., 2020), and the joint inver-
sion of complementary datasets, both geodetic and seismological, has increased the accuracy of slip

distributions (McGuire & Segall, 2003; Atzori & Antonioli, 2011; Evans & Meade, 2012; Barbot et

al., 2013; Duputel et al., 2014; Minson et al., 2014; Sathiakumar et al., 2017; DeVries et al., 2017; Gombert

et al., 2017, 2018; Amey et al., 2018). For example, the large uncertainties associated with shallow

slip near the trench during the 2011 Mw=9.1 Tohoku, Japan earthquake were largely reduced by con-
sidering tsunami data (e.g., Yamazaki et al., 2011; Bletery et al., 2014; J. Jiang & Simons, 2016). Rup-
ture of subduction megathrusts can also be well imaged by combining high-rate Global Positioning
System (GPS), teleseismic body waves, synthetic aperture radar interferometry (InSAR), campaign
GPS, and tsunami observations (Yue, Lay, Rivera, An, et al., 2014). The slip distribution of conti-
nental earthquakes is increasingly well resolved by space geodetic observations, notably as InSAR, can
constrain the three-dimensional surface displacement with high spatial resolution (Fialko et al., 2001;
Fialko, 2004; Fialko et al., 2005; Bechor & Zebker, 2006; Barbot et al., 2008a; Avouac et al., 2015;

T. Wang & Jénsson, 2015; Moore et al., 2017; T. Wang, Wei, et al., 2018; T. Wang, Shi, et al., 2018;

Z. Wang et al., 2018).

Geodetic-based slip distributions of slow and fast earthquakes may constrain the geometric prop-
erties of ruptures, i.e., the effective length, width, and area (e.g., Weston et al., 2012; Brengman et
al., 2019), but a remaining issue regarding stress drop is large variations of elastic properties across
tectonic settings and source depths. The variability of elastic properties should be accounted for to
compare estimates of stress drop for events in different tectonic settings or depth, but the elastic prop-
erties are not always well known. Following the previous suggestion of quantifying the size of earth-
quakes with the seismic potency P = As instead of the seismic moment M = GAs (Ben-Zion, 2001;
Ben-Zion & Zhu, 2002), where G is the rigidity, A is the rupture area, and s is the representative fault
slip, we propose to look at the average potency density of the rupture. We define potency density as
an extrinsic property of ruptures that represents a characteristic strain, defined as the ratio of fault

slip to rupture length
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where R is a characteristic length scale such that A = R2 and ¢ ~ 1 is a non-dimensional constant
controlled by geometry. That strain corresponds to a potency density becomes evident when consid-
ering the relationship with seismic potency, i.e. P oc € R? or € oc P/R3. Our definition therefore
differs from that of Ben-Zion et al. (2003) and Ben-Zion and Lyakhovsky (2019) that refer to the lo-
cal potency per unit volume as an intrinsic property. As a suitable alternative to the potency den-
sity defined in equation (1), Vallée (2013) uses the term strain drop to refer to the same quantity. But
the name may be ambiguous because as elastic strain indeed decreases around a rupture, anelastic

strain in fact accrues.

A dimensional analysis shows that the recurrence time of instabilities is controlled by potency
density, as in T;. < € R/VL,, where V1, is the fault long-term loading rate. The potency density is also

related to the static stress drop, following

AT =2Ge, (2)

where the factor of 2 comes from Hooke’s law in three dimensions. Hence, the potency density pro-
vides a useful source property relevant to both slow and fast earthquakes that can be estimated from

static slip distributions with limited bias from unknown variations in elastic properties.

In this study, we build a curated catalog of slip distributions based on the analysis of geodetic
and other geophysical data for thrust fault and megathrust earthquakes (25 events), strike-slip fault
earthquakes (27 events), and slow-slip events on subduction megathrusts (17 events), adding to 65
events (Figure 1). The slip distributions are obtained from a long legacy of published work (62 events)
and original results (3 events) for the 2015 Mw 7.2 Lake Sarez (Tajikistan), 2018 Palu (Indonesia),
and 2019 Ridgecrest (California) earthquakes. Unfortunately, not enough data are available to char-
acterize normal faulting events. In Section 2, we describe the methodology to derive the width, po-
tency, and potency density automatically from the finite slip distributions. In Section 3, we present
the catalog and the relationships among source characteristics. We find that the down-dip rupture
extent of slow and fast earthquakes increases with centroid depth. Notably, the potency density of

subduction earthquakes seems to decrease algebraically with depth, indicating that different rupture
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processes operate at different depths. We also discuss the impact of potency density on the moment-

duration scaling relationship of slow-slip events.

2 Static source properties from finite slip distributions

We seek a systematic approach to analyze a large number of slip distributions that have in com-
mon a complex source geometry, including non-uniform slip distribution, several branches of vary-
ing strike and dip, and rake variations. For a circular patch of radius R with uniform slip s, the po-

tency density finds a closed-form expression (Eshelby, 1957)

7T s

€=3R- (3)
Some authors (e.g., Somerville et al., 1999; Barbot et al., 2009; Brown et al., 2015) estimate the ef-
fective radius and the mean slip in finite slip distributions to approximate the potency or the stress
drop using equations (2) and (3). Mai and Beroza (2000) first estimate rupture dimensions and then
estimate an average slip that conserves the total seismic moment. These approaches are problematic
in our case because they either rely on arbitrary slip thresholds to define the slip area, ignore the ge-
ometrical intricacies of ruptures, or cannot address the issues associated with multiple fault strands.
A single slip threshold is not applicable to treat a catalog of events with magnitudes range from Mw=6.0

to 9.5.

We propose an estimate of the potency density that can be applied to realistic slip distributions
with multiple fault strands, rake rotations, and possibly non-planar faults. Consider a fault surface
0f) with varying normal vector 7 associated with a slip distribution s. The deformation of the sur-
rounding rocks leads to a distribution of strain € in the elastic medium. Strain is a symmetric, second-
order tensor. To reduce the tensor field to a scalar quantity, we seek an average of the strain com-
ponents aligned with the shear dislocation defined by the dyadic product n ® § along the fault (Barbot
& Fialko, 2010), where the hat indicates a unit vector, such that s = s8§, with s > 0. Following

the estimates of stress drop based on energy considerations proposed by Noda et al. (2013), we use
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a weighted average of the strain components based on slip,

Joge:(n®s) dA
Joq sdA ’

€ =

(4)

where the symbol : is the double-dot product (Nemat-Nasser & Hori, 1999; Nemat-Nasser, 2004). The
estimate of potency density in equation (4) can be obtained without imposing any arbitrary thresh-

olds on rupture area or slip and is applicable to any slip distribution regardless of complexity. The

formulation also accounts for rake rotations and is independent of rigidity. Since slip is used as a weight-

ing factor, the fault area devoid of slip are naturally excluded. This process is illustrated in Figure 2
using the slip distribution of the 2015 Mw 7.2 Lake Sarez earthquake, which was obtained by inver-
sion of SAR data and teleseismic body waves. The slip distribution features varying strike, dip, and
rake along the rupture (Figure 2a). The strain distribution on the fault plane, computed as € : (n ® §),
is shown in Figure 2b. Most areas of positive strain change are associated with regions of little to no
slip and are weighted out. Meanwhile, the areas of smooth slip distribution that would be difficult
to outline with a slip threshold, for example to the southwest, are associated with little strain, con-
tributing minimally to the overall potency density estimation. The method can then be applied uni-
formly to events of various sizes. When treating the entire catalog of events, we consider finite slip
distributions with fault surfaces decomposed into rectangular or triangular meshes. We calculate the
strain tensor at the patch centers assuming a uniform half-space with Poisson’s ratio v = 0.25 us-
ing the analytical solution of Okada (1992) for rectangular dislocations and the one of Nikkhoo and
Walter (2015) for triangular dislocations. If the elastic properties are uniform, the deformation does
not depend on the rigidity. When calculating potency density, we ignore vertical or lateral variations

of elastic moduli.

In the same vein, we seek to describe the geometrical properties of ruptures from finite slip dis-
tributions without potential bias from arbitrary thresholds for slip, such that slow and fast, small and
large earthquakes can be treated consistently. The definition of rupture width can vary depending
on the data considered. Rupture length can be estimated from surface slip (Wyss, 1979; Manighetti
et al., 2001, 2007), or from the spatial extent of early aftershocks (Kanamori & Anderson, 1975; Dar-

ragh & Bolt, 1987), leading to different results (Wells & Coppersmith, 1994). We use slip as a weight-



ing factor and estimate the centroid location as follows

fasz zsdA
e (5)
faQ sdA

z =

where Z is the centroid depth, and z is the depth of the fault surface. To facilitate the comparison

of ruptures occurring on faults with different dip angles, we focus on the depth extent of ruptures in-
stead of the down-dip rupture width. On quasi-vertical strike-slip faults, comparing the depth extent
or the down-dip extent is equivalent. On shallow dipping faults, considering the depth extent is use-
ful to understand the potential relationship between rupture geometry and stratigraphy or the over-
all vertical thermo-mechanical structure of the plate boundary. To estimate the rupture width in the
depth direction, we treat rupture depth as a random variable. We do not make any specific assump-
tion about the probability density distribution of depth, except for the fact that it is a positive quan-
tity, and therefore a Gaussian distribution is not appropriate, unavoidably predicting non-zero prob-
ability of negative depths (Tarantola, 2004). To avoid this issue, we manipulate the logarithm of depth.
For example, if the logarithm of depth was normally distributed, then depth would be log-normally
distributed, predicting zero probability of slip above the surface. Accordingly, we first compute an-

other estimate of the centroid depth as

w = logyq (Z%)

_ faQ log,o(2) sdA
Joq sdA ’

where log,(x) = log(z)/log(10). We then estimate the standard deviation of the depth distribu-

tion

52 — Joq log1g (2) — w)® sdA .

Joq sdA ™

Finally, we define the rupture width in the depth direction as the range of depths that would encom-
pass more than 98% of the slip distribution is depth was log-normally distributed, i.e., W = 109+7 —

10%~9, Simplifying this expression, we obtain

W =2 z*sinh(o log(10)) . (8)
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These estimates can accommodate non-planar faults, multiple strands, and non-uniform slip distri-
butions. The estimates of rupture dimension and potency density are independent beyond the fact

that they use the same slip distribution.

3 Source characteristics of earthquakes and slow-slip events

We compile a collection of finite slip distributions for slow and fast earthquakes based on the
analysis of geodetic and other geophysical data (Figure 1). We curate a catalog based on the dataset
used to constrain the models, the quality of the inversion procedure, in particular whether an objec-
tive criterion is used for the degree of regularization, and the absence of unrealistic features like spu-
rious slip concentration at the boundary of the discretized fault. We collect published slip distribu-
tions for 52 earthquakes and 17 slow-slip events and combine them in a uniform format where the
slip, position, length, width, strike, dip, and rake is documented for every rectangular patch, and ad-
ditionally the vertex coordinates for triangular dislocations. The database includes 27 strike-slip fault
earthquakes, 25 thrust fault and megathrust earthquakes, and 13 megathrust slow-slip events. The
catalog includes strike-slip fault earthquakes from moment magnitude Mw=6.0 to 8.6 and thrust earth-

quakes from magnitude Mw=6.3 to 9.2.

All models are constrained by geodetic data, i.e., GPS and/or InSAR, but may also include re-
gional and teleseismic data and tsunami records. In some cases, only one model satisfies the require-
ments and can be found in digital form. However, in many cases, the same event is documented in
several studies. Collectively, the 65 events considered here are documented in at least 109 different
models. For example, several sophisticated models of the 1992 Mw=7.3 Landers, California earth-
quake based on seismic and geodetic data can be found (e.g., Hernandez et al., 1999; Wald & Heaton,
1994), but we prefer the model of Fialko (2004) based on a reconstruction of the three-dimensional

surface displacements at high spatial resolution. The surface displacements of the 2010 Mw="7.2 El

Mayor-Cucapah earthquake was constrained by InSAR data (M. Wei et al., 2011), but the model of S. Wei

et al. (2013) includes teleseismic and regional seismic data, improving resolution at depth. Similarly,
the 1999 Mw=7.1 Hector Mine earthquake was constrained with geodesy (Simons, 2002), but the model

of Salichon et al. (2004) includes InSAR, GPS, and teleseismic data. Model selection has an impor-

tant impact on the estimation of potency density. For the Hector Mine earthquake, the models of Simons
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(2002) and Salichon et al. (2004) imply a potency density of 168 and 259 microstrain, respectively.

For the Parkfield earthquake, the models of Ji et al. (2004), Dreger et al. (2005), and Barbot et al.
(2012) imply potency densities of 45, 22, and 33 microstrain, respectively. This indicates that the epis-
temic uncertainties associated with model discretization, data selection, and inversion methods are
multiplicative. The variability found in multiple models of the same event indicates that the potency
density is well constrained within a factor of two. Although these estimates may vary significantly
within that range, these differences pale in regard to the overall variability of potency density across
strike-slip fault earthquakes, from 20 to 500 microstrain, covering about two orders of magnitude. Among
strike-slip fault earthquakes, we find that model selection has no impact on the relationships among
source characteristics, as there is no systematic variation of potency density with depth or magnitude

for this type of event.

The source properties of subduction megathrust earthquakes are more sensitive to model selec-
tion due to the various assumptions affecting shallow slip near the trench (e.g., Loveless & Meade,
2011). In particular, a prevailing, but incorrect assumption has been that fault slip in the accretionary
region is aseismic. However, accretionary prisms are known to produce tsunami earthquakes (Kanamori,
1972; Pelayo & Wiens, 1992; Satake & Tanioka, 1999; Bilek & Lay, 2002; Geersen, 2019), the rup-
ture of giant earthquakes often reaches the trench (e.g., Ishii et al., 2005; Lorenzo-Martin et al., 2006;
Fujiwara et al., 2011; Yue, Lay, Rivera, An, et al., 2014; Tomita et al., 2017), and low-frequency earth-
quakes and tectonic tremors occur at shallow depth at subduction zones (Y. Jiang et al., 2012; Dixon
et al., 2014; Wallace et al., 2016, 2017; Toh et al., 2018; Nakano et al., 2018). Among the slip distri-
butions of giant earthquakes, i.e., the 2004 Mw=9.2 Sumatra-Andaman (Indonesia), 2011 Mw=9.1
Tohoku-Oki (Japan), and 2010 Mw=8.8 Maule (Chile) earthquakes (Rhie et al., 2007; Chlieh et al.,
2007; Simons et al., 2012; Lorito et al., 2011; Luttrell et al., 2011; S. Wei et al., 2012; Ilinuma et al.,
2012) and tsunami earthquakes (Newman, Hayes, et al., 2011; Bilek et al., 2011; Satake et al., 2013;
Yue, Lay, Rivera, Bai, et al., 2014), we select those that mitigate uncertainty in shallow slip by in-
corporating geodetic measurements with tsunami and other geophysical data. Even with these re-
strictions, the epistemic uncertainties associated with meshing, regularization and data selection in-
troduce large variability in source characteristics. For example, the models of S. Wei et al. (2012),

Yamazaki et al. (2011), and Bletery et al. (2014) for the 2011 Mw=9.1 Tohoku-Oki earthquake im-
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ply a potency density of 51, 102, and 160 microstrain, respectively and a centroid depth of 18, 14,
and 7km, respectively. These source characteristics are also well constrained within a factor of two.
However, given the range of potency density from 10 to 200 microstrain and of centroid depths from
2 to 50 km among thrust earthquakes, these uncertainties do not significantly affect the overall depth

dependence of potency density for this type of events.

For each finite slip distribution of slow and fast earthquakes, we estimate the width in the depth
direction, potency, and potency density. The supplementary materials include the slip distributions
in a uniform format and the estimated source characteristics for all published models available. When
multiple slip models are available, we select the one from the most comprehensive study. The source
characteristics are listed in Table 1 for strike-slip earthquakes, Table 2 for thrust and megathrust earth-
quakes, and Table 3 for megathrust slow-slip events. We cluster the events in groups of broadly sim-
ilar tectonic settings, including strike-slip faults, thrust faults, and megathrusts. We further identify
the tsunamigenic earthquakes, which include any earthquake that generated a substantial tsunami,
encompassing the so-called tsunami earthquakes that generate a tsunami larger than what would be

anticipated for their magnitude (Kanamori, 1972).

The source characteristics of strike-slip fault earthquakes for the catalog considered are shown
in Figures 3a, 4a, and 5. The potency density of strike-slip fault earthquakes varies from 20 to 500
microstrain, the smallest value being associated with the 2013 Mw=6.6 Cook Strait, New Zealand
earthquake (Hamling et al., 2014), presumably biased due to the depth and offshore location of the
slip patch. The largest potency density is found for the 2011 Mw=6.3 Christchurch, New Zealand,
the 2011 Mw="7.1 Van, Turkey, and the 2019 Mw=7.1 Ridgecrest earthquakes, illustrating the inde-
pendence with earthquake magnitude. The 1992 Mw=7.3 Landers, the 1999 Mw=7.1 Hector Mine,
and the 2018 Mw=7.7 Kaikoura earthquakes have a similar potency density of ~ 260 microstrain,
despite their different centroid depths of 4, 5, and 16 km depth, respectively. Overall we find that strike-
slip fault earthquakes have the largest potency density among all events in the catalog, with no sys-

tematic trend among source characteristics, except for an increase in rupture width with centroid depth.

We now turn our attention to the source characteristics of thrust fault and megathrust earth-

quakes (Figures 3b, 4b, and 5). The potency density of continental thrust earthquakes ranges from

—11-—
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40 to 200 microstrain with centroid depths ranging from 3 to 20 km. Megathrust earthquakes span

a larger depth range, from 2 to 40 km, with a range of potency density from 10 to 160 microstrain.

While the distributions show some overlap, the mean potency density of continental earthquakes is
therefore overall higher than their subduction zone counterparts. This is exemplified by the 2009 Mw=6.9
Qaidam (Elliott et al., 2013) and the 2015 Mw=7.9 Nepal (S. Wei et al., 2015) earthquakes. Over-

all, subduction zone great and giant earthquakes have the smallest potency density of all types of earth-
quakes considered. Potency density does not exhibit any relationship with event size when all events

are considered. However, subduction zone earthquakes reach higher moment magnitudes than con-
tinental earthquakes (Figure 4). This may reflect a reduced structural complexity on subduction megath-
rusts that allows deep seismogenic zone earthquakes to propagate farther in the trench-parallel di-

rection.

Among continental thrust earthquakes, there is no systematic variation of potency density with
magnitude or with centroid depth. For megathrust earthquakes, however, ruptures with shallow cen-
troid depths show a higher potency density than deeper ruptures, as the three most shallow events
also have the largest potency density. This relationship is controlled by the 2010 Mw=7.7 Mentawai
tsunami earthquake and the 2011 Mw=9.1 Tohoku-Oki tsunamigenic earthquake, that both have a
shallow centroid depth and a high potency density. Since continental thrust earthquakes and shal-
low megathrust earthquakes have a higher potency density, an overall dependence of potency den-

sity with centroid depth emerges among combined thrust and megathrust earthquakes.

The potency density of slow-slip events at any depth, ranging from 0.01 to 3 microstrain, is lower
than for any earthquake in the catalog, by about 2 to 3 orders of magnitudes, despite comparable po-
tency and moment magnitude. Deep slow-slip ruptures also spread across the widest depth range of
all events considered (Figure 5). Slow-slip events therefore represent an end-member of rupture style
with particularly low slip efficiency distributed over a large rupture area. No discernible trend can
be observed between potency and centroid depth for slow-slip events from Costa Rica (Dixon et al.,
2014), Guerrero, Mexico (Radiguet et al., 2012; Bekaert et al., 2015), Hikurangi, New Zealand (Wallace
& Eberhart-Phillips, 2013), and Cascadia, Pacific Northwest (Schmidt & Gao, 2010; Goodner, 2014).
However, like it seems to apply to all types of events, the depth extent of slow-slip ruptures increases

with their centroid depth.
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4 Discussion

Our analysis reveals that potency density is independent of rupture size, considering ruptures
of the same type and tectonic setting, consistent with seismological studies of stress drop (Kanamori
& Anderson, 1975; Venkataraman & Kanamori, 2004; Allmann & Shearer, 2009; Ye et al., 2016b; Miyakoshi
et al., 2019). The independence of potency density with size for ruptures of any type is compatible
with the idea that stress drop or potency density is a fundamental properties of ruptures leading to
self-similarity of the earthquake phenomenon (Cocco et al., 2016). Vallée (2013) shows that global
earthquakes from the surface to 600 km depth are compatible with a constant strain drop model, al-
though his data for events shallower than 50 km show significant scatter. Analysis of shallow earth-
quakes based on the same technique (Courboulex et al., 2016) shows no particular trend between stress

drop and magnitude, but the changes with depth or tectonic setting are not discussed.

Our analysis shows systematic differences of potency density among types of ruptures and tec-
tonic settings. Continental strike-slip fault earthquakes on average have the largest potency density,
between 20 and 500 microstrain. Continental thrust faults earthquakes have the second highest po-
tency density, between 40 and 200 microstrain. Shallow subduction zone ruptures, including tsunami
earthquakes, are characterized with large potency density, between 100 and 200 microstrain. Deep
megathrust earthquakes form a group of the lowest overall potency density, between 10 and 100 mi-
crostrain. Finally, slow-slip event form a category of their own, with a potency density between 0.01

and 3 microstrain.

The 2010 Mw=7.7 Mentawai tsunami earthquake exhibits a particularly high potency density
compared to other megathrust earthquakes, including the tsunamigenic 2008 Mw="7.2 North Pagai
earthquake (Salman et al., 2017). The large potency density of tsunami earthquakes may indicate the
activation of strong-weakening mechanisms for near-trench ruptures, such as thermal pressurization
of the frictional interface proposed by Mitsui et al. (2012) and Noda and Lapusta (2013). The simul-
taneous high potency density and low stress drop of tsunami earthquakes are compatible due to the

low rigidity of surrounding rocks in the accretionary prism (Sallares & Ranero, 2019).

Deep megathrust earthquakes exhibit a lower potency density and a larger rupture width than

any other earthquake category. It is possible that the deep ruptures propagate into nominally slow-
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slip or velocity-strengthening regions, reducing their average potency density in the process. This may
explain why no periodic slow-slip has been found at subduction zones where a deep rupture recently
took place, such as at the Japan trench or the Sunda trench, as the exceedingly large stress reduc-

tion caused by a large rupture may have interrupted the slow-slip cycle for a few decades (L. Feng

et al., 2015; Shi et al., 2020). The low potency density of deep megathrust ruptures may also be caused
by their proximity to the stability transition, which may manifest itself by a gradual reduction of co-
seismic weakening with increasing temperature before stable-weakening or firmly velocity-strengthening

properties are attained at greater depths.

The tendency of ruptures to increase width with increasing centroid depth is clear within the
catalog (Figure 5), particularly as rupture width does not scale with seismic potency (Figure 7). How-
ever, this trend may be biased in part by the upper bound of rupture width from the free surface.
Indeed, by construction, the effective width cannot exceed twice the centroid depth. It is also likely
that considering more events of smaller magnitude may fill the lower right quadrant of Figure 5. Rup-
tures on different types of faults follow a different scaling with centroid depth. Continental strike-slip
events follow w = 10043 20561 continental thrust earthquakes w = 1024 2027, shallow megath-
rust events w = 10%93 29-93: and other megathrust events w = 10%-'2 2086, The sub-linear relation-
ship between width and centroid depth in log-log space for all events, with a power exponent of 0.76,
indicates the tendency of most earthquakes to not break the surface, or to exhibit less slip near the

surface, broadly compatible with the concept of shallow slip deficit (Fialko et al., 2005).

The deep slow-slip events, which represent the widest ruptures of the catalog despite their small
magnitude, scatter along the same trend as other type of events across various tectonic contexts. Since
the source mechanism of slow and fast earthquakes may be widely different, this result indicates that
similar scaling of source properties can be obtained for different events, but for different reasons. For
example, Cattania and Segall (2018) discuss how the relationships among magnitude, duration, and
stress drop can be similar in numerical simulations of seismic cycles, but for different underlying rea-
sons. Slow-slip events have been found to follow the same moment-duration scaling as fast ruptures (Michel

et al., 2019), despite their widely different radiation efficiency.
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The large variations of potency density across tectonic settings and depth can be due to the ac-
tivation of different rupture processes. For instance, the high potency density observed for continen-
tal subduction zone earthquakes and tsunami earthquakes may be attributed to strong weakening mech-
anisms such as flash weakening (Hirose & Bystricky, 2007; N. M. Beeler et al., 2008; Kitajima et al.,
2011; Goldsby & Tullis, 2011) and thermal pressurization (Andrews, 2002; Hirose & Bystricky, 2007;
Mitsui et al., 2012; Noda & Lapusta, 2013; Viesca & Garagash, 2015). The potency density of such

events may be approximated with

Apo
me, )

€ X

where 0.1 < Ap < 0.6 represents a large drop of frictional strength (e.g., Toro et al., 2004, 2006)
and 60 < ¢ < 100 MPa is the effective normal stress, leading to potency density of the order of 100
to 500 microstrain. Hence, ruptures with potency density larger than about 100 microstrain may be
associated with strong weakening. This would imply that most continental strike-slip fault and con-
tinental thrust ruptures operate under this condition, compatible with the claims of Viesca and Gara-
gash (2015). Smaller potency densities may be explained in the framework of rate-and-state friction (Dieterich,
1979; Ruina, 1983; Barbot, 2019a) following
(b—a)o

60(77 (10)

where (b—a) ~ 4x 1073 is the steady-state parameters controlling the velocity dependence of fric-

tion (Scholz, 1998; Lapusta & Barbot, 2012), or simply 1 < (b — a)d < 10 MPa, leading to a po-

tency density in the range of 15 to 150 microstrain. However, this estimate may vary greatly because

of dynamic stress overshoot or undershoot (Kanamori & Rivera, 2006) and the detailed geometry of

a rupture. Slow-slip events occur in the stable weakening regime, corresponding to failed nucleations (Liu
& Rice, 2005, 2007; Segall et al., 2010; Goswami & Barbot, 2018; Biirgmann, 2018; Barbot, 2019b).

Hence, their total slip scales with the characteristic weakening distance, as in

€ X

L
E ) (11)
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where 1 < L < 10cm is the characteristic weakening distance of rate-and-state friction in a range
compatible with slow slip and R ~ 50km is the down-dip rupture width, leading to estimates of po-
tency density in the range of 0.01 to 3 microstrain. The overall variability of source properties, e.g.,
two orders of magnitude for potency density, may be attributed to the presence of frictional contrast
along the fault (Kaneko et al., 2010; Kaneko & Shearer, 2015), variability of earthquake slip due to
the stress shadow of previous ruptures (Michel et al., 2017; Barbot, 2019b), morphological gradients (Qiu

et al., 2016; Sathiakumar et al., 2019), variation of off-fault damage (Cappa et al., 2014), differing

coupling coefficients (Chounet & Vallée, 2018), or the activation of different weakening mechanisms (Kirkpatrick

& Shipton, 2009; Cocco et al., 2016; Cattania & Segall, 2018).

The variability of potency density among events has important implications on the moment-
duration scaling relationship of slow-slip events, which may differ from that of fast ruptures (Peng
& Gomberg, 2010). Simple models provide a rationale to understand the moment-duration scaling
of slow and fast ruptures. For slow-slip events, we may assume that the rupture spreads rapidly across
a fixed down-dip width W and then propagates along strike for most of the duration of the event at
a constant rupture velocity between 0.01 and 0.1 m/s. This leads to the along-strike rupture length
L = V. T and the rupture area A = WV, T, where V,. is the rupture velocity and T is the rupture
duration. The relationship between slip and potency density s ~ ¢ W also holds. The moment re-

leased by slow-slip events can then be defined as

M ~GWV,eT , (12)

showing a linear relationship among moment, duration, and potency density. For fast ruptures, a sim-

ple model assumes a linear relationship between rupture duration and rupture radius, leading to

M~ GV3eT? | (13)

which shows a power law between moment and duration. More sophisticated models of fast ruptures
that incorporate the propagation of aseismic slip into the rupture area provide slightly different power
exponents (Chen & Lapusta, 2009; Cattania & Segall, 2018). Deciphering the moment-duration scal-

ing for slow-slip events is important to better understand the underlying source processes. However,
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large variations of potency density of about two orders of magnitude (Figures 3 and 4) can introduce
important bias if potency density is not included in the analysis. This may explain the contradictory
results found at the Cascadia subduction zone, where Gao et al. (2012) and Michel et al. (2019) found
linear and cubic moment-duration scalings, respectively, for events rupturing similar sections of the
Cascadia megathrust. To shed more light on this problem, we investigate the relationship among mo-
ment, duration, and potency density with the catalog of slow-slip events. For the collection of slow-
slip events considered, the duration ranges between 7 days and 180 days, the moment covers two or-
ders of magnitude, between 5 x 108 to 5 x 102° Nm, and the potency density varies between 0.01

and 3 microstrains, providing a sufficient dynamic range to investigate the scaling relationships. Event
duration increases with potency density, with 7'~ €%-2 for the entire catalog (Figure 8). The largest
outlier corresponds to a near-trench event at the Hikurangi subduction zone that may involve a dif-
ferent rupture mechanism than its deep counterparts. The moment-duration relationship (Figure 9)
shows large variability that cannot be reduced by either the linear and cubic root scaling laws, whether
or not regions are considered individually or together. We conclude that variations in potency den-
sity among slow-slip events preclude a simple characterization in terms of a linear or cubic root scal-
ing between moment and duration. Several micro-physical mechanisms of deformation may be respon-
sible for the slow-slip phenomenon, including stable weakening (Liu & Rice, 2005, 2007; Veedu & Bar-
bot, 2016), dilatant hardening (Segall et al., 2010), semi-brittle deformation (Goswami & Barbot, 2018),
fluid pulses (Cruz-Atienza et al., 2018), and possibly thermal instabilities. In addition, some slow-

slip events do not occur spontaneously, but are triggered by distant seismic events (Zigone et al., 2012).
It is possible that a single scaling relationship may be inadequate to capture a such wide range of rup-
ture mechanisms. In addition, a constant rupture velocity may not be applicable during nucleation,

propagation, and arrest of slow-slip ruptures.

5 Conclusion

We gather a catalog of slow and fast earthquake slip distributions derived from the analysis of
geodetic and other geophysical data to better understand the static source properties of continental
and subduction earthquakes and slow-slip events. We estimate simple source characteristics, such as

centroid depth, width, potency, and potency density, with limited bias from unknown variability of
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elastic properties. This allows us to compare events of different styles from various tectonic settings
and source depths. The potency density, a fundamental property of ruptures related to stress drop
affecting rupture size and rupture style, varies significantly depending on the tectonic setting and,

in the case of megathrust earthquakes, centroid depth. In particular, the potency density of shallow
earthquakes and tsunami earthquakes is higher than their deep counterpart. This implies systematic
variation of rupture processes with depth on a megathrust, with strong weakening being more promi-
nent closer to the trench. Deep megathrust earthquake share a lower potency density, indicative of
less efficient weakening mechanisms or the propagation of deep ruptures into stable-weakening regions.
Slow-slip events at subduction zones represent an end-member of large ruptures characterized with
low potency density. Large variability in potency density among slip-slip events, which affects dura-
tion, makes simple scaling relationships for the moment-duration scaling inadequate. If large potency
density is indicative of strong weakening mechanisms, most continental strike-slip fault and continen-

tal thrust ruptures operate under this condition.
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Figure 2. Slip and strain distribution for the 2015 Mw 7.2 Lake Sarez, Tajikistan earthquake. a) Slip distri-
bution inferred from SAR and InSAR data. The star marks the hypocenter. b) Distribution of strain along the
fault. When averaged over the entire slip region and weighted by slip, the potency density of the earthquake is

estimated at 96.1 microstrain.
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Figure 3. Variation of potency density with centroid depth of all events in the catalog. a) Distribution

of potency density with centroid depth for strike-slip earthquakes. b) Potency density of thrust faults and

megathrust events. Shallow events, predominantly strike-slip or tsunami earthquakes, are characterized with

large potency density. Deep megathrust earthquakes tend to have a lower potency density. Deep slow-slip

events, with with potency densities orders of magnitude smaller than strike-slip fault earthquakes, form an

end-member of rupture style.
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Figure 4. Variation of potency density with rupture size. a) Strike-slip fault earthquakes. b) Thrust fault

and megathrust events. There is no systematic variation of potency density and potency and moment magni-

tude (computed assuming a uniform rigidity of 30 GPa). Slow-slip events have potency densities lower than for

any type of earthquake.
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Figure 5. Variation of rupture width with centroid depth, illuminating a apparent relationship between

the depth extent of ruptures and their respective slip-averaged centroid depth. The shallowest events are con-
tinental earthquakes and tsunami earthquakes, which are also the events with the smallest down-dip extent.
Megathrust earthquake occupy a greater depth range than continental earthquakes. Deep megathrust slow slip
event span the largest width of all event types, following a similar trend as any other type of event. The overall
width/depth relationship for all events follows a power-law with a power exponent of 0.76. The exponent varies

for different type of events, as discussed in the main text.
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Variation of potency density with event duration for all the slow-slip events in the catalog. The

Figure 8.

duration of events scales sublinearly with potency density as £°-27%. The 2013 Hikurangi event is an outlier,

presumably due to its shallow centroid depth, pointing to a different rupture mechanism than for deeper

events.
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Table 1. Slip distribution and source characteristics of 27 strike-slip fault earthquakes from magnitude
Mw=6.0 to 8.6 considering 35 different models.

Potency Centroid

Name Country Year Mw density  depth Width (km) Reference

Altai Russia 2003 7.2 287.9 7.1 10.2 Barbot et al. (2008b)
Balochistan Pakistan 2013 7.7 63.2 9.5 13.2 Avouac et al. (2014)

Bam Iran 2003 6.6 82.28 2.6 4.157 Fialko et al. (2005)
Christchurch New Zealand 2011 6.3 263.7 6.0 6.2 Elliott et al. (2012)

Cook Straits New Zealand 2013 6.6 22.1 15.3 11.0 Hamling et al. (2014)
Darfield New Zealand 2010 6.9 344.7 5.3 7.0 Elliott et al. (2012)

El Mayor Mexico 2010 7.2 71.6 5.2 5.2 S. Wei et al. (2013)

Haiti Haiti 2010 7.0 130.8 12.4 12.4 Symithe et al. (2013)
Hector Mine USA 1999 7.1 259.1 6.4 8.2 Salichon et al. (2004)
Imperial Valley = USA 1979 6.3 154.7 5.7 5.7 Zeng and Anderson (2000)
Izmit Turkey 1999 7.6 87.6 8.1 11.7 Toksoz et al. (1999)
Kaikoura New Zealand 2016 7.9 325.7 15.8 19.0 T. Wang, Wei, et al. (2018)
Kokoxili China 2001 7.9 81.8 8.7 11.4 Lasserre et al. (2005)
Kumomoto Japan 2016 7.3 188.3 10.2 11.1 Moore et al. (2017)
Landers USA 1992 7.3 263.5 34 5.3 Fialko (2004)

Lake Grassmere New Zealand 2013 6.6 47.0 9.7 11.5 Hamling et al. (2014)
Lake Sarez Tajikistan 2015 7.2 96.1 6.5 9.1 Nanjundiah, pers. comm.
Loma Prieta USA 1989 6.9 354.7 12.7 8.0 Zeng and Anderson (2000)
Manyi China 2004 7.6 76.7 7.1 9.3 H. Wang et al. (2007)
Morgan Hill USA 1984 6.3 154.0 9.0 7.1 Beroza and Spudich (1988)
Myanmar Myanmar 2011 6.9 127.0 4.4 6.1 Y. Wang et al. (2014)
Napa Valley USA 2014 6.0 30.7 6.7 9.2 S. Wei et al. (2014)

Palu Sarawak 2018 7.5 204.8 7.3 8.14 S. Wei, pers. Comm.
Parkfield USA 2004 6.0 33.1 7.1 7.4 Barbot et al. (2012)
Ridgecrest California 2019 7.1 407.3 9.9 12.6 S. Wei, pers. Comm.

San Francisco USA 1906 7.9 98.5 6.0 6.0 Song et al. (2008)

Van Turkey 2011 7.1 422.2 14.3 8.9 Elliott et al. (2013)
Wharton Basin ~ Sumatra 2012 8.6 211.1 15.7 33.4 Hill et al. (2015)
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Table 2. Slip distributions and source characteristics of 25 thrust and megathrust earthquakes considering
34 different models.

Potency  Centroid

Name Country Year Mw density depth (km) Width  Reference
Aceh Sumatra 2004 9.2 34.9 32.2 22.75  Chlieh et al. (2007)
Alaska USA 1964 9.2 22.0 16.0 12.0 Johnson et al. (1996)
Bengkulu Sumatra 2007 8.4 9.4 32.13 36.8  Tsang et al. (2016)
Bhuj India 2001 7.6 182.7 14.5 19.1 Copley et al. (2011)
Chengkung Taiwan 2003 6.8 9.6 20.2 20 Thomas et al. (2014)
Chi-Chi Taiwan 1999 7.5 170.7 3.4 4.01  Yuet al. (2001)
Gorkha Nepal 2015 7.8 22.2 14.5 9.2 S. Wei et al. (2018)
Iquique Chile 2014 8.2 20.5 25.5 39.0  Gusman et al. (2015)
Kashmir Kashmir 2005 7.6 118.4 7.2 9.15 Avouac et al. (2006)
Kuril Alaska 2006-07 8.3 9.1 9.3 11 Steblov et al. (2008)
Maule Chile 2010 8.8 36.3 36.8 22.8  Luttrell et al. (2011)
Mentawai Sumatra 2010 7.8 132.7 6.3 4.7 Yue, Lay, Rivera, Bai, et al.
(2014)
Nias Sumatra 2005 8.6 40.9 28.3 15.6  Konca et al. (2007)
Nicoya Costa Rica 2012 7.6 35.5 20.6 22.5  Yue et al. (2013)
Northridge USA 1994 6.9 113.6 9.7 9.8 Hudnut et al. (1996)
Pagai Sumatra 2008 7.2 35.5 17.2 5.4 Salman et al. (2017)
Qaidam China 2008 6.3 139.2 16.5 9.6 Elliott et al. (2011)
Qaidam China 2009 6.3 198.5 5.6 4.7 Elliott et al. (2011)
San Simeon USA 2003 6.5 126.7 6.1 5.3 Ji et al. (2004)
Sarpol Zahab Iran 2017 7.3 128.9 14.6 4.8 W. Feng et al. (2018)
Solomon Isl. Solomon Isl. 2010 7.1 110.0 2.4 2.3 Newman, Feng, et al.
(2011)
Tohoku-Oki Japan 2011 9.1 160.8 6.9 17.7 Bletery et al. (2014)
Topocilla Chile 2007 7.7 12.0 36.1 16.6  Bejar Pizarro et al. (2010)
Valdivia Chile 1960 9.6 93.7 24.0 19.0  Moreno et al. (2009)
Yushu China 2010 6.9 43.9 6.8 9.9 Li et al. (2011)
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Table 3. Slip distributions and source characteristics of 17 slow-slip events on subduction megathrusts used

in the study.

Potency  Centroid

Name Country Year Mw density depth (km) Width  Reference

Cascadia USA 2008 6.75  0.103 35.8 12.5 Dragert and Wang (2011)

Cascadia USA 2010 6.84  0.029 36.4 29.92  Goodner (2014)

Cascadia USA 2011 6.77  0.030 36.61 32.32  Goodner (2014)

Cascadia USA 2012 6.83  0.018 35.86 36.25  Goodner (2014)

Cascadia USA 2013  6.85 0.035 38.19 34.08  Goodner (2014)

Costa Rica Costa Rica 2007  6.92 1.80 45.8 36.9  Dixon et al. (2014)

Costa Rica  Costa Rica 2008 6.48 0.14 37.6 34.1  Dixon et al. (2014)

Costa Rica Costa Rica 2009 6.97  2.93 44.6 36.0  Dixon et al. (2014)

Costa Rica Costa Rica 2010 6.46  0.79 37.6 31.4  Dixon et al. (2014)

Costa Rica Costa Rica 2011  6.61 0.38 27.0 23.7  Dixon et al. (2014)

Costa Rica  Costa Rica 2012 6.94 1.28 32.8 35.5  Dixon et al. (2014)

Guerrero Mexico 2002 7.5 0.30 34.5 22.9  Radiguet et al. (2012)

Guerrero Mexico 2006 7.3 0.35 34.5 20.7  Radiguet et al. (2012)

Guerrero Mexico 2010 74 0.65 33.8 13.5 g:g;irutez:;fl'(;g?;?)’

Hikurangi  New Zealand 2006 6.55  0.37 33.9 30.4  Wallace and Eberhart-Phillips (2013);
Hikurangi  New Zealand 2008 6.58  0.43 38.5 20.8  Wallace and Eberhart-Phillips (2013);
Hikurangi  New Zealand 2013 6.95  1.17 9.9 3.5 Wallace and Eberhart-Phillips (2013);
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