

1 Static source properties of slow and fast earthquakes

2 **Priyamvada Nanjundiah^{1,2}, Sylvain Barbot³, Shengji Wei^{1,2}**

3 ¹Earth Observatory of Singapore, 50 Nanyang Avenue, Blk N2.1-01a-15, Nanyang Technological University, Singapore

4 ²Asian School of the Environment, 50 Nanyang Avenue, Blk N2.1-01a, Nanyang Technological University, Singapore

5 ³Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA

6 **Key Points:**

- 7 • We compile finite slip distributions for slow and fast earthquakes to quantify static source prop-
- 8 • erties.
- 9 • The potency density varies systematically with rupture style, tectonic setting, and centroid depth.
- 10 • The moment-duration scaling of slow-slip events is affected by large variability in potency den-
- 11 • sity.

12 **Abstract**

13 The source characteristics of slow and fast earthquakes provide a window into the mechanical prop-
 14 erties of faults. In particular, the average stress drop controls the evolution of friction, fault slip, and
 15 event magnitude. However, this important source property is typically inferred from the analysis of
 16 seismic waves and is subject to many epistemic uncertainties. Here, we investigate the source prop-
 17 erties of 52 earthquakes and 17 slow-slip events on thrust and strike-slip faults in various tectonic set-
 18 tings using slip distributions constrained by geodesy in combination with other data. We determine
 19 the width, potency, and potency density of slow and fast earthquake source based on static slip dis-
 20 tributions. The potency density, defined conceptually as the ratio of average slip to rupture radius,
 21 is a measure of anelastic deformation with limited bias from rigidity differences across depths and tec-
 22 tonic settings. Strike-slip earthquakes have the highest potency density, varying from 20 to 500 mi-
 23 crostrain, with no discernible trend. The potency density is on average lower on continental thrust
 24 faults and megathrusts, from 10 to 200 microstrain, with an algebraic decrease with centroid depth,
 25 indicative of systematic changes in dominant rupture processes with depth. Slow slip events repre-
 26 sent an end-member style of rupture with low potency density and large rupture width. Significant
 27 variability in potency density of slow-slip event affects their moment-duration scaling. The variations
 28 of source properties across tectonic settings, depth, and rupture styles can be used to better constrain
 29 numerical simulations of seismicity and to assess the source characteristics of future earthquakes and
 30 slow slip events.

31 **Plain Language Summary**

32 Natural earthquakes reduce the stress that accumulates on faults due to plate tectonics. To bet-
 33 ter understand the variability of seismic hazards around active faults, we survey the properties of slow
 34 and fast earthquakes around the world. The potential of faults to concentrate large slip in the rup-
 35 ture area differs depending on the geological setting, the depth of the source, and the type of rup-
 36 ture. Earthquakes in a continental setting condense more slip in a given rupture area, particularly
 37 in transform faults like the San Andreas fault. Subduction zone earthquakes, although some of the
 38 largest events on Earth, generally distribute less slip over a wider area, but this varies as a function
 39 of depth. Slow earthquakes represent an extreme case of little slip distributed over a large area. The

40 propensity of rupture characteristics to vary with fault type and depth may help forecast the haz-
 41 ards posed by future seismicity.

42 **1 Introduction**

43 The earthquake phenomenon includes a wide spectrum of rupture styles associated with differ-
 44 ent source characteristics (Beroza & Ide, 2011; Obara & Kato, 2016; Veedu & Barbot, 2016; Leeman
 45 et al., 2016; Scuderi et al., 2017; Barbot, 2019b). The stress change on a fault produced by an earth-
 46 quake is one of the fundamental physical properties that govern the seismic cycle, impacting the style
 47 of rupture, i.e., slow or fast earthquake, and the magnitude of the event (Aki, 1967, 1979; Kanamori
 48 & Anderson, 1975; Kanamori et al., 1993; Venkataraman & Kanamori, 2004; Ye et al., 2016a; Poli
 49 & Prieto, 2016). The scaling relationship between stress drop and various other source parameters
 50 depends on the tectonic setting (e.g., Scholz et al., 1986; Walsh & Watterson, 1988; Romanowicz, 1992)
 51 and on the rupture style (N. Beeler et al., 2001; Liu-Zeng et al., 2005; Peng & Gomberg, 2010; Kato,
 52 2012; Gomberg et al., 2016; Cocco et al., 2016; Cattania & Segall, 2018). Current estimates of stress
 53 drop for fast earthquakes typically rely on seismological data, whereby the corner frequency of the
 54 source moment-rate function provides rupture duration (e.g., Allmann & Shearer, 2009; Shearer et
 55 al., 2006; Vallée, 2013; Ye et al., 2016b; Courboulex et al., 2016) and a theoretical model is used to
 56 estimate an effective rupture length (Brune, 1970; Madariaga, 1976, 1977; Kaneko & Shearer, 2014).
 57 However, stress drop estimates based on seismological approaches are subject to large uncertainties (Prieto
 58 et al., 2006; Baltay et al., 2011), for example, due to trade-offs between rupture velocity and rise time,
 59 the amplitude of high-frequency waves and attenuation (Baltay & Hanks, 2014), and between the rup-
 60 ture velocity and the overall slip area. Additional bias, especially for large events, may also arise from
 61 overly simplifying assumptions about the rupture process including directivity, single versus multi-
 62 pulse ruptures, geometry (Kaneko & Shearer, 2015), estimation of the overall duration of the event (Courboulex
 63 et al., 2016) and unknown variations in elastic properties of the surrounding rocks.

64 To mitigate these issues, we consider finite slip distributions of slow and fast earthquakes con-
 65 strained by geodetic data, along with other measurements. Inversion of geodetic data for the spatial
 66 distribution of slip on a fault is also subject to fundamental limitations, notably due to the St-Venant
 67 principle that implies a decreasing resolution with increasing distance between source and observa-

tions. However, the deployment of increasingly large and dense geodetic observatories, the development of better analytic standards in inverse theory (Yabuki & Matsu'ura, 1992; Fukahata & Wright, 2008; Aster et al., 2012; Funning et al., 2014; Nocquet, 2018; Hang et al., 2020), and the joint inversion of complementary datasets, both geodetic and seismological, has increased the accuracy of slip distributions (McGuire & Segall, 2003; Atzori & Antonioli, 2011; Evans & Meade, 2012; Barbot et al., 2013; Duputel et al., 2014; Minson et al., 2014; Sathiakumar et al., 2017; DeVries et al., 2017; Gombert et al., 2017, 2018; Amey et al., 2018). For example, the large uncertainties associated with shallow slip near the trench during the 2011 Mw=9.1 Tohoku, Japan earthquake were largely reduced by considering tsunami data (e.g., Yamazaki et al., 2011; Bletery et al., 2014; J. Jiang & Simons, 2016). Rupture of subduction megathrusts can also be well imaged by combining high-rate Global Positioning System (GPS), teleseismic body waves, synthetic aperture radar interferometry (InSAR), campaign GPS, and tsunami observations (Yue, Lay, Rivera, An, et al., 2014). The slip distribution of continental earthquakes is increasingly well resolved by space geodetic observations, notably as InSAR can constrain the three-dimensional surface displacement with high spatial resolution (Fialko et al., 2001; Fialko, 2004; Fialko et al., 2005; Bechor & Zebker, 2006; Barbot et al., 2008a; Avouac et al., 2015; T. Wang & Jónsson, 2015; Moore et al., 2017; T. Wang, Wei, et al., 2018; T. Wang, Shi, et al., 2018; Z. Wang et al., 2018).

Geodetic-based slip distributions of slow and fast earthquakes may constrain the geometric properties of ruptures, i.e., the effective length, width, and area (e.g., Weston et al., 2012; Brengman et al., 2019), but a remaining issue regarding stress drop is large variations of elastic properties across tectonic settings and source depths. The variability of elastic properties should be accounted for to compare estimates of stress drop for events in different tectonic settings or depth, but the elastic properties are not always well known. Following the previous suggestion of quantifying the size of earthquakes with the seismic potency $P = As$ instead of the seismic moment $M = GAs$ (Ben-Zion, 2001; Ben-Zion & Zhu, 2002), where G is the rigidity, A is the rupture area, and s is the representative fault slip, we propose to look at the average potency density of the rupture. We define potency density as an extrinsic property of ruptures that represents a characteristic strain, defined as the ratio of fault slip to rupture length

$$\epsilon = c \frac{s}{R} , \quad (1)$$

85 where R is a characteristic length scale such that $A = R^2$ and $c \sim 1$ is a non-dimensional constant
 86 controlled by geometry. That strain corresponds to a potency density becomes evident when consid-
 87 ering the relationship with seismic potency, i.e. $P \propto \epsilon R^3$ or $\epsilon \propto P/R^3$. Our definition therefore
 88 differs from that of Ben-Zion et al. (2003) and Ben-Zion and Lyakhovsky (2019) that refer to the lo-
 89 cal potency per unit volume as an intrinsic property. As a suitable alternative to the potency den-
 90 sity defined in equation (1), Vallée (2013) uses the term strain drop to refer to the same quantity. But
 91 the name may be ambiguous because as elastic strain indeed decreases around a rupture, anelastic
 92 strain in fact accrues.

A dimensional analysis shows that the recurrence time of instabilities is controlled by potency density, as in $T_r \propto \epsilon R/V_L$, where V_L is the fault long-term loading rate. The potency density is also related to the static stress drop, following

$$\Delta\tau = 2G\epsilon , \quad (2)$$

93 where the factor of 2 comes from Hooke's law in three dimensions. Hence, the potency density pro-
 94 vides a useful source property relevant to both slow and fast earthquakes that can be estimated from
 95 static slip distributions with limited bias from unknown variations in elastic properties.

96 In this study, we build a curated catalog of slip distributions based on the analysis of geodetic
 97 and other geophysical data for thrust fault and megathrust earthquakes (25 events), strike-slip fault
 98 earthquakes (27 events), and slow-slip events on subduction megathrusts (17 events), adding to 65
 99 events (Figure 1). The slip distributions are obtained from a long legacy of published work (62 events)
 100 and original results (3 events) for the 2015 Mw 7.2 Lake Sarez (Tajikistan), 2018 Palu (Indonesia),
 101 and 2019 Ridgecrest (California) earthquakes. Unfortunately, not enough data are available to char-
 102 acterize normal faulting events. In Section 2, we describe the methodology to derive the width, po-
 103 tency, and potency density automatically from the finite slip distributions. In Section 3, we present
 104 the catalog and the relationships among source characteristics. We find that the down-dip rupture
 105 extent of slow and fast earthquakes increases with centroid depth. Notably, the potency density of
 106 subduction earthquakes seems to decrease algebraically with depth, indicating that different rupture

107 processes operate at different depths. We also discuss the impact of potency density on the moment-
 108 duration scaling relationship of slow-slip events.

109 **2 Static source properties from finite slip distributions**

We seek a systematic approach to analyze a large number of slip distributions that have in common a complex source geometry, including non-uniform slip distribution, several branches of varying strike and dip, and rake variations. For a circular patch of radius R with uniform slip s , the potency density finds a closed-form expression (Eshelby, 1957)

$$\epsilon = \frac{7\pi}{32} \frac{s}{R} . \quad (3)$$

110 Some authors (e.g., Somerville et al., 1999; Barbot et al., 2009; Brown et al., 2015) estimate the ef-
 111 fective radius and the mean slip in finite slip distributions to approximate the potency or the stress
 112 drop using equations (2) and (3). Mai and Beroza (2000) first estimate rupture dimensions and then
 113 estimate an average slip that conserves the total seismic moment. These approaches are problematic
 114 in our case because they either rely on arbitrary slip thresholds to define the slip area, ignore the ge-
 115ometrical intricacies of ruptures, or cannot address the issues associated with multiple fault strands.
 116 A single slip threshold is not applicable to treat a catalog of events with magnitudes range from Mw=6.0
 117 to 9.5.

We propose an estimate of the potency density that can be applied to realistic slip distributions with multiple fault strands, rake rotations, and possibly non-planar faults. Consider a fault surface $\partial\Omega$ with varying normal vector $\hat{\mathbf{n}}$ associated with a slip distribution \mathbf{s} . The deformation of the surrounding rocks leads to a distribution of strain ϵ in the elastic medium. Strain is a symmetric, second-order tensor. To reduce the tensor field to a scalar quantity, we seek an average of the strain components aligned with the shear dislocation defined by the dyadic product $\hat{\mathbf{n}} \otimes \hat{\mathbf{s}}$ along the fault (Barbot & Fialko, 2010), where the hat indicates a unit vector, such that $\mathbf{s} = s \hat{\mathbf{s}}$, with $s \geq 0$. Following the estimates of stress drop based on energy considerations proposed by Noda et al. (2013), we use

a weighted average of the strain components based on slip,

$$\epsilon = -\frac{\int_{\partial\Omega} \boldsymbol{\epsilon} : (\hat{\mathbf{n}} \otimes \mathbf{s}) \, dA}{\int_{\partial\Omega} s \, dA} , \quad (4)$$

where the symbol $:$ is the double-dot product (Nemat-Nasser & Hori, 1999; Nemat-Nasser, 2004). The estimate of potency density in equation (4) can be obtained without imposing any arbitrary thresholds on rupture area or slip and is applicable to any slip distribution regardless of complexity. The formulation also accounts for rake rotations and is independent of rigidity. Since slip is used as a weighting factor, the fault area devoid of slip are naturally excluded. This process is illustrated in Figure 2 using the slip distribution of the 2015 Mw 7.2 Lake Sarez earthquake, which was obtained by inversion of SAR data and teleseismic body waves. The slip distribution features varying strike, dip, and rake along the rupture (Figure 2a). The strain distribution on the fault plane, computed as $\epsilon : (\hat{\mathbf{n}} \otimes \hat{\mathbf{s}})$, is shown in Figure 2b. Most areas of positive strain change are associated with regions of little to no slip and are weighted out. Meanwhile, the areas of smooth slip distribution that would be difficult to outline with a slip threshold, for example to the southwest, are associated with little strain, contributing minimally to the overall potency density estimation. The method can then be applied uniformly to events of various sizes. When treating the entire catalog of events, we consider finite slip distributions with fault surfaces decomposed into rectangular or triangular meshes. We calculate the strain tensor at the patch centers assuming a uniform half-space with Poisson's ratio $\nu = 0.25$ using the analytical solution of Okada (1992) for rectangular dislocations and the one of Nikkhoo and Walter (2015) for triangular dislocations. If the elastic properties are uniform, the deformation does not depend on the rigidity. When calculating potency density, we ignore vertical or lateral variations of elastic moduli.

In the same vein, we seek to describe the geometrical properties of ruptures from finite slip distributions without potential bias from arbitrary thresholds for slip, such that slow and fast, small and large earthquakes can be treated consistently. The definition of rupture width can vary depending on the data considered. Rupture length can be estimated from surface slip (Wyss, 1979; Manighetti et al., 2001, 2007), or from the spatial extent of early aftershocks (Kanamori & Anderson, 1975; Daragh & Bolt, 1987), leading to different results (Wells & Coppersmith, 1994). We use slip as a weight-

ing factor and estimate the centroid location as follows

$$\bar{z} = \frac{\int_{\partial\Omega} z s dA}{\int_{\partial\Omega} s dA} , \quad (5)$$

where \bar{z} is the centroid depth, and z is the depth of the fault surface. To facilitate the comparison of ruptures occurring on faults with different dip angles, we focus on the depth extent of ruptures instead of the down-dip rupture width. On quasi-vertical strike-slip faults, comparing the depth extent or the down-dip extent is equivalent. On shallow dipping faults, considering the depth extent is useful to understand the potential relationship between rupture geometry and stratigraphy or the overall vertical thermo-mechanical structure of the plate boundary. To estimate the rupture width in the depth direction, we treat rupture depth as a random variable. We do not make any specific assumption about the probability density distribution of depth, except for the fact that it is a positive quantity, and therefore a Gaussian distribution is not appropriate, unavoidably predicting non-zero probability of negative depths (Tarantola, 2004). To avoid this issue, we manipulate the logarithm of depth. For example, if the logarithm of depth was normally distributed, then depth would be log-normally distributed, predicting zero probability of slip above the surface. Accordingly, we first compute another estimate of the centroid depth as

$$\begin{aligned} \bar{w} &= \log_{10}(\bar{z}^*) \\ &= \frac{\int_{\partial\Omega} \log_{10}(z) s dA}{\int_{\partial\Omega} s dA} , \end{aligned} \quad (6)$$

where $\log_{10}(x) = \log(x)/\log(10)$. We then estimate the standard deviation of the depth distribution

$$\bar{\sigma}^2 = \frac{\int_{\partial\Omega} [\log_{10}(z) - \bar{w}]^2 s dA}{\int_{\partial\Omega} s dA} . \quad (7)$$

Finally, we define the rupture width in the depth direction as the range of depths that would encompass more than 98% of the slip distribution if depth was log-normally distributed, i.e., $W = 10^{\bar{w}+\bar{\sigma}} - 10^{\bar{w}-\bar{\sigma}}$. Simplifying this expression, we obtain

$$W = 2 \bar{z}^* \sinh(\sigma \log(10)) . \quad (8)$$

137 These estimates can accommodate non-planar faults, multiple strands, and non-uniform slip distri-
 138 butions. The estimates of rupture dimension and potency density are independent beyond the fact
 139 that they use the same slip distribution.

140 3 Source characteristics of earthquakes and slow-slip events

141 We compile a collection of finite slip distributions for slow and fast earthquakes based on the
 142 analysis of geodetic and other geophysical data (Figure 1). We curate a catalog based on the dataset
 143 used to constrain the models, the quality of the inversion procedure, in particular whether an objec-
 144 tive criterion is used for the degree of regularization, and the absence of unrealistic features like spu-
 145 rious slip concentration at the boundary of the discretized fault. We collect published slip distribu-
 146 tions for 52 earthquakes and 17 slow-slip events and combine them in a uniform format where the
 147 slip, position, length, width, strike, dip, and rake is documented for every rectangular patch, and ad-
 148 ditionally the vertex coordinates for triangular dislocations. The database includes 27 strike-slip fault
 149 earthquakes, 25 thrust fault and megathrust earthquakes, and 13 megathrust slow-slip events. The
 150 catalog includes strike-slip fault earthquakes from moment magnitude $M_w=6.0$ to 8.6 and thrust earth-
 151 quakes from magnitude $M_w=6.3$ to 9.2.

152 All models are constrained by geodetic data, i.e., GPS and/or InSAR, but may also include re-
 153 gional and teleseismic data and tsunami records. In some cases, only one model satisfies the require-
 154 ments and can be found in digital form. However, in many cases, the same event is documented in
 155 several studies. Collectively, the 65 events considered here are documented in at least 109 different
 156 models. For example, several sophisticated models of the 1992 $M_w=7.3$ Landers, California earth-
 157 quake based on seismic and geodetic data can be found (e.g., Hernandez et al., 1999; Wald & Heaton,
 158 1994), but we prefer the model of Fialko (2004) based on a reconstruction of the three-dimensional
 159 surface displacements at high spatial resolution. The surface displacements of the 2010 $M_w=7.2$ El
 160 Mayor-Cucapah earthquake was constrained by InSAR data (M. Wei et al., 2011), but the model of S. Wei
 161 et al. (2013) includes teleseismic and regional seismic data, improving resolution at depth. Similarly,
 162 the 1999 $M_w=7.1$ Hector Mine earthquake was constrained with geodesy (Simons, 2002), but the model
 163 of Salichon et al. (2004) includes InSAR, GPS, and teleseismic data. Model selection has an impor-
 164 tant impact on the estimation of potency density. For the Hector Mine earthquake, the models of Simons

(2002) and Salichon et al. (2004) imply a potency density of 168 and 259 microstrain, respectively. For the Parkfield earthquake, the models of Ji et al. (2004), Dreger et al. (2005), and Barbot et al. (2012) imply potency densities of 45, 22, and 33 microstrain, respectively. This indicates that the epistemic uncertainties associated with model discretization, data selection, and inversion methods are multiplicative. The variability found in multiple models of the same event indicates that the potency density is well constrained within a factor of two. Although these estimates may vary significantly within that range, these differences pale in regard to the overall variability of potency density across strike-slip fault earthquakes, from 20 to 500 microstrain, covering about two orders of magnitude. Among strike-slip fault earthquakes, we find that model selection has no impact on the relationships among source characteristics, as there is no systematic variation of potency density with depth or magnitude for this type of event.

The source properties of subduction megathrust earthquakes are more sensitive to model selection due to the various assumptions affecting shallow slip near the trench (e.g., Loveless & Meade, 2011). In particular, a prevailing, but incorrect assumption has been that fault slip in the accretionary region is aseismic. However, accretionary prisms are known to produce tsunami earthquakes (Kanamori, 1972; Pelayo & Wiens, 1992; Satake & Tanioka, 1999; Bilek & Lay, 2002; Geersen, 2019), the rupture of giant earthquakes often reaches the trench (e.g., Ishii et al., 2005; Lorenzo-Martín et al., 2006; Fujiwara et al., 2011; Yue, Lay, Rivera, An, et al., 2014; Tomita et al., 2017), and low-frequency earthquakes and tectonic tremors occur at shallow depth at subduction zones (Y. Jiang et al., 2012; Dixon et al., 2014; Wallace et al., 2016, 2017; Toh et al., 2018; Nakano et al., 2018). Among the slip distributions of giant earthquakes, i.e., the 2004 Mw=9.2 Sumatra-Andaman (Indonesia), 2011 Mw=9.1 Tohoku-Oki (Japan), and 2010 Mw=8.8 Maule (Chile) earthquakes (Rhie et al., 2007; Chlieh et al., 2007; Simons et al., 2012; Lorito et al., 2011; Luttrell et al., 2011; S. Wei et al., 2012; Iinuma et al., 2012) and tsunami earthquakes (Newman, Hayes, et al., 2011; Bilek et al., 2011; Satake et al., 2013; Yue, Lay, Rivera, Bai, et al., 2014), we select those that mitigate uncertainty in shallow slip by incorporating geodetic measurements with tsunami and other geophysical data. Even with these restrictions, the epistemic uncertainties associated with meshing, regularization and data selection introduce large variability in source characteristics. For example, the models of S. Wei et al. (2012), Yamazaki et al. (2011), and Bletery et al. (2014) for the 2011 Mw=9.1 Tohoku-Oki earthquake im-

194 ply a potency density of 51, 102, and 160 microstrain, respectively and a centroid depth of 18, 14,
 195 and 7 km, respectively. These source characteristics are also well constrained within a factor of two.
 196 However, given the range of potency density from 10 to 200 microstrain and of centroid depths from
 197 2 to 50 km among thrust earthquakes, these uncertainties do not significantly affect the overall depth
 198 dependence of potency density for this type of events.

199 For each finite slip distribution of slow and fast earthquakes, we estimate the width in the depth
 200 direction, potency, and potency density. The supplementary materials include the slip distributions
 201 in a uniform format and the estimated source characteristics for all published models available. When
 202 multiple slip models are available, we select the one from the most comprehensive study. The source
 203 characteristics are listed in Table 1 for strike-slip earthquakes, Table 2 for thrust and megathrust earth-
 204 quakes, and Table 3 for megathrust slow-slip events. We cluster the events in groups of broadly sim-
 205 ilar tectonic settings, including strike-slip faults, thrust faults, and megathrusts. We further identify
 206 the tsunamigenic earthquakes, which include any earthquake that generated a substantial tsunami,
 207 encompassing the so-called tsunami earthquakes that generate a tsunami larger than what would be
 208 anticipated for their magnitude (Kanamori, 1972).

209 The source characteristics of strike-slip fault earthquakes for the catalog considered are shown
 210 in Figures 3a, 4a, and 5. The potency density of strike-slip fault earthquakes varies from 20 to 500
 211 microstrain, the smallest value being associated with the 2013 Mw=6.6 Cook Strait, New Zealand
 212 earthquake (Hamling et al., 2014), presumably biased due to the depth and offshore location of the
 213 slip patch. The largest potency density is found for the 2011 Mw=6.3 Christchurch, New Zealand,
 214 the 2011 Mw=7.1 Van, Turkey, and the 2019 Mw=7.1 Ridgecrest earthquakes, illustrating the inde-
 215 pendence with earthquake magnitude. The 1992 Mw=7.3 Landers, the 1999 Mw=7.1 Hector Mine,
 216 and the 2018 Mw=7.7 Kaikoura earthquakes have a similar potency density of ~ 260 microstrain,
 217 despite their different centroid depths of 4, 5, and 16 km depth, respectively. Overall we find that strike-
 218 slip fault earthquakes have the largest potency density among all events in the catalog, with no sys-
 219 tematic trend among source characteristics, except for an increase in rupture width with centroid depth.

220 We now turn our attention to the source characteristics of thrust fault and megathrust earth-
 221 quakes (Figures 3b, 4b, and 5). The potency density of continental thrust earthquakes ranges from

222 40 to 200 microstrain with centroid depths ranging from 3 to 20 km. Megathrust earthquakes span
 223 a larger depth range, from 2 to 40 km, with a range of potency density from 10 to 160 microstrain.
 224 While the distributions show some overlap, the mean potency density of continental earthquakes is
 225 therefore overall higher than their subduction zone counterparts. This is exemplified by the 2009 Mw=6.9
 226 Qaidam (Elliott et al., 2013) and the 2015 Mw=7.9 Nepal (S. Wei et al., 2015) earthquakes. Over-
 227 all, subduction zone great and giant earthquakes have the smallest potency density of all types of earth-
 228 quakes considered. Potency density does not exhibit any relationship with event size when all events
 229 are considered. However, subduction zone earthquakes reach higher moment magnitudes than con-
 230 tinental earthquakes (Figure 4). This may reflect a reduced structural complexity on subduction megath-
 231 rusts that allows deep seismogenic zone earthquakes to propagate farther in the trench-parallel di-
 232 rection.

233 Among continental thrust earthquakes, there is no systematic variation of potency density with
 234 magnitude or with centroid depth. For megathrust earthquakes, however, ruptures with shallow cen-
 235 troid depths show a higher potency density than deeper ruptures, as the three most shallow events
 236 also have the largest potency density. This relationship is controlled by the 2010 Mw=7.7 Mentawai
 237 tsunami earthquake and the 2011 Mw=9.1 Tohoku-Oki tsunamigenic earthquake, that both have a
 238 shallow centroid depth and a high potency density. Since continental thrust earthquakes and shal-
 239 low megathrust earthquakes have a higher potency density, an overall dependence of potency den-
 240 sity with centroid depth emerges among combined thrust and megathrust earthquakes.

241 The potency density of slow-slip events at any depth, ranging from 0.01 to 3 microstrain, is lower
 242 than for any earthquake in the catalog, by about 2 to 3 orders of magnitudes, despite comparable po-
 243 tency and moment magnitude. Deep slow-slip ruptures also spread across the widest depth range of
 244 all events considered (Figure 5). Slow-slip events therefore represent an end-member of rupture style
 245 with particularly low slip efficiency distributed over a large rupture area. No discernible trend can
 246 be observed between potency and centroid depth for slow-slip events from Costa Rica (Dixon et al.,
 247 2014), Guerrero, Mexico (Radiguet et al., 2012; Bekaert et al., 2015), Hikurangi, New Zealand (Wallace
 248 & Eberhart-Phillips, 2013), and Cascadia, Pacific Northwest (Schmidt & Gao, 2010; Goodner, 2014).
 249 However, like it seems to apply to all types of events, the depth extent of slow-slip ruptures increases
 250 with their centroid depth.

251 **4 Discussion**

252 Our analysis reveals that potency density is independent of rupture size, considering ruptures
 253 of the same type and tectonic setting, consistent with seismological studies of stress drop (Kanamori
 254 & Anderson, 1975; Venkataraman & Kanamori, 2004; Allmann & Shearer, 2009; Ye et al., 2016b; Miyakoshi
 255 et al., 2019). The independence of potency density with size for ruptures of any type is compatible
 256 with the idea that stress drop or potency density is a fundamental properties of ruptures leading to
 257 self-similarity of the earthquake phenomenon (Cocco et al., 2016). Vallée (2013) shows that global
 258 earthquakes from the surface to 600 km depth are compatible with a constant strain drop model, al-
 259 though his data for events shallower than 50 km show significant scatter. Analysis of shallow earth-
 260 quakes based on the same technique (Courboulex et al., 2016) shows no particular trend between stress
 261 drop and magnitude, but the changes with depth or tectonic setting are not discussed.

262 Our analysis shows systematic differences of potency density among types of ruptures and tec-
 263 tonic settings. Continental strike-slip fault earthquakes on average have the largest potency density,
 264 between 20 and 500 microstrain. Continental thrust faults earthquakes have the second highest po-
 265 tency density, between 40 and 200 microstrain. Shallow subduction zone ruptures, including tsunami
 266 earthquakes, are characterized with large potency density, between 100 and 200 microstrain. Deep
 267 megathrust earthquakes form a group of the lowest overall potency density, between 10 and 100 mi-
 268 crostrain. Finally, slow-slip event form a category of their own, with a potency density between 0.01
 269 and 3 microstrain.

270 The 2010 Mw=7.7 Mentawai tsunami earthquake exhibits a particularly high potency density
 271 compared to other megathrust earthquakes, including the tsunamigenic 2008 Mw=7.2 North Pagai
 272 earthquake (Salman et al., 2017). The large potency density of tsunami earthquakes may indicate the
 273 activation of strong-weakening mechanisms for near-trench ruptures, such as thermal pressurization
 274 of the frictional interface proposed by Mitsui et al. (2012) and Noda and Lapusta (2013). The simul-
 275 taneous high potency density and low stress drop of tsunami earthquakes are compatible due to the
 276 low rigidity of surrounding rocks in the accretionary prism (Sallarès & Ranero, 2019).

277 Deep megathrust earthquakes exhibit a lower potency density and a larger rupture width than
 278 any other earthquake category. It is possible that the deep ruptures propagate into nominally slow-

279 slip or velocity-strengthening regions, reducing their average potency density in the process. This may
 280 explain why no periodic slow-slip has been found at subduction zones where a deep rupture recently
 281 took place, such as at the Japan trench or the Sunda trench, as the exceedingly large stress reduc-
 282 tion caused by a large rupture may have interrupted the slow-slip cycle for a few decades (L. Feng
 283 et al., 2015; Shi et al., 2020). The low potency density of deep megathrust ruptures may also be caused
 284 by their proximity to the stability transition, which may manifest itself by a gradual reduction of co-
 285 seismic weakening with increasing temperature before stable-weakening or firmly velocity-strengthening
 286 properties are attained at greater depths.

287 The tendency of ruptures to increase width with increasing centroid depth is clear within the
 288 catalog (Figure 5), particularly as rupture width does not scale with seismic potency (Figure 7). How-
 289 ever, this trend may be biased in part by the upper bound of rupture width from the free surface.
 290 Indeed, by construction, the effective width cannot exceed twice the centroid depth. It is also likely
 291 that considering more events of smaller magnitude may fill the lower right quadrant of Figure 5. Rup-
 292 tures on different types of faults follow a different scaling with centroid depth. Continental strike-slip
 293 events follow $w = 10^{0.43} \bar{z}^{0.561}$; continental thrust earthquakes $w = 10^{0.4} \bar{z}^{0.527}$; shallow megath-
 294 rust events $w = 10^{0.03} \bar{z}^{0.93}$; and other megathrust events $w = 10^{0.12} \bar{z}^{0.86}$. The sub-linear relation-
 295 ship between width and centroid depth in log-log space for all events, with a power exponent of 0.76,
 296 indicates the tendency of most earthquakes to not break the surface, or to exhibit less slip near the
 297 surface, broadly compatible with the concept of shallow slip deficit (Fialko et al., 2005).

298 The deep slow-slip events, which represent the widest ruptures of the catalog despite their small
 299 magnitude, scatter along the same trend as other type of events across various tectonic contexts. Since
 300 the source mechanism of slow and fast earthquakes may be widely different, this result indicates that
 301 similar scaling of source properties can be obtained for different events, but for different reasons. For
 302 example, Cattania and Segall (2018) discuss how the relationships among magnitude, duration, and
 303 stress drop can be similar in numerical simulations of seismic cycles, but for different underlying rea-
 304 sons. Slow-slip events have been found to follow the same moment-duration scaling as fast ruptures (Michel
 305 et al., 2019), despite their widely different radiation efficiency.

The large variations of potency density across tectonic settings and depth can be due to the activation of different rupture processes. For instance, the high potency density observed for continental subduction zone earthquakes and tsunami earthquakes may be attributed to strong weakening mechanisms such as flash weakening (Hirose & Bystricky, 2007; N. M. Beeler et al., 2008; Kitajima et al., 2011; Goldsby & Tullis, 2011) and thermal pressurization (Andrews, 2002; Hirose & Bystricky, 2007; Mitsui et al., 2012; Noda & Lapusta, 2013; Viesca & Garagash, 2015). The potency density of such events may be approximated with

$$\epsilon \propto \frac{\Delta\mu \bar{\sigma}}{2G} , \quad (9)$$

where $0.1 \lesssim \Delta\mu \lesssim 0.6$ represents a large drop of frictional strength (e.g., Toro et al., 2004, 2006) and $60 \lesssim \bar{\sigma} \lesssim 100$ MPa is the effective normal stress, leading to potency density of the order of 100 to 500 microstrain. Hence, ruptures with potency density larger than about 100 microstrain may be associated with strong weakening. This would imply that most continental strike-slip fault and continental thrust ruptures operate under this condition, compatible with the claims of Viesca and Garagash (2015). Smaller potency densities may be explained in the framework of rate-and-state friction (Dieterich, 1979; Ruina, 1983; Barbot, 2019a) following

$$\epsilon \propto \frac{(b-a)\bar{\sigma}}{2G} , \quad (10)$$

where $(b-a) \sim 4 \times 10^{-3}$ is the steady-state parameters controlling the velocity dependence of friction (Scholz, 1998; Lapusta & Barbot, 2012), or simply $1 \lesssim (b-a)\bar{\sigma} \lesssim 10$ MPa, leading to a potency density in the range of 15 to 150 microstrain. However, this estimate may vary greatly because of dynamic stress overshoot or undershoot (Kanamori & Rivera, 2006) and the detailed geometry of a rupture. Slow-slip events occur in the stable weakening regime, corresponding to failed nucleations (Liu & Rice, 2005, 2007; Segall et al., 2010; Goswami & Barbot, 2018; Bürgmann, 2018; Barbot, 2019b). Hence, their total slip scales with the characteristic weakening distance, as in

$$\epsilon \propto \frac{L}{R} , \quad (11)$$

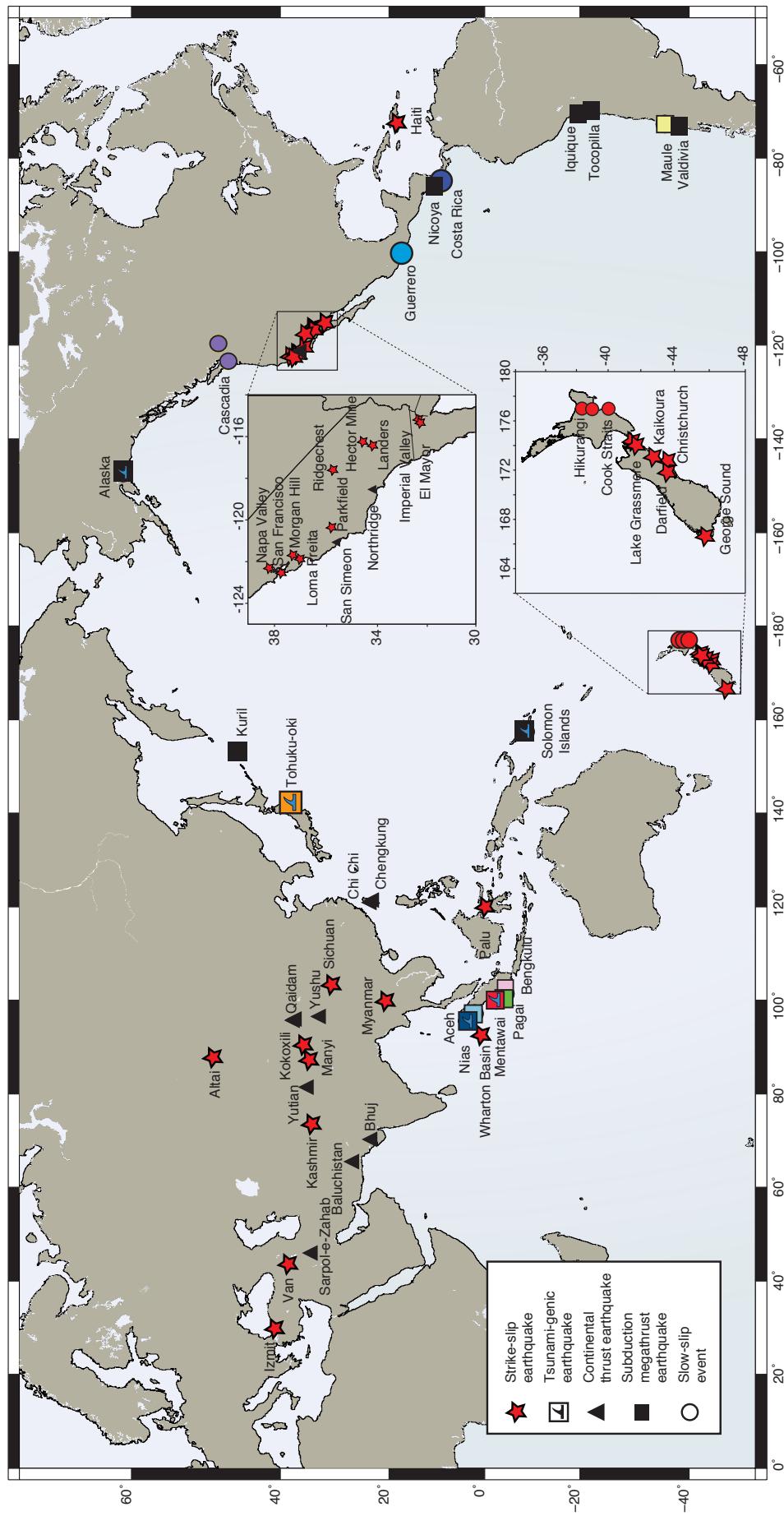
306 where $1 \lesssim L \lesssim 10$ cm is the characteristic weakening distance of rate-and-state friction in a range
 307 compatible with slow slip and $R \sim 50$ km is the down-dip rupture width, leading to estimates of po-
 308 tency density in the range of 0.01 to 3 microstrain. The overall variability of source properties, e.g.,
 309 two orders of magnitude for potency density, may be attributed to the presence of frictional contrast
 310 along the fault (Kaneko et al., 2010; Kaneko & Shearer, 2015), variability of earthquake slip due to
 311 the stress shadow of previous ruptures (Michel et al., 2017; Barbot, 2019b), morphological gradients (Qiu
 312 et al., 2016; Sathiakumar et al., 2019), variation of off-fault damage (Cappa et al., 2014), differing
 313 coupling coefficients (Chouhet & Vallée, 2018), or the activation of different weakening mechanisms (Kirkpatrick
 314 & Shipton, 2009; Cocco et al., 2016; Cattania & Segall, 2018).

315 The variability of potency density among events has important implications on the moment-
 duration scaling relationship of slow-slip events, which may differ from that of fast ruptures (Peng
 316 & Gomberg, 2010). Simple models provide a rationale to understand the moment-duration scaling
 of slow and fast ruptures. For slow-slip events, we may assume that the rupture spreads rapidly across
 317 a fixed down-dip width W and then propagates along strike for most of the duration of the event at
 a constant rupture velocity between 0.01 and 0.1 m/s. This leads to the along-strike rupture length
 318 $L = V_r T$ and the rupture area $A = W V_r T$, where V_r is the rupture velocity and T is the rupture
 duration. The relationship between slip and potency density $s \approx \epsilon W$ also holds. The moment re-
 leased by slow-slip events can then be defined as

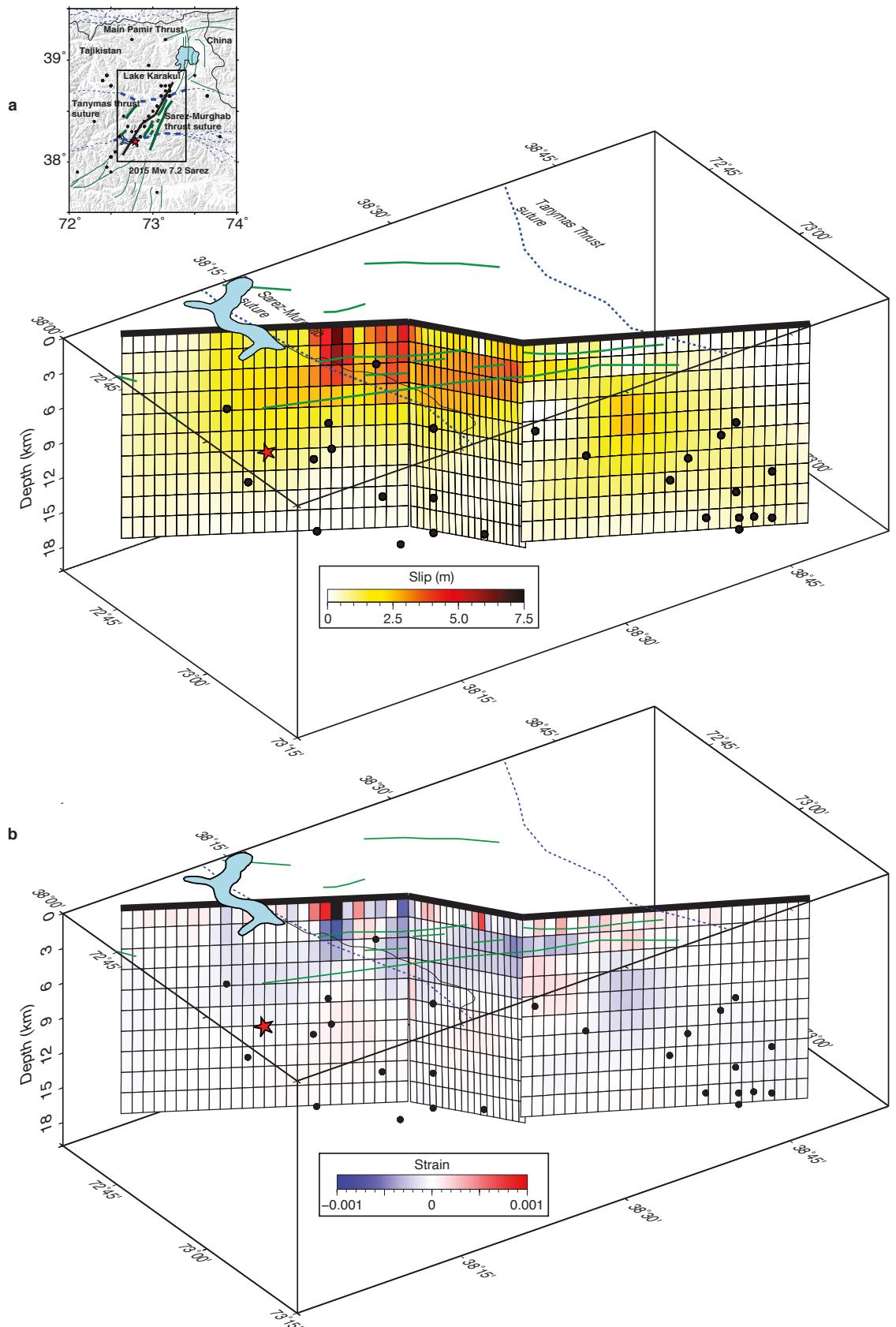
$$M \approx G W V_r \epsilon T , \quad (12)$$

showing a linear relationship among moment, duration, and potency density. For fast ruptures, a sim-
 319 ple model assumes a linear relationship between rupture duration and rupture radius, leading to

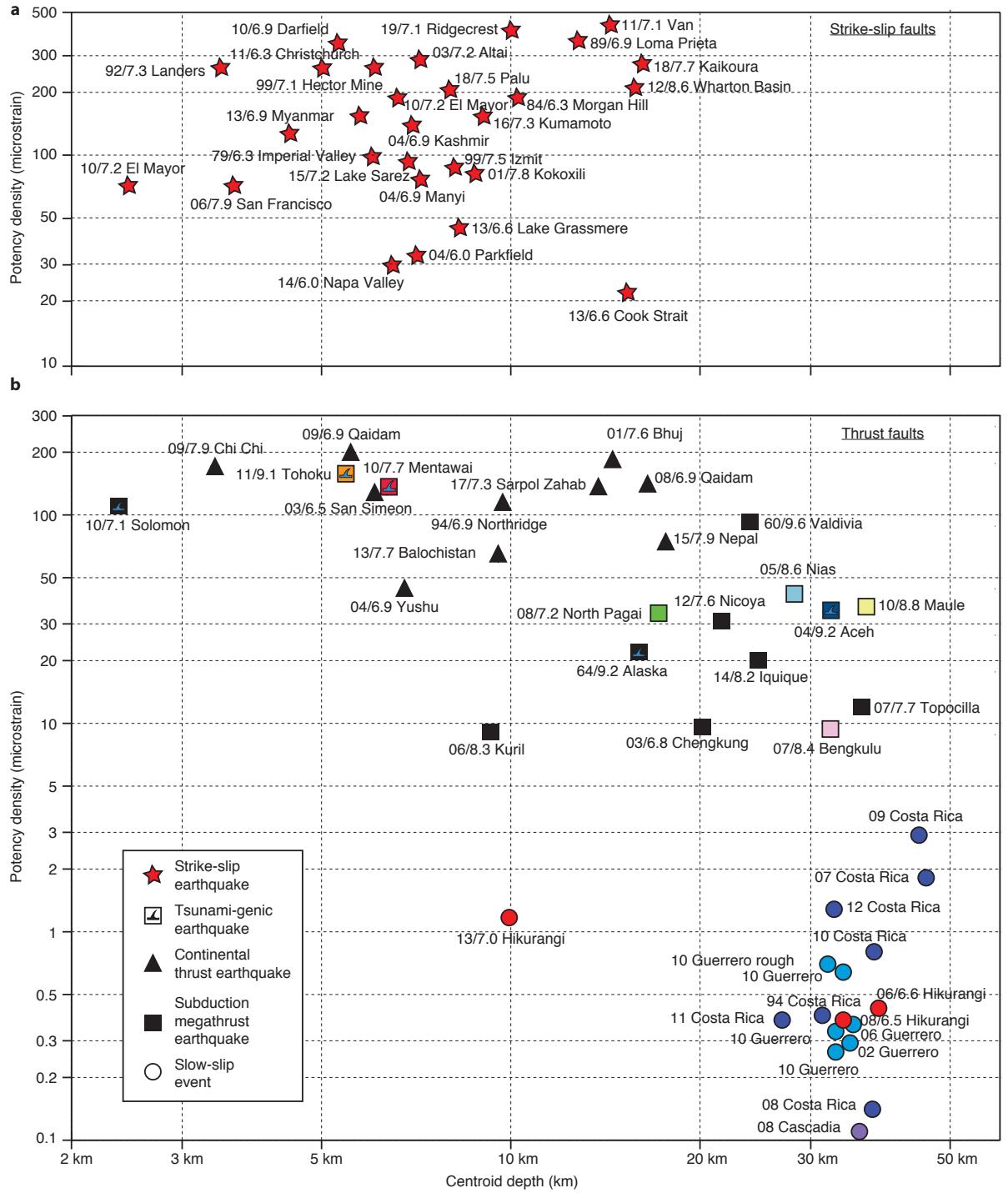
$$M \approx G V_r^3 \epsilon T^3 , \quad (13)$$

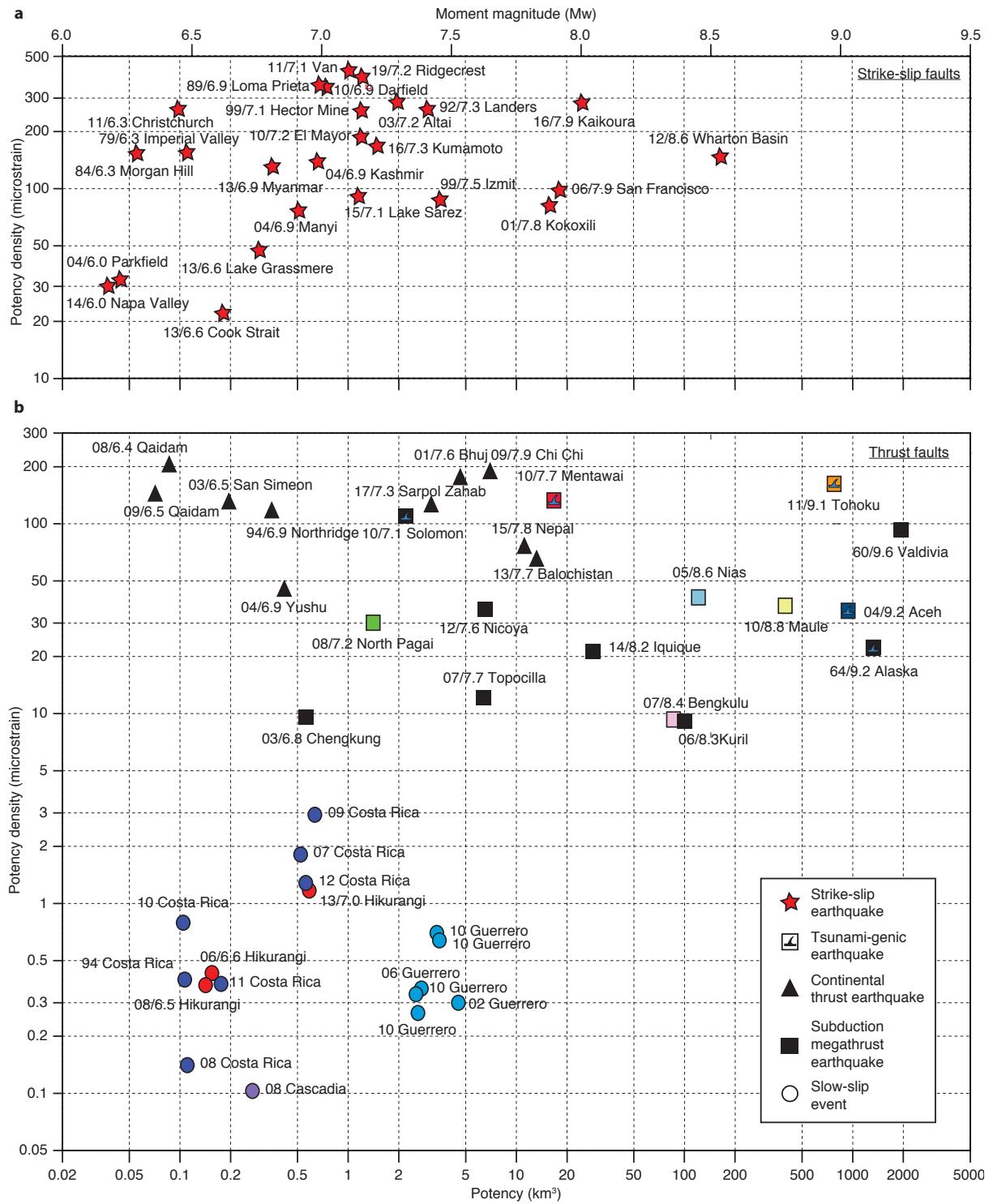

320 which shows a power law between moment and duration. More sophisticated models of fast ruptures
 321 that incorporate the propagation of aseismic slip into the rupture area provide slightly different power
 322 exponents (Chen & Lapusta, 2009; Cattania & Segall, 2018). Deciphering the moment-duration scal-
 323 ing for slow-slip events is important to better understand the underlying source processes. However,

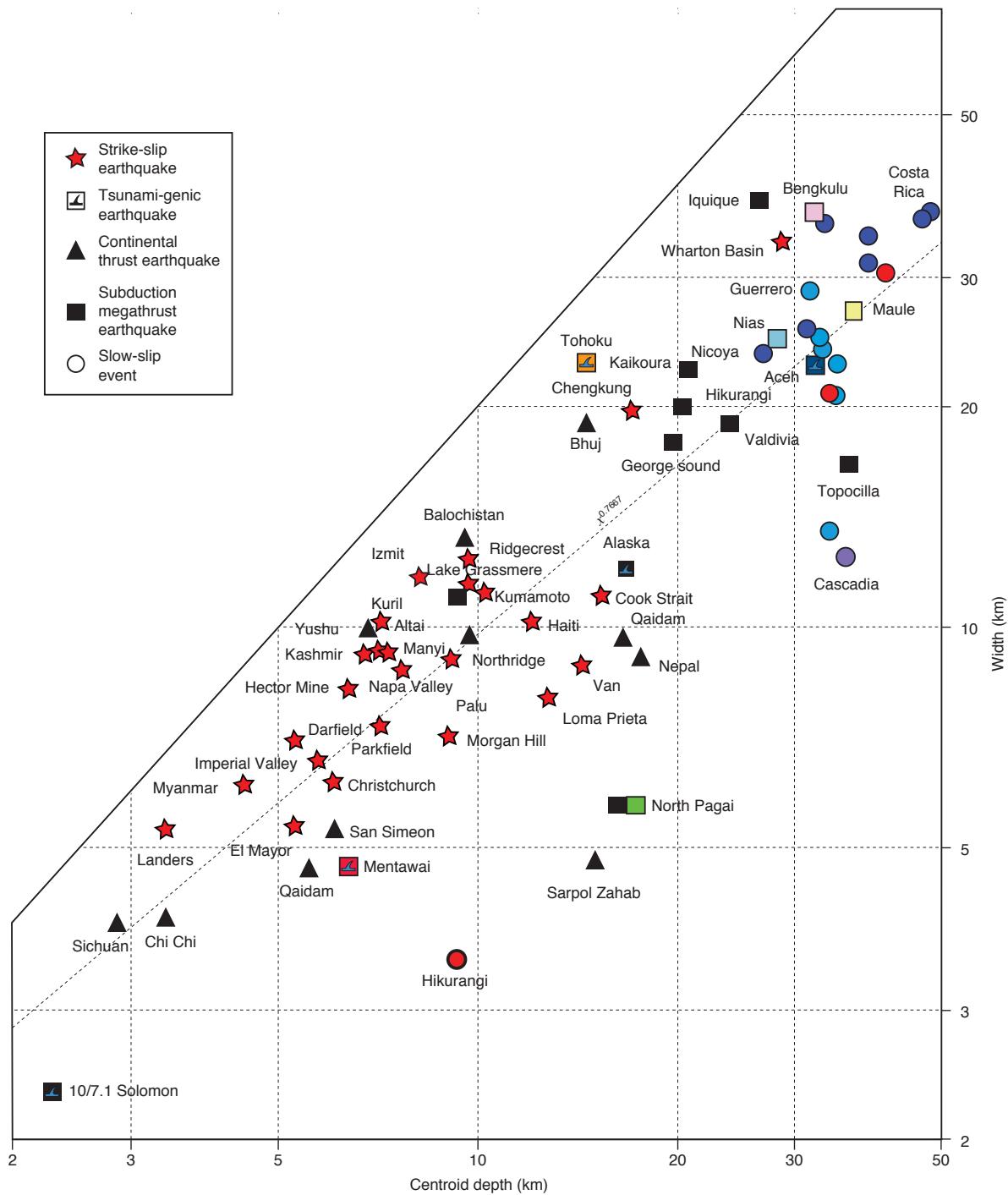
319 large variations of potency density of about two orders of magnitude (Figures 3 and 4) can introduce
 320 important bias if potency density is not included in the analysis. This may explain the contradictory
 321 results found at the Cascadia subduction zone, where Gao et al. (2012) and Michel et al. (2019) found
 322 linear and cubic moment-duration scalings, respectively, for events rupturing similar sections of the
 323 Cascadia megathrust. To shed more light on this problem, we investigate the relationship among mo-
 324 ment, duration, and potency density with the catalog of slow-slip events. For the collection of slow-
 325 slip events considered, the duration ranges between 7 days and 180 days, the moment covers two or-
 326 ders of magnitude, between 5×10^{18} to 5×10^{20} Nm, and the potency density varies between 0.01
 327 and 3 microstrains, providing a sufficient dynamic range to investigate the scaling relationships. Event
 328 duration increases with potency density, with $T \approx \epsilon^{0.2}$ for the entire catalog (Figure 8). The largest
 329 outlier corresponds to a near-trench event at the Hikurangi subduction zone that may involve a dif-
 330 ferent rupture mechanism than its deep counterparts. The moment-duration relationship (Figure 9)
 331 shows large variability that cannot be reduced by either the linear and cubic root scaling laws, whether
 332 or not regions are considered individually or together. We conclude that variations in potency den-
 333 sity among slow-slip events preclude a simple characterization in terms of a linear or cubic root scal-
 334 ing between moment and duration. Several micro-physical mechanisms of deformation may be respon-
 335 sible for the slow-slip phenomenon, including stable weakening (Liu & Rice, 2005, 2007; Veedu & Bar-
 336 bot, 2016), dilatant hardening (Segall et al., 2010), semi-brittle deformation (Goswami & Barbot, 2018),
 337 fluid pulses (Cruz-Atienza et al., 2018), and possibly thermal instabilities. In addition, some slow-
 338 slip events do not occur spontaneously, but are triggered by distant seismic events (Zigone et al., 2012).
 339 It is possible that a single scaling relationship may be inadequate to capture a such wide range of rup-
 340 ture mechanisms. In addition, a constant rupture velocity may not be applicable during nucleation,
 341 propagation, and arrest of slow-slip ruptures.

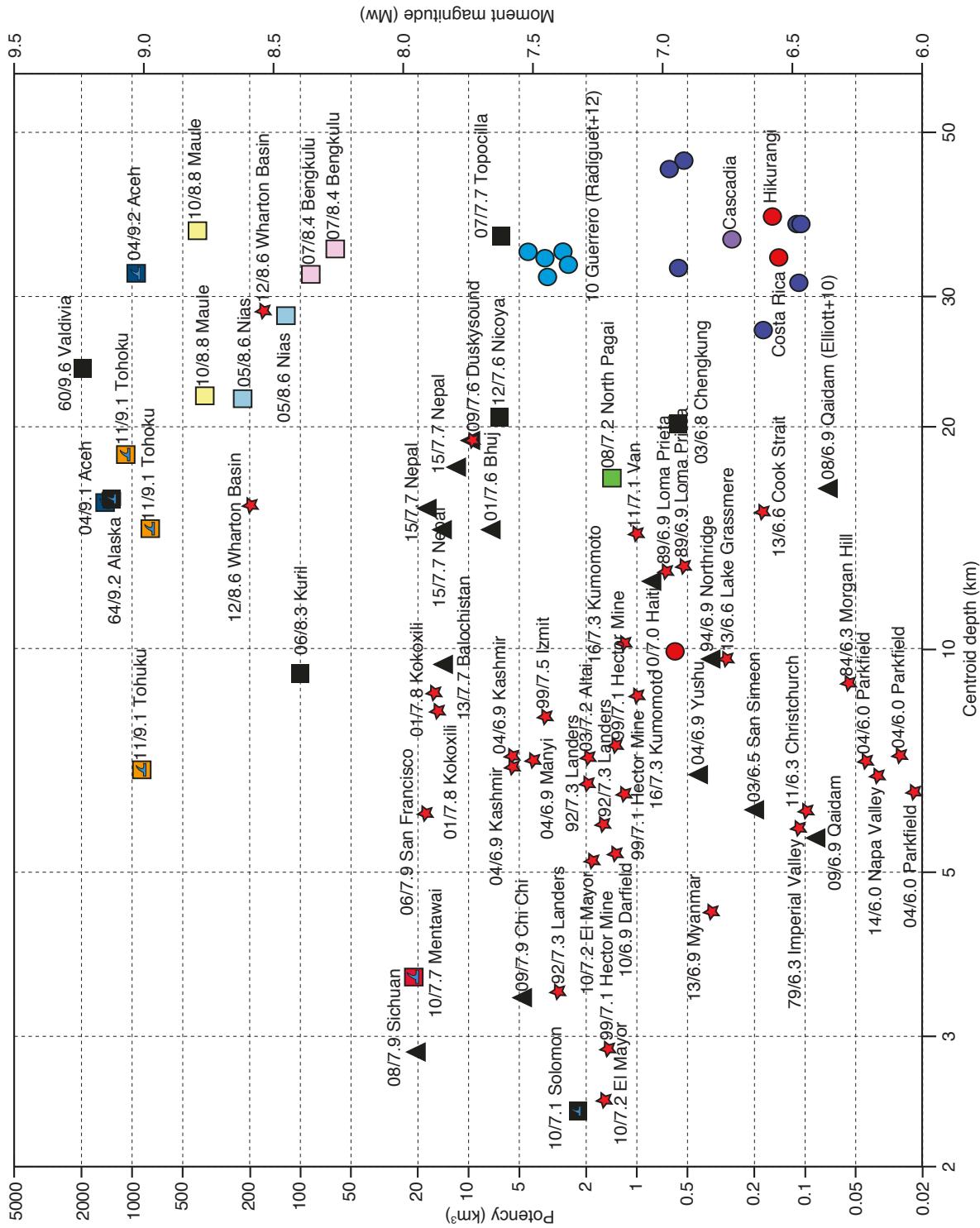

342 5 Conclusion

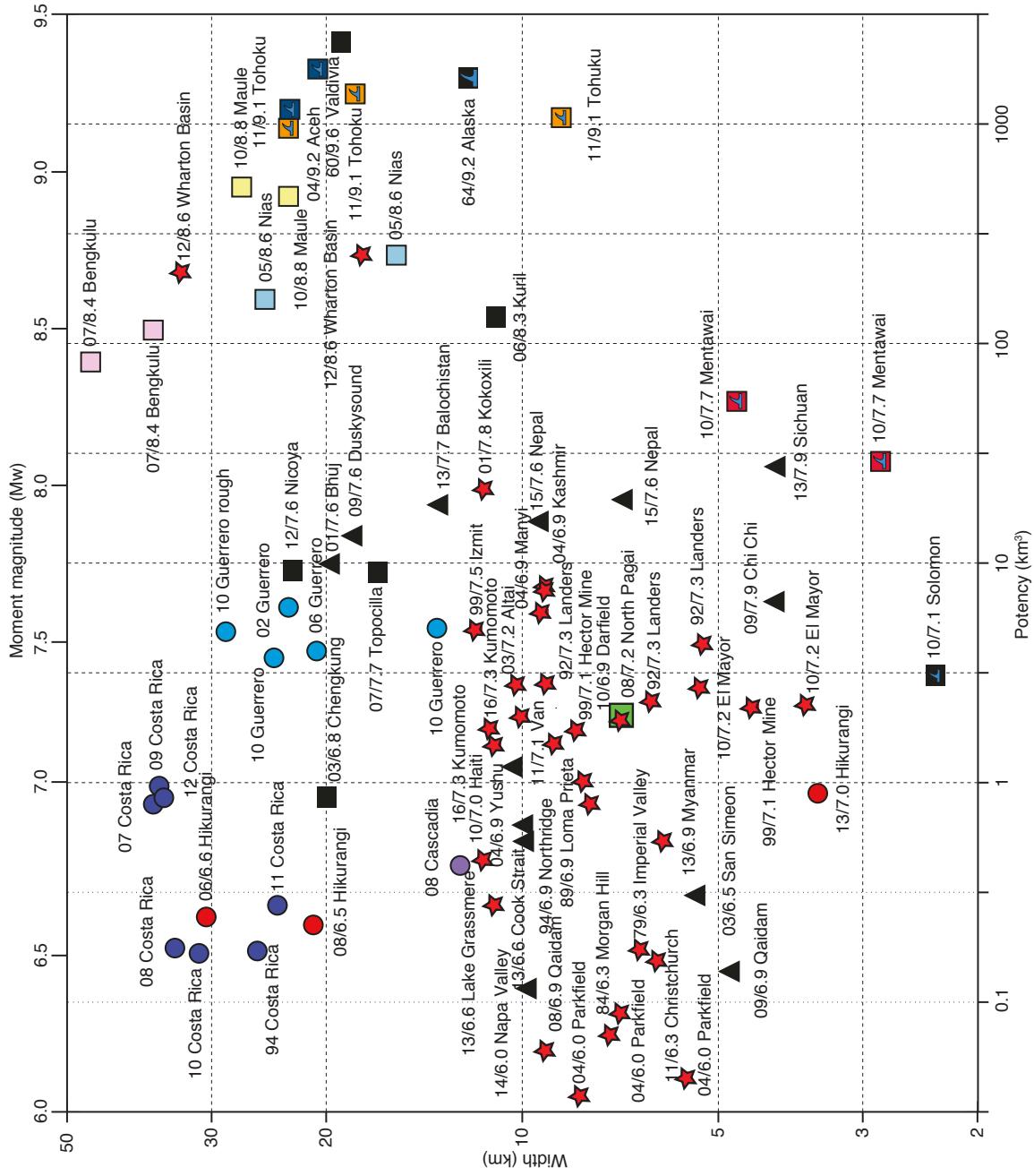
343 We gather a catalog of slow and fast earthquake slip distributions derived from the analysis of
 344 geodetic and other geophysical data to better understand the static source properties of continental
 345 and subduction earthquakes and slow-slip events. We estimate simple source characteristics, such as
 346 centroid depth, width, potency, and potency density, with limited bias from unknown variability of

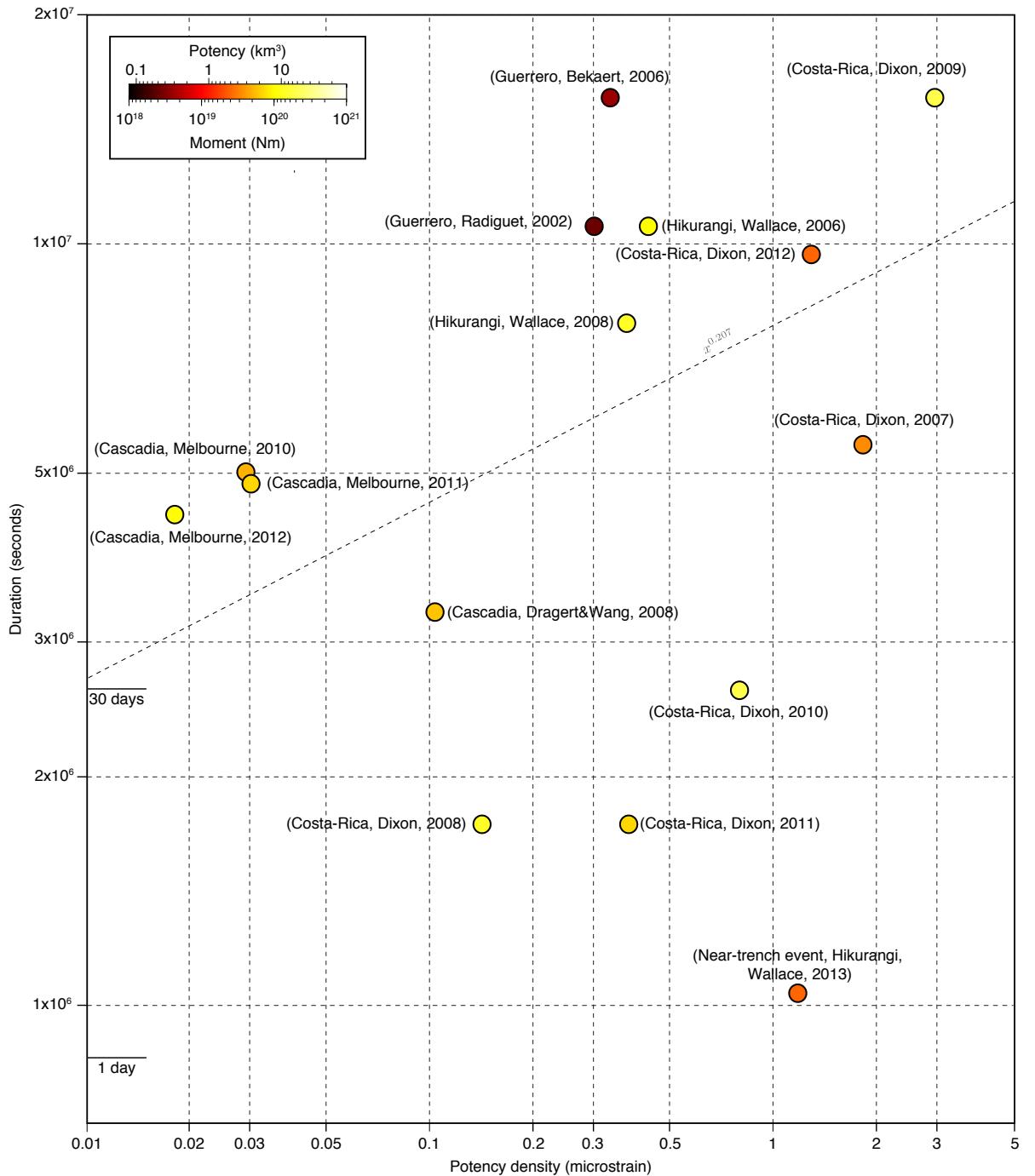

347 elastic properties. This allows us to compare events of different styles from various tectonic settings
348 and source depths. The potency density, a fundamental property of ruptures related to stress drop
349 affecting rupture size and rupture style, varies significantly depending on the tectonic setting and,
350 in the case of megathrust earthquakes, centroid depth. In particular, the potency density of shallow
351 earthquakes and tsunami earthquakes is higher than their deep counterpart. This implies systematic
352 variation of rupture processes with depth on a megathrust, with strong weakening being more promi-
353 nent closer to the trench. Deep megathrust earthquake share a lower potency density, indicative of
354 less efficient weakening mechanisms or the propagation of deep ruptures into stable-weakening regions.
355 Slow-slip events at subduction zones represent an end-member of large ruptures characterized with
356 low potency density. Large variability in potency density among slip-slip events, which affects dura-
357 tion, makes simple scaling relationships for the moment-duration scaling inadequate. If large potency
358 density is indicative of strong weakening mechanisms, most continental strike-slip fault and continen-
359 tal thrust ruptures operate under this condition.


Figure 1. The distribution of slow and fast earthquakes considered in this study. The catalog includes thrust fault and megathrust earthquakes (25 events), strike-slip fault earthquakes (red stars, 27 events), and slow-slip events on subduction megathrusts (circles, 17 events), adding to 65 events. The squares represent megathrust events; the color is for rapid identification in subsequent figures. The triangles show continental thrust earthquakes.


Figure 2. Slip and strain distribution for the 2015 Mw 7.2 Lake Sarez, Tajikistan earthquake. a) Slip distribution inferred from SAR and InSAR data. The star marks the hypocenter. b) Distribution of strain along the fault. When averaged over the entire slip region and weighted by slip, the potency density of the earthquake is estimated at 96.1 microstrain.


Figure 3. Variation of potency density with centroid depth of all events in the catalog. a) Distribution of potency density with centroid depth for strike-slip earthquakes. b) Potency density of thrust faults and megathrust events. Shallow events, predominantly strike-slip or tsunami earthquakes, are characterized with large potency density. Deep megathrust earthquakes tend to have a lower potency density. Deep slow-slip events, with potency densities orders of magnitude smaller than strike-slip fault earthquakes, form an end-member of rupture style.


Figure 4. Variation of potency density with rupture size. a) Strike-slip fault earthquakes. b) Thrust fault and megathrust events. There is no systematic variation of potency density and potency and moment magnitude (computed assuming a uniform rigidity of 30 GPa). Slow-slip events have potency densities lower than for any type of earthquake.


Figure 5. Variation of rupture width with centroid depth, illuminating a apparent relationship between the depth extent of ruptures and their respective slip-averaged centroid depth. The shallowest events are continental earthquakes and tsunami earthquakes, which are also the events with the smallest down-dip extent. Megathrust earthquake occupy a greater depth range than continental earthquakes. Deep megathrust slow slip event span the largest width of all event types, following a similar trend as any other type of event. The overall width/depth relationship for all events follows a power-law with a power exponent of 0.76. The exponent varies for different type of events, as discussed in the main text.

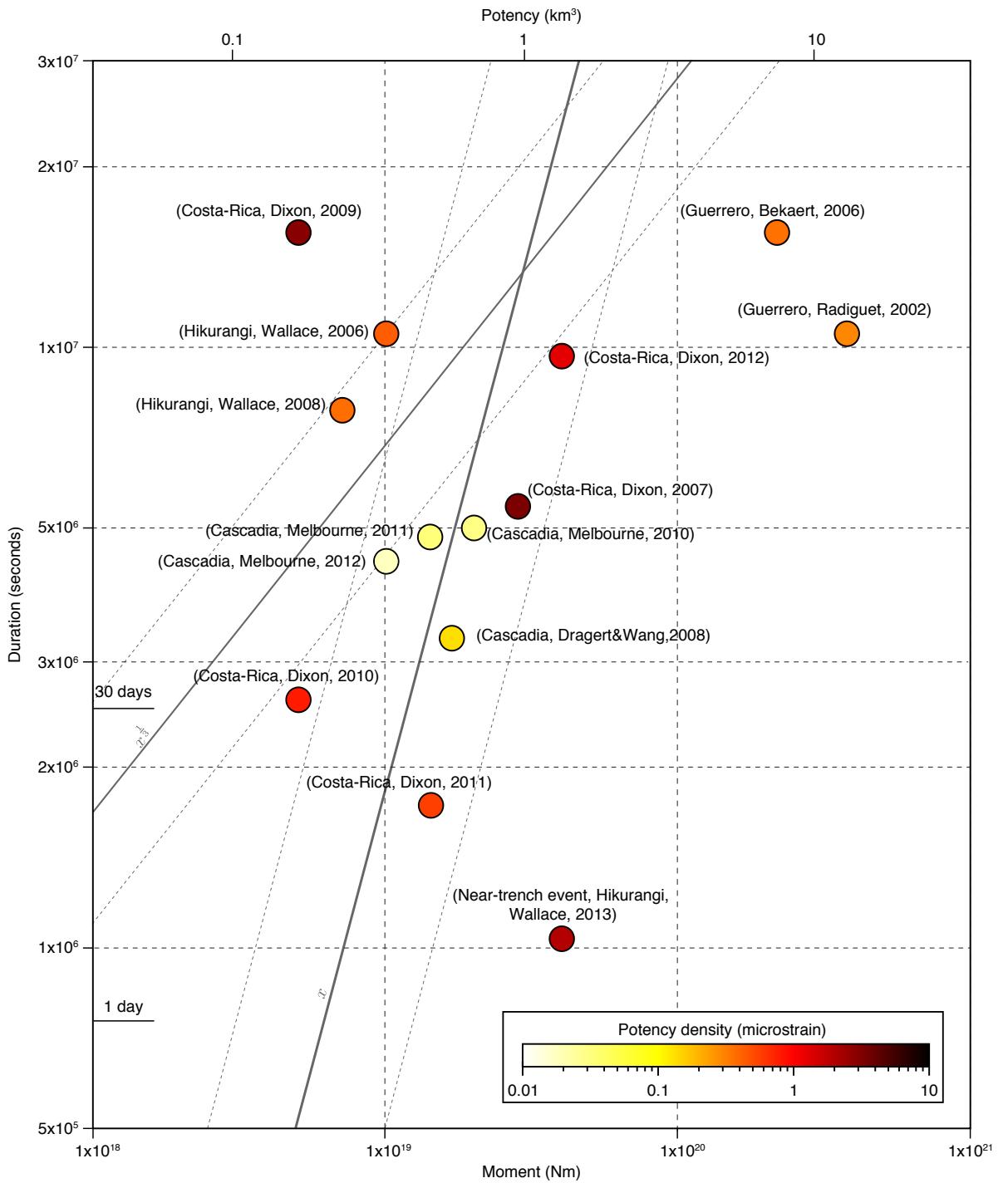

Figure 6. Variation of potency with centroid depth for all events in the catalog. Moment magnitude is computed using a uniform rigidity of 30 GPa. There is no apparent relationship between potency and centroid depth, considering events within similar tectonic settings or rupture styles.

Figure 7. Variation of potency with width in the depth direction for all events in the catalog. Rupture size, i.e., potency or moment magnitude, does not seem to control rupture width, even considering events of similar tectonic setting or rupture style.

Figure 8. Variation of potency density with event duration for all the slow-slip events in the catalog. The duration of events scales sublinearly with potency density as $x^{0.276}$. The 2013 Hikurangi event is an outlier, presumably due to its shallow centroid depth, pointing to a different rupture mechanism than for deeper events.

Figure 9. Variation of moment with event duration for all the slow-slip events in the catalog. All the events appear to neither favor the $M \propto T$ nor the $M \propto T^3$ scaling law, whether considering individual regions or all the events together.

Table 1. Slip distribution and source characteristics of 27 strike-slip fault earthquakes from magnitude Mw=6.0 to 8.6 considering 35 different models.

Name	Country	Year	Mw	Potency density	Centroid depth	Width (km)	Reference
Altai	Russia	2003	7.2	287.9	7.1	10.2	Barbot et al. (2008b)
Balochistan	Pakistan	2013	7.7	63.2	9.5	13.2	Avouac et al. (2014)
Bam	Iran	2003	6.6	82.28	2.6	4.157	Fialko et al. (2005)
Christchurch	New Zealand	2011	6.3	263.7	6.0	6.2	Elliott et al. (2012)
Cook Straits	New Zealand	2013	6.6	22.1	15.3	11.0	Hamling et al. (2014)
Darfield	New Zealand	2010	6.9	344.7	5.3	7.0	Elliott et al. (2012)
El Mayor	Mexico	2010	7.2	71.6	5.2	5.2	S. Wei et al. (2013)
Haiti	Haiti	2010	7.0	130.8	12.4	12.4	Symithe et al. (2013)
Hector Mine	USA	1999	7.1	259.1	6.4	8.2	Salichon et al. (2004)
Imperial Valley	USA	1979	6.3	154.7	5.7	5.7	Zeng and Anderson (2000)
Izmit	Turkey	1999	7.6	87.6	8.1	11.7	Toksoz et al. (1999)
Kaikoura	New Zealand	2016	7.9	325.7	15.8	19.0	T. Wang, Wei, et al. (2018)
Kokoxili	China	2001	7.9	81.8	8.7	11.4	Lasserre et al. (2005)
Kumomoto	Japan	2016	7.3	188.3	10.2	11.1	Moore et al. (2017)
Landers	USA	1992	7.3	263.5	3.4	5.3	Fialko (2004)
Lake Grassmere	New Zealand	2013	6.6	47.0	9.7	11.5	Hamling et al. (2014)
Lake Sarez	Tajikistan	2015	7.2	96.1	6.5	9.1	Nanjundiah, pers. comm.
Loma Prieta	USA	1989	6.9	354.7	12.7	8.0	Zeng and Anderson (2000)
Manyi	China	2004	7.6	76.7	7.1	9.3	H. Wang et al. (2007)
Morgan Hill	USA	1984	6.3	154.0	9.0	7.1	Beroza and Spudich (1988)
Myanmar	Myanmar	2011	6.9	127.0	4.4	6.1	Y. Wang et al. (2014)
Napa Valley	USA	2014	6.0	30.7	6.7	9.2	S. Wei et al. (2014)
Palu	Sarawak	2018	7.5	204.8	7.3	8.14	S. Wei, pers. Comm.
Parkfield	USA	2004	6.0	33.1	7.1	7.4	Barbot et al. (2012)
Ridgecrest	California	2019	7.1	407.3	9.9	12.6	S. Wei, pers. Comm.
San Francisco	USA	1906	7.9	98.5	6.0	6.0	Song et al. (2008)
Van	Turkey	2011	7.1	422.2	14.3	8.9	Elliott et al. (2013)
Wharton Basin	Sumatra	2012	8.6	211.1	15.7	33.4	Hill et al. (2015)

Table 2. Slip distributions and source characteristics of 25 thrust and megathrust earthquakes considering 34 different models.

Name	Country	Year	Mw	Potency density	Centroid depth (km)	Width	Reference
Aceh	Sumatra	2004	9.2	34.9	32.2	22.75	Chlieh et al. (2007)
Alaska	USA	1964	9.2	22.0	16.0	12.0	Johnson et al. (1996)
Bengkulu	Sumatra	2007	8.4	9.4	32.13	36.8	Tsang et al. (2016)
Bhuj	India	2001	7.6	182.7	14.5	19.1	Copley et al. (2011)
Chengkung	Taiwan	2003	6.8	9.6	20.2	20	Thomas et al. (2014)
Chi-Chi	Taiwan	1999	7.5	170.7	3.4	4.01	Yu et al. (2001)
Gorkha	Nepal	2015	7.8	22.2	14.5	9.2	S. Wei et al. (2018)
Iquique	Chile	2014	8.2	20.5	25.5	39.0	Gusman et al. (2015)
Kashmir	Kashmir	2005	7.6	118.4	7.2	9.15	Avouac et al. (2006)
Kuril	Alaska	2006-07	8.3	9.1	9.3	11	Steblov et al. (2008)
Maule	Chile	2010	8.8	36.3	36.8	22.8	Luttrell et al. (2011)
Mentawai	Sumatra	2010	7.8	132.7	6.3	4.7	Yue, Lay, Rivera, Bai, et al. (2014)
Nias	Sumatra	2005	8.6	40.9	28.3	15.6	Konca et al. (2007)
Nicoya	Costa Rica	2012	7.6	35.5	20.6	22.5	Yue et al. (2013)
Northridge	USA	1994	6.9	113.6	9.7	9.8	Hudnut et al. (1996)
Pagai	Sumatra	2008	7.2	35.5	17.2	5.4	Salman et al. (2017)
Qaidam	China	2008	6.3	139.2	16.5	9.6	Elliott et al. (2011)
Qaidam	China	2009	6.3	198.5	5.6	4.7	Elliott et al. (2011)
San Simeon	USA	2003	6.5	126.7	6.1	5.3	Ji et al. (2004)
Sarpol Zahab	Iran	2017	7.3	128.9	14.6	4.8	W. Feng et al. (2018)
Solomon Isl.	Solomon Isl.	2010	7.1	110.0	2.4	2.3	Newman, Feng, et al. (2011)
Tohoku-Oki	Japan	2011	9.1	160.8	6.9	17.7	Bletery et al. (2014)
Topocilla	Chile	2007	7.7	12.0	36.1	16.6	Bejar Pizarro et al. (2010)
Valdivia	Chile	1960	9.6	93.7	24.0	19.0	Moreno et al. (2009)
Yushu	China	2010	6.9	43.9	6.8	9.9	Li et al. (2011)

Table 3. Slip distributions and source characteristics of 17 slow-slip events on subduction megathrusts used in the study.

Name	Country	Year	Mw	Potency density	Centroid depth (km)	Width	Reference
Cascadia	USA	2008	6.75	0.103	35.8	12.5	Dragert and Wang (2011)
Cascadia	USA	2010	6.84	0.029	36.4	29.92	Goodner (2014)
Cascadia	USA	2011	6.77	0.030	36.61	32.32	Goodner (2014)
Cascadia	USA	2012	6.83	0.018	35.86	36.25	Goodner (2014)
Cascadia	USA	2013	6.85	0.035	38.19	34.08	Goodner (2014)
Costa Rica	Costa Rica	2007	6.92	1.80	45.8	36.9	Dixon et al. (2014)
Costa Rica	Costa Rica	2008	6.48	0.14	37.6	34.1	Dixon et al. (2014)
Costa Rica	Costa Rica	2009	6.97	2.93	44.6	36.0	Dixon et al. (2014)
Costa Rica	Costa Rica	2010	6.46	0.79	37.6	31.4	Dixon et al. (2014)
Costa Rica	Costa Rica	2011	6.61	0.38	27.0	23.7	Dixon et al. (2014)
Costa Rica	Costa Rica	2012	6.94	1.28	32.8	35.5	Dixon et al. (2014)
Guerrero	Mexico	2002	7.5	0.30	34.5	22.9	Radiguet et al. (2012)
Guerrero	Mexico	2006	7.3	0.35	34.5	20.7	Radiguet et al. (2012)
Guerrero	Mexico	2010	7.4	0.65	33.8	13.5	Radiguet et al. (2012); Bekaert et al. (2015)
Hikurangi	New Zealand	2006	6.55	0.37	33.9	30.4	Wallace and Eberhart-Phillips (2013);
Hikurangi	New Zealand	2008	6.58	0.43	38.5	20.8	Wallace and Eberhart-Phillips (2013);
Hikurangi	New Zealand	2013	6.95	1.17	9.9	3.5	Wallace and Eberhart-Phillips (2013);

360 Acknowledgments

361 The study benefited from funding from the National Science Foundation, under award number
 362 EAR-1848192. This work comprises Earth Observatory of Singapore contribution no. 267. This re-
 363 search was also supported by the National Research Foundation (NRF) Singapore under its NRF Fel-
 364 lowship scheme (award no. NRF-NRFF2013-06) and by the Earth Observatory of Singapore (EOS)
 365 and the Singapore Ministry of Education under the Research Centres of Excellence initiative.

366 References

367 Aki, K. (1967). Scaling law of seismic spectrum. *J. Geophys. Res.*, *72*(4), 1217–1231. doi: 10
 368 .1029/JZ072i004p01217

369 Aki, K. (1979). Characterization of barriers on an earthquake fault. *J. Geophys. Res.*, *84*(B11),
 370 6140–6148. doi: 10.1029/JB084iB11p06140

371 Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large
 372 earthquakes. *J. Geophys. Res.*, *114*(B1). doi: 10.1029/2008JB005821

373 Amey, R., Hooper, A., & Walters, R. (2018). A bayesian method for incorporating self-
 374 similarity into earthquake slip inversions. *J. Geophys. Res.*, *123*(7), 6052–6071. doi:

375 10.1029/2017JB015316

376 Andrews, D. (2002). A fault constitutive relation accounting for thermal pressurization of pore
 377 fluid. *J. Geophys. Res.*, 107(B12), ESE-15. doi: 10.1029/2002JB001942

378 Aster, R. C., Borchers, B., & Thurber, C. H. (2012). *Parameter estimation and inverse problems*
 379 (2nd ed.). Academic Press.

380 Atzori, S., & Antonioli, A. (2011). Optimal fault resolution in geodetic inversion of coseismic
 381 data. *Geophys. J. Int.*, 185(1), 529-538. doi: 10.1111/j.1365-246X.2011.04955.x

382 Avouac, J. P., Ayoub, F., Leprince, S., Konca, O., & Helmberger, D. V. (2006). The 2005, Mw
 383 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms
 384 analysis. *Earth Planet. Sci. Lett.*, 249(3-4), 514-528. doi: 10.1016/j.epsl.2006.06.025

385 Avouac, J.-P., Ayoub, F., Wei, S., Ampuero, J.-P., Meng, L., Leprince, S., ... Helmberger, D.
 386 (2014). The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a
 387 thrust fault. *Earth Planet. Sci. Lett.*, 391, 128-134. doi: 10.1016/j.epsl.2014.01.036

388 Avouac, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main
 389 Himalayan Thrust unzipped by the 2015 Gorkha earthquake. *Nature Geosci.*. doi: 10.1038/
 390 ngeo2518

391 Baltay, A., & Hanks, T. C. (2014). Understanding the magnitude dependence of PGA and PGV
 392 in NGA-West 2 data. *Bull. Seism. Soc. Am.*, 104(6), 2851-2865. doi: 10.1785/0120130283

393 Baltay, A., Ide, S., Prieto, G., & Beroza, G. (2011). Variability in earthquake stress drop and ap-
 394 parent stress. *Geophys. Res. Lett.*, 38(6). doi: 10.1029/2011GL046698

395 Barbot, S. (2019a). Modulation of fault strength during the seismic cycle by grain-size evolution
 396 around contact junctions. *Tectonophysics*, 765, 129-145. doi: 10.1016/j.tecto.2019.05.004

397 Barbot, S. (2019b). Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and
 398 deterministic chaos in a single asperity fault. *Tectonophysics*, 768, 228171. doi: 10.1016/j.
 399 .tecto.2019.228171

400 Barbot, S., Agram, P., & De Michele, M. (2013). Change of Apparent Segmentation of the
 401 San Andreas Fault Around Parkfield from Space Geodetic Observations Across Multiple
 402 Periods. *J. Geophys. Res.*, 118(12), 6311-6327.

403 Barbot, S., & Fialko, Y. (2010). A unified continuum representation of postseismic relaxation

404 mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow.

405 *Geophys. J. Int.*, 182(3), 1124–1140. doi: 10.1111/j.1365-246X.2010.04678.x

406 Barbot, S., Fialko, Y., & Bock, Y. (2009). Postseismic Deformation due to the Mw 6.0 2004

407 Parkfield Earthquake: Stress-Driven Creep on a Fault with Spatially Variable Rate-and-

408 State Friction Parameters. *J. Geophys. Res.*, 114(B07405). doi: 10.1029/2008JB005748

409 Barbot, S., Hamiel, Y., & Fialko, Y. (2008a). Space geodetic investigation of the coseismic and

410 postseismic deformation due to the 2003 Mw 7.2 Altai earthquake: Implications for the

411 local lithospheric rheology. *J. Geophys. Res.*, 113(B03403). doi: 10.1029/2007JB005063

412 Barbot, S., Hamiel, Y., & Fialko, Y. (2008b). Space geodetic investigation of the coseismic and

413 postseismic deformation due to the 2003 Mw 7.2 Altai earthquake: Implications for the local

414 lithospheric rheology. *J. Geophys. Res.*, 113(3), 1–15. doi: 10.1029/2007JB005063

415 Barbot, S., Lapusta, N., & Avouac, J. P. (2012). Under the hood of the earthquake machine: To-

416 ward predictive modeling of the seismic cycle. *Science*, 336(6082), 707–710. doi: 10.1126/

417 science.1218796

418 Bechor, N. B. D., & Zebker, H. A. (2006). Measuring two-dimensional movements using a single

419 InSAR pair. *Geophys. Res. Lett.*, 33, L16311. doi: 10.1029/2006GL026883

420 Beeler, N., Hickman, S., & Wong, T.-f. (2001). Earthquake stress drop and laboratory-inferred

421 interseismic strength recovery. *J. Geophys. Res.*, 106(B12), 30701–30713. doi: 10.1029/

422 2000JB900242

423 Beeler, N. M., Tullis, T. E., & Goldsby, D. L. (2008). Constitutive relationship and physical ba-

424 sis of fault strength due to flash heating. *J. Geophys. Res.*, 113(B01401). doi: 10.1029/

425 2007JB004988

426 Bejar Pizarro, M., Carrizo, D., Socquet, A., & Armijo, R. (2010). Asperities, barriers and transi-

427 tion zone in the North Chile seismic gap: State of the art after the 2007 Mw 7.7 Tocopilla

428 earthquake inferred by GPS and InSAR data. In *Esa special publication* (Vol. 677).

429 Bekaert, D., Hooper, A., & Wright, T. (2015). Reassessing the 2006 Guerrero slow-slip event,

430 Mexico: Implications for large earthquakes in the Guerrero Gap. *J. Geophys. Res.*, 120(2),

431 1357–1375. doi: 10.1002/2014JB011557

432 Ben-Zion, Y. (2001). On quantification of the earthquake source. *Seism. Res. Lett.*, 72(2), 151–

433 152. doi: 10.1785/gssrl.72.2.151

434 Ben-Zion, Y., Lee, W., Kanamori, H., Jennings, P., & Kisslinger, C. (2003). Key formulas in
435 earthquake seismology. *International handbook of earthquake and engineering seismology*,
436 81.

437 Ben-Zion, Y., & Lyakhovsky, V. (2019). Representation of seismic sources sustaining changes of
438 elastic moduli. *Geophys. J. Int.*, 217(1), 135–139. doi: 10.1093/gji/ggz018

439 Ben-Zion, Y., & Zhu, L. (2002). Potency-magnitude scaling relations for southern California
440 earthquakes with $1.0 < m_l < 7.0$. *Geophys. J. Int.*, 148(3), F1–F5. doi: 10.1046/j.1365-246X
441 .2002.01637.x

442 Beroza, G. C., & Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. *Annual Review of
443 Earth and Planetary Sciences*, 39(1), 271–296. doi: 10.1146/annurev-earth-040809-152531

444 Beroza, G. C., & Spudich, P. (1988). Linearized inversion for fault rupture behavior: Application
445 to the 1984 Morgan Hill, California, earthquake. *J. Geophys. Res.*, 93(B6), 6275. doi: 10
446 .1029/JB093iB06p06275

447 Bilek, S. L., Engdahl, E. R., DeShon, H. R., & El Hariri, M. (2011). The 25 October 2010 Suma-
448 tra tsunami earthquake: Slip in a slow patch. *Geophys. Res. Lett.*, 38(L14306), 5.

449 Bilek, S. L., & Lay, T. (2002). Tsunami earthquakes possibly widespread manifesta-
450 tions of frictional conditional stability. *Geophys. Res. Lett.*, 29(14, 1673), 4. doi:
451 10.1029/2002GL015215

452 Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.-m., Rolland, L., & Jiang, J.
453 (2014). A detailed source model for the Mw 9.0 Tohoku-Oki earthquake reconciling
454 geodesy, seismology and tsunami records. *J. Geophys. Res.*, 119, 7636–7653. doi:
455 10.1002/2014JB011261

456 Brengman, C. M., Barnhart, W. D., Mankin, E. H., & Miller, C. N. (2019). Earthquake-scaling
457 relationships from geodetically derived slip distributions. *Bull. Seism. Soc. Am.*, 109(5),
458 1701–1715. doi: 10.1785/0120190048

459 Brown, L., Wang, K., & Sun, T. (2015). Static stress drop in the mw 9 tohoku-oki earthquake:
460 Heterogeneous distribution and low average value. *Geophys. Res. Lett.*, 42(24), 10–595. doi:
461 10.1002/2015GL066361

462 Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. *J.
463 Geophys. Res.*, *75*, 4997–5009. doi: 10.1029/JB075i026p04997

464 Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. *Earth Planet.
465 Sci. Lett.*, *495*, 112–134. doi: 10.1016/j.epsl.2018.04.062

466 Cappa, F., Perrin, C., Manighetti, I., & Delor, E. (2014). Off-fault long-term damage: A con-
467 dition to account for generic, triangular earthquake slip profiles. *Geochemistry, Geophysics,
468 Geosystems*, *15*(4), 1476–1493. doi: 10.1002/2013GC005182

469 Cattania, C., & Segall, P. (2018). Crack models of repeating earthquakes predict observed
470 moment-recurrence scaling. *J. Geophys. Res.*. doi: 10.1029/2018JB016056

471 Chen, T., & Lapusta, N. (2009). Scaling of small repeating earthquakes explained by interaction
472 of seismic and aseismic slip in a rate and state fault model. *J. Geophys. Res.*, *114*(B01311),
473 12 PP. doi: 10.1029/2008JB005749

474 Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., ... Galetzka, J.
475 (2007, jan). Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman Earth-
476 quake of 2004. *Bull. Seism. Soc. Am.*, *97*(1A), S152–S173. doi: 10.1785/0120050631

477 Chouvet, A., & Vallée, M. (2018). Global and interregion characterization of subduction interface
478 earthquakes derived from source time functions properties. *J. Geophys. Res.*, *12*(7), 5831–
479 5852. doi: 10.1029/2018JB015932

480 Cocco, M., Tinti, E., & Cirella, A. (2016). On the scale dependence of earthquake stress drop.
481 *Journal of Seismology*, *20*(4), 1151–1170. doi: 10.1007/s10950-016-9594-4

482 Copley, A., Avouac, J. P., Hollingsworth, J., & Leprince, S. (2011). The 2001 Mw 7.6 Bhuj earth-
483 quake, low fault friction, and the crustal support of plate driving forces in India. *J. Geo-
484 phys. Res.*, *116*(8), 1–11. doi: 10.1029/2010JB008137

485 Courboulex, F., Vallée, M., Causse, M., & Chouvet, A. (2016). Stress-drop variability of shallow
486 earthquakes extracted from a global database of source time functions. *Seism. Res. Lett.*,
487 *87*(4), 912–918. doi: 10.1785/0220150283

488 Cruz-Atienza, V. M., Villafuerte, C., & Bhat, H. S. (2018). Rapid tremor migration and pore-
489 pressure waves in subduction zones. *Nature communications*, *9*(1), 2900. doi: 10.1038/
490 s41467-018-05150-3

491 Darragh, R. B., & Bolt, B. A. (1987). *A comment on the statistical regression relation between*
 492 *earthquake magnitude and fault rupture length*. The Seismological Society of America.

493 DeVries, P. M., Krastev, P. G., Dolan, J. F., & Meade, B. J. (2017). Viscoelastic block models of
 494 the north anatolian fault: A unified earthquake cycle representation of pre-and postseismic
 495 geodetic observations. *Bull. Seism. Soc. Am.*, *107*(1), 403–417. doi: 10.1785/0120160059

496 Dieterich, J. H. (1979). Modeling of Rock Friction 1. Experimental Results and Constitutive
 497 Equations. *J. Geophys. Res.*, *84*(B5), 2161–2168. doi: 10.1029/JB084iB05p02161

498 Dixon, T. H., Jiang, Y., Malservisi, R., McCaffrey, R., Voss, N., Protti, M., & Gonzalez, V.
 499 (2014). Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earth-
 500 quake rupture. *Proc. Nat. Ac. Sc.*, *111*(48), 17039–17044. doi: 10.1073/pnas.1412299111

501 Dragert, H., & Wang, K. (2011). Temporal evolution of an episodic tremor and slip event along
 502 the northern Cascadia margin. *J. Geophys. Res.*, *116*(B12). doi: 10.1029/2011JB008609

503 Dreger, D. S., Gee, L., Lombard, P., Murray, M. H., & Romanowicz, B. (2005). Rapid finite-
 504 source analysis and near-fault strong ground motions: Application to the 2003 Mw 6.5 San
 505 Simeon and 2004 Mw 6.0 Parkfield earthquakes. *Seism. Res. Lett.*, *76*(1), 40–48. doi:
 506 10.1785/gssrl.76.1.40

507 Duputel, Z., Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L. (2014). Accounting for pre-
 508 diction uncertainty when inferring subsurface fault slip. *Geophys. J. Int.*, *197*(1), 464–482.

509 Elliott, J. R., Copley, A. C., Holley, R., Scharer, K., & Parsons, B. (2013). The 2011 Mw 7.1
 510 Van (Eastern Turkey) earthquake. *J. Geophys. Res.*, *118*(4), 1619–1637. doi: 10.1002/jgrb
 511 .50117

512 Elliott, J. R., Nissen, E. K., England, P. C., Jackson, J. A., Lamb, S., Li, Z., ... Parsons, B.
 513 (2012). Slip in the 2010–2011 Canterbury earthquakes, New Zealand. *J. Geophys. Res.*,
 514 *117*(3). doi: 10.1029/2011JB008868

515 Elliott, J. R., Parsons, B., Jackson, J. A., Shan, X., Sloan, R. A., & Walker, R. T. (2011, mar).
 516 Depth segmentation of the seismogenic continental crust: The 2008 and 2009 Qaidam
 517 earthquakes. *Geophys. Res. Lett.*, *38*(6). doi: 10.1029/2011GL046897

518 Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and re-
 519 lated problems. *Proceedings of the Royal Society of London. Series A. Mathematical and*

Physical Sciences, 241(1226), 376–396. doi: /10.1098/rspa.1957.0133

549 earthquake. *Geophys. J. Int.*, 196(3), 1564–1579. doi: 10.1093/gji/ggt406

550 Gao, H., Schmidt, D. a., Li, R. J. W., & Weldon, R. J. (2012). Scaling relationships of source
551 parameters for slow slip events. *Bull. Seism. Soc. Am.*, 102(1), 352–360. doi: 10.1785/
552 0120110096

553 Geersen, J. (2019). Sediment-starved trenches and rough subducting plates are conducive to
554 tsunami earthquakes. *Tectonophysics*, 762, 28–44. doi: 10.1016/j.tecto.2019.04.024

555 Goldsby, D., & Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks
556 at earthquake slip rates. *Science*, 334(6053), 216-218. doi: 10.1126/science.1207902

557 Gomberg, J., Wech, A., Creager, K., Obara, K., & Agnew, D. (2016, Jun). Reconsidering earth-
558 quake scaling. *Geophys. Res. Lett.*, 43(12), 6243–6251. doi: 10.1002/2016GL069967

559 Gombert, B., Duputel, Z., Jolivet, R., Doubre, C., Rivera, L., & Simons, M. (2017). Revisit-
560 ing the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault
561 damage. *Geophys. J. Int.*, 212(2), 839–852. doi: 10.1093/gji/ggx455

562 Gombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., ... Rivera, L. (2018).
563 Strain budget of the ecuador–colombia subduction zone: A stochastic view. *Earth Planet.
564 Sci. Lett.*, 498, 288–299.

565 Goodner, H. L. (2014). *Spatial relationship between gps slip and seismic tremor during cascadia
566 slow slip events* (Unpublished doctoral dissertation). Central Washington University.

567 Goswami, A., & Barbot, S. (2018). Slow-slip events in semi-brittle serpentinite fault zones. *Sci-
568 entific reports*, 8(1), 6181. doi: 10.1038/s41598-018-24637-z

569 Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., & Schurr,
570 B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from
571 ocean-wide tsunami waveforms and GPS data. *Geophys. Res. Lett.*, 42(4), 1053–1060. doi:
572 10.1002/2014GL062604

573 Hamling, I. J., D'Anastasio, E., Wallace, L. M., Ellis, S., Motagh, M., Samsonov, S., ...
574 Hreinsdóttir, S. (2014). Crustal deformation and stress transfer during a propagating
575 earthquake sequence: The 2013 Cook Strait sequence, central New Zealand. *J. Geophys.
576 Res.*, 119(7), 6080–6092. doi: 10.1002/2014JB011084

577 Hang, Y., Barbot, S., Dauwels, J., T., W., Nanjundiah, P., & Qiu, Q. (2020). Outlier-insensitive

578 bayesian inference for linear inverse problems (outibi) with applications to space geodetic
 579 data. *Geophys. J. Int.*, *221*, 334–350. doi: 10.1093/gji/ggz559

580 Hernandez, B., Cotton, F., & Campillo, M. (1999, Jun). Contribution of radar interferometry to
 581 a two-step inversion of the kinematic process of the 1992 Landers earthquake. *J. Geophys.
 582 Res.*, *104*(B6), 13083–13099. doi: 10.1029/1999JB900078

583 Hill, E. M., Yue, H., Barbot, S., Lay, T., Tapponnier, P., Hermawan, I., ... Sieh, K. (2015, May).
 584 The 2012 M w 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by
 585 near-orthogonal, young, oceanic mantle faults. *J. Geophys. Res.*, *120*(5), 3723–3747. doi:
 586 10.1002/2014JB011703

587 Hirose, T., & Bystricky, M. (2007). Extreme dynamic weakening of faults during dehydration by
 588 coseismic shear heating. *Geophys. Res. Lett.*, *34*(14). doi: 10.1029/2007GL030049

589 Hudnut, K., Shen, Z., Murray, M., McClusky, S., King, R., Herring, T., ... others (1996). Co-
 590 seismic displacements of the 1994 Northridge, California, earthquake. *Bull. Seism. Soc.
 591 Am.*, *86*(1B), S19–S36.

592 Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., ... others (2012). Coseismic slip
 593 distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9. 0) refined by
 594 means of seafloor geodetic data. *J. Geophys. Res.*, *117*(B7). doi: 10.1029/2012JB009186

595 Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the
 596 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. *Nature*, *435*(7044), 933.
 597 doi: 10.1038/nature03675

598 Ji, C., Larson, K. M., Tan, Y., Hudnut, K. W., & Choi, K. (2004, Sep). Slip history of the 2003
 599 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseis-
 600 mic data. *Geophys. Res. Lett.*, *31*(17). doi: 10.1029/2004GL020448

601 Jiang, J., & Simons, M. (2016). Probabilistic imaging of tsunamigenic seafloor deformation dur-
 602 ing the 2011 tohoku-oki earthquake. *J. Geophys. Res.*, *121*(12), 9050–9076.

603 Jiang, Y., Wdowinski, S., Dixon, T. H., Hackl, M., Protti, M., & Gonzalez, V. (2012). Slow slip
 604 events in Costa Rica detected by continuous GPS observations, 2002–2011. *Geochemistry,
 605 Geophysics, Geosystems*, *13*(4). doi: 10.1029/2012GC004058

606 Johnson, J. M., Satake, K., Holdahl, S. R., & Sauber, J. (1996). The 1964 Prince William Sound

607 earthquake: Joint inversion of tsunami and geodetic data. *J. Geophys. Res.*, 101(B1), 523–
 608 532. doi: 10.1029/95jb02806

609 Kanamori, H. (1972). Mechanism of tsunami earthquake. *Phys. Earth Planet. Inter.*, 6, 346–359.
 610 doi: 10.1016/0031-9201(72)90058-1

611 Kanamori, H., & Anderson, D. (1975). Theoretical basis for some empirical relations in seismol-
 612 ogy. *Bull. Seism. Soc. Am.*, 65(5), 213–220.

613 Kanamori, H., Mori, J. I. M., Hauksson, E., Heaton, T. H., Hutton, K., & Jones, L. M. (1993).
 614 Determination of Earthquake Energy Release and ML using Terrascope. *Bull. Seism. Soc.*
 615 *Am.*, 83(2), 330–346.

616 Kanamori, H., & Rivera, L. (2006). Energy partitioning during an earthquake. In R. Abercrom-
 617 bie, A. McGarr, A. Kanamori, & G. D. Toro (Eds.), *Earthquakes: Radiated energy and the*
 618 *physics of faulting* (Vol. 170, p. 3-13). Washington D.C.: AGU.

619 Kaneko, Y., Avouac, J.-P., & Lapusta, N. (2010). Towards inferring earthquake patterns from
 620 geodetic observations of interseismic coupling. *Nature Geoscience*, 3, 363–369. doi: 10.1038/
 621 ngeo843

622 Kaneko, Y., & Shearer, P. (2014). Seismic source spectra and estimated stress drop derived from
 623 cohesive-zone models of circular subshear rupture. *Geophys. J. Int.*, 197(2), 1002–1015. doi:
 624 10.1093/gji/ggu030

625 Kaneko, Y., & Shearer, P. (2015). Variability of seismic source spectra, estimated stress
 626 drop, and radiated energy, derived from cohesive-zone models of symmetrical and asym-
 627 metrical circular and elliptical ruptures. *J. Geophys. Res.*, 120(2), 1053–1079. doi:
 628 10.1002/2014JB011642

629 Kato, N. (2012). Dependence of earthquake stress drop on critical slip-weakening distance. *J.*
 630 *Geophys. Res.*, 117(B1). doi: 10.1029/2011JB008359

631 Kirkpatrick, J., & Shipton, Z. (2009). Geologic evidence for multiple slip weakening mecha-
 632 nisms during seismic slip in crystalline rock. *J. Geophys. Res.*, 114(B12). doi: 10.1029/
 633 2008JB006037

634 Kitajima, H., Chester, F. M., & Chester, J. S. (2011). Dynamic weakening of gouge layers
 635 in high-speed shear experiments: Assessment of temperature-dependent friction, thermal

636 pressurization, and flash heating. *J. Geophys. Res.*, *116*(B8). doi: 10.1029/2010JB007879

637 Konca, A. O., Hjorleifsdottir, V., Song, T.-R. A., Avouac, J.-P., Helmberger, D. V., Ji, C., ...

638 Meltzner, A. (2007). Rupture kinematics of the 2005 Mw 8.6 Nias–Simeulue earthquake

639 from the joint inversion of seismic and geodetic data. *Bull. Seism. Soc. Am.*, *97*(1A),

640 S307–S322. doi: 10.1785/0120050632

641 Lapusta, N., & Barbot, S. (2012). Models of earthquakes and aseismic slip based on laboratory-

642 derived rate and state friction laws. In A. Bizzarri & H. S. Bhat (Eds.), *The mechanics of*

643 *faulting: From laboratory to real earthquakes* (p. 153-207). Trivandrum, Kerala, India: Re-

644 search Signpost.

645 Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Van der Woerd, J., & Tapponnier, P. (2005).

646 Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by

647 synthetic aperture radar interferometry. *J. Geophys. Res.*, *110*(B12), B12408. doi:

648 10.1029/2004JB003500

649 Leeman, J., Saffer, D., Scuderi, M., & Marone, C. (2016). Laboratory observations of slow earth-

650 quakes and the spectrum of tectonic fault slip modes. *Nature communications*, *7*, 11104.

651 doi: 10.1038/ncomms11104

652 Li, Z., Elliott, J. R., Feng, W., Jackson, J. A., Parsons, B. E., & Walters, R. J. (2011). The 2010

653 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body

654 wave seismology. *J. Geophys. Res.*, *116*(B10). doi: 10.1029/2011JB008358

655 Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three-

656 dimensional rate and state modeling of subduction earthquake sequences. *J. Geophys.*

657 *Res.*, *110*(B08307). doi: 10.1029/2004JB003424

658 Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a

659 subduction fault model. *J. Geophys. Res.*, *112*(B09404). doi: 10.1029/2007JB004930

660 Liu-Zeng, J., Heaton, T., & DiCaprio, C. (2005). The effect of slip variability on earthquake slip-

661 length scaling. *Geophys. J. Int.*, *162*(3), 841–849. doi: 10.1111/j.1365-246X.2005.02679.x

662 Lorenzo-Martín, F., Roth, F., & Wang, R. (2006). Inversion for rheological parameters from

663 post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. *Geo-*

664 *phys. J. Int.*, *164*(1), 75–87. doi: 10.1111/j.1365-246X.2005.02803.x

665 Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., McCloskey, J., ... Piatanesi, A.
666 (2011). Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile
667 earthquake. *Nature Geoscience*, 4(3), 173–177. doi: 10.1038/ngeo1073

668 Loveless, J. P., & Meade, B. J. (2011). Spatial correlation of interseismic coupling and coseismic
669 rupture extent of the 2011 Mw= 9.0 Tohoku-oki earthquake. *Geophys. Res. Lett.*, 38(17).
670 doi: 10.1029/2011GL048561

671 Luttrell, K. M., Tong, X., Sandwell, D. T., Brooks, B. A., & Bevis, M. G. (2011). Estimates of
672 stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake:
673 Implications for fault strength. *J. Geophys. Res.*, 116(B11). doi: 10.1029/2011JB008509

674 Madariaga, R. (1976). Dynamics of an expanding circular fault. *Bull. Seism. Soc. Am.*, 66(3),
675 639–666.

676 Madariaga, R. (1977). Implications of stress-drop models of earthquakes for the inversion of
677 stress drop from seismic observations. In *Stress in the earth* (pp. 301–316). Springer. doi:
678 10.1007/978-3-0348-5745-1_19

679 Mai, P. M., & Beroza, G. C. (2000). Source scaling properties from finite-fault-rupture models.
680 *Bull. Seism. Soc. Am.*, 90(3), 604–615. doi: 10.1785/0119990126

681 Manighetti, I., Campillo, M., Bouley, S., & Cotton, F. (2007). Earthquake scaling, fault segmen-
682 tation, and structural maturity. *Earth Planet. Sci. Lett.*, 253(3-4), 429–438. doi: 10.1016/
683 j.epsl.2006.11.004

684 Manighetti, I., King, G., Gaudemer, Y., Scholz, C., & Doubre, C. (2001). Slip accumulation
685 and lateral propagation of active normal faults in Afar. *J. Geophys. Res.*, 106, 13667-13696.
686 doi: 10.1029/2000JB900471

687 McGuire, J. J., & Segall, P. (2003). Imaging of aseismic fault slip transients recorded by dense
688 geodetic networks. *Geophys. J. Int.*, 155, 778-788. doi: 10.1111/j.1365-246X.2003.02022.x

689 Michel, S., Avouac, J.-P., Lapusta, N., & Jiang, J. (2017). Pulse-like partial ruptures and high-
690 frequency radiation at creeping-locked transition during megathrust earthquakes. *Geophys.
691 Res. Lett.*, 44(16), 8345–8351. doi: 10.1002/2017GL074725

692 Michel, S., Gualandi, A., & Avouac, J.-P. (2019). Similar scaling laws for earthquakes and Casca-
693 dia slow-slip events. *Nature*, 574(7779), 522–526. doi: 10.1038/s41586-019-1673-6

694 Minson, S. E., Simons, M., Beck, J. L., Ortega, F., Jiang, J., Owen, S. E., ... Sladen, A. (2014).
 695 Bayesian inversion for finite fault earthquake source models - II: The 2011 great Tohoku-
 696 oki, Japan earthquake. *Geophys. J. Int.*, 198(2), 922–940. doi: 10.1093/gji/ggu170

697 Mitsui, Y., Iio, Y., & Fukahata, Y. (2012). A scenario for the generation process of the 2011
 698 Tohoku earthquake based on dynamic rupture simulation: role of stress concentration and
 699 thermal fluid pressurization. *Earth Planet. Sp.*, 64(12), 12. doi: 10.5047/eps.2012.05.016

700 Miyakoshi, K., Somei, K., Yoshida, K., Kurahashi, S., Irikura, K., & Kamae, K. (2019). Scal-
 701 ing relationships of source parameters of inland crustal earthquakes in tectonically active
 702 regions. *Pure and Applied Geophysics*, 1–13. doi: 10.1007/s00024-019-02160-0

703 Moore, J. D., Yu, H., Tang, C.-H., Wang, T., Barbot, S., Peng, D., ... others (2017). Imaging
 704 the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. *Sci-
 705 ence*, 356(6334), 163–167. doi: 10.1126/science.aal3422

706 Moreno, M. S., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on
 707 inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake.
 708 *Geophys. Res. Lett.*, 36(16). doi: 10.1029/2009GL039276

709 Nakano, M., Hori, T., Araki, E., Kodaira, S., & Ide, S. (2018). Shallow very-low-frequency earth-
 710 quakes accompany slow slip events in the Nankai subduction zone. *Nature communications*,
 711 9(1), 984. doi: 10.1038/s41467-018-03431-5

712 Nemat-Nasser, S. (2004). *Plasticity. a treatise on finite deformation of heterogeneous inelastic
 713 materials*. Cambridge University Press.

714 Nemat-Nasser, S., & Hori, M. (1999). *Micromechanics: overall properties of heterogeneous mate-
 715 rials* (2nd ed.). Elsevier. doi: 10.1115/1.2788912

716 Newman, A. V., Feng, L., Fritz, H. M., Lifton, Z. M., Kalligeris, N., & Wei, Y. (2011). The ener-
 717 getic 2010 MW 7.1 Solomon Islands tsunami earthquake. *Geophys. J. Int.*, 186(2), 775–781.
 718 doi: 10.1111/j.1365-246X.2011.05057.x

719 Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai
 720 tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excita-
 721 tion. *Geophys. Res. Lett.*, 38(L05302), 7. doi: 10.1029/2010GL046498

722 Nikkhoo, M., & Walter, T. R. (2015). Triangular dislocation: an analytical, artefact-free solution.

723 *Geophys. J. Int.*, 201(2), 1119–1141. doi: 10.1093/gji/ggv035

724 Nocquet, J.-M. (2018). Stochastic static fault slip inversion from geodetic data with non-
negativity and bound constraints. *Geophysical Journal International*, 214(1), 366–385.
725 doi: 10.1093/gji/ggy146

726 Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a re-
sult of dynamic weakening. *Nature*, 493(7433), 518–521. doi: 10.1038/nature11703

727 Noda, H., Lapusta, N., & Kanamori, H. (2013). Comparison of average stress drop measures
728 for ruptures with heterogeneous stress change and implications for earthquake physics. *Geo-
729 phys. J. Int.*, 193(3), 1691–1712. doi: 10.1093/gji/ggt074

730 Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. *Science*,
731 353(6296), 253–258. doi: 10.1126/science.aaf1512

732 Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. *Bull.
733 Seism. Soc. Am.*, 82(2), 1018–1040.

734 Pelayo, A. M., & Wiens, D. A. (1992). Tsunami earthquakes: Slow thrust-faulting events in the
735 accretionary wedge. *J. Geophys. Res.*, 97(B11), 15321–15337. doi: 10.1029/92JB01305

736 Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earth-
737 quakes and slow-slip phenomena. *Nature Geoscience*, 3(9), 599. doi: 10.1038/ngeo940

738 Poli, P., & Prieto, G. A. (2016). Global rupture parameters for deep and intermediate-depth
739 earthquakes. *J. Geophys. Res.*, 121(12), 8871–8887. doi: 10.1002/2016JB013521

740 Prieto, G. A., Parker, R. L., Vernon, F. L., Shearer, P. M., Thomson, D. J., Abercrombie, R.,
741 & McGarr, A. (2006). Uncertainties in earthquake source spectrum estimation using
742 empirical green functions. *Geophys. Monograph - Am. Geophys. Union*, 170, 69. doi:
743 10.1029/170GM08

744 Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey, E. O., ... Tapponnier, P.
745 (2016). The mechanism of partial rupture of a locked megathrust: The role of fault mor-
746 phology. *Geology*, 44(10), 875–878. doi: 10.1130/G38178.1

747 Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., & Kos-
748 toglobov, V. (2012, apr). Slow slip events and strain accumulation in the Guerrero gap,
749 Mexico. *J. Geophys. Res.*, 117(B4). doi: 10.1029/2011JB008801

752 Rhee, J., Dreger, D., Bürgmann, R., & Romanowicz, B. (2007). Slip of the 2004 Sumatra-
 753 Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS
 754 static offsets. *Bull. Seism. Soc. Am.*, 97(1A), S115–S127. doi: 10.1785/0120050620

755 Romanowicz, B. (1992). Strike-slip earthquakes on quasi-vertical transcurrent faults: Inferences
 756 for general scaling relations. *Geophys. Res. Lett.*, 19(5), 481–484. doi: 10.1029/92GL00265

757 Ruina, A. (1983). Slip instability and state variable friction laws. *J. Geophys. Res.*, 88, 10,359–
 758 10,370. doi: 10.1029/JB088iB12p10359

759 Salichon, J., Lundgren, P., Delouis, B., & Giardini, D. (2004). Slip history of the 16 October
 760 1999 Mw 7.1 Hector Mine earthquake (California) from the inversion of InSAR, GPS, and
 761 teleseismic data. *Bull. Seism. Soc. Am.*, 94(6), 2015–2027. doi: 10.1785/0120030038

762 Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines depth-varying rupture be-
 763 haviour of megathrust earthquakes. *Nature*, 576(7785), 96–101. doi: 10.1038/s41586-019
 764 -1784-0

765 Salman, R., Hill, E. M., Feng, L., Lindsey, E. O., Mele Veedu, D., Barbot, S., … Natawid-
 766 jaja, D. H. (2017). Piecemeal Rupture of the Mentawai Patch, Sumatra: The 2008
 767 Mw 7.2 North Pagai Earthquake Sequence. *J. Geophys. Res.*, 122(11), 9404–9419. doi:
 768 10.1002/2017JB014341

769 Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., … Yulianto, E.
 770 (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami
 771 field survey and waveform modeling. *Pure Appl. Geophys.*, 170(9-10), 1567–1582. doi:
 772 10.1007/s00024-012-0536-y

773 Satake, K., & Tanioka, Y. (1999). Sources of tsunami and tsunamigenic earthquakes in subduc-
 774 tion zones. *Pure Appl. Geophys.*, 154(3-4), 467–483. doi: 10.1007/s000240050240

775 Sathiakumar, S., Barbot, S., & Hubbard, J. (2019). Seismic cycles in fault-bend folds. *subm. to*
 776 *J. Geophys. Res.*. doi: 10.1029/2019JB018557

777 Sathiakumar, S., Barbot, S. D., & Agram, P. (2017). Extending resolution of fault slip with
 778 geodetic networks through optimal network design. *J. Geophys. Res.*, 122(12). doi: 10
 779 .1029/2019JB018557

780 Schmidt, D. A., & Gao, H. (2010, apr). Source parameters and time-dependent slip distributions

781 of slow slip events on the Cascadia subduction zone from 1998 to 2008. *J. Geophys. Res.*,
 782 *115*, B00A18. doi: 10.1029/2008JB006045

783 Scholz, C. H. (1998, January). Earthquakes and friction laws. *Nature*, *391*, 37-42. doi: 10.1038/
 784 34097

785 Scholz, C. H., Aviles, C., & Wesnousky, S. G. (1986). Scaling differences between large interplate
 786 and intraplate earthquakes. *Bull. Seism. Soc. Am.*, *76*(1), 65–70.

787 Scuderi, M. M., Collettini, C., Viti, C., Tinti, E., & Marone, C. (2017). Evolution of shear fabric
 788 in granular fault gouge from stable sliding to stick slip and implications for fault slip mode.
 789 *Geology*, *45*(8), 731–734. doi: 10.1130/G39033.1

790 Segall, P., Rubin, A. M., Bradley, A. M., & Rice, J. R. (2010). Dilatant strengthening as a mech-
 791 anism for slow slip events. *J. Geophys. Res.*, *115*(B12305). doi: 10.1029/2010JB007449

792 Shearer, P. M., Prieto, G. A., & Hauksson, E. (2006). Comprehensive analysis of earth-
 793 quake source spectra in southern California. *J. Geophys. Res.*, *111*(B6). doi: 10.1029/
 794 2005JB003979

795 Shi, Q., Barbot, S., Shibasaki, B., Matsuzawa, T., Wei, S., & Tapponnier, P. (2020). Structural
 796 control and system-level behavior of the seismic cycle at the Nankai trough. *Earth Planet.
 797 Sp.*, *72*(1), 1–31. doi: 10.1186/s40623-020-1145-0

798 Simons, M. (2002). Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California,
 799 Earthquake as Inferred from InSAR and GPS Observations. *Bull. Seism. Soc. Am.*, *92*(4),
 800 1390–1402. doi: 10.1785/0120000933

801 Simons, M., Minson, S., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., ... Webb, F. H. (2012).
 802 The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Sec-
 803 onds to Centuries. *Science*, *332*(6036), 1421-1425. doi: 10.1126/science.1206731

804 Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., ... Kowada, A.
 805 (1999). Characterizing crustal earthquake slip models for the prediction of strong ground
 806 motion. *Seism. Res. Lett.*, *70*(1), 59–80. doi: 10.1785/gssrl.70.1.59

807 Song, S. G., Beroza, G. C., & Segall, P. (2008). A unified source model for the 1906 San Fran-
 808 cisco earthquake. *Bull. Seism. Soc. Am.*, *98*(2), 823–831. doi: 10.1785/0120060402

809 Steblov, G. M., Kogan, M. G., Levin, B. V., Vasilenko, N. F., Prytkov, A. S., & Frolov, D. I.

810 (2008). Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by
 811 GPS. *Geophys. Res. Lett.*, 35(22). doi: 10.1029/2008GL035572

812 Symithe, S. J., Calais, E., Haase, J. S., Freed, A. M., & Douilly, R. (2013). Coseismic slip distri-
 813 bution of the 2010 M 7.0 Haiti earthquake and resulting stress changes on regional faults.
 814 *Bull. Seism. Soc. Am.*, 103(4), 2326–2343. doi: 10.1785/0120120306

815 Tarantola, A. (2004). *Inverse Problem Theory*. doi: 10.1137/1.9780898717921

816 Thomas, M. Y., Avouac, J. P., Gratier, J. P., & Lee, J. C. (2014). Lithological control on the de-
 817 formation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan.
 818 *Tectonophysics*, 632(C), 48–63. doi: 10.1016/j.tecto.2014.05.038

819 Toh, A., Obana, K., & Araki, E. (2018). Distribution of very low frequency earthquakes in the
 820 Nankai accretionary prism influenced by a subducting-ridge. *Earth and Planetary Science
 821 Letters*, 482, 342–356. doi: 10.1016/j.epsl.2017.10.062

822 Toksoz, M., Reilinger, R., Doll, C., Barka, A., & Yalcin, N. (1999). Izmit (Turkey) earthquake
 823 of 17 August 1999: first report. *Seism. Res. Lett.*, 70(6), 669–679. doi: 10.1785/gssrl.70.6
 824 .669

825 Tomita, F., Kido, M., Ohta, Y., Iinuma, T., & Hino, R. (2017). Along-trench variation in seafloor
 826 displacements after the 2011 Tohoku earthquake. *Science advances*, 3(7), e1700113. doi: 10
 827 .1126/sciadv.1700113

828 Toro, G. D., Goldsby, D. L., & Tullis, T. E. (2004). Friction falls towards zero in quartz rock as
 829 slip velocity approaches seismic rates. *Nature*, 427, 436-439. doi: 10.1038/nature02249

830 Toro, G. D., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and
 831 experimental evidence of melt lubrication of faults during earthquakes. *Science*, 311(5761),
 832 647-649. doi: 10.1126/science.1121012

833 Tsang, L. L. H., Hill, E. M., Barbot, S., Qiu, Q., Feng, L., Hermawan, I., ... Natawidjaja, D. H.
 834 (2016, Dec.). Afterslip following the 2007 M w 8.4 Bengkulu earthquake in Sumatra loaded
 835 the 2010 M w 7.8 Mentawai tsunami earthquake rupture zone. *J. Geophys. Res.*, 121(12),
 836 9034–9049. doi: 10.1002/2016JB013432

837 Vallée, M. (2013). Source time function properties indicate a strain drop independent of earth-
 838 quake depth and magnitude. *Nature communications*, 4, 2606.

839 Veedu, D. M., & Barbot, S. (2016). The Parkfield tremors reveal slow and fast ruptures on the
 840 same asperity. *Nature*, 1385(2010), 23765. Retrieved from <http://dx.doi.org/10.1038/nature17190> doi: 10.1038/nature17190

841

842 Venkataraman, A., & Kanamori, H. (2004). Observational constraints on the fracture energy of
 843 subduction zone earthquakes. *J. Geophys. Res.*, 109(B5). doi: 10.1029/2003JB002549

844

845 Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressur-
 846 ization. *Nature Geoscience*, 8(11), 875. doi: 10.1038/ngeo2554

847

848 Wald, D. J., & Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Lan-
 849 ders, California earthquake. *Bull. Seism. Soc. Am.*, 84(3), 668–691.

850

851 Wallace, L. M., Araki, E., Saffer, D., Wang, X., Roesner, A., Kopf, A., ... others (2016). Near-
 852 field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and sub-
 853 seafloor monitoring network at the Nankai Trough, southwest Japan. *J. Geophys. Res.*,
 854 121(11), 8338–8351. doi: 10.1002/2016JB013417

855

856 Wallace, L. M., & Eberhart-Phillips, D. (2013). Newly observed, deep slow slip events at the
 857 central Hikurangi margin, New Zealand: Implications for downdip variability of slow slip
 858 and tremor, and relationship to seismic structure. *Geophys. Res. Lett.*, 40(20), 5393–5398.
 859 doi: 10.1002/2013GL057682

860

861 Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., ... Fry, B.
 862 (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimen-
 863 tary wedge. *Nature Geoscience*, 10(10), 765. doi: 10.1038/ngeo3021

864

865 Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and
 866 dimensions of faults. *Journal of Structural geology*, 10(3), 239–247. doi: 10.1016/0191-
 867 -8141(88)90057-0

868

869 Wang, H., Xu, C., & Ge, L. (2007, Oct). Coseismic deformation and slip distribution of the 1997
 870 7.5 Manyi, Tibet, earthquake from InSAR measurements. *Journal of Geodynamics*, 44(3-
 871 5), 200–212. doi: 10.1016/j.jog.2007.03.003

872

873 Wang, T., & Jónsson, S. (2015). Improved sar amplitude image offset measurements for de-
 874 riving three-dimensional coseismic displacements. *IEEE Journal of Selected Topics in Ap-
 875 plied Earth Observations and Remote Sensing*, 8(7), 3271–3278. doi: 10.1109/JSTARS.2014

868 .2387865

869 Wang, T., Shi, Q., Nikkhoo, M., Wei, S., Barbot, S., Dreger, D., ... Chen, Q.-F. (2018). The
 870 rise, collapse, and compaction of mt. mantap from the 3 september 2017 north korean
 871 nuclear test. *Science*, eaar7230. doi: 10.1126/science.aar7230

872 Wang, T., Wei, S., Shi, X., Qiu, Q., Li, L., Peng, D., ... Barbot, S. (2018). The 2016 Kaikōura
 873 earthquake: Simultaneous rupture of the subduction interface and overlying faults. *Earth
 874 Planet. Sci. Lett.*, 482, 44–51. doi: 10.1016/j.epsl.2017.10.056

875 Wang, Y., Lin, Y.-N. N., Simons, M., & Tun, S. T. (2014, dec). Shallow Rupture of the 2011
 876 Tarlay Earthquake (Mw 6.8), Eastern Myanmar. *Bull. Seism. Soc. Am.*, 104(6), 2904–2914.
 877 Retrieved from <https://pubs.geoscienceworld.org/bssa/article/104/6/2904-2914/331895> doi: 10.1785/0120120364

879 Wang, Z., Zhang, R., Wang, X., & Liu, G. (2018). Retrieving three-dimensional co-seismic defor-
 880 mation of the 2017 MW7. 3 Iraq earthquake by multi-sensor SAR images. *Remote Sensing*,
 881 10(6), 857.

882 Wei, M., Sandwell, D., Fialko, Y., & Bilham, R. (2011). Slip on faults in the Imperial Valley trig-
 883 gered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. *Geo-
 884 phys. Res. Lett.*, 38(1). doi: 10.1029/2010GL045235

885 Wei, S., Barbot, S., Graves, R., Lienkaemper, J. J., Wang, T., Hudnut, K., ... Helmberger, D.
 886 (2014). The 2014 Mw 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow As-
 887 perity and Rapid Afterslip. *Seism. Res. Lett.*, 86(2A), 344–354. doi: 10.1785/0220140249

888 Wei, S., Barbot, S., Graves, R., Lienkaemper, J. J., Wang, T., Hudnut, K., ... Helmberger, D.
 889 (2015). The 2014 Mw 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow As-
 890 perity and Rapid Afterslip. *Seism. Res. Lett.*, 86(2A), 344–354. doi: 10.1785/0220140249

891 Wei, S., Chen, M., Wang, X., Graves, R., Lindsey, E., Wang, T., ... Helmberger, D. (2018). The
 892 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground
 893 shaking. *Tectonophysics*, 722, 447–461. doi: 10.1016/j.tecto.2017.11.024

894 Wei, S., Graves, R., Helmberger, D., Avouac, J. P., & Jiang, J. (2012). Sources of shaking and
 895 flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. *Earth Planet. Sci.
 896 Lett.*, 333-334, 91–100. doi: 10.1016/j.epsl.2012.04.006

897 Wei, S., Helmberger, D., & Avouac, J.-p. (2013, jul). Modeling the 2012 Wharton basin earth-
 898 quakes off-Sumatra: Complete lithospheric failure. *J. Geophys. Res.*, 118(7), 3592–3609.
 899 doi: 10.1002/jgrb.50267

900 Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rup-
 901 ture length, rupture width, rupture area, and surface displacement. *Bull. Seism. Soc. Am.*,
 902 84(4), 975–1002.

903 Weston, J., Ferreira, A. M., & Funning, G. J. (2012). Systematic comparisons of earthquake
 904 source models determined using insar and seismic data. *Tectonophysics*, 532, 61–81. doi: 10
 905 .1016/j.tecto.2012.02.001

906 Wyss, M. (1979). Estimating maximum expectable magnitude of earthquakes from fault dimen-
 907 sions. *Geology*, 7(7), 336–340. doi: 10.1130/0091-7613(1979)7<336:EMEMOE>2.0.CO;2

908 Yabuki, T., & Matsu'ura, M. (1992). Geodetic data inversion using a bayesian information cri-
 909 terion for spatial distribution of fault slip. *Geophysical Journal International*, 109(2), 363–
 910 375. doi: 10.1111/j.1365-246X.1992.tb00102.x

911 Yamazaki, Y., Lay, T., Cheung, K. F., Yue, H., & Kanamori, H. (2011). Modeling near-field
 912 tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku
 913 earthquake. *Geophys. Res. Lett.*, 38(7), n/a–n/a. doi: 10.1029/2011GL049130

914 Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016a). Rupture characteristics of major and
 915 great ($M_w \geq 7.0$) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling
 916 relationships. *J. Geophys. Res.*, 121(2), 826–844. doi: 10.1002/2015JB012426

917 Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016b). Rupture characteristics of major and great
 918 ($M_w \geq 7.0$) megathrust earthquakes from 1990 to 2015: 2. Depth dependence Lingling. *J.*
 919 *Geophys. Res.*, 845–863. doi: 10.1002/2015JB012426.Rupture

920 Yu, S.-B., Kuo, L.-C., Hsu, Y.-J., Su, H.-H., Liu, C.-C., Hou, C.-S., ... others (2001). Preseis-
 921 mic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan,
 922 earthquake. *Bull. Seism. Soc. Am.*, 91(5), 995–1012. doi: 10.1785/0120000722

923 Yue, H., Lay, T., Rivera, L., An, C., Vigny, C., Tong, X., & Báez Soto, J. C. (2014). Localized
 924 fault slip to the trench in the 2010 Maule, Chile $M_w = 8.8$ earthquake from joint inversion
 925 of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observa-

926 tions. *J. Geophys. Res.*, 119(10), 7786–7804. doi: 10.1002/2014JB011340

927 Yue, H., Lay, T., Rivera, L., Bai, Y., Yamazaki, Y., Cheung, K. F., ... Muhari, A. (2014). Rup-
928 ture process of the 2010 M w 7.8 Mentawai tsunami earthquake from joint inversion of
929 near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observa-
930 tions. *J. Geophys. Res.*, 119(7), 5574–5593. doi: 10.1002/2014JB011082

931 Yue, H., Lay, T., Schwartz, S. Y., Rivera, L., Protti, M., Dixon, T. H., ... Newman, A. V.
932 (2013). The 5 September 2012 Nicoya, Costa Rica M w 7.6 earthquake rupture process
933 from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its
934 relationship to adjacent plate boundary interface properties. *J. Geophys. Res.*, 118(10),
935 5453–5466. doi: 10.1002/jgrb.50379

936 Zeng, Y., & Anderson, J. G. (2000). *Evaluation of numerical procedures for simulating near-fault*
937 *long-period ground motions using Zeng method*. Pacific Earthquake Engineering Research
938 Center.

939 Zigone, D., Rivet, D., Radiguet, M., Campillo, M., Voisin, C., Cotte, N., ... others (2012). Trig-
940 gering of tremors and slow slip event in guerrero, mexico, by the 2010 mw 8.8 maule, chile,
941 earthquake. *J. Geophys. Res.*, 117(B9).