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Abstract

As in standard linear regression, in truncated linear regression, we are given access to observations
(Ai, yi)i whose dependent variable equals yi = AT

i · x
∗ + ηi, where x∗ is some fixed unknown vector of

interest and ηi is independent noise; except we are only given an observation if its dependent variable yi
lies in some “truncation set” S ⊂ R. The goal is to recover x∗ under some favorable conditions on the Ai’s
and the noise distribution. We prove that there exists a computationally and statistically efficient method
for recovering k-sparse n-dimensional vectors x∗ from m truncated samples, which attains an optimal `2
reconstruction error of O(

√
(k log n)/m). As a corollary, our guarantees imply a computationally efficient

and information-theoretically optimal algorithm for compressed sensing with truncation, which may arise
from measurement saturation effects. Our result follows from a statistical and computational analysis of
the Stochastic Gradient Descent (SGD) algorithm for solving a natural adaptation of the LASSO optimiza-
tion problem that accommodates truncation. This generalizes the works of both: (1) Daskalakis et al. [9],
where no regularization is needed due to the low-dimensionality of the data, and (2) Wainright [26], where
the objective function is simple due to the absence of truncation. In order to deal with both truncation and
high-dimensionality at the same time, we develop new techniques that not only generalize the existing
ones but we believe are of independent interest.

1 Introduction

In the vanilla linear regression setting, we are given m ≥ n observations of the form (Ai, yi), where Ai ∈ Rn,
yi = AT

i x∗ + ηi, x∗ is some unknown coefficient vector that we wish to recover, and ηi is independent and
identically distributed across different observations i random noise. Under favorable conditions about the
Ai’s and the distribution of the noise, it is well-known that x∗ can be recovered to within `2-reconstruction
error O(

√
n/m).

The classical model and its associated guarantees might, however, be inadequate to address many sit-
uations which frequently arise in both theory and practice. We focus on two common and widely studied
deviations from the standard model. First, it is often the case that m � n, i.e. the number of observations
is much smaller than the dimension of the unknown vector x∗. In this “under-determined” regime, it is
fairly clear that it is impossible to expect a non-trivial reconstruction of the underlying x∗, since there are
infinitely many x ∈ Rn such that AT

i x = AT
i x∗ for all i = 1, . . . , m. To sidestep this impossibility, we must

exploit additional structural properties that we might know x∗ satisfies. One such property might be spar-
sity, i.e. that x∗ has k � n non-zero coordinates. Linear regression under sparsity assumptions has been
widely studied, motivated by applications such as model selection and compressed sensing; see e.g. the cel-
ebrated works of [23, 6, 11, 26] on this topic. It is known, in particular, that a k-sparse x∗ can be recovered to
within `2 error O(

√
k log n/m), when the Ai’s are drawn from the standard multivariate Normal, or satisfy

other favorable conditions [26]. The recovery algorithm solves a least squares optimization problem with
`1 regularization, i.e. what is called LASSO optimization in Statistics, in order to reward sparsity.

Another common deviation from the standard model is the presence of truncation. Truncation occurs
when the sample (Ai, yi) is not observed whenever yi falls outside of a subset S ⊆ R. Truncation arises quite
often in practice as a result of saturation of measurement devices, bad data collection practices, incorrect
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experimental design, and legal or privacy constraints which might preclude the use of some of the data.
Truncation is known to affect linear regression in counter-intuitive ways, as illustrated in Fig. 1, where

Truncation

Figure 1: Truncation in one-dimensional linear regression, along with the linear fit obtained via least squares
regression before and after truncation.

the linear fits obtained via least squares regression before and after truncation of the data based on the
value of the response variable are also shown. More broadly, it is well-understood that naive statistical
inference using truncated data commonly leads to bias. Accordingly, a long line of research in Statistics and
Econometrics has strived to develop regression methods that are robust to truncation [24, 1, 15, 18, 16, 5, 14].
This line of work falls into the broader field of Truncated Statistics [22, 8, 2], which finds its roots in the
early works of [3], [13], [19, 20], and [12]. Despite this voluminous work, computationally and statistically
efficient methods for truncated linear regression have only recently been obtained in [9], where it was
shown that, under favorable assumptions about the Ai’s, the truncation set S, and assuming the ηi’s are
drawn from a Gaussian, the negative log likelihood of the truncated sample can be optimized efficiently,

and approximately recovers the true parameter vector with an `2 reconstruction error O
(√

n log m
m

)
.

Our contribution. In this work, we solve the general problem addressing both of the aforedescribed chal-
lenges together. Namely, we provide efficient algorithms for the high-dimensional (m � n) truncated
linear regression problem. This problem is very common, including in compressed sensing applications
with measurement saturation, as studied e.g. in [10, 17].

Under standard conditions on the design matrix and the noise distribution (namely that the Ai’s and
ηi’s are sampled from independent Gaussian distributions before truncation), and under mild assump-
tions on the truncation set S (roughly, that it permits a constant fraction of the samples yi = AT

i x∗ + ηi
to survive truncation), we show that the SGD algorithm on the truncated LASSO optimization program,
our proposed adaptation of the standard LASSO optimization to accommodate truncation, is a computa-
tionally and statistically efficient method for recovering x∗, attaining an optimal `2 reconstruction error of
O(
√
(k log n)/m), where k is the sparsity of x∗.

We formally state the model and assumptions in Section 2, and our result in Section 3.

1.1 Overview of proofs and techniques

The problem that we solve in this paper encompasses the two difficulties of the problems considered in:
(1) Wainwright [26], which tackles the problem of high-dimensional sparse linear regression with Gaussian
noise, and (2) Daskalakis et al. [9], which tackles the problem of truncated linear regression. The tools
developed in those papers do not suffice to solve our problem, since each difficulty interferes with the
other. Hence, we introduce new ideas and develop new interesting tools that allow us to bridge the gap
between [26] and [9]. We begin our overview in this section with a brief description of the approaches of
[26, 9] and subsequently outline the additional challenges that arise in our setting, and how we address
them.

Wainwright [26] uses as an estimator the solution of the regularized least squares program, also called
LASSO, to handle the high-dimensionality of the data. Wainwright then uses a primal-dual witness method
to bound the number of samples that are needed in order for the solution of the LASSO program to be close
to the true coefficient vector x∗. The computational task is not discussed in detail in Wainwright [26], since
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the objective function of the LASSO program is very simple and standard convex optimization tools can be
used.

Daskalakis et al. [9] use as their estimator the solution to the log-likelihood maximization problem. In
contrast to [26], their convex optimization problem takes a very complicated form due to the presence of
truncation, which introduces an intractable log-partition function term in the log-likelihood. The main idea
of Daskalakis et al. [9] to overcome this difficulty is identifying a convex set D such that: (1) it contains the
true coefficient vector x∗, (2) their objective function is strongly convex inside D, (3) inside D there exists
an efficient rejection sampling algorithm to compute unbiased estimates of the gradients of their objective
function, (4) the norm of the stochastic gradients inside D is bounded, and (5) projecting onto D is efficient.
These five properties are essentially what they need to prove that the SGD with projection set D converges
quickly to a good estimate of x∗.

Our reconstruction algorithm is inspired by both [26] and [9]. We formulate our optimization program
as the `1-regularized version of the negative log-likelihood function in the truncated setting, which we call
truncated LASSO. In particular, our objective contains an intractable log-partition function term. Our proof
then consists of two parts. First, we show statistical recovery, i.e. we upper bound the number of samples
that are needed for the solution of the truncated LASSO program to be close to the true coefficient vector x∗.
Second, we show that this optimization problem can be solved efficiently. The cornerstones of our proof are
the two seminal approaches that we mentioned: the Primal-Dual Witness method for statistical recovery
in high dimensions, and the Projected SGD method for efficient maximum likelihood estimation in the
presence of truncation. Unfortunately, these two techniques are not a priori compatible to stitch together.

Roughly speaking, the technique of [9] relies heavily on the very carefully chosen projection set D in
which the SGD is restricted, as we explained above. This projection set cannot be used in high dimensions
because it effectively requires knowing the low-dimension subspace in which the true solution lies. The
projection set was the key to the aforementioned nice properties: strong convexity, efficient gradient esti-
mation, and bounded gradient. In its absence, we need to deal with each of these issues individually. The
primal-dual witness method of [26] cannot also be applied directly in our setting. In our case the gradient
of the truncated LASSO does not have a nice closed form and hence finding the correct way to construct the
primal-dual witness requires a more delicate argument. Our proof manages to overcome all these issues.
In a nutshell the architecture of our full proof is the following.

1. Optimality on the low dimensional subspace. The first thing that we need to prove is that the
optimum of the truncated LASSO program when restricted to the low dimensional subspace defined
by the non-zero coordinates of x∗ is close to the true solution. This step of the proof was unnecessary
in [9] due to the lack of regularization in their objective, and was trivial in [26] due to the simple loss
function, i.e. the regularized least square.

2. Optimality on the high dimensional space. We prove that the optimum of the truncated LASSO
program in the low dimensional subspace is also optimal for the whole space. This step is done
using the primal-dual witness method as in [26]. However, in our case the expression of the gradient
is much more complicated due to the very convoluted objective function. Hence, we find a more
general way to prove this step that does not rely on the exact expression of the gradient.

These two steps of the proof suffice to upper bound the number of samples that we need to recover
the coefficient vector x∗ via the truncated LASSO program. Next, we provide a computationally efficient
method to solve the truncated LASSO program.

3. Initialization of SGD. The first step of our algorithm to solve truncated LASSO is finding a good
initial point for the SGD. This was unnecessary in [26] due to the simple objective and in [9] due to the
existence of the projection set D (where efficient projection onto D immediately gave an initial point).
We propose the simple answer of bootstrapping: start with the solution of the `1-regularized ordinary
least squares program. This is a biased estimate, but we show it’s good enough for initialization.

4. Projection of SGD. Next, we need to choose a projection set to make sure that Projected-SGD (PSGD)
converges. The projection set chosen in [9] is not helpful in our case unless we a priori know the
set of non-zero coordinates of x∗. Hence, we define a different, simpler set which admits efficient
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projection algorithms. As a necessary side-effect, in contrast to [9], our set cannot guarantee many of
the important properties that we need to prove fast convergence of SGD.

5. Lack of strong convexity and gradient estimation. Our different projection set cannot guarantee the
strong convexity and efficient gradient estimation enjoyed in [9]. There are two problems here:

First, we know that PSGD converges to a point with small loss, but why must the point be near the
optimum? Since strong convexity fails in high dimensions, it is not clear. We provide a workaround
to resolve this issue that can be applied to other regularized programs with stochastic access to the
gradient function.

Second, computing unbiased estimates of the gradient is now difficult. The prior work employed re-
jection sampling, but in our setting this may take exponential time. For this reason we provide a more
explicit method for estimating the gradient much faster, whenever the truncation set is reasonably
well-behaved.

An important tool that we leverage repeatedly in our analysis and we have not mentioned above is a
strong isometry property for our measurement matrix, which has truncated Gaussian rows. Similar prop-
erties have been explored in the compressed sensing literature for matrices with i.i.d. Gaussian and sub-
Gaussian entries [25].

We refer to Section 5 for a more detailed overview of the proofs of our main results.

2 High-dimensional truncated linear regression model

Notation. Let Z ∼ N(0, 1) refer to a standard normal random variable. For t ∈ R and measurable S ⊆ R,
let Zt ∼ N(t, 1; S) refer to the truncated normal (Z + t)|Z + t ∈ S. Let µt = E[Zt]. Let γS(t) = Pr[Z + t ∈ S].
Additionally, for a, x ∈ Rn let Za,x refer to ZaT x (or Zax if a is a row vector), and let γS(a, x) refer to γS(aTx).
For a matrix A ∈ Rm×n, let ZA,x ∈ Rm be the random vector with (ZA,x)j = ZAj ,x. For sets I ⊆ [n] and
J ⊆ [m], let AI,J refer to the submatrix [Ai,j]i∈I,j∈J . For i ∈ [n] we treat the row Ai as a row vector. In a slight
abuse of notation, we will often write AU (or sometimes, AV); this will always mean A[m],U . By AT

U we mean
(A[m],U)

T). For x ∈ Rn, define supp(x) to be the set of indices i ∈ [n] such that xi 6= 0.

2.1 Model

Let x∗ ∈ Rn be the unknown parameter vector which we are trying to recover. We assume that it is k-sparse;
that is, supp(x∗) has cardinality at most k. Let S ⊆ R be a measurable subset of the real line. The main
focus of this paper is the setting of Gaussian noise: we assume that we are given m truncated samples (Ai, yi)
generated by the following process:

1. Pick Ai ∈ Rn according to the standard normal distribution N(0, 1)n.

2. Sample ηi ∼ N(0, 1) and compute yi as

yi = Aix∗ + ηi. (1)

3. If yi ∈ S, then return sample (Ai, yi). Otherwise restart the process from step 1.

We also briefly discuss the setting of arbitrary noise, in which ηi may be arbitrary and we are interested
in approximations to x∗ which have guarantees bounded in terms of ‖η‖2.

Together, m samples define a pair (A, y) where A ∈ Rm×n and y ∈ Rm. We make the following assump-
tions about set S.

Assumption I (Constant Survival Probability). Taking expectation over vectors a ∼ N(0, 1)n, we have
EγS(a, x∗) ≥ α for a constant α > 0.

Assumption II (Efficient Sampling). There is an T(γS(t))-time algorithm which takes input t ∈ R and
produces an unbiased sample z ∼ N(t, 1; S).
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We do not require that T(·) is a constant, but it will affect the efficiency of our algorithm. To be pre-
cise, our algorithm will make poly(n) queries to the sampling algorithm. As we explain in Lemma K.4
in Section K, if the set S is a union of r intervals ∪r

i=1[ai, bi], then the Assumption II is satisfied with
T(γS(t)) = poly(log(1/γS(t)), r). We express the theorems below with the assumption that S is a union
of r intervals in which case the algorithms have polynomial running time, but all the statements below
can be replaced with the more general Assumption II and the running time changes from poly(n, r) to
poly(n, T(em/α)).

3 Statistically and computationally efficient recovery

In this section we formally state our main results for recovery of a sparse high-dimensional coefficient
vector from truncated linear regression samples. In Section 3.1, we present our result under the standard
assumption that the error distribution is Gaussian, whereas in Section 3.2 we present our results for the case
of adversarial error.

3.1 Gaussian noise

In the setting of Gaussian noise (before truncation), we prove the following theorem.

Theorem 3.1. Suppose that Assumption I holds, and that we have m samples (Ai, yi) generated from Process (1),
with n ≥ m ≥ Mk log n for a sufficiently large constant M. Then, there is an algorithm which outputs x̄ satisfying
‖x̄− x∗‖2 ≤ O(

√
(k log n)/m) with probability 1−O(1/ log n). Furthermore, if the survival set S is a union of r

intervals the running time of our algorithm is poly(n, r).

From now on, we will use the term “with high probability” when the rate of decay is not of importance.
This phrase means “with probability 1− o(1) as n→ ∞”.

Observe that even without the added difficulty of truncation (e.g. if S = R), sparse linear regression
requires Ω(k log n) samples by known information-theoretic arguments [26]. Thus, our sample complexity
is information-theoretically optimal.

In one sentence, the algorithm optimizes the `1-regularized sample negative log-likelihood via projected
SGD. The negative log-likelihood of x ∈ Rn for a single sample (a, y) is

nll(x; a, y) =
1
2
(aTx− y)2 + log

∫
S

e−(aT x−z)2/2 dz.

Given multiple samples (A, y), we can then write nll(x; A, y) = 1
m ∑m

j=1 nll(x; Aj, yj). We also define the
regularized negative log-likelihood f : Rn → R by f (x) = nll(x; A, y) + λ ‖x‖1. We claim that optimiz-
ing the following program approximately recovers the true parameter vector x∗ with high probability, for
sufficiently many samples and appropriate regularization λ:

min
x∈Rn

nll(x; A, y) + λ ‖x‖1 . (2)

The first step is to show that any solution to Program (2) will be near the true solution x∗. To this end,
we prove the following theorem, which already shows that O(k log n) samples are sufficient to solve the
problem of statistical recovery of x∗:

Proposition 3.2. Suppose that Assumption I holds. There are constants1 κ, d, and σ with the following property.
Suppose that m > κ · k log n, and let (A, y) be m samples drawn from Process 1. Let x̂ be any optimal solution
to Program (2) with regularization constant λ = σ

√
(log n)/m. Then ‖x̂− x∗‖2 ≤ d

√
(k log n)/m with high

probability.

Then it remains to show that Program (2) can be solved efficiently.

1In the entirety of this paper, constants may depend on α.
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Proposition 3.3. Suppose that Assumption I holds and let (A, y) be m samples drawn from Process 1 and x̂ be any
optimal solution to Program (2). There exists a constant M such that if m ≥ Mk log n then there is an algorithm
which outputs x̄ ∈ Rn satisfying ‖x̄− x̂‖2 ≤ O(

√
(k log n)/m) with high probability. Furthermore, if the survival

set S is a union of r intervals the running time of our algorithm is poly(n, r).

We present a more detailed description of the algorithm that we use in Section 4.

3.2 Adversarial noise

In the setting of arbitrary noise, optimizing negative log-likelihood no longer makes sense, and indeed our
results from the setting of Gaussian noise no longer hold. However, we may apply results from compressed
sensing which describe sufficient conditions on the measurement matrix for recovery to be possible in the
face of adversarial error. We obtain the following theorem:

Theorem 3.4. Suppose that Assumption I holds and let ε > 0. There are constants c and M such that if m ≥
Mk log n, ‖Ax∗ − y‖2 ≤ ε, and x̂ minimizes ‖x‖1 in the region {x ∈ Rn : ‖Ax− y‖2 ≤ ε}, then ‖x̂− x∗‖2 ≤
cε/
√

m.

The proof is a corollary of our result that A satisfies the Restricted Isometry Property from [6] with high
probability even when we only observe truncated samples; see Corollary G.6 and the subsequent discussion
in Section G.

The remainder of the paper is dedicated to the case where the noise is Gaussian before truncation.

4 The efficient estimation algorithm

Define Er = {x ∈ Rn : ‖Ax− y‖2 ≤ r
√

m}. To solve Program 2, our algorithm is Projected Stochastic
Gradient Descent (PSGD) with projection set Er, for an appropriate constant r (specified in Lemma 5.4). We
pick an initial feasible point by computing

x(0) = argmin
x∈Er

‖x‖1 .

Subsequently, the algorithm performs N updates, where N = poly(n). Define a random update to x(t) ∈ Rn

as follows. Pick j ∈ [m] uniformly at random. Sample z(t) ∼ ZAj ,x(i)
. Then set

v(t) := Aj(z(t) − yj) + λ · sign(x(t))

w(t) := x(t) −
√

1
nN

v(t); x(t+1) := argmin
x∈Er

∥∥∥x− w(t)
∥∥∥

2
.

Finally, the algorithm outputs x̄ = 1
N ∑N−1

t=0 x(t).
See Section 5.2 for the motivation of this algorithm, and a proof sketch of correctness and efficiency.

Section E contains a summary of the complete algorithm in pseudocode.

5 Overview of proofs and techniques

This section outlines our techniques. The first step is proving Proposition 3.2. The second step is proving
Proposition 3.3, by showing that the algorithm described in Section 4 efficiently recovers an approximate
solution to Program 2.
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5.1 Statistical recovery

Our approach to proving Proposition 3.2 is the Primal-Dual Witness (PDW) method introduced in [26].
Namely, we are interested in showing that the solution of Program (2) is near x∗ with high probability. Let
U be the (unknown) support of the true parameter vector x∗. Define the following (hypothetical) program
in which the solution space is restricted to vectors with support in U:

argmin
x∈Rn :supp(x)⊆U

nll(x; A, y) + λ ‖x‖1 (3)

In the untruncated setting, the PDW method is to apply the subgradient optimality condition to the solution
x̆ of this restricted program, which is by definition sparse. Proving that x̆ satisfies subgradient optimality
for the original program implies that the original program has a sparse solution x̆, and under mild extra
conditions x̆ is the unique solution. Thus, the original program recovers the true basis. We use the PDW
method for a slightly different purpose; we apply subgradient optimality to x̆ to show that ‖x̆− x∗‖2 is
small, and then use this to prove that x̆ solves the original program.

Truncation introduces its own challenges. While Program 2 is still convex [9], it is much more convo-
luted than ordinary least squares. In particular, the gradient and Hessian of the negative log-likelihood
have the following form (see Section C for the proof).

Lemma 5.1. For all (A, y), the gradient of the negative log-likelihood is∇ nll(x; A, y) = 1
m ∑m

j=1 AT
j (EZAj ,x − yj).

The Hessian is H(x; A, y) = 1
m ∑m

j=1 AT
j Aj Var(ZAj ,x).

We now state the two key facts which make the PDW method work. First, the solution x̆ to the restricted
program must have a zero subgradient in all directions in RU . Second, if this subgradient can be extended
to all of Rn, then x̆ is optimal for the original program. Formally:

Lemma 5.2. Fix any (A, y). Let x̆ be an optimal solution to Program 3.

(a) There is some z̆U ∈ RU such that ‖z̆U‖∞ ≤ 1 and −λz̆U = 1
m AT

U(EZA,x̆ − y).

(b) Extend z̆U to Rn by defining −λz̆Uc = 1
m AT

Uc(EZA,x̆ − y). If ‖z̆Uc‖∞ < 1, and AT
U AU is invertible, then x̆

is the unique optimal solution to Program 2.

See Section C for the proof. The utility of this lemma is in reducing Proposition 3.2 to showing that with
high probability over (A, y), the following conditions both hold:

1. ‖x̆− x∗‖ is small (Theorem A.7).

2. ‖z̆Uc‖∞ < 1 (Theorem B.3) and AT
U AU is invertible (corollary of Theorem G.1).

In Section A, we prove Condition (1) by dissecting the subgradient optimality condition. In Section B
we then prove Condition (2) and complete the proof of Proposition 3.2.

5.2 Computational recovery

For Proposition 3.3, we want to solve Program 2, i.e. minimize f (x) = nll(x; A, y) + λ ‖x‖1 . The gradient
of nll(x; A, y) doesn’t have a closed form, but it can be written cleanly as an expectation:

∇ nll(x; A, y) =
1
m

m

∑
j=1

AT
j (EZAj ,x − yj).

Let us assume that ZAj ,x can be sampled efficiently. Then we may hope to optimize f (x) by stochastic
gradient descent. But problematically, in our high-dimensional setting f is nowhere strongly convex. So
while we can apply the following general result from convex optimization, it has several strings attached:
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Theorem 5.3. Let f : Rn → R be a convex function achieving its optimum at x̆ ∈ Rn. Let x(0), x(1), . . . , x(N)

be a sequence of random vectors in Rn. Suppose that x(i+1) = x(i) − ηv(i) where E[v(i)|x(i)] ∈ ∂ f (x(i)). Set
x̄ = 1

N ∑N
i=1 x(i). Then

E[ f (x̄)]− f (x̆) ≤ (ηN)−1E

[∥∥∥x(0) − x̆
∥∥∥2

2

]
+ ηN−1

N

∑
i=1

E

[∥∥∥v(i)
∥∥∥2

2

]
.

In particular, to apply this result, we need to solve three technical problems:

1. We need to efficiently find an initial point x(0) with bounded distance from x̆.

2. The gradient does not have bounded norm for arbitrary x ∈ Rn. Thus, we need to pick a projection
set in which the bound holds.

3. Since f is not strongly convex, we need to convert the bound on f (x̄)− f (x̆) into a bound on ‖x̄− x̆‖2.

As defined in Section 4, our solution is the projection set Er = {x ∈ Rn : ‖Ax− y‖2 ≤ r
√

m}, for an
appropriate constant r > 0. To pick an initial point in Er, we solve the program x(0) = argminx∈Er

‖x‖1 .
This estimate is biased due to the truncation, but the key point is that by classical results from compressed
sensing, it has bounded distance from x∗ (and therefore from x̆).

The algorithm then consists of projected stochastic gradient descent with projection set Er. To bound the
number of update steps required for the algorithm to converge to a good estimate of x̆, we need to solve
several statistical problems (which are direct consequences of assumptions in Theorem 5.3).

Properties of Er. First, x̆ must be feasible and a bounded distance from the initial point (due to high-
dimensionality, Er is unbounded, so this is not immediate). The following lemmas formalize this; see Sec-
tions J.11 and J.12 for the respective proofs. Lemma 5.4 specifies the choice of r.

Lemma 5.4. With high probability, x̆ ∈ Er for an appropriate constant r > 0.

Lemma 5.5. With high probability,
∥∥∥x(0) − x̆

∥∥∥
2
≤ O(1).

Second, the SGD updates at points within Er must be unbiased estimates of the gradient, with bounded
square-norm in expectation. The following lemma shows that the updates v(t) defined in Section 4 satisfy
this property. See Section J.13 for the proof.

Lemma 5.6. With high probability over A, the following statement holds. Let 0 ≤ t < T. Then E[v(t)|x(t)] ∈
∂ f (x(t)), and E[

∥∥∥v(t)
∥∥∥2

2
] ≤ O(n).

Addressing the lack of strong convexity. Third, we need to show that the algorithm converges in param-
eter space and not just in loss. That is, if f (x)− f (x̆) is small, then we want to show that ‖x− x̆‖2 is small
as well. Note that f is not strongly convex even in Er, due to the high dimension. So we need a more careful
approach. In the subspace RU , f is indeed strongly convex near x̆, as shown in the following lemma (proof
in Section J.14):

Lemma 5.7. There is a constant ζ such that with high probability over A, f (x)− f (x̆) ≥ ζ
2 ‖x− x̆‖2

2 for all x ∈ Rn

with supp(x) ⊆ U and ‖x− x̆‖2 ≤ 1.

But we need a bound for all Rn. The idea is to prove a lower bound on f (x)− f (x̆) for x near x̆, and
then use convexity to scale the bound linearly in ‖x− x̆‖2. The above lemma provides a lower bound for x
near x̆ if supp(x) ⊆ U, and we need to show that adding an RUc

-component to x increases f proportionally.
This is precisely the content of Theorem B.4. Putting these pieces together we obtain the following lemma.
See Section J.15 for the full proof.

Lemma 5.8. There are constants c f > 0 and c′f such that with high probability over A the following holds. Let
x ∈ Rn. If f (x)− f (x̆) ≤ c f (log n)/m3, then

f (x)− f (x̆) ≥ c′f
log n

m
‖x− x̆‖2

2 .
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Convergence of PSGD. It now follows from the above lemmas and Theorem 5.3 that the PSGD algorithm,
as outlined above and described in Section 4, converges to a good approximation of x̆ in a polynomial
number of updates. The following theorem formalizes the guarantee. See Section J.16 for the proof.

Theorem 5.9. With high probability over A and over the execution of the algorithm, we get

‖x̄− x̆‖2 ≤ O(
√
(k log n)/m).

Efficient implementation. Finally, in Section F we prove that initialization and each update step is effi-
cient. Efficient gradient estimation in the projection set (i.e. sampling ZAj ,x) does not follow from the prior
work, since our projection set is by necessity laxer than that of the prior work [9]. So we replace their rejec-
tion sampling procedure with a novel approximate sampling procedure under mild assumptions about the
truncation set. Together with the convergence bound claimed in Theorem 5.9, these prove Proposition 3.3.

Proof of Proposition 3.3. The correctness guarantee follows from Theorem 5.9. For the efficiency guarantee,
note that the algorithm performs initialization and then N = poly(n) update steps. By Section F, the
initialization takes poly(n) time, and each update step takes poly(n) + T(e−Θ(m)). This implies the desired
bounds on overall time complexity.
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A Bounding solution of restricted program

In this section we prove that ‖x̆− x∗‖2 is small with high probability, where x̆ is a solution to Program 3.
Specifically, we use regularization parameter λ = Θ(

√
(log n)/m), and prove that ‖x̆− x∗‖2 ≤ O(

√
(k log n)/m).

The proof is motivated by the following rephrasal of part (a) of Lemma 5.2:

− λz̆U =
1
m

AT
U(E[ZA,x̆]−E[ZA,x∗ ]) +

1
m

AT
U(E[ZA,x∗ ]− y) (4)

where ‖z̆U‖∞ ≤ 1. For intuition, consider the untruncated setting: then E[Zt] = t, so the equation is
simply

−λz̆U =
1
m

AT
U AU(x̆U − x∗U)−

1
m

AT
Uw

10



where w ∼ N(0, 1)m. Since w is independent of AT
U and has norm Θ(m), each entry of AT

Uw is Gaussian
with variance Θ(m), so 1

m AT
Uw has norm Θ(

√
k/m). Additionally, ‖λz̆U‖2 ≤ λ

√
k = O(

√
(k log n)/m).

Finally, 1
m AT

U AU is a Θ(1)-isometry, so we get the desired bound on x̆U − x∗U .
Returning to the truncated setting, one bound still holds, namely ‖λz̆U‖2 ≤ λ

√
k. The remainder of

the above sketch breaks down for two reasons. First, E[ZA,x∗ ]− y is no longer independent of A. Second,
bounding 1

m AT
U(E[ZA,x̆]−E[ZA,x∗ ]) no longer implies a bound on x̆U − x∗U .

The first problem is not so hard to work around; we can still bound AT
U(E[ZA,x∗ ] − y) as follows; see

Section J.1 for the proof.

Lemma A.1. With high probability over A and y,
∥∥AT

U(E[ZA,x∗ ]− y)
∥∥2

2 ≤ α−1km log n.

So in equation 4, the last term is O(
√
(k log n)/m) with high probability. The first term is always

O(
√
(k log n)/m), since ‖z̆U‖2 ≤

√
k. So we know that 1

m AT
U(E[ZA,x̆] − E[ZA,x∗ ]) has small norm. Un-

fortunately this does not imply that E[ZA,x̆]−E[ZA,x∗ ] has small norm, but as motivation, assume that we
have such a bound.

Since AU is a Θ(
√

m)-isometry, bounding x̆ − x∗ is equivalent to bounding Ax̆ − Ax∗. To relate this
quantity to E[ZA,x̆]−E[ZA,x∗ ], our approach is to lower bound the derivative of µt = E[Zt] with respect to
t. The derivative turns out to have the following elegant form (proof in Section J.2):

Lemma A.2. For any t ∈ R, d
dt µt = Var(Zt).

Crucially, Var(Zt) is nonnegative, and relates to survival probability. By integrating a lower bound on
the derivative, we get the following lower bound on µt− µt∗ in terms of t− t∗. The bound is linear for small
|t− t∗|, but flattens out as |t− t∗| grows. See Section J.3 for the proof.

Lemma A.3. Let t, t∗ ∈ R. Then sign(µt − µt∗) = sign(t− t∗). Additionally, for any constant β > 0 there is a
constant c = c(β) > 0 such that if γS(t∗) ≥ β, then |µt − µt∗ | ≥ c min(1, |t− t∗|).

If we want to use this lemma to prove that ‖E[ZA,x̆]−E[ZA,x∗ ]‖2 is at least a constant multiple of
‖A(x̆− x∗)‖2, we face two obstacles: (1) γS(Ajx∗) may not be large for all j, and (2) the lemma only gives
linear scaling if |Aj(x̆− x∗)| = O(1): but this is essentially what we’re trying to prove!

To deal with obstacle (1), we restrict to the rows j ∈ [m] for which γS(Ajx∗) is large. To deal with obstacle
(2), we have a two-step proof. In the first step, we use the Ω(1)-lower bound provided by Lemma A.3 to
show that ‖A(x̆− x∗)‖2 = O(

√
m) (so that |Aj(x̆− x∗)| = O(1) on average). In the second step, we use this

to get linear scaling in Lemma A.3, and complete the proof, showing that ‖A(x̆− x∗)‖2 = O(
√

k log n).
Formally, define Igood to be the set of indices j ∈ [m] such that γS(Ajx∗) ≥ α/2 and |Ajx∗ − Aj x̆|2 ≤

(6/(αm)) ‖Ax∗ − Ax̆‖2. In the following lemmas we show that Igood contains a constant fraction of the
indices, so by the isometry properties we retain a constant fraction of ‖A(x̆− x∗)‖2 when restricting to
Igood. See Appendices J.4 and J.5 for the proofs of Lemmas A.4 and A.5 respectively.

Lemma A.4. With high probability, |Igood| ≥ (α/6)m.

Lemma A.5. For some constant ε > 0, we have that with high probability, ‖Ax∗ − Ax̆‖2
Igood
≥ ε ‖Ax∗ − Ax̆‖2.

We now prove the weaker, first-step bound on ‖A(x̆− x∗)‖2. But there is one glaring issue we must
address: we made a simplifying assumption that ‖E[ZA,x̆]−E[ZA,x∗ ]‖ is small. All we actually know is
that

∥∥AT
U(E[ZA,x̆]−E[ZA,x∗ ]

∥∥
2 is small. And AT

U has a nontrivial null space.
Here is a sketch of how we resolve this issue. Let a = A(x̆− x∗) and b = µAx̆ − µAx∗ ; we want to show

that if ‖a‖ is large then
∥∥AT

Ub
∥∥ is large. Geometrically,

∥∥AT
Ub
∥∥ is approximately proportional to the distance

from b to the subspace Null(AT
U). Oversimplifying for clarity, we know that |bj| ≥ c|aj| for all j. This is by

itself insufficient. The key observation is that we also know sign(aj) = sign(bj) for all j. Thus, b lies in a
hyperoctant shifted to have corner ca. Since ca lies in the row space of AT

U , it’s perpendicular to Null(AT
U),

so the closest point to Null(AT
U) in the shifted hyperoctant should be ca.

Formalizing this geometric intuition yields the last piece of the proofs of the following theorems. See
Section J.6 for the full proofs.
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Theorem A.6. There are positive constants c′reg = c′reg(α), M′ = M′(α), and C′ = C′(α) with the following
property. Suppose that λ ≤ c′reg/

√
k and m ≥ M′k log n. Then with high probability, ‖AU x∗ − AU x̆‖2 ≤ C′

√
m.

Theorem A.7. There are positive constants c′′reg = c′′reg(α), M′′ = M′′(α), and C′′ = C′′(α) with the following
property. Suppose that λ ≤ c′′reg/

√
k and m ≥ M′′k log n. Then ‖x∗ − x̆‖2 ≤ C′′(λ

√
k +

√
(k log n)/m) with

high probability.

B Proof of statistical recovery

Extend z̆ to Rn by defining

z̆Uc = − 1
λm

AT
Uc(EZA,x̆ − y).

We would like to show that ‖zUc‖∞ < 1. Since AT
Uc is independent of E[ZA,x̆] − y, each entry of

AT
Uc(E[ZA,x̆]− y) is Gaussian with standard deviation ‖E[ZA,x̆]− y‖2. It turns out that a bound of O(λ

√
km+√

m) suffices. To get this bound, we decompose

E[ZA,x̆]− y = A(x̆− x∗) + ERA,x̆ − (y− Ax∗)

and bound each term separately. Here we are defining Rt = Zt − t, and Ra,x = Za,x − aTx and RA,x =
ZA,x − Ax similarly.

We present the proof of the following lemmas in Section J.7 and Section J.8 respectively.

Lemma B.1. There is a constant c = c(α) such that under the conditions of Theorem A.7, with high probability over
(A, y), ‖E[RA,x̆]‖2

2 ≤ cm.

Lemma B.2. There is a constant cy = cy(α) such that ‖RA,x∗‖2
2 ≤ cym with high probability.

Combining the above lemmas with the bound on ‖x̆− x∗‖2 from the previous section, we get the desired
theorem. See Section J.9 for the full proof.

Theorem B.3. There are constants M = M(α), σ = σ(α), and d = d(α) with the following property. Suppose
m ≥ Mk log n, and λ = σ

√
(log n)/m. Then with high probability we have ‖z̆Uc‖∞ < 1.

As an aside that we’ll use later, this proof can be extended to any random vector near x̆ with support
contained in U (proof in Section J.10).

Theorem B.4. There are constants M = M(α), σ = σ(α), and d = d(α) with the following property. Suppose
m ≥ Mk log n and λ = σ

√
(log n)/m. If X ∈ Rn is a random variable with supp(X) ⊆ U always, and

‖x̆− X‖2 ≤ 1/m with high probability, then with high probability
∥∥∥ 1

m AUc(EZA,X − y)
∥∥∥

∞
≤ λ/2.

Returning to the goal of this section, it remains to show that AT
U AU is invertible with high probability.

But this follows from the isometry guarantee of Theorem G.1. Our main statistical result, Proposition 3.2,
now follows.

Proof of Proposition 3.2. Take M, σ, and d as in the statement of Theorem B.3. Let m ≥ Mk log n and
λ = σ

√
(log n)/m. Let x̂ ∈ Rn be any optimal solution to the regularized program, and let x̆ ∈ RU

be any solution to the restricted program. By Theorem B.3, with high probability we have ‖x∗ − x̆‖ ≤
d
√
(k log n)/m and ‖z̆Uc‖ < 1; and by Theorem G.1, AT

U AU is invertible. So by Lemma 5.2, it follows that
x̆ = x̂. Therefore ‖x∗ − x̂‖ ≤ d

√
(k log n)/m.
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C Primal-dual witness method

Proof of Lemma 5.1. For a single sample (Aj, yj), the partial derivative in direction xi is

∂

∂xi
nll(x; Aj, yj) = Aji(Ajx− y) +

∂
∂xi

∫
S e−(Ajx−z)2/2 dz∫

S e−(Ajx−z)2/2 dz

= Aji(Ajx− y)−
∫

S Aji(Ajx− z)e−(Ajx−z)2/2 dz∫
S e−(Ajx−z)2/2 dz

= Aji(Ajx− y)−E[Aji(Ajx− ZAjx)]

where expectation is taken over the random variable ZAjx (for fixed Aj). Simplifying yields the expression

∇ nll(x; Aj, yj) = Aj(E[ZAjx]− y).

The second partial derivative of nll(x; Aj, yj) in directions xi1 and xi2 is therefore

∂2

∂xi1 ∂xi2
nll(x; Aj, yj) =

∂

∂xi1
Aji2(E[ZAjx]− y)

= Aji2
∂

∂xi1

(∫
S ze−(Ajx−z)2/2 dz∫
S e−(Ajx−z)2/2 dz

− y

)

= Aji2

( ∂
∂xi1

∫
S ze−(Ajx−z)2/2 dz∫

S e−(Ajx−z)2/2 dz
−

∫
S ze−(Ajx−z)2/2 dz ∂

∂xi1

∫
S e−(Ajx−z)2/2 dz(∫

S e−(Ajx−z)2/2 dz
)2

)

= Aji2(E[−Aji1 ZAjx(Ajx− ZAjx)]−E[ZAjx]E[−Aji1(Ajx− ZAjx)]

= Aji1 Aji2 Var(ZAjx).

We conclude that
H(x; Aj, yj) = AT

j Aj Var(ZAjx).

Averaging over all samples yields the claimed result.
The following lemma collects several useful facts that are needed for the PDW method. Parts (a) and

(b) are generically true for any `1-regularized convex program; part (c) is a holdover from the untruncated
setting that is still true. The proof is essentially due to [26], although part (c) now requires slightly more
work.

Lemma C.1. Fix any (A, y).

(a) A vector x ∈ Rn is optimal for Program 2 if and only if there exists some z ∈ ∂ ‖x‖1 such that

∇ nll(x; A, y) + λz = 0.

(b) Suppose that (x, z) are as in (a), and furthermore |zi| < 1 for all i 6∈ supp(x). Then necessarily supp(x̂) ⊆
supp(x) for any optimal solution x̂ to Program 2.

(c) Suppose that (x, z) are as in (b), with I = supp(x). If AT
I AI is invertible, then x is the unique optimal solution

to Program 2.
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Proof. Part (a) is simply the subgradient optimality condition in a convex program.
Part (b) is a standard fact about duality; we provide a proof here. Let x̂ be any optimal solution to

Program 2. We claim that x̂Tz = ‖x̂‖1. To see this, first note that xTz = ‖x‖1, since xizi = |xi| always holds
by definition of a subgradient for the `1 norm. Now, by optimality of x and x̂, we have f (x) = f (x̂) ≤
f (tx + (1− t)x̂) for all 0 ≤ t ≤ 1. Therefore by convexity, f (tx + (1− t)x̂) = f (x) for all 0 ≤ t ≤ 1. Since f
is the sum of two convex functions, both must be linear on the line segment between x and x̂. Therefore

nll(tx + (1− t)x̂) = t nll(x) + (1− t) nll(x̂)

for all 0 ≤ t ≤ 1. We conclude that

(∇ nll(x)) · (x̂− x) = nll(x̂)− nll(x) = ‖x‖1 − ‖x̂‖1 .

Since ∇ nll(x) + z = 0 by subgradient optimality, it follows that zT(x̂ − x) = ‖x̂‖1 − ‖x‖1. Hence, zT x̂ =
‖x̂‖1. Since |zi| ≤ 1 for all i, if |zi| < 1 for some i then necessarily x̂i = 0 for equality to hold.

For part (c), if AT
I AI is invertible, then it is (strictly) positive definite. The Hessian of Program 3 is

1
m

m

∑
j=1

AT
I,j AI,j Var(ZAj ,x).

Since Var(ZAj ,x) is always positive, there is some ε > 0 (not necessarily a constant) such that

1
m

m

∑
j=1

AT
I,j AI,j Var(ZAj ,x) <

1
m

ε
m

∑
j=1

AT
I,j AI,j =

1
m

εAT
I AI .

Thus, the Hessian of the restricted program is positive definite, so the restricted program is strictly convex.
Therefore the restricted program has a unique solution. By part (b), any solution to the original program
has support in I, so the original program also has a unique solution, which must be x.

As with the previous lemma, the following proof is essentially due to [26] (with a different subgradient
optimality condition).

Proof of Lemma 5.2. By part (a) of Lemma C.1, a vector x ∈ Rn is optimal for Program 2 if and only if there
is some z ∈ ∂ ‖x‖1 such that

1
m

AT(EZA,x − y) + λz = 0.

This vector equality can be written in block form as follows:

1
m

[
AT

U
AT

Uc

]
(EZA,x − y) + λ

[
zU
zUc

]
= 0.

Since x̆ is optimal in RU , there is some z̆U ∈ ∂ ‖x̆‖1 such that (x̆, z̆U) satisfy the first of the two block
equations. This is precisely part (a). If furthermore x̆ is zero-extended to Rn, and z̆ is extended as in part
(b), and z̆ satisfies ‖z̆Uc‖∞ ≤ 1, then since xi = 0 for all i 6∈ U, we have that z̆ is a subgradient for ‖x̆‖1.
Therefore x̆ is optimal for Program 2. If ‖z̆Uc‖∞ < 1 and AT

U AU is invertible, then x̆ is the unique solution
to Program 2 by parts (b) and (c) of Lemma C.1.

D Sparse recovery from the Restricted Isometry Property

In this section we restate a theorem due to [6] about sparse recovery in the presence of noise. Our statement
is slightly generalized to allow a trade-off between the isometry constants and the sparsity. That is, as the
sparsity k decreases relative to the isometry order s, the isometry constants τ, T are allowed to worsen.
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Theorem D.1 ([6]). Let B ∈ Rm×n be a matrix satisfying the s-Restricted Isometry Property

τ ‖v‖2 ≤ ‖Bv‖2 ≤ T ‖v‖2

for all s-sparse v ∈ Rn. Let w∗ ∈ Rn be k-sparse for some k < s, and let w ∈ Rn satisfy ‖w‖1 ≤ ‖w∗‖1. Then

‖B(w− w∗)‖2 ≥ (τ(1− ρ)− Tρ) ‖w− w∗‖2

where ρ =
√

k/(s− k).

Proof. Let h = w− w∗ and let T0 = supp(w∗). Then

‖w∗‖1 ≥ ‖w‖1 =
∥∥∥hTC

0

∥∥∥
1
+
∥∥(h + w∗)T0

∥∥
1 ≥

∥∥∥hTC
0

∥∥∥
1
+ ‖w∗‖1 −

∥∥hT0

∥∥
1 ,

so
∥∥hT0

∥∥
1 ≥

∥∥∥hTC
0

∥∥∥
1
. Without loss of generality assume that TC

0 = {1, . . . , |TC
0 |}, and |hi| ≥ |hi+1| for all

1 ≤ i < |TC
0 |. Divide TC

0 into sets of size s′ = s− k respecting this order:

TC
0 = T1 ∪ T2 ∪ · · · ∪ Tr.

Then the Restricted Isometry Property gives

‖Bh‖2 ≥
∥∥BhT0∪T1

∥∥
2 −

r

∑
t=2
‖BhTt‖2 ≥ τ

∥∥hT0∪T1

∥∥
2 − T

r

∑
t=2
‖hTt‖2 (5)

For any t ≥ 1 and i ∈ Tt+1, we have hi ≤ ‖hTt‖1 /s′, so that

∥∥hTt+1

∥∥2
2 ≤
‖hTt‖

2
1

s′
.

Summing over all t ≥ 2, we get

r

∑
t=2
‖hTt‖2 ≤

1√
s′

r

∑
t=1
‖hTt‖1 =

∥∥∥hTC
0

∥∥∥
1√

s′
≤
∥∥hT0

∥∥
1√

s′
≤
√

k
s′
‖h‖2 .

The triangle inequality implies that
∥∥hT0∪T1

∥∥
2 ≥ (1−

√
k/s′) ‖h‖2. Returning to Equation 5, it follows that

‖Bh‖2 ≥
(

τ(1−
√

k/s′)− T
√

k/s′
)
‖h‖2

as claimed.

E Summary of the algorithm

Algorithm 1 Projected Stochastic Gradient Descent.

1: procedure SGD(N, λ) . N: number of steps, λ: parameter
2: x(0) ← argmin ‖x‖1 s.t. x ∈ Er . see the Appendix F for details
3: for t = 1, . . . , N do
4: ηt ← 1√

nN
5: v(t) ← GRADIENTESTIMATION(x(t−1)))

6: w(t) ← x(t−1) − ηtw(t)

7: x(t) ← argminx∈Er

∥∥∥x− w(t)
∥∥∥

2
. see the Appendix F for details

8: return x̄ ← 1
N ∑N

t=1 x(t) . output the average
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Algorithm 2 The function to estimate the gradient of the `1 regularized negative log-likelihood.

1: function GRADIENTESTIMATION(x)
2: Pick j at random from [n]
3: Use Assumption II or Lemma K.4 to sample z ∼ ZAjx(t)

4: return Aj(z− yj)

F Algorithm details

In this section we fill in the missing details about the algorithm’s efficiency. Since we have already seen
that the algorithm converges in O(poly(n)) update steps, all that remains is to show that the following
algorithmic problems can be solved efficiently:

1. (Initial point) Compute x(0) = argminx∈Er
‖x‖1 .

2. (Stochastic gradient) Given x(t) ∈ Er and j ∈ [m], compute a sample Aj(z− yj), where z ∼ ZAjx(t)
.

3. (Projection) Given w(t) ∈ Rn, compute x(t+1) = argminx∈Er

∥∥∥x− w(t)
∥∥∥

2
.

Initial point. To obtain the initial point x(0), we need to solve the program

minimize ‖x‖1
subject to ‖Ax− y‖2 ≤ r

√
m.

This program has come up previously in the compressed sensing literature (see, e.g., [6]). It can be recast
as a Second-Order Cone Program (SOCP) by introducing variables x+, x− ∈ Rn:

minimize ∑n
i=1(x+i − x−i )

subject to ‖Ax+ − Ax− − y‖2 ≤ r
√

m,
x+ ≥ 0,
−x− ≥ 0.

Thus, it can be solved in polynomial time by interior-point methods (see [4]).

Stochastic gradient. In computing an unbiased estimate of the gradient, the only challenge is sampling
from ZAjx(t)

. By Assumption II, this takes T(γS(Ajx(t))) time. We know from Lemma I.4 that γS(Ajx∗) ≥
α2m. Since x(t), x∗ ∈ Er, we have from Lemma I.2 that

γS(Ajx(t)) ≥ γS(t∗)2e−|Aj(x(t)−x∗)|2−2 ≥ α4me−4r2m−2 ≥ e−Θ(m/α).

Thus, the time complexity of computing the stochastic gradient is T(e−Θ(m/α)).
In the special case when the truncation set S is a union of r intervals, there is a sampling algorithm

with time complexity T(β) = poly(r, log(1/β, n)) (Lemma K.4). Hence, in this case the time complexity of
computing the stochastic gradient is poly(r, n).

To be more precise, we instantiate Lemma K.4 with accuracy ζ = 1/(nL), where L = poly(n) is the
number of update steps performed. This gives some sampling algorithm A . In each step, A ’s output
distribution is within ζ of the true distribution N(t, 1; S). Consider a hypothetical sampling algorithm A ′

in which A is run, and then the output is altered by rejection to match the true distribution. Alteration
occurs with probability ζ. Thus, running the PSGD algorithm with A ′, the probability that any alteration
occurs is at most Lζ = o(1). As shown by Theorem H.1, PSGD with A ′ succeeds with high probability.
Hence, PSGD with A succeeds with high probability as well.
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Projection. The other problem we need to solve is projection onto set Er:

minimize ‖x− v‖2
subject to ‖Ax− y‖2 ≤ r

√
m.

This is a convex QCQP, and therefore solvable in polynomial time by interior point methods (see [4]).

G Isometry properties

Let A ∈ Rm×n consist of m samples Ai from Process 1. In this section we prove the following theorem:

Theorem G.1. For every ε > 0 there are constants δ > 0, M, τ > 0 and T with the following property. Let V ⊆ [n].
Suppose that m ≥ M|V|. With probability at least 1− e−δm over A, for every subset J ⊆ [m] with |J| ≥ εm, the
|J| × k submatrix AJ,V satisfies

τ
√

m ‖v‖2 ≤
∥∥AJ,Vv

∥∥
2 ≤ T

√
m ‖v‖2 ∀ v ∈ RV .

We start with the upper bound, for which it suffices to take J = [m].

Lemma G.2. Let V ⊆ [n]. Suppose that m ≥ |V|. There is a constant T = T(α) such that

Pr[smax (AV) > T] ≤ e−Ω(m).

Proof. In the process for generating A, consider the matrix A′ obtained by not discarding any of the sam-
ples a ∈ Rn. Then A′ is a ξ × n matrix for a random variable ξ; each row of A′ is a spherical Gaus-
sian independent of all previous rows, but ξ depends on the rows. Nonetheless, by a Chernoff bound,
Pr[ξ > 2m/α] ≤ e−m/(3α). In this event, A′ is a submatrix of 2m/α× n matrix B with i.i.d. Gaussian entries.
By [21],

Pr[smax (BV) > C
√

2m/α] ≤ e−cm

for some absolute constants c, C > 0. Since A′ is a submatrix of B with high probability, and A is a submatrix
of A′, it follows that

Pr[smax (AV) > C
√

2m/α] ≤ e−Ω(m)

as desired.

For the lower bound, we use an ε-net argument.

Lemma G.3. Let ε > 0 and let v ∈ Rn with ‖v‖2 = 1. Let a ∼ N(0, 1)n. Then

Pr[|aTv| < αε
√

π/2|aTx∗ + Z ∈ S] < ε.

Proof. From the constant survival probability assumption,

Pr[|aTv| < δ|aTx∗ + Z ∈ S] ≤ α−1 Pr[|aTv| < δ].

But aTv ∼ N(0, 1), so Pr[|aTv| < δ] ≤ 2δ/
√

2π. Taking δ = αε
√

π/2 yields the desired bound.

Lemma G.4. Let V ⊆ [n]. Fix ε > 0 and fix v ∈ RV with ‖v‖2 = 1. There are positive constants τ0 = τ0(α, ε)
and c0 = c0(α, ε) such that

Pr
[
∃J ⊆ [m] : (|J| ≥ εm) ∧ (

∥∥AJ,Vv
∥∥

2 < τ0)
]
≤ e−c0m.

Proof. For each j ∈ [m] let Bj be the indicator random variable for the event that |Aj,Vv| < αε/3. Let
B = ∑m

j=1 Bj. By Lemma G.3, EB < εm/3. Each Bj is independent, so by a Chernoff bound,

Pr[B > εm/2] ≤ e−εm/18.

In the event [B ≤ εm/2], for any J ⊆ [m] with |J| ≥ εm it holds that∥∥AJ,Vv
∥∥2

2 = ∑
j∈J

(Aj,Vv)2 ≥ ∑
j∈J:Bj=0

(Aj,Vv)2 ≥ (αε/3)B ≥ αε2m/6.

So the event in the lemma statement occurs with probability at most e−εm/18.
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Now we can prove the isometry property claimed in Theorem G.1.

Proof of Theorem G.1. Let V ⊆ [n]. Let ε > 0. Take γ = 4|V|/(c0m), where c0 = c0(α, ε) is the constant in
the statement of Lemma G.4. Let B ⊆ RV be the k-dimensional unit ball. Let D ⊂ B be a maximal packing
of (1 + γ/2)B by radius-(γ/2) balls with centers on the unit sphere. By a volume argument,

|D | ≤ (1 + γ/2)k

(γ/2)k ≤ e2k/γ ≤ ec0m/2.

Applying Lemma G.4 to each v ∈ D and taking a union bound,

Pr[∃J ⊆ [m], v ∈ D : (|J| ≥ εm) ∧ (
∥∥AJ,Vv

∥∥
2 < τ0)] ≤ e−c0m/2.

So with probability 1− e−Ω(m), the complement of this event holds. And by Lemma G.2, the event smax (AV) ≤
T
√

m holds with probability 1− e−Ω(m). In these events we claim that the conclusion of the theorem holds.
Take any v ∈ RV with ‖v‖2 = 1, and take any J ⊆ [m] with |J| ≥ εm. Since D is maximal, there is some
w ∈ D with ‖v− w‖2 ≤ γ. Then∥∥AJ,Vv

∥∥
2 ≥

∥∥AJ,Vw
∥∥

2 −
∥∥AJ,V(v− w)

∥∥
2 ≥ τ0 − γT.

But γ ≤ 4/(c0M). For sufficiently large M, we get γ < τ0/(2T). Taking τ = τ0/2 yields the claimed lower
bound.

As a corollary, we get that AT
U is a

√
m-isometry on its row space up to constants (of course, this holds

for any V ⊆ [n] with |V| = k, but we only need it for V = U).

Corollary G.5. With high probability, for every u ∈ Rk,

τ2

T
√

m ‖AUu‖2 ≤
∥∥∥AT

U AUu
∥∥∥

2
≤ T2

τ

√
m ‖AUu‖2 .

Proof. By Theorem G.1, with high probability all eigenvalues of AT
U AU lie in the interval [τ

√
m, T
√

m].
Hence, all eigenvalues of (AT

U AU)
2 lie in the interval [τ2m, T2m]. But then∥∥∥AT

U AUu
∥∥∥

2
= uT(AT

U AU)
2u ≥ τ2muTu ≥ τ2

T
√

m ‖AUu‖2 .

The upper bound is similar.

We also get a Restricted Isometry Property, by applying Theorem G.1 to all subsets V ⊆ [n] of a fixed
size.

Corollary G.6 (Restricted Isometry Property). There is a constant M such that for any s > 0, if m ≥ Ms log n,
then with high probability, for every v ∈ Rn with | supp(v)| ≤ s,

τ
√

m ‖v‖2 ≤ ‖Av‖2 ≤ T
√

m ‖v‖2 .

Proof. We apply Theorem G.1 to all V ⊆ [n] with |V| = s, and take a union bound over the respective failure
events. The probability that there exists some set V ⊆ [n] of size s such that the isometry fails is at most(

n
s

)
e−δm ≤ es log n−δm.

If m ≥ Ms log n for a sufficiently large constant M, then this probability is o(1).

From this corollary, our main result for adversarial noise (Theorem 3.4) follows almost immediately:
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Proof of Theorem 3.4. Let M′ be the constant in Corollary G.6. Let ρ = min(τ/(4T), 1/3), and let M =
(1 + 1/ρ2)M′. Finally, let s = (1 + 1/ρ2)k.

Let ε > 0. Suppose that m ≥ Mk log n and ‖Ax∗ − y‖ ≤ ε. Then m ≥ M′s log n, so by Corollary G.6,
A/
√

m satisfies the s-Restricted Isometry Property.
By definition, x̂ satisfies ‖Ax̂− y‖2 ≤ ε and ‖x̂‖1 ≤ ‖x∗‖1 (by feasibility of x∗). Finally, x∗ is k-sparse.

We conclude from Theorem D.1 and our choice of ρ that∥∥(A/
√

m)(x̂− x∗)
∥∥

2 ≥ (τ(1− ρ)− Tρ) ‖x̂− x∗‖2 ≥
τ

2
‖x̂− x∗‖2 .

But ‖A(x̂− x∗)‖2 ≤ 2ε by the triangle inequality. Thus, ‖x̂− x∗‖2 ≤ τε/
√

m.

H Projected Stochastic Gradient Descent

In this section we present the exact PSGD convergence theorem which we use, together with a proof for
completeness.

Theorem H.1. Let f : Rn → R be a convex function achieving its optimum at x̆ ∈ Rn. Let P ⊆ Rn be a convex
set containing x̆. Let x(0) ∈P be arbitrary. For 1 ≤ t ≤ T define a random variable x(t) by

x(t) = ProjP (x(t−1) − ηv(t−1)),

where E[v(t)|x(t)] ∈ ∂ f (x(t)) and η is fixed. Then

E[ f (x̄)]− f (x̆) ≤ (ηT)−1E

[∥∥∥x(0) − x̆
∥∥∥2

2

]
+ ηT−1

T

∑
i=1

E

[∥∥∥v(i)
∥∥∥2

2

]
where x̄ = 1

T ∑T
i=1 x(i).

Proof. Fix 0 ≤ t < T. We can write∥∥∥x(t+1) − x̆
∥∥∥2

2
≤
∥∥∥(x(t) − ηv(t))− x̆

∥∥∥2

2
=
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η〈v(t), x(t) − x̆〉+ η2

∥∥∥v(t)
∥∥∥2

2

since projecting onto Er cannot increase the distance to x̆ ∈ Er.
Taking expectation over v(t) for fixed x(0), . . . , x(k), we have

E

[∥∥∥x(t+1) − x̆
∥∥∥2

2

∣∣∣∣x(0), . . . , x(k)
]
≤
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η〈Ev(t), x(t) − x̆〉+ η2E

[∥∥∥v(t)
∥∥∥2

2

]
≤
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η( f (x(t))− f (x̆)) + η2E

[∥∥∥v(t)
∥∥∥2

2

]
where the last inequality uses the fact that Ev(t) is a subgradient for f at x(t). Rearranging and taking
expectation over x(0), . . . , x(t), we get that

2
(

E
[

f (x(t))
]
− f (x̆)

)
≤ η−1

(
E

[∥∥∥x(t) − x̆
∥∥∥2

2

]
−E

[∥∥∥x(t+1) − x̆
∥∥∥2

2

])
+ ηE

[∥∥∥v(t)
∥∥∥2

2

]
.

But now summing over 0 ≤ t < T, the right-hand side of the inequality telescopes, giving

E[ f (x̄)]− f (x̆) ≤ 1
T

T−1

∑
t=0

E[ f (x(t))]− f (x̆)

≤ 1
ηT

E

[∥∥∥x(0) − x̆
∥∥∥2

2

]
+

η

T

T−1

∑
t=0

E

[∥∥∥v(t)
∥∥∥2

2

]
.

This is the desired bound.
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I Survival probability

In this section we collect useful lemmas about truncated Gaussian random variables and survival probabil-
ities.

Lemma I.1 ([9]). Let t ∈ R and let S ⊂ R be a measurable set. Then Var(Zt) ≥ CγS(t)2 for a constant C > 0.

Lemma I.2 ([9]). For t, t∗ ∈ R,

log
1

γS(t)
≤ 2 log

1
γS(t∗)

+ |t− t∗|2 + 2.

Lemma I.3 ([9]). For t ∈ R,

E[R2
t ] ≤ 2 log

1
γS(t)

+ 4.

Lemma I.4. With high probability,

m

∑
j=1

log
1

γS(Ajx∗)
≤ 2m log

(
1
α

)
.

Proof. Let Xj = log 1/γS(Ajx∗) for j ∈ [m], and let X = X1 + · · ·+ Xm. Since X1, . . . , Xm are independent
and identically distributed,

E[eX ] = E[eXj ]m = E

[
1

γS(Ajx∗)

]m

=

(
Ea∼N(0,1)n [1]

Ea∼N(0,1)n [γS(aTx∗)]

)m

≤ α−m.

Therefore
Pr[X > 2m log 1/α] = Pr[eX > e2m log 1/α] ≤ e−m log 1/α

by Markov’s inequality.

J Omitted proofs

J.1 Proof of Lemma A.1

We need the following computation:

Lemma J.1. For any i ∈ [n] and j ∈ [m],

EA A2
ji Var(ZAj ,x∗) ≤ α−1.

Proof. By Assumption I,

EAj [A
2
ji Var(ZAj ,x∗)] =

Ea∼N(0,1)n [γS(aTx∗)a2
i Var(Za,x∗)]

Ea∼N(0,1)n [γS(aTx∗)]

≤ α−1Ea∼N(0,1)n [γS(aTx∗)a2
i Var(Za,x∗)].

But for any fixed t ∈ R,

Var(Zt) ≤ E[(Zt − t)2] = E[Z2|Z + t ∈ S] ≤ γS(t)−1E[Z2] = γS(t)−1.

Therefore
EAj [A

2
ji Var(ZAj ,x∗)] ≤ α−1Ea∼N(0,1)n [a2

i ] ≤ α−1

as desired.

Now we can prove Lemma A.1.

20



Proof of Lemma A.1. We prove that the bound holds in expectation, and then apply Markov’s inequality.
We need to show that each entry of the vector AT

U(E[ZA,x∗ ] − ZA,x∗) ∈ Rk has expected square O(m). A
single entry of the vector AT

U(E[ZA,x∗ ]− ZA,x∗) is

m

∑
j=1

Aji(ZAj ,x∗ −EZAj ,x∗),

so its expected square is

E

(
m

∑
j=1

Aji(ZAj ,x∗ −EZAj ,x∗)

)2

.

For any j1 6= j2, the cross-term is

EAj1i Aj2i(ZAj1
,x∗ −EZAj1

,x∗)(ZAj2 ,x∗ −EZAj2 ,x∗).

But for fixed A, the two terms in the product are independent, and they both have mean 0, so the cross-term
is 0. Thus,

E

(
m

∑
j=1

Aji(ZAj ,x∗ −EZAj ,x∗)

)2

=
m

∑
j=1

EA,y A2
ji(ZAj ,x∗ −EZAj ,x∗)

2

=
m

∑
j=1

EA A2
ji Var(ZAj ,x∗)

≤ α−1m.

Then

E

[∥∥∥AT
U(E[ZA,x∗ ]− ZA,x∗)

∥∥∥2

2

]
≤ α−1km.

Hence with probability at least 1− 1/ log n,∥∥∥AT
U(E[ZA,x∗ ]− ZA,x∗)

∥∥∥2

2
≤ α−1km log n

by Markov’s inequality.

J.2 Proof of Lemma A.2

We can write

µt =

∫
S xe−(x−t)2/2 dx∫
S e−(x−t)2/2 dx

.

By the quotient rule,

d
dt

µt = −
∫

S x(t− x)e−(x−t)2/2 dx∫
S e−(x−t)2/2 dx

+

(∫
S xe−(x−t)2/2 dx

) (∫
S(t− x)e−(x−t)2/2 dx

)
(∫

S e−(x−t)2/2 dx
)2

= −E[Zt(t− Zt)] + E[Zt]E[t− Zt]

= Var(Zt)

as desired.
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J.3 Proof of Lemma A.3

The fact that sign(µt − µt∗) = sign(t − t∗) follows immediately from the fact that d
dt µt = Var(Zt) ≥ 0

(Lemma A.2).
We now prove the second claim of the lemma. Suppose t∗ < t; the other case is symmetric. Then we

have

µt − µt∗ =
∫ t

t∗
Var(Zr) dr ≥ C

∫ t

t∗
γS(r)2 dr ≥ Cβ2

∫ t−t∗

0
e−r2−2 dr

by Lemmas A.2, I.1 and I.2 respectively. But we can lower bound

∫ t−t∗

0
e−r2−2 dr ≥

∫ min(1,t−t∗)

0
e−r2−2 dr

≥ e−3 min(1, t− t∗).

This bound has the desired form.

J.4 Proof of Lemma A.4

Since Ea∼N(0,1)k γS(aTx∗) ≥ α and γS(aTx∗) is always at most 1, we have Pr[γS(aTx∗) ≤ α/2] ≤ 1− α/2.
Since the samples are rejection sampled on γS(aTx∗), it follows that Pr[γS(Ajx∗) ≤ α/2] ≤ 1− α/2 as well.
So by a Chernoff bound, with high probability, the number of j ∈ [m] such that γS(Ajx∗) ≤ α/2 is at most
(1− α/3)m.

The condition that |Ajx∗ − Aj x̆|2 ≥ (6/(αm)) ‖Ax∗ − Ax̆‖2 is clearly satisfied by at most (α/6)m in-
dices.

J.5 Proof of Lemma A.5

By Lemma A.4 and Theorem G.1, with high probability AIgood,U and AU both have singular values bounded

between
√

τm and
√

Tm for some positive constants τ = τ(α) and T = T(α). In this event, we have

‖A(x∗ − x̆)‖2
Igood
≥ τm ‖x∗ − x̆‖2 ≥ τ

T
‖A(x∗ − x̆)‖2

which proves the claim.

J.6 Proof of Theorems A.6 and A.7

Proof of Theorem A.6. Let a = A(x̆− x∗) and let b = µAx̆ − µAx∗ . Our aim is to show that if ‖a‖2 is large,
then

∥∥AT
Ub
∥∥

2 is large, which would contradict Equation 4. Since AT
U is not an isometry, we can’t simply

show that ‖b‖2 is large. Instead, we write an orthogonal decomposition b = v + AUu for some u ∈ Rk and
v ∈ Rm with AT

Uv = 0. We’ll show that ‖AUu‖2 is large. Since AT
Ub = AT

U AUu, and AT
U is an isometry on

the row space of AU , this suffices.
For every j ∈ Igood with |aj| > 0, we have by Lemma A.3 that

|bj| ≥ C min(1, |aj|) = C|aj|min(1/|aj|, 1)

where C is the constant which makes Lemma A.3 work for indices j with γS(Ajx∗) ≥ α/2. Take C′ =
√

6/α,
and suppose that the theorem’s conclusion is false, i.e. ‖a‖2 > C′

√
m. Also suppose that the events of

Lemmas A.1 and A.5 hold.
Then by the bound |aj|2 ≤ (6/(αm)) ‖a‖2

2 for j ∈ Igood we get

|bj| ≥ C|aj|min

(√
α/6
√

m
‖a‖2

, 1

)
=

c
√

m
‖a‖2

|aj| (6)
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where c = C
√

α/6. We assumed earlier that |aj| > 0 but Equation 6 certainly also holds when |aj| = 0.
By Lemma A.3, aj and bj have the same sign for all j ∈ [m]. So ajbj ≥ 0 for all j ∈ [m]. Moreover, together

with Equation 6, the sign constraint implies that for j ∈ Igood,

ajbj ≥
c
√

m
‖a‖ a2

j .

Summing over j ∈ Igood we get

∑
j∈Igood

a2
j ≤
‖a‖2
c
√

m ∑
j∈Igood

ajbj ≤
‖a‖2
c
√

m
〈a, b〉 = ‖a‖2

c
√

m
〈a, AUu〉.

By Lemma A.5 on the LHS and Cauchy-Schwarz on the RHS, we get

ε ‖a‖2
2 ≤
‖a‖2

2
c
√

m
‖AUu‖2 .

Hence ‖AUu‖2 ≥ εc
√

m. But then
∥∥AT

Ub
∥∥

2 =
∥∥AT

U AUu
∥∥

2 ≥ (τ2/T)εcm. On the other hand, Equation 4
implies that

1
m

∥∥∥AT
Ub
∥∥∥

2
≤ λ
√

k +
1
m

∥∥∥AT
U(E[ZA,x∗ ]− y)

∥∥∥
2
≤ c′reg +

√
α−1(k log n)/m

since event (2) holds. This is a contradiction for M′ sufficiently large and c′reg sufficiently small. So either
the assumption ‖a‖2 > C′

√
m is false, or the events of Lemma A.1 or A.5 fail. But the latter two events fail

with probability o(1). So ‖a‖2 ≤ C′
√

m with high probability.

Now that we know that ‖x∗ − x̆‖2 ≤ O(1), we can bootstrap to show that ‖x∗ − x̆‖2 ≤
√
(k log n)/m.

While the previous proof relied on the constant regime of the lower bound provided by Lemma A.3, the
following proof relies on the linear regime.

Proof of Theorem A.7. As before, let a = A(x̆ − x∗) and b = µAx̆ − µAx∗ . Suppose that the conclusion
of Theorem A.6 holds, i.e. ‖a‖2 ≤ C′

√
m. Also suppose that the events stated in Lemmas A.1 and A.5

holds. We can make these assumptions with high probability. For j ∈ Igood, we now know that |aj|2 ≤
(6/(αm)) ‖a‖2

2 = O(1). Thus,
|bj| ≥ C|aj| ·min(1/|aj|, 1) ≥ δ|aj|

where δ = C min(1,
√

α/6/C′). By the same argument as in the proof of Theorem A.6, except replacing
(c
√

m)/ ‖a‖2 by δ, we get that
ε ‖a‖2

2 ≤ δ−1 ‖a‖2 · ‖AUu‖2 .

Thus, ‖a‖2 ≤ ε−1δ−1 ‖AUu‖2 . By the isometry property of AT
U on its row space (Corollary G.5), we get

‖a‖2 ≤
τ2

Tεδ
√

m

∥∥∥AT
U AUu

∥∥∥
2
=

c′√
m

∥∥∥AT
Ub
∥∥∥

2

for an appropriate constant c′. Since a = A(x̆− x∗) and AU is a
√

m-isometry up to constants (Theorem G.1),
we get

‖x̆− x∗‖2 ≤
‖a‖2

τ
≤ c′

τm

∥∥∥AT
Ub
∥∥∥

2
.

By Equation 4 and bounds on the other terms of Equation 4, the RHS of this inequality is O(λ
√

k +√
(k log n)/m).
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J.7 Proof of Lemma B.1

For 1 ≤ j ≤ m we have by Lemma I.3 that

(ERAj ,x̆)
2 ≤ E[R2

Aj ,x̆] ≤ 2 log
1

γS(Aj x̆)
+ 4.

By Lemma I.2, we have

log
1

γS(Aj x̆)
≤ 2 log

1
γS(Ajx∗)

+ |Aj x̆− Ajx∗|2 + 2.

Therefore summing over all j ∈ [m],

‖ERA,x̆‖2
2 ≤ 4

m

∑
j=1

log
1

γS(Ajx∗)
+ 2 ‖A(x̆− x∗)‖2

2 + 8m.

Lemma I.4 bounds the first term. Theorems A.7 and G.1 bound the second: with high probability,

‖A(x̆− x∗)‖2 ≤ 2T(λ
√

km + C′′
√

k log n).

Thus,
‖E[RA,x̆]‖2

2 ≤ 8m log(1/α) + 8m + 8T2λ2km + 8(TC′′)2k log n

with high probability. Under the assumptions λ ≤ c′′reg/
√

k and m ≥ M′′k log n, this quantity is O(m).

J.8 Proof of Lemma B.2

Draw m samples from the distribution RAj ,x∗ as follows: pick a ∼ N(0, 1)n and η ∼ N(0, 1). Keep sample
η if aTx∗ + η ∈ S; otherwise reject. We want to bound η2

1 + · · ·+ η2
m. Now consider the following revised

process: keep all the samples, but stop only once m samples satisfy aTx∗ + η ∈ S. Let t be the (random)
stopping point; then the random variable η2

1 + · · ·+ η2
t defined by the new process stochastically dominates

the random variable η1 + · · ·+ η2
m defined by the original process.

But in the new process, each ηi is Gaussian and independent of η1, . . . , ηi−1. With high probability,
t ≤ 2m/α by a Chernoff bound. And if η′1, . . . , η′2m/α ∼ N(0, 1) are independent then

η′
2
1 + · · ·+ η′

2
2m/α ≤ 4m/α

with high probability, by concentration of norms of Gaussian vectors. Therefore η2
1 + · · ·+ η2

t ≤ 4m/α with
high probability as well.

J.9 Proof of Theorem B.3

Set σ = 4(
√

c +√cy), where c and cy are the constants in Lemmas B.1 and B.2. Set M = max(16T2C′′2(σ +

1)2/σ2, σ2/c′′2reg). Note that M is chosen sufficiently large that λ = σ
√
(log n)/m ≤ c′′reg/

√
k.

By Theorem A.7, we have with high probability that the following event holds, which we call Eclose:

‖x∗ − x̆‖2 ≤ C′′(λ
√

k +
√
(k log n)/m) = C′′(σ + 1)

√
k log n

m
.

Now notice that
EZA,x̆ − y = A(x̆− x∗) + ERA,x̆ − (y− Ax∗).

If Eclose holds, then by Theorem G.1, we get ‖A(x̆− x∗)‖2 ≤ TC′′(σ + 1)
√

k log n. By Lemma B.1, with high
probability ‖ERA,x̆‖2 ≤

√
cm. And by Lemma B.2, with high probability ‖y− Ax∗‖2 ≤

√cym. Therefore

‖EZA,x̆ − y‖2 ≤ TC′′(σ + 1)
√

k log n +
√

cym +
√

cm ≤ σ

2
√

m
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where the last inequality is by choice of M and σ. Thus, the event

E : ‖EZA,x̆ − y‖2 ≤
σ

2
√

m

occurs with high probability.
Suppose that event E occurs. Now note that AT

Uc has independent Gaussian entries. Fix any i ∈ Uc;
since (AT)i is independent of AU , x̆, and y, the dot product

(AT)i(EZA,x̆ − y)

is Gaussian with variance ‖EZA,x̆ − y‖2
2 ≤ σ2m/4. Hence, z̆i = 1

λm (AT)i(EZA,x̆ − y) is Gaussian with
variance at most (σ2m/4)/(λm)2 = 1/(4 log n). So

Pr[|z̆i| ≥ 1] ≤ 2e−2 log n ≤ 2
n2 .

By a union bound,

Pr[‖z̆Uc‖∞ ≥ 1] ≤ 2
n

.

So the event ‖z̆Uc‖ < 1 holds with high probability.

J.10 Proof of Theorem B.4

We know from Theorem B.3 that
∥∥∥ 1

m AT
Uc(E[ZA,x̆]− y)

∥∥∥
∞
≤ λ/3. So it suffices to show that

1
m

∥∥∥AT
Uc(E[ZA,X ]− y)− AT

Uc(E[ZA,x̆]− y)
∥∥∥

∞
≤ λ

6
.

Thus, we need to show that
1
m
|(AT)i(E[ZA,X ]−E[ZA,x̆])| ≤

λ

6
for all i ∈ Uc. Fix one such i. Then by Lemma A.2,

‖E[ZA,X ]−E[ZA,x̆]‖2
2 =

m

∑
i=1

(µAiX − µAi x̆)
2

=
m

∑
i=1

(∫ Ai x̆

AiX
Var(Zt) dt

)2

≤
m

∑
i=1

(AiX− Ai x̆)2 · sup
t∈[AiX,Ai x̆]

Var(Zt).

By Lemma I.4, we have
m

∑
j=1

log
1

γS(Ajx∗)
≤ 2m log(1/α)

with high probability over A. Assume that this inequality holds, and assume that ‖X− x̆‖2 ≤ 1 and
‖x̆− x∗‖2 ≤ 1, so that ‖X− x∗‖2 ≤ 2. Then by Theorem G.1, ‖A(X− x∗)‖2 ≤ 2T

√
m. By Lemma I.2, for

every j ∈ [m] and every t ∈ [AjX, Aj x̆],

log
1

γS(t)
≤ 2 log

1
γS(Ajx∗)

+ |t− Ajx∗|2 + 2 ≤ cm

for a constant c. Hence, by Lemma I.3,

Var(Zt) ≤ E[(Zt − t)2] ≤ 2 log
1

γS(t)
+ 4 ≤ 2cm + 4.
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We conclude that

‖E[ZA,X ]−E[ZA,x̆]‖2
2 ≤ (2cm + 4) ‖AX− Ax̆‖2

2 ≤ (2cm + 4)
T2m
m2 ≤ O(1).

Additionally,
∥∥(AT)i

∥∥
2 ≤ T

√
m with high probability. Thus, Cauchy-Schwarz entails that

1
m
|(AT)i(E[ZA,X ]−E[ZA,x̆])| ≤

1
m

T
√

m ·O(1) ≤ λ

6

for large n.

J.11 Proof of Lemma 5.4

Note that
‖Ax̆− y‖2 ≤ ‖A(x̆− x∗)‖2 + ‖Ax∗ − y‖2 .

With high probability, ‖x̆− x∗‖2 ≤ 1. Theorem G.1 gives that ‖A(x̆− x∗)‖2 ≤ T
√

m. Furthermore,
‖Ax∗ − y‖2 ≤ 2

√
m/α by Lemma B.2.

J.12 Proof of Lemma 5.5

With high probability x̆ ∈ Er by the above lemma. Note that
∥∥∥x(0)

∥∥∥
1
≤ ‖x̆‖1, and

∥∥∥A(x(0) − x̆)
∥∥∥

2
≤ 2r
√

m.

Set ρ = min(τ/(4T), 1/3) and s = k(1 + 1/ρ2). If m ≥ Mk log n for a sufficiently large constant M,
then by Corollary G.6, A/

√
m with high probability satisfies the s-Restricted Isometry Property. Then by

Theorem D.1 (due to [6], but reproduced here for completeness), it follows that
∥∥∥x(0) − x̆

∥∥∥
2
≤ O(1).

J.13 Proof of Lemma 5.6

Note that sign(x(t)) is a subgradient for ‖x‖1 at x = x(t). Furthermore, for fixed A,

E
[

Aj(z(t) − yj)
∣∣∣x(t)] = 1

m

m

∑
j′=1

Aj′(EZAj′ ,x
(t) − yj′) = ∇ nll(x(t); A, y).

It follows that
E[v(t)|x(t)] = E

[
Aj(z(t) − yj)

∣∣∣x(t)]+ sign(x(t))

is a subgradient for f (x) at x = x(t).

We proceed to bounding E[
∥∥∥v(t)

∥∥∥2

2
|x(t)]. By definition of v(t),

∥∥∥v(t)
∥∥∥2

2
≤ 2

∥∥∥Aj(z(t) − yj)
∥∥∥2

2
+ 2

∥∥∥λ · sign(x(t))
∥∥∥2

2

where j ∈ [m] is uniformly random, and z(t)|x(t) ∼ ZAj ,x(t)
. Since

∥∥∥λ · sign(x(t))
∥∥∥2

2
= o(n) it remains to

bound the other term. We have that

E[
∥∥∥Aj(z(t) − yj)

∥∥∥2

2
|x(t)] = 1

m

m

∑
j′=1

E[

∥∥∥∥Aj′(ZAj′ ,x
(t) − yj′)

∥∥∥∥2

2
].

With high probability, ‖Ai‖2
2 ≤ 2n for all i ∈ [m]. Thus,

E[
∥∥∥Aj(z(t) − yj)

∥∥∥2

2
|x(t)] ≤ n

m

m

∑
j′=1

E[(ZAj′ ,x
(t) − yj′)

2].
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Now
m

∑
i=1

E[(ZAi ,x(t)
− yi)

2] ≤ 2
m

∑
i=1

(Aix(t) − yi)
2 + 2

m

∑
i=1

E[(Aix(t) − ZAi ,x(t)
)2].

The first term is bounded by 2r2m since x(t) ∈ Er. Additionally,∥∥∥A(x(t) − x∗)
∥∥∥

2
≤
∥∥∥Ax(t) − y

∥∥∥
2
+ ‖Ax∗ − y‖2 ≤ 2r

√
m

since x(t), x∗ ∈ Er. Therefore the second term is bounded as

2
m

∑
i=1

E[R2
Ai ,x(t)

] ≤ 4
m

∑
i=1

log
(

1
γS(Aix(t))

)
+ 8m

≤ 8
m

∑
i=1

log
(

1
γS(Aix∗)

)
+ 4

∥∥∥A(x(t) − x∗)
∥∥∥2

2
+ 16m

≤ 64 log(1/α)m + 16r2m + 80m.

where the first and second inequalities are by Lemmas I.3 and Lemma I.2, and the third inequality is by
Lemma I.4. Putting together the two bounds, we get

m

∑
i=1

E[(ZAi ,x(t)
− yi)

2] ≤ O(m),

from which we conclude that E[
∥∥∥v(t)

∥∥∥2

2
|x(t)] ≤ O(n). The law of total expectation implies that E[

∥∥∥v(t)
∥∥∥2

2
] ≤

O(n) as well.

J.14 Proof of Lemma 5.7

We need to show that fRU is ζ-strongly convex near x̆. Since ‖x‖1 is convex, it suffices to show that
nll(x; A, y)RU is ζ-strongly convex near x̆. The Hessian of nll(x; A, y)|RU is

HU(x; A, y) =
1
m

m

∑
j=1

AT
j,U Aj,U Var(ZAj ,x).

Hence, it suffices to show that
1
m

m

∑
j=1

AT
j,U Aj,U Var(ZAj ,x) � ζ I

for all x ∈ Rn with supp(x) ⊆ U and ‖x− x̆‖2 ≤ 1. Call this region B. With high probability over A we
can deduce the following.

(i) By Theorem A.7, we have ‖x̆− x∗‖2 ≤ d
√
(k log n)/m. As ‖x− x̆‖2 ≤ 1 for all x ∈ B, we get

‖A(x̆− x)‖2
2 ≤ T2(d + 1)2m for all x ∈ B.

(ii) By the proof of Lemma A.4, the number of j ∈ [m] such that γS(Ajx∗) ≤ α/2 is at most (1− α/3)m.
Fix x ∈ B, and define Jx ⊆ [m] to be the set of indices

Jx = {j ∈ [m] : γS(Ajx∗) ≥ α/2∧ |Aj(x− x∗)|2 ≤ (6/α)T2(d + 1)2.}

For any j ∈ Jx,

log
1

γS(Ajx)
≤ 2 log

1
γS(Ajx∗)

+ |Aj(x− x∗)|2 + 2 ≤ log(2/α) + (6/α)T2(d + 1)2 + 2.

Thus,
Var(ZAj ,x) ≥ CγS(Ajx)2 ≥ e− log(2/α)−(6/α)T2(d+1)2−2 = Ω(1).
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Let δ denote this lower bound—a positive constant. By (i) and (ii), |Jx| ≥ (α/6)m, so by Theorem G.1,

HU(x; A, y) =
1
m

m

∑
j=1

AT
j,U Aj,U Var(ZAj ,x) �

δ

m
AT

Jx ,U AJx ,U � δτI

as desired.

J.15 Proof of Lemma 5.8

Let t = ‖(x− x̆)U‖2. Define w = x̆ + (x − x̆)min(t−1/m, 1). Also define w′ = [wU ; 0Uc ] ∈ Rn. Then
‖(w− x̆)U‖2 ≤ 1/m, so ∥∥(∇ nll(w′; A, y))Uc

∥∥
∞ ≤

λ

2
.

Therefore wi · (∇ nll(w′; A, y))i ≤ (λ/2)|wi| for all i ∈ Uc, so

f (w)− f (w′) = (nll(w; A, y)− nll(w′; A, y)) + λ(‖w‖1 −
∥∥w′

∥∥
1)

≥ (w− w′) · ∇ nll(w′; A, y) + λ ‖wUc‖1

≥ λ

2
‖wUc‖1 .

Additionally, since ‖w′ − x̆‖2 ≤ 1 and supp(w′) ⊆ U, we know that

f (w′)− f (x̆) ≥ ζ

2

∥∥w′ − x̆
∥∥2

2 .

Adding the second inequality to the square of the first inequality, and lower bounding the `1 norm by `2
norm,

1
2
( f (w)− f (x̆))2 +

1
2
( f (w)− f (x̆)) ≥ 1

2
( f (w)− f (w′))2 +

1
2
( f (w′)− f (x̆))

≥ λ2

8
‖wUc‖2

2 +
ζ

4

∥∥w′ − x̆
∥∥2

2

≥ λ2

8
‖(w− x̆)Uc‖2

2 +
ζ

4
‖(w− x̆)U‖2

2

≥ min
(

λ2

8
,

ζ

4

)
‖w− x̆‖2

2

Since f (x)− f (x̆) ≤ 1, by convexity f (w)− f (x̆) ≤ 1 as well. Hence,

f (w)− f (x̆) ≥ 1
2
( f (w)− f (x̆))2 +

1
2
( f (w)− f (x̆)) ≥ min

(
λ2

8
,

ζ

4

)
‖w− x̆‖2

2 . (7)

We distinguish two cases:

1. If t ≤ 1/m, then w = x, and it follows from Equation 7 that

f (x)− f (x̆) ≥ min
(

λ2

8
,

ζ

4

)
‖x− x̆‖2

2

as desired.

2. If t ≥ 1/m, then ‖(w− x̆)U‖2 = 1/m, and thus ‖w− x̆‖2 ≥ 1/m. By convexity and this bound,

f (x)− f (x̆) ≥ f (w)− f (x̆) ≥ min
(

λ2

8
,

ζ

4

)
1

m2 ,

which contradicts the lemma’s assumption for a sufficiently small constant c f > 0.
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J.16 Proof of Theorem 5.9

By Lemmas 5.4, 5.5, and 5.6, we are guaranteed that x̆ ∈ Er,
∥∥∥x(0) − x̆

∥∥∥2

2
≤ O(1), and E[

∥∥∥v(t)
∥∥∥2

2
] ≤ O(n) for

all t. Thus, applying Theorem H.1 with projection set Er, step count T = m6n, and step size η = 1/
√

Tn
gives E[ f (x̄)]− f (x̆) ≤ O(1/m3). Since f (x̄)− f (x̆) is nonnegative, Markov’s inequality gives

Pr[ f (x̄)− f (x̆) ≤ c f (log n)/m3] ≥ 1− o(1).

From Theorem 5.8 we conclude that ‖x̄− x̆‖2 ≤ O(1/m) with high probability.

K Efficient sampling for union of intervals

In this section, in Lemma K.4, we see that when S = ∪r
i=1[ai, bi], with ai, bi ∈ R, then Assumption II

holds with T(γS(t)) = poly(log(1/γS(t)), r). The only difference is that instead of exact sampling we have
approximate sampling, but the approximation error is exponentially small in total variation distance and
hence it cannot affect any algorithm that runs in polynomial time.

Definition K.1 (EVALUATION ORACLE). Let f : R → R be an arbitrary real function. We define the
evaluation oracle E f of f as an oracle that given a number x ∈ R and a target accuracy η computes an

η-approximate value of f (x), that is
∣∣∣E f (x)− f (x)

∣∣∣ ≤ η.

Lemma K.2. Let f : R → R+ be a real increasing and differentiable function and E f (x) an evaluation oracle of f .
Let ` ≤ f ′(x) ≤ L for some `, L ∈ R+. Then we can construct an algorithm that implements the evaluation oracle
of f−1, i.e. E f−1 . This implementation on input y ∈ R+ and input accuracy η runs in time T and uses at most
T calls to the evaluation oracle E f with inputs x with representation length T and input accuracy η′ = η/`, with
T = poly log(max{| f (0)/y|, |y/ f (0)|}, L, 1/`, 1/η).

Proof of Lemma K.2. Given a value y ∈ R+ our goal is to find an x ∈ R such that f (x) = y. Using doubling
we can find two numbers a, b such that f (a) ≤ y − η′ and f (b) ≥ y + η′ for some η′ to be determined
later. Because of the lower bound ` on the derivative of f we have that this step will take log((1/`) ·
max{| f (0)/y|, |y/ f (0)|}) steps. Then we can use binary search in the interval [a, b] where in each step we
make a call to the oracle E f with accuracy η′ and we can find a point x̂ such that | f (x)− f (x̂)| ≤ η′. Because
of the upper bound on the derivative of f we have that f is L-Lipschitz and hence this binary search will
need log(L/η′) time and oracle calls. Now using the mean value theorem we get that for some ξ ∈ [a, b]
it holds that | f (x)− f (x̂)| = | f ′(ξ)| |x− x̂| which implies that |x− x̂| ≤ η′/`, so if we set η′ = ` · η, the
lemma follows.

Using the Lemma K.2 and the Proposition 3 of [7] it is easy to prove the following lemma.

Lemma K.3. Let [a, b] be a closed interval and µ ∈ R such that γ[a,b](µ) = α. Then there exists an algorithm that
runs in time poly log(1/α, ζ) and returns a sample of a distribution D , such that dTV(D , N(µ, 1; [a, b])) ≤ ζ.

Proof Sketch. The sampling algorithm follows the steps: (1) from the cumulative distribution function F of
the distribution N(µ, 1; [a, b]) define a map from [a, b] to [0, 1], (2) sample uniformly a number y in [0, 1] (3)
using an evaluation oracle for the error function, as per Proposition 3 in [7], and using Lemma K.2 compute
with exponential accuracy the value F−1(y) and return this as the desired sample.

Finally using again Proposition 3 in [7] and Lemma K.3 we can get the following lemma.

Lemma K.4. Let [a1, b1], [a2, b2], . . . , [ar, br] be closed intervals and µ ∈ R such that γ∪r
i=1[ai ,bi ]

(µ) = α. Then
there exists an algorithm that runs in time poly(log(1/α, ζ), r) and returns a sample of a distribution D , such that
dTV(D , N(µ, 1;∪r

i=1[ai, bi])) ≤ ζ.
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Proof Sketch. Using Proposition 3 in [7] we can compute α̂i which estimated with exponential accuracy the
mass αi = γ[ai ,bi ]

(µ) of every interval [ai, bi]. If α̂i/α ≤ ζ/3r then do not consider interval i in the next step.
From the remaining intervals we can choose one proportionally to α̂i. Because of the high accuracy in the
computation of α̂i this is ζ/3 close in total variation distance to choosing an interval proportionally to αi.
Finally after choosing an interval i we can run the algorithm of Lemma K.3 with accuracy ζ/3 and hence
the overall total variation distance from N(µ, 1;∪r

i=1[ai, bi]) is at most ζ.
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