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setting via the use of non-pharmaceutical interventions
We developed an individual-based model for COVID-19
transmission in a hospital setting. We calibrated the mode
using data of a COVID-19 outbreak in a hospital unit in
Wuhan. The calibrated model was used to simulate differen
intervention scenarios and estimate the impact of differen
interventions on outbreak size and workday loss. The use o
high-efficacy facial masks was shown to be able to reduce
infection cases and workday loss by 80% (90% CrI: 73.1–85.7%
and 87% (CrI: 80.0–92.5%), respectively. The use of socia
distancing alone, through reduced contacts between healthcar
workers, had a marginal impact on the outbreak. Our result
also indicated that a quarantine policy should be coupled with
other interventions to achieve its effect. The effectiveness of al
these interventions was shown to increase with their early
implementation. Our analysis shows that a COVID-19 outbreak
in a hospital’s non-COVID-19 unit can be controlled o
mitigated by the use of existing non-pharmaceutical measures.

© 2021 The Authors. Published by the Royal Society under the terms of the Creati
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permi
unrestricted use, provided the original author and source are credited.
rsos201895—18/3/21—18:25–Copy Edited by: Not Mentioned

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.201895&domain=pdf&date_stamp=
mailto:hyzhao750@sina.com
mailto:mndeffo@cvm.tamu.edu
http://orcid.org/
http://orcid.org/0000-0001-6994-1739
http://orcid.org/0000-0002-4100-2366
http://orcid.org/0000-0002-5314-7888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1. Introduction
The world is in the midst of an unprecedented coronavirus outbreak caused by a novel virus recently
named COVID-19 by the World Health Organization (WHO). Developing strategies for mitigating the
severity of COVID-19 is now a top global health priority. The range of containment strategies employed
in different countries and regions varies from shelter-in-place orders, the shutdown of public events,
travel ban [1] and visitor quarantine, to intermediate steps that involve partial closures (e.g. schools [2],
workplaces, sporting and cultural events) [3]. While such drastic steps can reduce infection spread, they
exact a heavy toll on society and human well-being. At present, the only available means of containing
COVID-19 spread is via the use of non-pharmaceutical interventions [4,5] such as social distancing, self-
isolation [6], tracing and quarantine [6,7], wearing facial masks/personal protective equipment (PPE) [8,9].

Mathematical models of disease transmission are powerful tools for exploring this complex landscape
of intervention strategies and quantifying the potential benefits of different options [10–13]. Traditional
approaches in epidemiological modelling use compartmental models [14–16], which assume a uniform
population and simple mixing patterns with steady contact rates. Such models can give qualitative
answers for large-scale populations at best [17,18], however, are not suitable to account for the
complexity and specifics of COVID-19 in local communities and small populations (e.g. hospital,
workplace, school). Such settings are characterized by heterogeneous populations, multiple disease
pathways and complex social interactions.

Our focus here is COVID-19 transmission in a hospital setting, where healthcare workers (HCWs) are at
high risk to acquire infection through interactions with fellow HCW and with patients [19–22]. We
developed a novel individual-based model (IBM) for COVID-19 transmission among HCWs, and
applied it to explore the efficacy of different control/mitigation strategies via non-pharmaceutical
interventions. IBMs have been used extensively to model pathogens spread on different scales, from
global pandemics [23–25] to local social networks [26]. On the disease side, our IBM features distinct
infective stages and transitions, observed in COVID-19, with some hosts recovering without any
symptoms, while others undergoing mild or severe infection pathways. On the social side, we take into
account individual behaviour, including mixing patterns among HCW, their use of facemasks/PPE and
HCW–patient interactions. All of these factors play an important role in COVID-19 transmission.
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The IBM model was calibrated in a Bayesian framework using empirical data from a non-COVID
hospital unit. We used our calibrated model to simulate different intervention scenarios. In each case,
we assessed the effect of interventions on outbreak outcomes: outbreak size and workday loss.

2. Material and methods
2.1. Individual-based modelling methodology
In our model, an individual can undergo a sequence of infection stages, classified as susceptible (S), pre-
symptomatic/asymptomatic (E), two symptomatic stages I1 (upper respiratory stage) followed by I2
(advanced infection stage, lungs, etc.) and recovered/immune state (R) (figure 1). These states differ
by their infectivity levels and stage duration. Unlike most other viral diseases, pre-symptomatic/
asymptomatic COVID-19 hosts (E-stage) are known to transmit pathogens [27–29]. So, we assign
positive infectivity levels (b0, b1, b2) to all three stages (E, I1, I2).

We modelled social mixing patterns by assuming that HCWs and ward patients interact on a daily
basis via aggregating in random groups of HCWs, and via patient visitation by HCWs (see electronic
supplementary material, appendix for details). The net outcome is a contact pool for each HCW–host,
which varies randomly on a daily basis. Each contact of a susceptible individual with infectious
individuals (HCWs or patients) can lead to infection (transition S→ E), with a probability that
depends on infectivity levels of the contact pool and the host susceptibility, a (a = 0—fully protected,
a = 1—fully susceptible). The latter depends on host health/immune status, individual behaviour, e.g.
use of facial masks, and environmental conditions. For instance, HCWs are supposed to use
additional protection when contacting patients. Then a probability of ‘surviving’ a single infective
contact (bi) for an S-host of susceptibility a, is given by 1− abi. Combining all infective contacts of a
given S-host, we get the probability of infection (S→ E), ps ¼ 1�Q

m ð1� abmÞ, which depends on
host susceptibility (a), contact pools (m) and contacts’ infectivity (bm), where bm could be 0 (susceptible
or recovered), b1 (asymptomatic) or b2 (symptomatic). Note that contact rates, susceptibility and
infectivity play different roles in the probability of infection, so we can explore them separately.
rsos201895—18/3/21—18:25–Copy Edited by: Not Mentioned
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Figure 1. State transitions in the IBM. The standard SEIR scheme is used to describe host states: S, susceptible; E, latent ( pre-
symptomatic/asymptomatic but infectious); I1, first symptomatic (upper respiratory infection); I2, second stage (advanced lung
infection); R, recovered/immune. Hosts can undergo three different pathways: asymptomatic (E→ R); mild symptomatic (E→
I1→ R); severe symptomatic (E→ I1→ I2→ R). Depending on the screening procedure, fractions of (I2, I2) are sent to
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We divided all HCWs staff into susceptibility strata based on the hospital survey [30]: (i) normal pool,
60% of HCWs, have baseline susceptibility value, aN = 0.5; (ii) high-risk (stressed) pool, 40% of HCWs,
with susceptibility level, 0.5 < aS < 1 (to be calibrated) (see electronic supplementary material, appendix
for details).

Two points of our set-up require some clarification: (i) the proposed form of social mixing in random
clusters extends the conventional ‘social network’ transmission pathways (see electronic supplementary
material, appendix figures S1 and S2); (ii) an infective ‘social contact’ in our context means an event of
sufficient duration and proximity, to allow transmission of pathogens from infected to susceptible host [31].

There is much uncertainty on disease progression of infective stages. Here, we assume infected E-
hosts can undergo three different pathways: (A) asymptomatic (E→R); (M) mild symptomatic (E→
I1→R); (S) severe symptomatic (E→ I1→ I2→R), with population fractions (νA; νM; νS). In all cases,
pre-symptomatic/asymptomatic pool (E) can carry and transmit the virus, along with (I1, I2). Each
infective stage (E, I1, I2) has associated (mean) duration, LE; L1; L2.

Specifically, the transition to the next stage is a random Bernoulli draw with success probability
determined by a sigmoid function, Fðd=LÞ ¼ ðd=LÞk=1þ ðd=LÞk, where d is the time (days) that the
host spent at a given disease stage and L is the associated mean duration of the disease stage. When
the steepness k of the sigmoid function is high enough (k > 6), the mean duration of the Bernoulli
probability is close to the associated mean duration, L (see electronic supplementary material,
appendix figures S5 and S6 for details).

During an outbreak, the HCWs expressing symptoms are tested, and certain fractions ( f1; f2) of (I1; I2)
are put in isolation, where they undergo their specific disease pathways, but do not mix and transmit the
pathogen. Two different types of diagnostic tests were used in the hospital, PCR for light symptoms and
lung-scan for more severe conditions [30,32]. Thus, our assumed quarantine fractions (0 < fi < 1) account
for limited test sensitivity, and a possible overlap of ‘COVID-like’ symptoms, expressed by non-COVID
hosts. The recovered HCWs return to the work pool (figure 1).

The model simulations were run on a daily basis and implemented in the Wolfram Mathematica
platform. The key inputs in the model include: (i) population makeup in terms of asymptomatic, mild
and severe (A–M–S) progress groups, (ii) initial infection status of HCW pool; (iii) infectivity levels

quarantine, and released to the workpool upon recovery. Infected patients are treated as an external source.
rsos201895—18/3/21—18:25–Copy Edited by: Not Mentioned
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(b0, b1, b2) for (E, I1, I2) stages and susceptibility levels of individual hosts or host pools; (iv) average
duration of infective stages for (A–M–S) pathway; (v) daily social mixing patterns between HCWs and
infected patients; (vi) daily isolation of symptomatic cases and recovery (see electronic supplementary
material, appendix in details).

2.2. Calibration methodology
Our model is calibrated to empirical data of a COVID-19 outbreak among HCWs in the department of
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Figure 2. Model calibration and prediction. (a) The observed and fitted daily incidence of symptomatic cases (E→ I1). (b) The
observed and fitted daily quarantine cases among HCWs. (c) The predicted infection incidence (S→ E) from the calibrated
model. (d ) The corresponding predicted daily pre-symptomatic/asymptomatic cases, E, and symptomatic cases, I1 + I2,
respectively. The grey shaded regions are 90% credible intervals.
neurosurgery of Union Hospital, Wuhan, China, from 5 January 2020 to 4 February 2020 [30]. A Bayesian

method is used to calibrate the following important parameters in our IBM: (i) mean infectivity (b1, b2) of
symptomatic hosts (I1, I2), (ii) increased susceptibility level (0.5 < aS < 1) of the high-risk pool; (iii) fraction
νA of HCWs going through the asymptomatic pathway (E→R).

The Bayesian method uses the posterior probability distribution to quantify the uncertainties in these
model parameters using the observed data on the daily incidence of symptomatic cases and the daily
isolated cases (figure 2). The prior distributions for all these parameters are taken to be uniform
within acceptable ranges (see electronic supplementary material, appendix figure S3). The likelihood
for the observed data is assumed as a normal distribution with the centre at the predicted values from
the IBM. The adaptive Metropolis algorithm [33] is used to sample from the posterior distribution,
where the jump size is adaptively chosen based on the sample covariances. The chains are run for 10
000 iterations, and after 5000 burin-in every 50th sample is used as the final sample from the posterior
distribution. To assess the convergence of the posterior sampling, the Gelman–Rubin statistic [34] is
computed for all the parameters. The statistics are found to be very close to 1, the desired value in
strong support of convergence. The calibration was implemented using R statistical software.

2.3. Dataset from Wuhan hospital outbreak
On 26 December 2019, a patient later diagnosed with COVID-19 was admitted in the department of
neurosurgery of Union Hospital, Wuhan, China. No PPE was used by HCWs at that time. By 8
January, HCWs started to show COVID-like symptoms (headache, cough, sore throat), and screening
rsos201895—18/3/21—18:25–Copy Edited by: Not Mentioned



and isolation were initiated among HCWs. From 19 January, patient’s admission was stopped in the
department, and the hospitalized patient pool was gradually reduced from 200 to 20 by the beginning
of February. Over the period from 5 January to 4 February, 92 out of the 171 HCWs of the
department were suspected or confirmed COVID-19 cases and isolated. New patients were only
admitted in early March 2020 when the pandemic was declared under control in Wuhan.

2.4. Intervention strategies
We consider three types of interventions: (i) social distancing (reduced contact rates) and individual
protection (facial masks) among HCWs, (ii) enhanced screening and isolation of infected HCWs, and
(iii) patient-pool control (pool size and infection level), and individual HCW protection via PPE for
HCW–patient interaction.

To assess the strategies for mitigating the COVID-19 outbreak using the calibrated model, we want to
consider a baseline case that is realistic, simple and general (50 and 100% isolation (quarantine) fractions
of symptomatic cases (I1; I2), respectively, and fixed infection level of the patient pool (i.e. 200 patients
pool with 2% infected). To account for model uncertainties, we run each control simulations for 100
posterior parameter samples and 5 stochastic model realizations for each sample (500 histories
altogether), over a six-month period.

For social distancing, we considered 50 and 75% contact-rate reduction relative to their baseline
values. The effect of facemask on inter-staff or staff–patient mixing was simulated by reduced
susceptibility of individual HCWs, with several values of mask efficacy [9]. Screening and isolation
fractions ( fi) of HCWs were based on limited test sensitivity, combined with non-COVID symptoms.
An increase in targeted isolation assumes more intensive screening or test sensitivity. We also studied
the effect of isolating pre-symptomatic/asymptomatic cases (E pool). This task is more challenging, as
PCR tests have lower sensitivity for such hosts [32], so to identify a suitable E fraction would require
intensive mass screening or contact tracing.

For quantitative assessment of control interventions and their impact, we use two measures: (i)
outbreak size = infection turnover (by the end of outbreak); (ii) workday loss estimated from the
quarantine pool over the outbreak duration. The latter gives a simple economic measure of outbreak
impact and putative interventions. In each control experiment, we compare the ratio of two outputs
(outbreak size and workday loss) to their baseline values, and record these relative values and their
distribution.

Another important factor in the hospital setting is the in-patient pool. In our case (a non-COVID unit
in Wuhan), it varied from the full capacity to zero. The key inputs of the patient pool included (i) infected
prevalence and (ii) mean patient infectivity to HCWs. The former is controlled by patient admission and
screening/isolation procedures; the latter can be modulated by using PPE. We also explored the effect of
different timing of PPE implementation and its efficacy.

3. Results
3.1. Model calibration with hospital data
The predictions from the calibrated IBM were very close to the observed data on daily symptomatic and
quarantine cases (figure 2). The fraction of asymptomatic disease-progress pool, νA, was estimated at 0.31
(90% credible interval (CrI): 0.16–0.40). So, a sizable part of transmission was carried over by undetected
cases (E pool). Susceptibility level of the high-risk pool was estimated at aS = 0.76 (90% CrI: 0.58–0.97).
We attributed a higher susceptibility level to work stress, and our results gave a quantitative measure
to this increase at 52% (90% CrI: 16.4–93.0%) above the normal level. The infectivity levels of pre-
symptomatic and symptomatic infections were estimated to be 0.12 (90% CrI: 0.11–0.14) and 0.23 (90%
CrI: 0.20–0.26). See electronic supplementary material, appendix figure S3 for the prior and posterior
probability distributions.

3.2. Analysis of interventions
The baseline scenario showed that almost all HCWs get infected, resulting in significant workday loss,
1050 (90% CrI: 913–1282), over the six-month period (table 1; electronic supplementary material,
appendix figure S4). The impact of implementing social distancing through reduction of contact rates
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alone and wearing facemasks alone, from the start of the outbreak, was evaluated (table 1). The reduction
of contact rates alone has a marginal effect on mitigating the outbreak in the long run. The 50% drop of
contact rates leads to about 4–6% reduction of the outbreak size and workday loss, while 75% drop leads
to a 15–17% reduction, relative to baseline values. The efficacy of facemasks is uncertain, and we explored
several values (50, 67, 75, 85, 95%), based on the previous studies [9]. We have shown that wearing
facemasks had a higher impact on mitigating the outbreak, than social distancing (reduced contact
rates). At 95% efficacy, we could achieve 80% (90% CrI: 73.1–85.7%) reduction of outbreak size, and
87% (CrI: 80.0–92.5%) of workday loss, compared to the baseline.

Figure 3 illustrates the combined effect of facemask and social contact. We used the same values of
facemask efficacy and contact rates as table 1. For each value of facemask efficacy, we observed a
consistent reduction of the outbreak size with reduced contact rates. It varied from 13 to 34% drop for
low-efficacy facemask (50% protection) to 30 to 60% drop for high-efficacy facemask (95% protection).
We observed a similar percentage reduction for the workday loss. So, the impact of reduction of
contact rates was much greater under the higher efficacy of facemasks.

We also explored the effect of timing of intervention by the following three scenarios: (i) at the
beginning (figure 3a); (ii) after the first identified case (figure 3b); (iii) after 10% of HCWs have been
identified as infected (figure 3c). Early interventions have made marked improvement under different
types of facemasks and contact rates. For instance, if control interventions (adoption of high-efficacy
facemasks and reduced contact rates) were implemented at the beginning, we observed 80–90%
reduction of the outbreak size (a near-complete control). A later implementation (e.g. after the first
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Figure 3. The combined effect of facial masks and social distancing. Three levels of social distancing were considered (normal,
reduced by 50%, reduced by 75%). For facemask efficacy, we considered five putative values (50, 67, 75, 85, 95%). The
efficacy is measured via reduced host susceptibility per contact (a→ 0.5 ∗ a; a→ 0.33 ∗ a…). We also considered different
timing of preventive measures: (i) start of the outbreak (a); (ii) after the first identified HCW case (b); (iii) after 10% of HCW
staff got infected (c). In each case, we estimated the posterior distribution of the relative outbreak size, and the workday loss
over baseline values.
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identified case) gave 60–85% reduction. If the timing was delayed to, for example, 10% identified
cases, these numbers dropped to 40–60%. All intermediate cases are shown in figure 3.

We next looked at the effect of HCWs screening and isolation via two scenarios. The first scenario
considered symptomatic cases only, by changing quarantine fraction ( f1) of I1, from its baseline value
(50%) to 60−100%; quarantine fraction ( f2) of I2 was fixed at 100%. Figure 4a shows increased
symptomatic isolation had only a marginal effect on the outbreak size, while raising workday loss.
A clue to low efficacy of symptomatic screening lies in (i) the role of pre-symptomatic/asymptomatic
(E) pool in transmission and (ii) contribution of the patient source. To test (i), we extended our
quarantine strategy to E pool. Of course, such an extension requires intensive screening of the work
pool. Under random selection, isolating f fraction of E would require much more than f fraction of
HCWs tested. For numeric simulations, we fixed ( f1, f2) at (90, 100%), and varied E fraction from 10 to
60%. We still found the effect of such a strategy was limited, it often prolongs the outbreak duration
rsos201895—18/3/21—18:25–Copy Edited by: Not Mentioned
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without affecting its size. Besides, such a strategy can incur an economic burden by increased workday
loss, though the effect is subtler, as increased quarantine rate can slower transmission rate; hence, fewer
hosts would be infected and need isolation. More significant progress was achieved by controlling the
patient source, via reduced patient prevalence (screening), or reduced infectivity (PPE) (figure 4a,b).

We run several experiments with patient-pool control and PPE use (figure 4c). For PPE timing, we
made three choices: (i) the start of an outbreak, (ii) after the first identified HCW case, and (iii) no PPE
use. We assumed PPE provides 80% protection (via the reduced probability of transmission from an
infected patient). We also varied the infected prevalence level of the patient pool, from 0 to 5% (baseline
case was 2%). We found the control of patient infection (via e.g. PPE, screening and isolation,
particularly for new patients) can reduce outbreak size, even though the bulk of transmission is carried
over by inter-staff HCW contacts. We found the combined strategy (enhanced HCW screening/isolation
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Figure 4. The effect of the quarantine and patient sources on relative outbreak size and workday loss. The patient sources (infection
prevalence and infectivity) were controlled via screening/isolation and the use of PPE by HCWs. We considered two quarantine
strategies for HCWs: symptomatic cases only (column A) and adding pre-symptomatic/asymptomatic cases (column B). We used
the following marking: ( pink) baseline patient infection level, (red) reduced patient infection by 80% via PPE use by HCWs. In
column A, the quarantine fraction of moderate/severe cases (I2) was fixed at 100%, and the quarantine fraction of mild cases
(I1) was varied from 60 to 100%. In column B, we fixed symptomatic (I1; I2) quarantine fractions at (90%, 100%), and varied
the quarantine fraction of pre-symptomatic/asymptomatic E pool from 10 to 60%. (c) The effect of patient infection and
different timing of PPE use: (i) start of the outbreak, (ii) after the first identified HCW infection and (iii) no PPE use. We
considered different levels of prevalence of the infected patient pool: 0, 1, 2% (baseline value), 3, 4, 5%.
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with patient control) could lead to marked improvement both in outbreak size and in workday loss. This
effect, however, is not observed for quarantine alone, under persistent patient source.

Overall, we saw high-efficacy facemasks could provide the most effective control tool for reducing
COVID-19 transmission in HCW staff (figure 3).
ietypublishing.org/journal/rsos
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4. Discussion
With the spread of COVID-19 in the world, the development of strategies for mitigating its severity is a
top public health priority. Large-scale population-level models of SARS-CoV-2 transmission can give
some qualitative answers for outbreak control on regional/country scales [35]; however, few studies
have looked at the effects of interventions in a local community setting, such as hospital, workplace
and school.

Using a novel individual-based modelling approach, we explored different scenarios for COVID-19
transmission and control in a non-COVID hospital unit. Our IBM methodology employed
conventional SEIR disease stages with graded infectivity, extended to heterogeneous host makeup,
which includes multiple disease pathways, varying individual susceptibility and behavioural patterns.
These factors can be affected by work stress, health status, use of face masks/PPE and social
interactions. Detailed data on the COVID-19 outbreak in the department of neurosurgery of Union
Hospital in Wuhan (China) [30] were used to calibrate the essential model parameters.

One of the key uncertain parameters was the pre-symptomatic/asymptomatic-fraction, which was
estimated at 31%, indicating a relatively high proportion of undetectable infections. We also estimated
the infectivity levels of pre-symptomatic (E) and symptomatic disease (I ) states to be 0.12 and 0.23,
respectively. Another uncertain input was individual susceptibility, which could be affected by health
status or work stress. We estimated the high-risk susceptibility level relative to normal susceptibility
and found work-related stress could increase the risk of COVID-19 infection by up to 52%.

The calibrated model was used to simulate a range of intervention scenarios, aimed at mitigating the
outbreak and examining its impact on the work pool. The baseline case, without interventions, gave a
large outbreak size, whereby almost all HCWs were infected over two months. It also incurred a
significant workday loss for the unit. Such results support early modelling findings of large-scale
populations, and subsequent empirical observations, that in the absence of control measures, a

COVID-19 epidemic could quickly overwhelm a region [12]. High-efficacy facemasks were shown to
be most effective for reducing infection cases and workday loss. The impact of social distancing

through the reduction of contact rates alone had a marginal effect on mitigating the outbreak in the
long run. Reducing social contact rates to 50% (or 75%) resulted in a 4–6% (or 15–17%) drop
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