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Development of strategies for mitigating the severity of COVID-
19 is now a top public health priority. We sought to assess
strategies for mitigating the COVID-19 outbreak in a hospital
setting via the use of non-pharmaceutical interventions.
We developed an individual-based model for COVID-19
transmission in a hospital setting. We calibrated the model
using data of a COVID-19 outbreak in a hospital unit in
Wuhan. The calibrated model was used to simulate different
intervention scenarios and estimate the impact of different
interventions on outbreak size and workday loss. The use of
high-efficacy facial masks was shown to be able to reduce
infection cases and workday loss by 80% (90% Crl: 73.1-85.7%)
and 87% (Crl: 80.0-92.5%), respectively. The use of social
distancing alone, through reduced contacts between healthcare
workers, had a marginal impact on the outbreak. Our results
also indicated that a quarantine policy should be coupled with
other interventions to achieve its effect. The effectiveness of all
these interventions was shown to increase with their early
implementation. Our analysis shows that a COVID-19 outbreak
in a hospital's non-COVID-19 unit can be controlled or
mitigated by the use of existing non-pharmaceutical measures.

© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http:/creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction

The world is in the midst of an unprecedented coronavirus outbreak caused by a novel virus recently
named COVID-19 by the World Health Organization (WHO). Developing strategies for mitigating the
severity of COVID-19 is now a top global health priority. The range of containment strategies employed
in different countries and regions varies from shelter-in-place orders, the shutdown of public events,
travel ban [1] and visitor quarantine, to intermediate steps that involve partial closures (e.g. schools [2],
workplaces, sporting and cultural events) [3]. While such drastic steps can reduce infection spread, they
exact a heavy toll on society and human well-being. At present, the only available means of containing
COVID-19 spread is via the use of non-pharmaceutical interventions [4,5] such as social distancing, self-
isolation [6], tracing and quarantine [6,7], wearing facial masks/ personal protective equipment (PPE) [8,9].

Mathematical models of disease transmission are powerful tools for exploring this complex landscape
of intervention strategies and quantifying the potential benefits of different options [10-13]. Traditional
approaches in epidemiological modelling use compartmental models [14-16], which assume a uniform
population and simple mixing patterns with steady contact rates. Such models can give qualitative
answers for large-scale populations at best [17,18], however, are not suitable to account for the
complexity and specifics of COVID-19 in local communities and small populations (e.g. hospital,
workplace, school). Such settings are characterized by heterogeneous populations, multiple disease
pathways and complex social interactions.

Our focus here is COVID-19 transmission in a hospital setting, where healthcare workers (HCWs) are at
high risk to acquire infection through interactions with fellow HCW and with patients [19-22]. We
developed a novel individual-based model (IBM) for COVID-19 transmission among HCWs, and
applied it to explore the efficacy of different control/mitigation strategies via non-pharmaceutical
interventions. IBMs have been used extensively to model pathogens spread on different scales, from
global pandemics [23-25] to local social networks [26]. On the disease side, our IBM features distinct
infective stages and transitions, observed in COVID-19, with some hosts recovering without any
symptoms, while others undergoing mild or severe infection pathways. On the social side, we take into
account individual behaviour, including mixing patterns among HCW, their use of facemasks/PPE and
HCW-patient interactions. All of these factors play an important role in COVID-19 transmission.

The IBM model was calibrated in a Bayesian framework using empirical data from a non-COVID
hospital unit. We used our calibrated model to simulate different intervention scenarios. In each case,
we assessed the effect of interventions on outbreak outcomes: outbreak size and workday loss.

2. Material and methods
2.1. Individual-based modelling methodology

In our model, an individual can undergo a sequence of infection stages, classified as susceptible (S), pre-
symptomatic/asymptomatic (E), two symptomatic stages I; (upper respiratory stage) followed by I,
(advanced infection stage, lungs, etc.) and recovered/immune state (R) (figure 1). These states differ
by their infectivity levels and stage duration. Unlike most other viral diseases, pre-symptomatic/
asymptomatic COVID-19 hosts (E-stage) are known to transmit pathogens [27-29]. So, we assign
positive infectivity levels (by, by, by) to all three stages (E, I, Ip).

We modelled social mixing patterns by assuming that HCWs and ward patients interact on a daily
basis via aggregating in random groups of HCWs, and via patient visitation by HCWs (see electronic
supplementary material, appendix for details). The net outcome is a contact pool for each HCW-host,
which varies randomly on a daily basis. Each contact of a susceptible individual with infectious
individuals (HCWs or patients) can lead to infection (transition S— E), with a probability that
depends on infectivity levels of the contact pool and the host susceptibility, a (a2 = 0—fully protected,
a=1—fully susceptible). The latter depends on host health/immune status, individual behaviour, e.g.
use of facial masks, and environmental conditions. For instance, HCWs are supposed to use
additional protection when contacting patients. Then a probability of ‘surviving’ a single infective
contact (b;) for an S-host of susceptibility 4, is given by 1 —ab,, Combining all infective contacts of a
given S-host, we get the probability of infection (S—E), ps =1—[],, (1 —ab,,), which depends on
host susceptibility (a), contact pools (1) and contacts’ infectivity (b,,), where by, could be 0 (susceptible
or recovered), b; (asymptomatic) or b, (symptomatic). Note that contact rates, susceptibility and
infectivity play different roles in the probability of infection, so we can explore them separately.
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Figure 1. State transitions in the IBM. The standard SEIR scheme is used to describe host states: S, susceptible; £, latent (pre-
symptomatic/asymptomatic but infectious); /;, first symptomatic (upper respiratory infection); /, second stage (advanced lung
infection); R, recovered/immune. Hosts can undergo three different pathways: asymptomatic (£ — R); mild symptomatic (£ —
Iy = R); severe symptomatic (E— /; =/, — R). Depending on the screening procedure, fractions of (,, /) are sent to
quarantine, and released to the workpool upon recovery. Infected patients are treated as an external source.

We divided all HCWs staff into susceptibility strata based on the hospital survey [30]: (i) normal pool,
60% of HCWs, have baseline susceptibility value, ay =0.5; (ii) high-risk (stressed) pool, 40% of HCWs,
with susceptibility level, 0.5 <ag <1 (to be calibrated) (see electronic supplementary material, appendix
for details).

Two points of our set-up require some clarification: (i) the proposed form of social mixing in random
clusters extends the conventional ‘social network’ transmission pathways (see electronic supplementary
material, appendix figures S1 and S2); (ii) an infective ‘social contact’ in our context means an event of
sufficient duration and proximity, to allow transmission of pathogens from infected to susceptible host [31].

There is much uncertainty on disease progression of infective stages. Here, we assume infected E-
hosts can undergo three different pathways: (A) asymptomatic (E — R); (M) mild symptomatic (E —
I; = R); (S) severe symptomatic (E —I; - I, - R), with population fractions (va; vas; vs). In all cases,
pre-symptomatic/asymptomatic pool (E) can carry and transmit the virus, along with (I;, I,). Each
infective stage (E, I;, I,) has associated (mean) duration, Lg; Ly; Lo.

Specifically, the transition to the next stage is a random Bernoulli draw with success probability
determined by a sigmoid function, ®(d/L) = (d/L)/1 + (d/L)*, where d is the time (days) that the
host spent at a given disease stage and L is the associated mean duration of the disease stage. When
the steepness k of the sigmoid function is high enough (k>6), the mean duration of the Bernoulli
probability is close to the associated mean duration, L (see electronic supplementary material,
appendix figures S5 and S6 for details).

During an outbreak, the HCWSs expressing symptoms are tested, and certain fractions (fy; f») of (I3; I)
are put in isolation, where they undergo their specific disease pathways, but do not mix and transmit the
pathogen. Two different types of diagnostic tests were used in the hospital, PCR for light symptoms and
lung-scan for more severe conditions [30,32]. Thus, our assumed quarantine fractions (0 < f; <1) account
for limited test sensitivity, and a possible overlap of ‘COVID-like’ symptoms, expressed by non-COVID
hosts. The recovered HCWs return to the work pool (figure 1).

The model simulations were run on a daily basis and implemented in the Wolfram Mathematica
platform. The key inputs in the model include: (i) population makeup in terms of asymptomatic, mild
and severe (A-M-S) progress groups, (ii) initial infection status of HCW pool; (iii) infectivity levels

rs0s201895—18/3/21—18:25-Copy Edited by: Not Mentioned

610z 8 s uadp 205y sosyjeumol/biobunsyqndfaanosiedor g



175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

(@) )

10} fitted model | 30 F 4 fitted model
© —&— observed data ° —&— observed data
2 o S 25 -
s 8 g
3 =
=1 S 201
g 6
< =]
g = IS5
g 4f /\,f g
£ g 10 ]
z & W,

OA-A-AAH“H Ci i ‘MA Ot&mn".'w“ “““ i 0 Ead

6 Jan 13 Jan 20 Jan 27 Jan 3 Jan 6 Jan 13 Jan 20 Jan 27 Jan 3 Jan
(© )]
E
- 150

12 — N+
g 10
=}
2 g £ 100
i
i z
5 =
‘g;: 4 ] 50

2 ] /\

0 r 0 :

Feb Mar Feb Mar

Figure 2. Model calibration and prediction. (a) The observed and fitted daily incidence of symptomatic cases (€ — /). (b) The
observed and fitted daily quarantine cases among HCWs. () The predicted infection incidence (S — £) from the calibrated
model. (d) The corresponding predicted daily pre-symptomatic/asymptomatic cases, £, and symptomatic cases, /1 + 1,
respectively. The grey shaded regions are 90% credible intervals.

(bo, by, by) for (E, I, 1) stages and susceptibility levels of individual hosts or host pools; (iv) average
duration of infective stages for (A-M-S) pathway; (v) daily social mixing patterns between HCWs and
infected patients; (vi) daily isolation of symptomatic cases and recovery (see electronic supplementary
material, appendix in details).

2.2. (alibration methodology

Our model is calibrated to empirical data of a COVID-19 outbreak among HCWs in the department of
neurosurgery of Union Hospital, Wuhan, China, from 5 January 2020 to 4 February 2020 [30]. A Bayesian
method is used to calibrate the following important parameters in our IBM: (i) mean infectivity (b;, b,) of
symptomatic hosts (I3, I5), (ii) increased susceptibility level (0.5 < as < 1) of the high-risk pool; (iii) fraction
v of HCWs going through the asymptomatic pathway (E — R).

The Bayesian method uses the posterior probability distribution to quantify the uncertainties in these
model parameters using the observed data on the daily incidence of symptomatic cases and the daily
isolated cases (figure 2). The prior distributions for all these parameters are taken to be uniform
within acceptable ranges (see electronic supplementary material, appendix figure S3). The likelihood
for the observed data is assumed as a normal distribution with the centre at the predicted values from
the IBM. The adaptive Metropolis algorithm [33] is used to sample from the posterior distribution,
where the jump size is adaptively chosen based on the sample covariances. The chains are run for 10
000 iterations, and after 5000 burin-in every 50th sample is used as the final sample from the posterior
distribution. To assess the convergence of the posterior sampling, the Gelman-Rubin statistic [34] is
computed for all the parameters. The statistics are found to be very close to 1, the desired value in
strong support of convergence. The calibration was implemented using R statistical software.

2.3. Dataset from Wuhan hospital outbreak

On 26 December 2019, a patient later diagnosed with COVID-19 was admitted in the department of
neurosurgery of Union Hospital, Wuhan, China. No PPE was used by HCWs at that time. By 8
January, HCWs started to show COVID-like symptoms (headache, cough, sore throat), and screening
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233 and isolation were initiated among HCWs. From 19 January, patient’s admission was stopped in the [ 5 |

234 department, and the hospitalized patient pool was gradually reduced from 200 to 20 by the beginning

235 of February. Over the period from 5 January to 4 February, 92 out of the 171 HCWs of the %
236 department were suspected or confirmed COVID-19 cases and isolated. New patients were only @ &
237 admitted in early March 2020 when the pandemic was declared under control in Wuhan. &
238 :§
239 . . =
240 2.4. Intervention strategies =
241 We consider three types of interventions: (i) social distancing (reduced contact rates) and individual E
242 protection (facial masks) among HCWs, (ii) enhanced screening and isolation of infected HCWs, and =
243 (i) patient-pool control (pool size and infection level), and individual HCW protection via PPE for ! %
244 HCW-—patient interaction. P S
245 To assess the strategies for mitigating the COVID-19 outbreak using the calibrated model, we want to = &
246 consider a baseline case that is realistic, simple and general (50 and 100% isolation (quarantine) fractions -
247 of symptomatic cases (I;; L), respectively, and fixed infection level of the patient pool (i.e. 200 patients ;QA
248 pool with 2% infected). To account for model uncertainties, we run each control simulations for 100 ;
249 posterior parameter samples and 5 stochastic model realizations for each sample (500 histories }E
250 altogether), over a six-month period. T«
251 For social distancing, we considered 50 and 75% contact-rate reduction relative to their baseline ;
252 values. The effect of facemask on inter-staff or staff-patient mixing was simulated by reduced : .
253 susceptibility of individual HCWs, with several values of mask efficacy [9]. Screening and isolation g
254 fractions (f;) of HCWs were based on limited test sensitivity, combined with non-COVID symptoms. &
255 An increase in targeted isolation assumes more intensive screening or test sensitivity. We also studied '
256 the effect of isolating pre-symptomatic/asymptomatic cases (E pool). This task is more challenging, as

257 PCR tests have lower sensitivity for such hosts [32], so to identify a suitable E fraction would require

258 intensive mass screening or contact tracing.

259 For quantitative assessment of control interventions and their impact, we use two measures: (i)

260 outbreak size =infection turnover (by the end of outbreak); (ii) workday loss estimated from the

261 quarantine pool over the outbreak duration. The latter gives a simple economic measure of outbreak

262 impact and putative interventions. In each control experiment, we compare the ratio of two outputs

263 (outbreak size and workday loss) to their baseline values, and record these relative values and their

264 distribution.

265 Another important factor in the hospital setting is the in-patient pool. In our case (a non-COVID unit

266 in Wuhan), it varied from the full capacity to zero. The key inputs of the patient pool included (i) infected

267 prevalence and (ii) mean patient infectivity to HCWs. The former is controlled by patient admission and

268 screening/isolation procedures; the latter can be modulated by using PPE. We also explored the effect of

269 different timing of PPE implementation and its efficacy.

270

271

272 3. Results

273

7 3.1. Model calibration with hospital data

275

276 The predictions from the calibrated IBM were very close to the observed data on daily symptomatic and

277 quarantine cases (figure 2). The fraction of asymptomatic disease-progress pool, v, was estimated at 0.31

278 (90% credible interval (CrI): 0.16-0.40). So, a sizable part of transmission was carried over by undetected

279 cases (E pool). Susceptibility level of the high-risk pool was estimated at as=0.76 (90% Crl: 0.58-0.97).

280 We attributed a higher susceptibility level to work stress, and our results gave a quantitative measure

281 to this increase at 52% (90% Crl: 16.4-93.0%) above the normal level. The infectivity levels of pre-

282 symptomatic and symptomatic infections were estimated to be 0.12 (90% Crl: 0.11-0.14) and 0.23 (90%

283 Crl: 0.20-0.26). See electronic supplementary material, appendix figure S3 for the prior and posterior

284 probability distributions.

285

- 3.2. Analysis of interventions

288 The baseline scenario showed that almost all HCWs get infected, resulting in significant workday loss,

289 1050 (90% Crl: 913-1282), over the six-month period (table 1; electronic supplementary material,

290 appendix figure S4). The impact of implementing social distancing through reduction of contact rates
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Figure 3. The combined effect of facial masks and social distancing. Three levels of social distancing were considered (normal,
reduced by 50%, reduced by 75%). For facemask efficacy, we considered five putative values (50, 67, 75, 85, 95%). The
efficacy is measured via reduced host susceptibility per contact (@ — 0.5 % a; a > 033 xa...). We also considered different
timing of preventive measures: (i) start of the outbreak (a); (ii) after the first identified HCW case (b); (iii) after 10% of HCW
staff got infected (c). In each case, we estimated the posterior distribution of the relative outbreak size, and the workday loss
over baseline values.

alone and wearing facemasks alone, from the start of the outbreak, was evaluated (table 1). The reduction
of contact rates alone has a marginal effect on mitigating the outbreak in the long run. The 50% drop of
contact rates leads to about 4-6% reduction of the outbreak size and workday loss, while 75% drop leads
to a 15-17% reduction, relative to baseline values. The efficacy of facemasks is uncertain, and we explored
several values (50, 67, 75, 85, 95%), based on the previous studies [9]. We have shown that wearing
facemasks had a higher impact on mitigating the outbreak, than social distancing (reduced contact
rates). At 95% efficacy, we could achieve 80% (90% Crl: 73.1-85.7%) reduction of outbreak size, and
87% (Crl: 80.0-92.5%) of workday loss, compared to the baseline.

Figure 3 illustrates the combined effect of facemask and social contact. We used the same values of
facemask efficacy and contact rates as table 1. For each value of facemask efficacy, we observed a
consistent reduction of the outbreak size with reduced contact rates. It varied from 13 to 34% drop for
low-efficacy facemask (50% protection) to 30 to 60% drop for high-efficacy facemask (95% protection).
We observed a similar percentage reduction for the workday loss. So, the impact of reduction of
contact rates was much greater under the higher efficacy of facemasks.

We also explored the effect of timing of intervention by the following three scenarios: (i) at the
beginning (figure 3a); (ii) after the first identified case (figure 3b); (iii) after 10% of HCWs have been
identified as infected (figure 3c). Early interventions have made marked improvement under different
types of facemasks and contact rates. For instance, if control interventions (adoption of high-efficacy
facemasks and reduced contact rates) were implemented at the beginning, we observed 80-90%
reduction of the outbreak size (a near-complete control). A later implementation (e.g. after the first
identified case) gave 60-85% reduction. If the timing was delayed to, for example, 10% identified
cases, these numbers dropped to 40-60%. All intermediate cases are shown in figure 3.

We next looked at the effect of HCWs screening and isolation via two scenarios. The first scenario
considered symptomatic cases only, by changing quarantine fraction (f;) of I;, from its baseline value
(50%) to 60—100%; quarantine fraction (f,) of I, was fixed at 100%. Figure 4a shows increased
symptomatic isolation had only a marginal effect on the outbreak size, while raising workday loss.
A clue to low efficacy of symptomatic screening lies in (i) the role of pre-symptomatic/asymptomatic
(E) pool in transmission and (ii) contribution of the patient source. To test (i), we extended our
quarantine strategy to E pool. Of course, such an extension requires intensive screening of the work
pool. Under random selection, isolating f fraction of E would require much more than f fraction of
HCWs tested. For numeric simulations, we fixed (fi, f») at (90, 100%), and varied E fraction from 10 to
60%. We still found the effect of such a strategy was limited, it often prolongs the outbreak duration

rs0s201895—18/3/21—18:25-Copy Edited by: Not Mentioned

68107 8 s uadp 205y sosyjeuwmol/biobunsiqndfaanosiedor |



407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461

462
463
464

(@) )
10 I T T I I I
® i T
N 10| I T 1 I
S OLO ] I I I I 09 | 1 1
i
£ os 0.8 1 L
g 0.7 | T l
o 06/ | 06} L
2
5 05 | T T
£ 04 0.4 |

1.2,} [ [ I [ 25¢ | [ ]

: T
@l
G | [ I I 2.0 T [ |
£ 10 | I J l
: - L]
2 09 | L5y l l
(5]
|
5 08} 10 |
2 I
0.7 |
0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6
quarantine efficacy for I, quarantine fraction for E
B decreased patient infectivity via PPEs m baseline patient infectivity
(©)
1.0 ¢ I S S A P Sent o= ey 1.0 ¢ I FooprE oo 1T
-g Tl T% JT I T 2 "'l T% lT I T
2 08} | 208} |
E J Z J
5 06 T o6
B =
S
o 047 o 047
2 2
g 02 So02|
e g
0 0
0 0.01 0.02 003 004 0.05 0 0.01 0.02 003 004 0.05
patient infection prevalence patient infection prevalence

® no infection from in-patients @ decreased patient infectivity via PPEs at the beginning
m baseline patient infectivity m decreased patient infectivity via PPEs after first identified case

Figure 4. The effect of the quarantine and patient sources on relative outhreak size and workday loss. The patient sources (infection
prevalence and infectivity) were controlled via screening/isolation and the use of PPE by HCWs. We considered two quarantine
strategies for HCWs: symptomatic cases only (column A) and adding pre-symptomatic/asymptomatic cases (column B). We used
the following marking: (pink) baseline patient infection level, (red) reduced patient infection by 80% via PPE use by HCWs. In
column A, the quarantine fraction of moderate/severe cases (/,) was fixed at 100%, and the quarantine fraction of mild cases
(1) was varied from 60 to 100%. In column B, we fixed symptomatic (/;; /,) quarantine fractions at (90%, 100%), and varied
the quarantine fraction of pre-symptomatic/asymptomatic £ pool from 10 to 60%. (c) The effect of patient infection and
different timing of PPE use: (i) start of the outbreak, (ii) after the first identified HCW infection and (jii) no PPE use. We
considered different levels of prevalence of the infected patient pool: 0, 1, 2% (baseline value), 3, 4, 5%.

without affecting its size. Besides, such a strategy can incur an economic burden by increased workday
loss, though the effect is subtler, as increased quarantine rate can slower transmission rate; hence, fewer
hosts would be infected and need isolation. More significant progress was achieved by controlling the
patient source, via reduced patient prevalence (screening), or reduced infectivity (PPE) (figure 4a,b).
We run several experiments with patient-pool control and PPE use (figure 4c). For PPE timing, we
made three choices: (i) the start of an outbreak, (ii) after the first identified HCW case, and (iii) no PPE
use. We assumed PPE provides 80% protection (via the reduced probability of transmission from an
infected patient). We also varied the infected prevalence level of the patient pool, from 0 to 5% (baseline
case was 2%). We found the control of patient infection (via e.g. PPE, screening and isolation,
particularly for new patients) can reduce outbreak size, even though the bulk of transmission is carried
over by inter-staff HCW contacts. We found the combined strategy (enhanced HCW screening/isolation
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465 with patient control) could lead to marked improvement both in outbreak size and in workday loss. This [ 9 |

466 effect, however, is not observed for quarantine alone, under persistent patient source.

467 Overall, we saw high-efficacy facemasks could provide the most effective control tool for reducing : g

468 COVID-19 transmission in HCW staff (figure 3). g

469 ey

470 =
. . ' &

! 4. Discussion E

472 =

473 With the spread of COVID-19 in the world, the development of strategies for mitigating its severity is a g

474 top public health priority. Large-scale population-level models of SARS-CoV-2 transmission can give %

475 some qualitative answers for outbreak control on regional/country scales [35]; however, few studies §

476 have looked at the effects of interventions in a local community setting, such as hospital, workplace %

477 and school. g

478 Using a novel individual-based modelling approach, we explored different scenarios for COVID-19 -

479 transmission and control in a non-COVID hospital unit. Our IBM methodology employed @

480 conventional SEIR disease stages with graded infectivity, extended to heterogeneous host makeup, R

481 which includes multiple disease pathways, varying individual susceptibility and behavioural patterns. ‘§

482 These factors can be affected by work stress, health status, use of face masks/PPE and social a

483 interactions. Detailed data on the COVID-19 outbreak in the department of neurosurgery of Union =

484 Hospital in Wuhan (China) [30] were used to calibrate the essential model parameters. 2

485 One of the key uncertain parameters was the pre-symptomatic/asymptomatic-fraction, which was : g

486 estimated at 31%, indicating a relatively high proportion of undetectable infections. We also estimated | &

487 the infectivity levels of pre-symptomatic (E) and symptomatic disease (I) states to be 0.12 and 0.23,

488 respectively. Another uncertain input was individual susceptibility, which could be affected by health

489 status or work stress. We estimated the high-risk susceptibility level relative to normal susceptibility

490 and found work-related stress could increase the risk of COVID-19 infection by up to 52%.

491 The calibrated model was used to simulate a range of intervention scenarios, aimed at mitigating the

492 outbreak and examining its impact on the work pool. The baseline case, without interventions, gave a

493 large outbreak size, whereby almost all HCWs were infected over two months. It also incurred a

494 significant workday loss for the unit. Such results support early modelling findings of large-scale

495 populations, and subsequent empirical observations, that in the absence of control measures, a

496 COVID-19 epidemic could quickly overwhelm a region [12]. High-efficacy facemasks were shown to

497 be most effective for reducing infection cases and workday loss. The impact of social distancing

498 through the reduction of contact rates alone had a marginal effect on mitigating the outbreak in the

499 long run. Reducing social contact rates to 50% (or 75%) resulted in a 4-6% (or 15-17%) drop

500 in the outbreak size, and a similar drop in the workday loss, compared to the baseline case. However,

501 the impact of reduction of contact rates was much greater under the higher efficacy of facemasks.

502 Implementing the quarantine policy (HCW screening and isolation) alone, even when all

503 symptomatic cases are included, would typically prolong the outbreak duration, but had a marginal

504 effect on its size, particularly under the external (patient) source pressure. Our results indicated that

505 the low efficiency of symptomatic quarantine was due to a large share of transmission being carried

506 by pre-symptomatic/asymptomatic (E) individuals [36], and to the patient source. Our results also

507 showed that a quarantine policy for HCWs should be augmented with other interventions to achieve

508 a significant reduction. Efficient control of the patient source (via the use of PPE, their screening and

509 isolation, and/or admission) is one key to mitigating the HCW outbreak. The effectiveness of all these

510 interventions was shown to increase with their early implementation.

511 To our knowledge, this study is the first of its kind to provide quantitative modelled assessment and

512 projections for COVID-19 transmission in hospital settings. However, the IBM methodology developed

513 here has a far broader scope, beyond healthcare facilities. Indeed, with proper adjustment, it could be

514 applied to many other local communities (workplaces, schools, city neighbourhoods, etc.). The key

515 feature of such IBM is a fine-scale resolution of community makeup, social interactions and disease

516 pathways. Such information is essential for risk assessment and the development of efficient control/

517 intervention strategies on a local scale.

518 The current model set-up is subject to some limitations. First, it was designed for a single hospital unit

519 and simplified treatment of the patient pool, as the target group in our study was HCW pool. More

520 realistic local communities could combine multiple units (e.g. large hospital), with refined population

521 structure (e.g. patients, visitors, staff), and more complex interactions (e.g. ‘random’ and ‘scheduled’

522 contact pools). Empirical data on these interactions will be required to adequately parametrize such
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523 models. Second, although we have made an effort to characterize the SARS-CoV-2 transmission in a m

524 hospital setting, some parameters used in our set-up were drawn from general information sources,
525 such as fractions of symptomatic mild and severe cases [37], disease stages and durations [38], and &S
526 associated infectivity levels [39], which may be adjusted in the future work. %
527 ey
528 . §
29 5. Conclusion 1=
L=
:z(l) Overall, our analysis shows that a COVID-19 outbreak among HCWs in a non-COVID-19 hospital unit : &
can be efficiently controlled /mitigated by non-pharmaceutical means. The most crucial factor of success : 8
532 . . . . . . =
is high-efficacy facemasks for HCW contacts. It can be further augmented by social distancing, : 2
:zi screening /isolation and patient source control. 95_,
e
535 Ethics. The study protocol was approved by the institutional ethics board of Union Hospital, Tongji Medical College, g
536 Huazhong University of Science and Technology, Wuhan, China (No. 20200029). Written informed consent was
537 required before the data collecting, and participants were informed that they could refuse to answer any question. f’:
538 The questionnaire did not ask about infection status, and no biological samples were collected. ‘R
30 Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/qimin-h/COVID- °
19-huang-et-al.- and have been archived within the Zenodo repository (https://doi.org/10.5281/zenodo.4122370). : S
540 Authors’ contributions. Q.H., A.M. and X.J. contributed equally and shared the first authorship. Q.H., D.G., A M. and M.N.- =
541 M. designed research, did model development, calibrations and simulations, X.J. H.Z., EF., P.F. and X.W. collected and °°
542 provided hospital data, Q.H. wrote the first draft, M.N.-M., D.G., AM. and M.A.H. made critical revision of the N
543 manuscript. All the authors contributed to the interpretation of the study results, read, comment and approved the : g
544 final version. N
545 Competing interests. We declare we have no competing interests. '
546 Funding. This work was supported by the National Science Foundation RAPID Award (grant no. DEB-2028631 to Q.H.,
547 AM. and D.G)), the National Science Foundation RAPID Award (grant no. DEB-2028632 to M.N.-M.] and the
548 Fundamental Research Funds for the Central Universities (grant no. 2020kfyXGYJ010 to X.J.); funders had no role
549 in study design, data collection, data analysis, writing of the report or the decision to submit for publication. The
550 corresponding authors had full access to all of the data and the final responsibility to submit for publication.
Acknowledgements. The authors would like to thank all healthcare workers in this study. X.J. and H.Z. had full access to
551 all the data in the study and took responsibility for the integrity of the data. The authors would also like to thank the
552 handling editor and reviewers for their helpful comments and suggestions, which improved the presentation of the
553 manuscript.
554
555
556
- References
558
559 1. Chinazzi M et al. 2020 The effect of travel 7. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay Dis. 20, 553-558. (doi:10.1016/51473-
560 restrictions on the spread of the 2019 novel A, Abeler-Dorer L, Parker M, Bonsall D, Fraser 3099(20)30144-4)
coronavirus (COVID-19) outbreak. Science 368, (. 2020 Quantifying SARS-CoV-2 transmission 12. Wu JT, Leung K, Leung GM. 2020 Nowcasting
561 395-400. (doi:10.1126/science.abad757) suggests epidemic control with digital contact and forecasting the potential domestic and
562 2. Viner RM, Russell SJ, Croker H, Packer J, Ward J, tracing. Science 368, eabb6936. (doi:10.1126/ international spread of the 2019-nCoV outbreak
563 Stansfield C, Mytton 0, Bonell C, Booy R. 2020 science.abb6936) originating in Wuhan, China: a modelling study.
564 School closure and management practices 8. Ali ST, Wang L, Lau EH, Xu X-K, Du Z, Wu Y, Lancet 395, 689-697. (doi:10.1016/50140-
565 during coronavirus outbreaks including COVID- Leung GM, Cowling BJ. 2020 Serial interval of 6736(20)30260-9)
19: a rapid systematic review. Lancet Child SARS-CoV-2 was shortened over time by 13. Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT,
566 Adolesc. Health 4, 397—-404. (doi:10.1016/ nonpharmaceutical interventions. Science 369, Tam C, Dickens BL. 2020 Interventions to mitigate
567 $2352-4642(20)30095-X) 1106-1109. (doi:10.1126/science.abc9004) early spread of SARS-CoV-2 in Singapore: a
568 3. Pan A et al. 2020 Association of public health 9. Chu DK et al. 2020 Physical distancing, face modelling study. Lancet Infect. Dis. 20, 678—688.
569 interventions with the epidemiology of the masks, and eye protection to prevent person- (doi:10.1016/51473-3099(20)30162-6)
570 COVID-19 outbreak in Wuhan, China. JAMA 323, to-person transmission of SARS-CoV-2 and 14, Miller JC, Qiu X, MacFadden D, Hanage WP.
1915-1923. (doi:10.1001/jama.2020.6130) COVID-19: a systematic review and meta- 2020 Evaluating the contributions of strategies
571 4. Flaxman S et al. 2020 Estimating the effects of analysis. Lancet 395, 1973-1987. (doi:10.1016/ to prevent SARS-CoV-2 transmission in the
572 non-pharmaceutical interventions on COVID-19 50140-6736(20)31142-9) healthcare setting: a modelling study. medRxiv.
573 in Europe. Nature 584, 257-261. (doi:10.1038/ 10.  Davies NG et al. 2020 Effects of non- 15. Anderson RM, May RM. 1992 Infectious diseases
574 $41586-020-2405-7) pharmaceutical interventions on COVID-19 cases, of humans: dynamics and control. Oxford, UK:
575 5. Ferguson N et al. 2020 Report 9: Impact of non- deaths, and demand for hospital services in the Oxford University Press.
pharmaceutical interventions (NPIs) to reduce UK: a modelling study. Lancet Public Health 5, 16.  Hethcote HW. 2000 The mathematics of
576 (0VID19 mortality and healthcare demand. €375—e385. (doi:10.1016/52468-2667(20) infectious diseases. SIAM Rev. 42, 599-653.
577 6. Hellewell J et al. 2020 Feasibility of controlling 30133-X) (doi:10.1137/50036144500371907)
578 COVID-19 outbreaks by isolation of cases and 1. Kucharski AJ et al. 2020 Early dynamics of 17.  Giordano G, Blanchini F, Bruno R, Colaneri P,
579 contacts. Lancet Glob. Health 8, e488—e496. transmission and control of COVID-19: a Di Filippo A, Di Matteo A, Colaneri M. 2020
580 (doi:10.1016/52214-109X(20)30074-7) mathematical modelling study. Lancet Infect. Modelling the COVID-19 epidemic and

rs0s201895—18/3/21—18:25-Copy Edited by: Not Mentioned


https://github.com/qimin-h/COVID-19-huang-et-al.-
https://github.com/qimin-h/COVID-19-huang-et-al.-
https://github.com/qimin-h/COVID-19-huang-et-al.-
https://doi.org/10.5281/zenodo.4122370
https://doi.org/10.5281/zenodo.4122370
http://dx.doi.org/10.1126/science.aba9757
http://dx.doi.org/10.1016/S2352-4642(20)30095-X
http://dx.doi.org/10.1016/S2352-4642(20)30095-X
http://dx.doi.org/10.1001/jama.2020.6130
http://dx.doi.org/10.1038/s41586-020-2405-7
http://dx.doi.org/10.1038/s41586-020-2405-7
http://dx.doi.org/10.1016/S2214-109X(20)30074-7
http://dx.doi.org/10.1126/science.abb6936
http://dx.doi.org/10.1126/science.abb6936
http://dx.doi.org/10.1126/science.abc9004
http://dx.doi.org/10.1016/S0140-6736(20)31142-9
http://dx.doi.org/10.1016/S0140-6736(20)31142-9
http://dx.doi.org/10.1016/S2468-2667(20)30133-X
http://dx.doi.org/10.1016/S2468-2667(20)30133-X
http://dx.doi.org/10.1016/S1473-3099(20)30144-4
http://dx.doi.org/10.1016/S1473-3099(20)30144-4
http://dx.doi.org/10.1016/S0140-6736(20)30260-9
http://dx.doi.org/10.1016/S0140-6736(20)30260-9
http://dx.doi.org/10.1016/S1473-3099(20)30162-6
http://dx.doi.org/10.1137/S0036144500371907

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

18.

19.

20.

21.

22.

23.

24,

implementation of population-wide
interventions in Italy. Nat. Med. 26, 855-860.
(doi:10.1038/541591-020-0883-7)

Prem K et al. 2020 The effect of control
strategies to reduce social mixing on outcomes
of the COVID-19 epidemic in Wuhan, China: a
modelling study. Lancet Public Health 5,
€261-€270. (doi:10.1016/52468-
2667(20)30073-6)

Nguyen LH et al. 2020 Risk of COVID-19 among
front-line health-care workers and the general
community: a prospective cohort study. Lancet
Public Health 5, e475—e483. (doi:10.1016/
$2468-2667(20)30164-X)

McCauley L, Hayes R. 2020 Taking responsibility
for front-line health-care workers. Lancet Public
Health 5, e461-e462. (doi:10.1016/52468-
2667(20)30179-1)

Chou R, Dana T, Buckley DI, Selph S, Fu R,
Totten AM. 2020 Update alert: epidemiology of
and risk factors for coronavirus infection in
health care workers. Ann. Intern. Med. 173,
W46-W47. (doi:10.7326/L20-0768)

Wong S-Y, Kwong R-S, Wu TC, Chan J, Chu M,
Lee S, Wong HY, Lung DC. 2020 Risk of
nosocomial transmission of coronavirus disease
2019: an experience in a general ward setting
in Hong Kong. J. Hosp. Infect. 105, 119-127.
(doi:10.1016/j.jhin.2020.03.036)

Ferguson NM, Cummings DA, Fraser C, Cajka JC,
Cooley PC, Burke DS. 2006 Strategies for
mitigating an influenza pandemic. Nature 442,
448-452. (doi:10.1038/nature04795)

Germann TC, Kadau K, Longini IM, Macken CA.
2006 Mitigation strategies for pandemic influenza
in the United States. Proc. Nat! Acad. Sci. USA
103, 5935-5940. (doi:10.1073/pnas.0601266103)

25.

26.

27.

28.

29.

30.

3.

32.

Halloran ME et al. 2008 Modeling targeted
layered containment of an influenza pandemic
in the United States. Proc. Natl Acad. Sci. USA.
105, 4639-4644. (doi:10.1073/pnas.
0706849105)

D'Agata EM, Magal P, Olivier D, Ruan S, Webb
GF. 2007 Modeling antibiotic resistance in
hospitals: the impact of minimizing treatment
duration. J. Theor. Biol. 249, 487-499. (doi:10.
1016/j.jthi.2007.08.011)

Wei WE, Li Z, Chiew O, Yong SE, Toh MP, Lee
VJ. 2020 Presymptomatic transmission of SARS-
(oV-2—Singapore, January 23—-March 16,
2020. Morbid. Mortal. Weekly Rep. 69, 411.
(doi:10.15585/mmwr.mm6914e1)

Arons MM et al. 2020 Presymptomatic SARS-
CoV-2 infections and transmission in a skilled
nursing facility. N. Engl. J. Med. 382,
2081-2090. (doi:10.1056/NEJM0a2008457)
Kimball A et al. 2020 Asymptomatic and
presymptomatic SARS-CoV-2 infections in
residents of a long-term care skilled nursing
facility—King County, Washington, March 2020.
Morbid. Mortal. Weekly Rep. 69, 377. (doi:10.
15585/mmwr.mm6913e1)

Wang X et al. 2020 Risk factors of SARS-CoV-2
infection in healthcare workers: a retrospective
study of a nosocomial outbreak. Sleep Med. X
2, 100028. (doi:10.1016/j.sleepx.2020.100028)
Centers for Disease and Prevention. 2017
Interim guidance on follow-up of close contacts
of persons infected with novel influenza A
viruses associated with severe human disease
and on the use of antiviral medications for
chemoprophylaxis—updated 6 March 2017.
Tromberg BJ, Schwetz TA, Pérez-Stable EJ,
Hodes RJ, Woychik RP, Bright RA, Fleurence RL,

rs0s201895—18/3/21—18:25-Copy Edited by: Not Mentioned

33

34,

35.

36.

37.

38.

39.

Collins FS. 2020 Rapid scaling up of Covid-19
diagnostic testing in the United States—the
NIH RADx initiative. N. Engl. J. Med. 383,
1071-1077. (doi:10.1056/NEJMsr2022263)
Haario H, Saksman E, Tamminen J. 2001 An
adaptive Metropolis algorithm. Bernoulli 7,
223-242. (doi:10.2307/3318737)

Gelman A, Rubin DB. 1992 Inference from
iterative simulation using multiple sequences.
Stat. Sci. 7, 457-472. (doi:10.1214/ss/
1177011136)

Anderson RM, Heesterbeek H, Klinkenberg D,
Hollingsworth TD. 2020 How will country-
based mitigation measures influence the
course of the COVID-19 epidemic? Lancet

395, 931-934. (doi:10.1016/50140-
6736(20)30567-5)

Rivett L et al. 2020 Screening of healthcare
workers for SARS-CoV-2 highlights the role of
asymptomatic carriage in COVID-19
transmission. elife 9, €58728. (doi:10.7554/
elife.58728)

World Health Organization. 2020 Report of the
WHO-China joint mission on coronavirus disease
2019 (COVID-19). Geneva, Switzerland.

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q,
Meredith HR, Azman AS, Reich NG, Lessler J.
2020 The incubation period of coronavirus
disease 2019 (COVID-19) from publicly reported
confirmed cases: estimation and application.
Ann. Intern. Med. 172, 577-582. (doi:10.7326/
M20-0504)

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W,
Shaman J. 2020 Substantial undocumented
infection facilitates the rapid dissemination of
novel coronavirus (SARS-CoV-2). Science 368,
489-493. (doi:10.1126/science.abb3221)

=

dp 05 'y sosi/jeusnol/biobuiysiigndfranos|efos E

$68L0C ‘8 S ua


http://dx.doi.org/10.1038/s41591-020-0883-7
http://dx.doi.org/10.1016/S2468-2667(20)30073-6
http://dx.doi.org/10.1016/S2468-2667(20)30073-6
http://dx.doi.org/10.1016/S2468-2667(20)30164-X
http://dx.doi.org/10.1016/S2468-2667(20)30164-X
http://dx.doi.org/10.1016/S2468-2667(20)30179-1
http://dx.doi.org/10.1016/S2468-2667(20)30179-1
http://dx.doi.org/10.7326/L20-0768
http://dx.doi.org/10.1016/j.jhin.2020.03.036
http://dx.doi.org/10.1038/nature04795
http://dx.doi.org/10.1073/pnas.0601266103
http://dx.doi.org/10.1073/pnas.0706849105
http://dx.doi.org/10.1073/pnas.0706849105
http://dx.doi.org/10.1016/j.jtbi.2007.08.011
http://dx.doi.org/10.1016/j.jtbi.2007.08.011
http://dx.doi.org/10.15585/mmwr.mm6914e1
http://dx.doi.org/10.1056/NEJMoa2008457
http://dx.doi.org/10.15585/mmwr.mm6913e1
http://dx.doi.org/10.15585/mmwr.mm6913e1
http://dx.doi.org/10.1016/j.sleepx.2020.100028
http://dx.doi.org/10.1056/NEJMsr2022263
http://dx.doi.org/10.2307/3318737
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1016/S0140-6736(20)30567-5
http://dx.doi.org/10.1016/S0140-6736(20)30567-5
http://dx.doi.org/10.7554/eLife.58728
http://dx.doi.org/10.7554/eLife.58728
http://dx.doi.org/10.7326/M20-0504
http://dx.doi.org/10.7326/M20-0504
http://dx.doi.org/10.1126/science.abb3221

	SARS-CoV-2 transmission and control in a hospital setting: an individual-based modelling study
	Introduction
	Material and methods
	Individual-based modelling methodology
	Calibration methodology
	Dataset from Wuhan hospital outbreak
	Intervention strategies

	Results
	Model calibration with hospital data
	Analysis of interventions

	Discussion
	Conclusion
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References




