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Abstract

Adolescence is a period of profound but incompletely understood changes in the brain’s neural circuitry (the connectome),
which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular
physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive
Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of
physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive
function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency,
robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and
default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional
processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions
(P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to
better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have
extensive positive effects on the development of the functional connectome, and may be critical for improving the
detrimental effects of unhealthy weight on cognitive health.
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Introduction
In a period of just a few decades, childhood obesity in the United
States of America has grown into a serious public health prob-
lem that currently affects 14 million children (CDC), including
>20% of all adolescents (Hales et al. 2020). These highly alarming
statistics highlight an urgent need for intervention to address
the obesity epidemic, given serious detrimental short- and long-
term effects of unhealthy weight on physical and mental health
(Reeves et al. 2008; Dockray et al. 2009; Arseneault et al. 2010;
Esposito et al. 2014; Sahoo et al. 2015; Quek et al. 2017; Lindberg
et al. 2020). Beyond its potential lifelong effects on the individual,
obesity has an enormous negative economic impact on society.
Yearly direct medical care costs are ∼$150 billion and indirect

costs due to loss of productivity, higher insurance premiums,
and lower household income are a staggering ∼$3–6 billion
(Colditz and Wang 2008; Trogdon et al. 2008). In children, the
direct costs of obesity are over $14 billion (Cawley 2010).

Extensive adverse structural, cognitive, and biochemical
effects of unhealthy weight on the brain have been identified
in a wide range of studies (Wang et al. 2001; Schwartz and
Porte 2005; Raji et al. 2010; Shefer and Stern 2013). In the
developing brain, these effects may have important long-
term implications for cognitive heath. Recent studies involving
9–10-year-old children from the Adolescent Brain Cognitive
Development (ABCD) study (Casey et al. 2018) have shown
that higher body mass index (BMI) is associated with lower
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prefrontal cortical thickness and decreased executive function
and control (Laurent et al. 2019; Ronan et al. 2020), and have
linked differences in waist circumference to cellular density in
the nucleus accumbens (Rapuano et al. 2020). Earlier studies
in smaller cohorts have also reported distributed structural
differences, for example, in white matter volume, between
overweight children and adults compared to those with normal
BMI (Wang et al. 2001; Raji et al. 2010). Unhealthy weight in
adolescence may have specific detrimental effects on brain
regions and associated neural circuitry related to executive
control, which is still developing during this period (Kamijo et al.
2014). Although there is a genetic predisposition to unhealthy
weight (Choquet and Meyre 2011), poor diet and lack of physical
activity are also significant contributors. Nutrition plays a
critical role in neural maturation (Georgieff 2007; Prado and
Dewey 2014; Cusick and Georgieff 2016) and poor diet may lead to
neuroinflammation and brain changes that reinforce unhealthy
eating habits and ultimately weight gain (Freeman et al. 2014).

Physical activity has been shown to play an important role in
supporting neural maturation and cognitive health (Khan and
Hillman 2014; Donnelly et al. 2016; Bidzan-Bluma and Lipowska
2018; Di Liegro et al. 2019). Intense and/or regular cardiovascular
exercise and increased fitness may positively affect the basal
ganglia and the hippocampus, enhance gray matter volume, and
protect white matter integrity, particularly in regions associated
with executive function (e.g., prefrontal and parietal regions),
leading to improved short- and long-term memory processes,
cognitive control, and academic performance (Colcombe et al.
2003; Di Martino et al. 2008; Draganski et al. 2008; Aron et al.
2009; Stroth et al. 2009; Chaddock et al. 2010; Davis et al. 2011;
Erickson et al. 2011; Pontifex et al. 2011; Ruscheweyh et al. 2011;
Roig et al. 2013; Voss et al. 2013; Chaddock-Heyman et al. 2014;
Donnelly et al. 2016; Firth et al. 2018).

The impact of physical activity on the brain may depend on
its intensity level. In adults, low-intensity exercise, for exam-
ple, walking, may increase connectivity in regions involved in
attention and executive processes (e.g., the frontoparietal net-
work), whereas high-intensity exercise, for example, running,
may increase connectivity in regions supporting emotional pro-
cessing and the affective and reward networks (Weng et al. 2017;
Schmitt et al. 2019). Long-term aerobic activity may increase
resting-state connectivity between regions of the default-mode
network (DMN; Voss et al. 2010) and decrease connectivity in
task-irrelevant networks during selective attention (Wengaard
et al. 2017; Peven et al. 2019). In contrast, a sedentary life may
lead to lower global and local efficiency of the dorsal attention
network and suboptimal performance in decision-making tasks
(Pindus et al. 2020). In children, lack of physical activity may
adversely affect functional connectivity across brain networks
(Voss et al. 2011).

Despite encouraging findings on the positive impact of phys-
ical activity on the brain, related large-scale studies, particularly
in children, are limited. During development, the topology of
the human connectome progressively changes from a localized
(anatomically clustered) to an increasingly distributed organi-
zation of functional networks (Fair et al. 2007, 2009). In addition,
the DMN is only sparsely connected in early school-age children
(Fair et al. 2008) but becomes progressively robust by adulthood
(Greicius et al. 2003). To date, the impact of physical activ-
ity on the topological organization of the heterogeneous and
vulnerable developing connectome remains elusive. As func-
tional networks maturate and become increasingly specialized
during almost 2 decades of development, they progressively

assume topological properties that maximize the efficiency of
information processing, facilitate learning and adaptation and
optimize the brain’s response to cognitive demands (Bullmore
and Sporns 2009; Pessoa 2014). In addition to optimal functional
connectivity across spatial scales, these properties include net-
work efficiency, a distance metric between nodes that reflects
how rapidly information can propagate through the network
(Martinez et al. 2018) and modularity, which reflects the abil-
ity to partition the network into modules (or communities)
that support localized computation (Newman 2006; Bullmore
and Sporns 2009, 2012; Meunier et al. 2009). Both properties
emerge during development, as redundant neural connections
are progressively eliminated and selective sparse connections
are strengthened, leading to networks in adulthood that opti-
mally integrate and coordinate local information (computed at
the module level) and transmit it across the brain via long-
range connections (Chen and Deem 2015). A related topological
property is small-worldness (Watts and Strogatz 1998; Bassett
and Bullmore 2006), which is characteristic of optimally orga-
nized networks and combines high clustering and shortest node
distance (average path length), thus minimizing computational
cost and maximizing processing efficiency through the net-
work. Given the complexity of inputs the brain receives and the
extensive repertoire of human behaviors, these properties are
paramount to cognitive function. In addition, small-worldness
and modularity are also critical to network stability, robustness
and resilience (Babaei et al. 2011; Gilarranz et al. 2017). A modular
network organization may increase “fault tolerance,” that is,
the network’s ability to remain functional despite individual
module failure. To date, the impact of positive factors such as
physical activity and negative factors such as unhealthy weight
on these critical properties during development (particularly in
adolescence), remain only partially understood (Huang et al.
2015).

To address this gap in knowledge and leverage ongoing large
studies on brain development, this study investigated the direct
and indirect (through impact on BMI) effects of physical activity
on resting-state networks. A cohort of 5955 children from the
ABCD study were analyzed and resting-state functional mag-
netic resonance imaging (rs-fMRI) was used to estimate task-
independent networks and their properties, which may be rela-
tively homogeneous in healthy adult populations (Greicius et al.
2003; Mantini et al. 2007; Fox et al. 2009; Van den Heuvel and
Sporns 2013) but highly heterogeneous in developing children
(Fransson et al. 2007; Menon 2013) and vulnerable to the adverse
effects of unhealthy weight and/or lack of exercise. Multiple
measures quantified each participant’s level and pattern of
physical activity. Statistical analyses examined the direct impact
of physical activity on the connectome and its properties as well
as indirect effects through BMI. Although there is a clear associ-
ation between exercise and BMI, there is relatively limited prior
work on the impact of BMI on the resting connectome’s topology
and properties, particularly in children. Given the heterogeneity
of the typically developing connectome, these associations need
to be assessed in large samples. The ABCD dataset provides a
unique opportunity for this purpose.

Materials and Methods
Participants

Rs-fMRI, clinical assessments, behavioral, and demographic
data, collected at entry in the ABCD study (a longitudinal
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investigation of >11 000 children, starting at age 9–10 years),
were analyzed. These data are available through the National
Institute of Mental Health Data Archive (NDA). At the time of this
study, data from release 2.0.1 were available. Children imaged
only with a GE or Siemens scanners were identified (n = 9304).
Per the ABCD consortium guidelines, those imaged with a Philips
scanner needed to be excluded due to preprocessing issues
and reprocessed data were not available at the time of this
analysis. Following exclusion based on imaging data quality,
clinical findings in structural MRI (n = 344) or history of bipolar
disorder (n = 184), n = 5955 children (median age = 120.0 months,
interquartile range [IQR] = 13.0) with rs-fMRI of adequate quality
for analysis were included (n = 4489 [75.38%] were measured
with a Siemens scanner).

fMRI Resting-State Data Processing

Data Preprocessing
Analyzed neuroimaging data had been minimally preprocessed
by the dedicated Data Analysis, Informatics & Resource Center
(DAIRC) of the ABCD study (Hagler et al. 2019) and were further
processed in this study using the Next Generation Neural
Data Analysis (NGNDA) pipeline. Each participant had data
from up to 4 rs-fMRI (5-min long) runs. Motion, artifacts,
and other nonbiological signal contaminants were suppressed
following structural segmentation, initial fMRI frame removal,
coregistration to structural MRI, slice-time correction, and
normalization to MNI152 space. Denoised signals from runs
with < 10% of motion-censored frames were further analyzed.
The data processing steps using NGNDA are described in detail
in Supporting Information (S1). For each participant, only one rs-
fMRI run was selected for estimating resting network properties.
Assuming that functional connectivity at rest is relatively low
even at this age (with the exception of predominantly the
DMN), and to minimize the likelihood of spuriously increased
connectivity associated with residual motion artifacts, the rs-
fMRI run with the lowest median connectivity was selected
for further analysis. This run typically corresponded to the
one with the lowest number of censored frames. Following
these imposed constraints, median percent of motion-censored
frames across the sample was 1.87% (IQR = 4.8%). Given this
overall low number, analyses were predominantly conducted
without including this parameter in statistical models. However,
in additional analyses percent of censored frames for each
participant was included as an additional adjustment in models.

Analysis of fMRI Signals
Connectivity was estimated as the peak cross-correlation
between pairs of regional time-series, resulting in a 1088 × 1088
symmetric matrix (based on the resolution of the parcellation).
Other methods (e.g., mutual information) yielded overall similar
connectivity patterns. For each participant, one rs-fMRI run
was selected for estimating network properties, based on the
approach described in Supporting Information (S2). Estimated
network properties included mean and median connectivity,
modularity, local and global clustering coefficients, node
degree, global efficiency, eigenvector centrality, small-worldness
(Bassett and Bullmore 2017), natural connectivity, and the
largest eigenvalue of the adjacency matrix, used as a proxy
for network stability to perturbations (Restrepo et al. 2007).
The brain connectivity toolbox (Rubinov and Sporns 2010) as
well as custom codes (for network modularity, robustness,

and stability), all available in (NGNDA), were used for these
estimations.

Analyses of network properties were performed both at the
level of the global topology (the entire brain) as well as local
topology (individual brain regions/parcels assumed as the net-
work nodes). Several network measures analyzed in this study
are described in Rubinov and Sporns (2010). Local (node-specific)
clustering coefficient was calculated as the ratio of a node’s
neighbors that were neighbors themselves and global clustering
was estimated as the mean of these local coefficients. Mod-
ularity measured the degree to which the network could be
divided into nonoverlapping communities (modules). Degree
was the number of nonzero connections for each node. Global
efficiency was calculated as the average inverse shortest path
length between pairs of nodes and quantified the efficiency of
distant information transfer (Stanley et al. 2015). Eigenvector
centrality measured node importance in the network. Small-
worldness was calculated as the ratio of normalized global
clustering to normalized characteristic path length, using the
approach in Bassett and Bullmore (2006, 2017), using 20 random
graphs generated from binary adjacency matrices (Anderson
and Cohen 2013). The topological organization of the network
as a combination of highly connected node clusters (modules)
communicating via sparse long-range connections was mea-
sured by the network’s small-worldness (Watts and Strogatz
1998; Telesford et al. 2011). Natural connectivity, measuring net-
work robustness, was estimated as the average eigenvalue of the
binary adjacency matrix (Wu et al. 2009).

Measures of Physical Activity, Clinical Assessments,
and Demographic Data

Age, sex, race, ethnicity, weeks born prematurely, pubertal stage
data, height, weight, sleep duration, and screen time were col-
lected from relevant questionnaires (NDA). At the time of this
investigation, neuroimaging site information was not available.
BMI was calculated from measured height (in inches) and weight
(in pounds), by multiplying weight by 703 and dividing by height
squared. Age- and sex-specific growth curves were also used
for reference (CDC-1). Number of hours of sleep per night was
coded (by the ABCD) as 1 = 9–11 h, 2 = 8–9 h, 3 = 7–8 h, 4 = 5–
7 h, and 5 = < 5 h. Screen time included time spent watching
television, playing games, texting, and visiting social network
sites, but not time spent on school-related work. Average time
spent per weekday and weekend days was combined to obtain
total weekly screen time in minutes.

Physical activity measures, extracted from the Youth Risk
Behavior survey, included days/week being physically active for
≥60 min/day, days/week spent strengthening/toning muscles
and days/week of PE class. The Parent Sports and Activities
Involvement Questionnaire was used to calculate the total num-
ber of sports/activities a child was involved in (out of 23 activities
that included individual and group sports, e.g., running, soccer,
and ballet/dance).

Statistical Analysis

Statistical analyses were performed using the software MAT-
LAB (R2019a, Mathworks, Inc.). Figures were created using the
software MRICroGL (NITRC.org). Ordinary linear regression mod-
els assessed the associations between connectome properties
and physical activity, BMI and covariates and potential con-
founders. Across variables analyzed in this study, it is reasonable
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Figure 1. Statistical (mediation) model assessing the direct (path A) and indirect (mediated by BMI improvement; paths B and C) effects of physical activity on
connectome properties. Path D represents the full model.

to assume that nonavailable data were missing at random.
Overall, for most variables, a small number of participants were
missing data (age: 0, sex: 1 [0.02%]; race: 78 [1.31%]; ethnicity: 68
[1.14%]; BMI: 1 [0.02%]; physical activity: 6 (0.10%); family income:
437 [7.34%], number of sports: 0, sleep duration: 0, screen time:
4 [0.07%]; and weeks born prematurely: 62 [1.04%]). Pubertal
stage information was missing for a more substantial number
of participants (n = 1090 [18.30%]) but models were run with and
without this adjustment. In models excluding pubertal stage but
including demographics, BMI and/or physical activity, n = 5396
(90.61%) had complete data. Results based on these models were
compared with those obtained from the entire sample, using
imputation for missing data. Results from the 2 sets of models
were statistically identical.

Significance level was set at α = 0.05. Given a large number of
developed models, regression coefficient P-values were adjusted
for false discovery using well-established methods (Benjamini
and Hochberg 1995). All analyses were based on the model in
Figure 1, used to assess both direct effects of physical activity on
connectome properties (path A) and indirect effects through its
impact on BMI (path D). The latter’s effects were also separately
assessed (path C). Mediation analyses followed the approach in
Baron and Kenny (1986) and the Sobel test (Sobel 1982) was used
to assess the level and significance of mediation.

Models were adjusted for age, sex and accounted for
propensity weights (recommended by the ABCD consortium
to account for sampling differences between sites). Race was
modeled as a dichotomous variable (white vs., non-white).
Given the highly skewed racial distribution of the ABCD cohort,
only this representation led to consistent model convergence.
Ethnicity was modeled as a binary variable (Hispanic = 1;
non-Hispanic = 0). For family income, the ABCD ordinal scale
was used: 1 = <$5000, 2 = $5000–$11 999, 3 = $12 000–$15 999,
4 = $16 000–$24 999, 5 = $25 000–$34 999, 6 = $35 000–$49 999,
7 = $50 000–$74 999, 8 = $75 000–$99 999, 9 = $100 000–$199 999,
and 10 ≥ $200 000. Models were also adjusted for gestation age
(calculated as 40 minus the number of weeks born prematurely)
and several sets of models for pubertal stage (using the ABCD
ordinal scale: 1 = prepuberty, 2 = early puberty, 3 = mid-puberty,
4 = late puberty, and 5 = postpuberty).

Univariate ordinary linear regression models were first used
to identify independent variables significantly associated with
network properties. A forward selection approach was then used
to build multivariate models. Collinearity between independent
variables was also assessed. The order of parameter inclusion

was shuffled to minimize the final model’s dependence on it
(Hurvich and Tsai 1990; Chatfield 1995). Models with a fixed set
of parameters were also tested. The results for the primary pre-
dictor varied nonsignificantly between modeling approaches.
Each model was evaluated for overall fit using the adjusted R2

and AIC values. The scatter index (SI; Zambresky 1988), cal-
culated as the root-mean-squared error (RMSE) of each model
normalized by the mean of the corresponding observations,
was also estimated as another measure of model fit. Given the
large sample and relatively small parameter space, the model
selection steps were appropriate (Harrell 2001). Model parame-
ters reported in Tables 1 and 2 include both raw and standard-
ized regression coefficients to facilitate comparisons between
measures. Cohen’s f2 was also used to assess the effect size
of the primary predictors (physical activity, number of sports,
and BMI) in various models. Finally, in addition to using the
entire cohort to develop explanatory statistical models, an out-
of-sample approach was also used for validation. The cohort
was split into 2 sub-cohorts, with 75% of participants randomly
selected and used to develop models and the remaining 25%
used to validate them. The process was repeated 100 times. In
addition to the AIC, the coefficient of variation of the root-mean-
squared error (CV[RMSE] between predicted and measured vali-
dation data) was used as the measure of the model’s predictive
power.

Results
Multimodal data from 2925 (49.12%) males and 3029 (50.86%)
females were analyzed. This sample reflected the overall race
distribution of the ABCD cohort (which is predominantly white),
and included 3995 (67.09%) white, 1182 (31.60%) non-white, and
1150 (19.31%) Hispanic children. Median family income was
$75 000–$99 999 and n = 1772 (29.81%) of families had income
$100 000—$199 999.

Median gestation age was 40 weeks (IQR = 0; 12.86% had
gestation < 37 weeks). N = 4865 participants (81.70%) had puber-
tal stage data. On average, participants were in early puberty,
slept 8–9 h/day and spent > 1000 min/week on an electronic
device (median = 1065.00 min, IQR = 840.00). Median BMI was
17.37 kg/m2 (IQR = 4.28), with 798 children (13.40%) above the
95th BMI percentile for their age. Girls had significantly higher
BMI than boys (P = 0.03, Wald statistic = 4.57). Participants
were physically active for ≥60 min on average 3 days/week
(IQR = 3 days), attended PE class 2 days/week (IQR = 2 days),
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Table 1 Summary of statistics for the mediation model with whole-brain network properties as outcomes (paths A, C, D) or BMI (path B)

Mediation model
path

Outcome Standardized
regression
coefficient

Raw
regression
coefficient
(beta)

Standard
error (SE)

Beta confidence
intervals (CI)

P-value Wald
statistic

Path A (direct path) Model statistics for exercise as predictor of resting network properties
Efficiency 0.040 0.002 0.001 [0.001, 0. 003] 0.008 8.542
Global
clustering

0.040 0.001 <0.001 [<0.001, 0.002] 0.008 8.178

Median
connectivity

0.032 <0.001 <0.001 [<0.001, < 0.001] 0.026 5.140

Modularity −0.037 −0.002 0.001 [−0.004, −0.001] 0.010 7.359
Robustness 0.047 2.950 0.873 [1.239, 4.661] 0.002 11.421
Stability 0.048 2.171 0.630 [0.936, 3.405] 0.002 11.884

Path B Model statistics for exercise as predictor of BMI
BMI −0.028 −0.047 0.022 [−0.091, 0.003] 0.038 4.317

Path C Model statistics for BMI as predictor of resting brain network properties
Efficiency −0.052 −0.001 <0.001 [−0.002, −0.001] 0.001 13.407
Global
clustering

−0.058 −0.001 <0.001 [−0.001, < 0.000] 0.001 16.273

Median
connectivity

−0.040 −0.001 <0.001 [−0.001, < 0.000] 0.008 7.531

Modularity 0.042 0.002 0.001 [0.001, 0.003] 0.006 8.614
Robustness −0.043 −1.581 0.527 [−2.614, −0.549] 0.006 9.021
Small-
worldness

0.031 0.010 0.004 [0.001, 0.018] 0.030 4.739

Stability −0.043 −1.146 0.380 [−1.831, −0.437] 0.006 9.112
Path D (full model) Model statistics for weekly physical activity (E) and BMI (B) as predictors of resting brain network properties

Efficiency E: 0.039 E: 0.002 0.001 [<0.001, 0.003] 0.011 7.966
B: −0.051 B: −0.001 <0.001 [−0.002, −0.001] 0.001 13.049

Global
clustering

E: 0.038 E: 0.001 <0.001 [<0.001, 0.002] 0.011 7.563
B: −0.057 B: −0.001 <0.001 [−0.001, < 0.000] 0.001 15.780

Median
connectivity

E: 0.031 E: < 0.001 <0.001 [<0.001, < 0.001] 0.032 4.804
B: −0.039 B: <−0.000 <0.001 [<0.000, < 0.000] 0.009 7.189

Modularity E: −0.036 E: −0.002 0.001 [−0.004, −0.001] 0.013 6.924
B: 0.041 B: 0.001 0.001 [<0.001, 0.003] 0.007 8.407

Robustness E: 0.046 E: 2.878 0.873 [1.167, 4.588] 0.003 10.873
B: −0.042 B: −1.545 0.527 [−2.578, −0.513] 0.007 8.613

Small-
worldness

E: −0.010 E: −0.005 0.007 [−0.020, 0.009] 0.468 0.526
B: 0.031 B: 0.010 0.004 [0.001, 0.018] 0.033 4.748

Stability E: 0.047 E: 2.118 0.629 [0.884, 3.352] 0.003 11.324
B: −0.042 B: −1.119 0.380 [−1.864, −0.375] 0.007 8.684

Note: All P-values have been adjusted for FDR. Standardized beta coefficients were estimated from raw coefficients before rounding.

Table 2 Summary of statistics for models with total number of sports as the predictor and whole-brain network properties as individual
outcomes

Model statistics for total number of sports as predictor of resting brain network properties

Outcome Standardized
regression
coefficient

Raw regression
coefficient (Beta)

Standard error
(SE)

Beta confidence
intervals (CI)

P-value Wald statistic

Efficiency 0.038 0.002 0.001 [0.001, 0.003] 0.022 7.994
Global clustering 0.038 0.001 <0.001 [<0.001, 0.002] 0.022 7.895
Mean
connectivity

0.034 0.001 0.001 [<0.001, 0.002] 0.028 6.278

Robustness 0.033 2.358 0.963 [0.471, 4.245] 0.028 5.999
Stability 0.033 1.676 0.693 [0.318, 3.035] 0.028 5.850

Note: All P-values have been adjusted for FDR. Standardized beta coefficients were estimated from raw coefficients before rounding.
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3136 (52.66%) were involved in ≤ 2 sports, and 845 (14.19%) were
not involved in any sport.

Impact of Physical Activity on Whole-Brain Network
Properties

The results of models in Figure 1 are summarized in Table 1a.
The number of physically active days was positively associated
with network efficiency, global clustering, median (and mean)
connectivity, robustness, and stability but negatively associated
with modularity (path A: P < 0.01, Wald statistic > 6.00). Similar
associations were estimated for number of sports, with the
exception of modularity (Table 1b). Increased physical activity
was also significantly associated with longer sleep duration and
shorter screen time (P < 0.01, Wald statistic = 15.28, and 33.10,
respectively). Being white and from a higher income family
were positively associated with connectivity, network efficiency,
global clustering and stability (individually and in combination;
P < 0.01, Wald statistic >5.90). Being at a more advanced puber-
tal stage was negatively associated with connectivity (P ≤ 0.01,
Wald statistic ≥6.0) and positively associated with modularity
(individually and in combination with race and family income;
P < 0.02, Wald statistic > 5.20). As the brain assumes an increas-
ingly efficient topological configuration, modularity is expected
to increase with pubertal stage (Chen and Deem 2015). In addi-
tion, the adult brain at rest is overall weakly connected (with the
exception of strong connections between elements of default-
mode network), a configuration and connectivity state that are
presumably optimized throughout development. Thus, as neural
connections are pruned and only selected (and relatively sparse)
connections are strengthened, overall (brain-wide) connectivity
in the brain at rest is expected to decrease as a function of puber-
tal stage. Finally, ethnicity had no significant impact on network
properties (P ≥ 0.66). Similarly, when included in models as addi-
tional independent variables, the percent of censored frames,
although significant as a parameter (P < 0.01) did not alter
the significance of the association between network properties
and physical activity and/or BMI. All remaining independent
variables were nonsignificant across models (P ≥ 0.32).

A negative association between number of physically active
days (but not number of sports) and BMI was estimated (Path
B: P = 0.04, Wald statistic = 4.32). BMI had a significant nega-
tive effect on most network properties (Path C: P < 0.01, Wald
statistic > 9.4) except modularity and small-worldness, possibly
a pubertal stage effect (since the 2 were collinear). Finally, in the
model testing the indirect impact of physical activity through
its effect on BMI (path D), both physical activity and BMI had
opposite significant effects on most network properties, with
smaller negative effects of BMI than in path C, suggesting partial
mediation of the relationship between physical activity and con-
nectome properties through lower BMI (Table 1). Only in the case
of small-worldness, BMI, but not physical activity, was positively
associated with it (P = 0.05, Wald statistic = 3.95), possibly an
age effect since BMI is collinear with age/pubertal stage, and
small-worldness increases with neural maturation (Tomasi and
Volkow 2014; Bassett and Bullmore 2017).

In additional analyses, the direction of mediation was
reversed, in order to test 2 paths: 1) physical activity → net-
work properties (mediator) → BMI outcomes and 2) BMI
outcomes → network properties (mediator) → physical activity,
that is, mediation of the relationship between physical activity
and BMI by the brain. One set of models included both physical
activity and network properties (a separate model for each
property) as independent variables and BMI as the dependent

variable. Physical activity became marginally significant
(P = 0.05) in all models, whereas network properties remained
significant (P < 0.01), suggesting almost complete mediation.
Similar results were obtained for the second path. BMI became
marginally significant in all models (P < 0.06), whereas network
properties remained significant. This indicates almost complete
mediation of the relationship between BMI and physical activity
by the brain.

Overall, estimated effects were relatively small (effect
size ≤ 0.10) but of comparable size for physical activity, BMI,
and sports. In addition, models for median connectivity,
global clustering, and modularity had good predictive power
(CV[RMSE] < 0.20). The SI for all models was < 0.85 but for some
fit was better than others (with SI < 0.31 for modularity and
efficiency and SI ≤ 0.01 for median connectivity).

Impact of Physical Activity on Region (Node)-Specific
Network Properties

The direct and indirect effects of physical activity on network
node properties (centrality, clustering and degree) were also
assessed. Individual models were tested for each node and
property and results were adjusted for false discovery. No sig-
nificant associations were found between node centrality and
physical activity, sports involvement or BMI. Significant, spa-
tially distributed positive effects of physical activity (path A)
and even more extensive negative effects of BMI (path C) on
node clustering were estimated in bilateral areas of the ventral/
salience and dorsal attention (Fox et al. 2006), DMN (Greicius
et al. 2003), somatomotor (pre and postcentral gyri and supple-
mentary motor areas), limbic, and partially the frontoparietal
control networks. BMI was also negatively associated with node
clustering in the cerebellum and posterior visual areas. These
effects are shown in Figure 2. In the model testing the indirect
effect of physical activity on the brain through its impact on
BMI (path D), both physical activity and BMI had significant
opposite effects (i.e., increased physical activity was associated
with lower BMI) with the exception of bilateral temporoparietal
areas in which physical activity was no longer significant. This
is also reflected in smaller BMI effects on network properties
than those estimated in path C (testing the direct effect of BMI
on the brain). Similar results were obtained for node degree,
with additional positive effects of exercise in the basal ganglia
(particularly the dorsal striatum) and the thalamus (P ≤ 0.03) and
consistent negative effects of BMI in similar structures. The top
20% of effects (based on the regression coefficients) on node
degree are shown in Figure 3.

Finally, sports involvement also had distributed positive
small effects on both node clustering and degree but, similarly
to whole-brain properties, no significant effect on BMI (so the
path D model in Fig. 1 was no longer relevant). Impacted areas
partially overlapped with those positively affected by physical
activity, particularly somatomotor areas and elements of the
dorsal and ventral attention and DM networks as well as the
thalamus. An additional significant positive effect on node
degree in the cerebellum was estimated (P = 0.047). Effect sizes
for sports were overall smaller than those of physical activity.
The results for node degree are shown in Figure 4.

Discussion
In a large cohort of almost 6000 children age 9–10 years, this
first of its kind study has investigated the direct and indirect
(through BMI) effects of regular physical activity on the devel-
oping, task-independent (resting-state) functional connectome,
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Widespread Positve Direct and Indirect Effects of Physical Activity on Brain Brooks et al. 7

Figure 2. Top panels (A): Significant positive effects of physical activity (shown in orange) across the brain on node clustering. Bottom panels (B): Significant negative
effects of BMI (shown in green) across the brain. In both sets, the colorbar shows the range of the standardized regression coefficient values in respective models. Two-
and 3-dimensional views of both hemispheres are shown.

which plays a critical role in the brain’s flexibility, response to
cognitive demands and learning (Biswal et al. 1995; Greicius et al.
2003; Dosenbach et al. 2007; Chen et al. 2019). During develop-
ment, the resting connectome is vulnerable to negative/risk fac-
tors, stressors, and adverse experiences (Greenough et al. 1987;
Tierney and Nelson 2009; Di Martino et al. 2014; Stamoulis et al.
2015, 2017; Cao et al. 2017; Quinlan et al. 2018; Taylor et al.
2020), but may also significantly benefit by positive factors and
enriching experiences, including physical activity (Dawson et al.
2000; Shonkoff and Phillips 2000; Spear 2000; Grossman et al.
2003; Houston et al. 2014; Whittle et al. 2014; Kaiser 2017; Minh
et al. 2017). In adolescence, these experiences may have long-
term effects on neural circuits that continue to maturate during
this period, for example, those supporting executive control
and decision-making (Vasa et al. 2020), and may affect cogni-
tive function across the lifespan. Physical activity during this
period may improve cognitive performance across domains and

the structural and functional neural circuitry that supports it
(Raichlen et al. 2016; Herting and Chu 2017).

This study has identified extensive, spatially distributed pos-
itive effects of physical activity and sports involvement on brain-
wide and local network properties that may play a critical role
in neural information processing and cognitive performance.
These included connectivity, efficiency, robustness, and topo-
logical stability. Recent work has shown that diet and metabolic
processes (also stimulated by physical activity) may have a
significant impact on brain network stability (Coyle 2000; Muji-
ca-Parodi et al. 2020). Throughout development, the brain’s func-
tional circuitry progressively assumes an optimal configuration
that maximizes its efficiency. Distant networks are increasingly
integrated through selective strengthening of sparse long-
range connections, while maintaining local highly-connected
networks that perform segregated computations. Physical
activity was associated with increased global connectivity and
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Figure 3. Top panels (A): Top 20% significant positive effects of physical activity (shown in red/orange) across the brain on node degree. Bottom panels (B): Top 20%
significant negative effects of BMI (shown in blue) across the brain. In both sets, the colorbar shows the range of the standardized regression coefficient values in
respective models. Two- and 3-dimensional views of both hemispheres are shown.

lower ability for further network segregation, both hallmarks
of neural maturation (Fair et al. 2007). In contrast, BMI was
negatively associated with multiple whole-brain network
properties as well as physical activity, which partially modulated
these adverse effects.

When the direction of mediation was reversed and connec-
tome properties were assumed as the mediator, the indirect
effect of physical activity on BMI became marginally signifi-
cant, suggesting almost total mediation by the brain. Although
regular physical activity has ubiquitous positive effects across
organs and systems that support healthy weight, prior work
has shown that consistent physical activity may specifically
modulate metabolic and biochemical processes in the brain
that improve hemodynamic activity and support neuroplasticity
(Cotman and Berchtold 2002; Cotman and Engesser-Cesar 2002;
Sutoo and Akiyama 2003; Kramer and Erickson 2007; Camandola

and Mattson 2017; Matura et al. 2017). In turn, these modulations
may lead to changes in functional network organization and
topological configurations that facilitate cognitive flexibility and
efficient information processing but also support better control
of food intake, appetite and satiety, which may in turn result in
lower BMI (Berthoud 2007; Ahima and Antwi 2009). Prior work
has also associated changes in large-scale functional brain net-
works with eating behaviors and unhealthy weight (Broberger
2005; Park et al. 2016; Noble et al. 2019).

Similar negative BMI effects and positive effects of physical
activity and sports involvement were estimated in local
network properties (node clustering and degree). Extensive
negative effects of BMI were estimated in the sensorimotor,
frontoparietal, temporoparietal, limbic, cerebellum, and DM
networks. Node clustering and degree may reflect both the
efficiency of within-network computations (facilitated through

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab126/6275469 by H

arvard Law
 School Library user on 14 M

ay 2021



Widespread Positve Direct and Indirect Effects of Physical Activity on Brain Brooks et al. 9

Figure 4. Significant positive effects of sports involvement (number of sports) on node degree. The colorbar shows the range of the standardized regression coefficient
values. Two- and 3-dimensional views of both hemispheres are shown.

highly synchronized local neural communication) and the
presence of hubs (sparse but highly connected nodes that
are critical to multidomain processing, e.g., elements of the
DMN). Negative associations between these properties and BMI
suggested potentially impaired local computation, less con-
nected network hubs and deficits in long-range communication.
These findings have important implications for cognition and
behavior across domains and suggest that unhealthy weight
may have detrimental effects on motor function, executive
control, memory processes, attention, overall flexibility of the
brain, and emotional processing (Reinert et al. 2013; Marek and
Dosenbach 2018). Notably, deficits in these networks, including
aberrant connectivity and maturation of the DMN, have also
been associated with neurodevelopmental and neuropsychiatric
disorders (Supekar et al. 2010; Washington et al. 2014; Yerys et al.
2015).

Extensive positive effects of physical activity and sports
involvement on local network topologies, including node degree
and clustering, were also estimated (separately), including
in critical structures such as the thalamus, striatum and
cerebellum as well as premotor areas. Both had a direct
impact (instead of just indirect effects through lower BMI) on
distributed nodes, including those in the DMN, frontoparietal,
and limbic networks. Overall, physical activity also partially
modulated the negative effects of unhealthy BMI, including
in somatomotor areas which has been previously shown to
be significantly affected by adiposity (Rapuano et al. 2016). In
turn, this suggests that regular physical activity may play a
critical neuroprotective role and support neural maturation in
fundamental networks that are still developing in adolescence

(Fair et al. 2008), which support higher-level processes such
as executive control, emotional processes, and the social
brain (Mars et al. 2012). Finally, specific positive effects of
physical activity on the limbic network may have important
implications for a wide range of processes, including motor
control and learning (further supported by a positive effect of
sports involvement on the cerebellum and of physical activity on
the sensorimotor network), memory, and response to stressors
(Shonkoff and Phillips 2000; Mars et al. 2012; Catani et al. 2013).

Despite its strengths, including a large sample that may cap-
ture the connectome’s topological heterogeneity in pre-/early
adolescence, the study has some limitations. First, other factors
(e.g., environmental and/or genetic) may moderate the relation-
ship between physical activity and brain network properties
and have not been considered in this study or measured by
the ABCD. However, these likely contribute to the heterogene-
ity of analyzed networks and, despite such variability, signifi-
cant positive effects of physical activity have been consistently
identified using models with good predictive power and fit.
In addition, method dependence and the choice of fMRI data
need to be considered in connectivity studies. However, similar
spatial connectivity patterns were estimated using both a cross-
correlation and an information theoretic approach, leading to
statistically similar network property estimates. Also, assuming
that networks are weakly coordinated at rest (with the exception
of the DMN), for each brain the rs-fMRI run with the lowest
connectivity (in most cases coinciding with the run with the
lowest number of motion-censored frames) was chosen. Differ-
ences between parameter estimates from multiple rs-fMRI runs
were not estimated but are expected to be relatively small based
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on the conservative cutoff of < 10% censored frames. Further-
more, all reported effects were estimated in task-independent
networks. Nevertheless, positive and negative modulations of
the resting-state connectome topology have ubiquitous impli-
cations for cognitive function across domains (Chen et al. 2019).
Finally, in regard to assessments of physical activity, another
limitation is that all data analyzed in this study were from self
and/or parent reports and not from direct measurements of
physical activity. The ABCD study includes actigraphy data from
a subset of participants (<50% of the entire cohort of ∼ 12 000
participants and thus potentially less than half of the children
in our cohort). Here, we chose physical activity and sports ques-
tionnaires since they were available for > 99.8% of participants.
However, the impact of physical activity measured more pre-
cisely via actigraphy on brain networks and their properties is
a planned direction of this ongoing work.

This study makes a significant scientific contribution in
showing that regular physical activity in general, independently
of specific sports or PE class, may have a widespread positive
impact on brain development and the progressive topological
optimization of functional circuits, whereas a sedentary life
and unhealthy weight may have detrimental effects on these
circuits (including fundamental default mode, thalamus and
limbic networks) and their topologies and ultimately cognitive
health. These results complement earlier findings from the
ABCD and other pediatric cohorts on the impact of unhealthy
BMI on brain structure and function (Wang et al. 2001; Raji et al.
2010; Rapuano et al. 2016, 2020; Laurent et al. 2019) and cognitive
benefits of exercise (Voss et al. 2011; Wengaard et al. 2017; Peven
et al. 2019; Pindus et al. 2020).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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