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Abstract

Streaming social media provides a real-time glimpse of extreme weather impacts.
However, the volume of streaming data makes mining information a challenge
for emergency managers, policy makers, and disciplinary scientists. Here we
explore the effectiveness of data learned approaches to mine and filter informa-
tion from streaming social media data from Hurricane Irmas landfall in Florida,
USA. We use 54,383 Twitter messages (out of 784K geolocated messages) from
16,598 users from Sept. 10 - 12, 2017 to develop 4 independent models to filter
data for relevance: 1) a geospatial model based on forcing conditions at the
place and time of each tweet, 2) an image classification model for tweets that
include images, 3) a user model to predict the reliability of the tweeter, and 4) a
text model to determine if the text is related to Hurricane Irma. All four models
are independently tested, and can be combined to quickly filter and visualize
tweets based on user-defined thresholds for each submodel. We envision that

this type of filtering and visualization routine can be useful as a base model
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for data capture from noisy sources such as Twitter. The data can then be
subsequently used by policy makers, environmental managers, emergency man-
agers, and domain scientists interested in finding tweets with specific attributes
to use during different stages of the disaster (e.g., preparedness, response, and

recovery), or for detailed research.
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1. Introduction

Climate change is expected to drive increases in the intensity of tropical
cyclones [1] and increase the occurrence of blue sky flooding [2]. Despite these
hazards, coastal populations [3], and investments in the coastal built environ-
ment [4] are likely to grow. Understanding the impact of extreme storms and
climate change on coastal communities requires pervasive environmental sens-
ing. Beyond the collection of environmental data streams such as river gages,
wave buoys, and tidal stations, internet connected devices such as mobile phones
allow for the creation of real-time crowd-sourced information during extreme
events. A key area of research is understanding how to use streaming social me-
dia information during extreme events — to detect disasters, provide situation
awareness, understand the range of impacts, and guide disaster relief and rescue
efforts [e.g. 5, 6, 7, 8, 9, 10, 11].

Twitter — with approximately 600 million tweet posts every day [12] and
programmatic access to messages — has become one of the most popular social
media platforms, and a common data source for research on extreme events [e.g.
13, 14, 15]. In addition to text, a subset of messages shared across Twitter con-
tain images captured by its users (20 - 25% of messages contain images / videos
[16]). A key hurdle for studying these aspects of extreme events with Twitter
is the data are both large and considerably noisier than curated sources such as
dedicated streams of information (e.g., dedicated environmental sensors). Posts
on Twitter during disasters might also be irrelevant, or provide mis- or dis- in-

formation [e.g., 17, 18], highlighting the importance of filtering and subsetting



25

30

35

40

45

50

social media data when used during disaster events. Therefore a key step in all
work with Twitter data is to filter and subset the data stream.

Previous work has addressed filtering and subsetting Twitter data during
hazards and other extreme events. Techniques have included relying on specific
hashtags [e.g., 19], semantic filtering [20], keyword-based filtering [18], as well
as natural language processing (NLP) and text classification that use machine
learning algorithms [18, 21]. Classifiers such as support vector machine and
Naive Bayes classifiers have been used to differentiate between real-world event
messages and non-event messages [22], and to extract valuable “information
nuggets” from Twitter text messages|[23]. The tweets length and textual fea-
tures can also used to filter emergency-related tweets [23]. Tweets have been
scored against classes of event-specific words (term-classes) to aid in filtering
[18]. Previous work have filtered and subset tweets using expert-defined fea-
tures of the tweet [24]. Images have also been used to subset tweets based on
the presence/absence of visible damage [25]. Filtering can also be understood
by the extensive work on determining the relevance of tweets for a given event
see recent work and reviews [26, 27, 28]. In the context of this paper, we view
filtering as any generic process that subsets tweets, even beyond the binary class
division of relevance.

A few studies have identified the significance of adding spatial features and
external sources for a better assessment of tweets relevance for disaster events.
For example, [29] enriched their model with geographic data to identify relevant
information. Previous work has used spatio-temporal data to determine tweet
relevance [21], or linked geolocated tweets to other environmental data streams
[e.g., 30, 31].

As observed from prior work, capturing situational awareness information
from social media data involves a hierarchical filtering approach [32]. Specif-
ically, researchers/interested stakeholders filter down the data from the noisy
social media data stream to fit their specific use cases (such as, type of image
- destruction, damage, flooding; type of text - damage, donation, resource re-

quest /offer; spread of information, etc). A key component in such an approach
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is the quality of baseline data capture. Towards this our study proposes a novel
approach towards quality gating the data capture from the social media data
streams using developed threshold measures. This baseline filtering method-
ology that can be used to find relevant tweets and refining the data capture
routines. Specifically, the goal of our study is to explore a multi-modal filtering
approach which can be used to provide situational awareness from social media
data during disaster events. We develop an initial prototype using tweets from
Florida, USA during Hurricane Irma. The filtering routine allows users to adjust
four separate models to filter Twitter messages: a geospatial model, an image
model, a user model, and a text model. All four models are tested separately,
and can be operated independently or in tandem. This is a design feature as we
envision the sorting and filtering thresholds will be different for different users,
for different events, and for different locations. We work through each model

and discuss the combined model in the following sections.

2. Methodology

2.1. Hurricane Irma

Hurricane Irma (Figure 1) was the first category 5 hurricane in the 2017
Atlantic hurricane season [33]. Hurricane Irma formed on August 31st, 2017,
impacting many islands of the Caribbean, and finally dissipating over the con-
tinental United States [33]. Here we focus on the Twitter record of Irma specif-
ically in Florida, USA. Irma made landfall in Florida Keys on 09/10/2017 as a
category 4 hurricane and dissipated shortly after 09/13/2017. 134 fatalities were
recorded as a result of the hurricane, with an estimated loss of $64.76 billion
[34], making it one of the costliest hurricanes in the history of the United States
[35].

2.2. Data collection and preprocessing
2.2.1. Twitter data
We used the Twitter Application Programming Interface (API) to collect

tweets located in the geospatial bounding box that captured the state boundary
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Figure 1: The path of Hurricane Irma in September 2017 (orange line), the extent of tropical
storm force winds (pink outline), and the location for all 784K geolocated tweets used as the

basis for this study (black dots).

of Florida. Tweets were recorded for the period of 09/01/2017 to 10/10/2017,
and resulted in the collection of 784K tweets from 96K users during the time
period. Our work is focused on 72 hours (09/10/2017 - 09/12/2017) when
Hurricane Irma was near or over Florida. Therefore we subset the data and use
54,383 tweets from 16,598 users during this 72hr window. Figure 1 highlights
the locations of the Twitter messages, along with the path of Hurricane Irma,
and the extent of tropical Storm force winds.

Each tweet from the Twitter API has 31 distinct metadata attributes [36]
that can conceptually be grouped into three categories: 1) Spatio-temporal
(time of creation and geolocation [latitude, longitude]), 2) Tweet content (tweet
text, weblinks, hashtags, and images), and 3) Tweet source (account age, friends

count, followers count, statuses count, and if verified). Geolocated tweets can
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have one of two types of location data Places or Coordinates. Coordinates are
exact locations with latitude and longitude attributes, while Places are locations
within a Bounding Box or a Polygon designating a geospatial area in which the
tweet is recorded [37]. For tweets with Places attributes, we transform the area
representation to a single point by selecting the centroid of the Polygon as the
location represented by the tweet. Within our study 42.58% (23,157) of the
tweets had Coordinate locations and 57.42% (31,226) had Place locations.

2.2.2. Geospatial data

We collected meteorological sensor data, wind speed (in mph) and precip-
itation (in inches), for each county in Florida for the 72 hours (09/10/2017
- 09/12/2017). The hourly wind speeds was collected from the NOAA Na-
tional Centers for Environmental Information (NCEI). Hourly precipitation val-
ues were obtained from the United States Geological Surveys Geo Data Portal
(USGS GDP) of the United States Stage IV Quantitative Precipitation Archive.
Precipitation values from the closest weather station were used due to difficulty
in obtaining reliable data for all weather stations. In addition to meteorological
forcing, we collected data consisted of location of the hurricanes eye, category
of the hurricane, pressure and wind speed (NOAA National Hurricane Center).

This data were discretized into hourly windows for the 72 hours.

2.2.83. Data pre-processing

We aligned the 72hrs of Twitter data and the corresponding 72hrs of mete-
orological forcing data. Wind and precipitation values at the geolocation of a
tweet was calculated using Inverse Distance Weighting (IDW). IDW is an inter-
polation method that calculates a value at a certain point using values of other

known points:
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where, W, is the wind speed to be interpolated at point p, W; is the wind
speed at point 7, D; is the distance between point p and i, and k is a power
function that reduces the effect of distant points as it goes up. IDW has been
widely used to interpolate climatic data [38]. The method has demonstrated
accurate results when compared to other interpolation methods especially in
regions characterized by strong local variations [39]. IDW, for example, as-
sumes that any measurement taken at a fixed location (e.g., weather station)
has local influence on surrounding area, and the influence decreases with in-
creasing distance. Within our study we chose IDW as our interpolation method
as meteorological factors in a hurricane are highly influenced by local variations.

Furthermore, each tweet was also annotated with the corresponding tempo-
ral hurricane conditions data. Specifically, for each hourly time window, a tweet
was associated with its distance from the eye of the hurricane and its conditions

(i.e., pressure, max wind speed) during that window.

2.8. Multimodal scoring of tweet relevance

Our goal is to develop a single model for tweet relevance based on four
sub models 1) the relevance of the tweet based on geospatial attributes (i.e.,
the Tweets location relative to the forcing conditions of the hurricane, 2) the
relevance of tweet images (when media is included in the tweet), 3) a score
for the reliability of the user (i.e., network attributes to predict if a user is
verified by Twitter), and 4) the relevance of the tweet text. The methods used
to construct of each of these models, and the results of models (submodels and

the combined model) in are discussed in Section 3.

2.8.1. Geospatial model

Our goal in designing a geospatial relevance model was to search for thresh-
olds in forcing conditions where tweets were likely to be related to Hurricane
Irma, as opposed to background social media discussions. Specifically, we posit
that the messages which are in close geospatial and temporal proximity to the

disaster event will have more relevant situational awareness information than



155

160

165

170

175

180

those which are not. Furthermore, such an approach can be used in real-time
during the occurrence of an event where meteorological data can provide key
information about disaster’s impact at different locations.

There are many meteorological conditions that can be used as proxies for
extreme disaster conditions. We focus here on searching for modeling functions
relating wind speed (w), precipitation (p), and distance from hurricane eye (d).
We acknowledge that other factors could be used in addition to these three
attributes. For example, rainfall during a given interval could be quantified in
several ways, such as mean rainfall rate, max rainfall rate, total rainfall in a
given interval. Similarly Wind metrics could include mean wind speed, max
wind speed, metrics based on wind gusts, etc.. For locations nearby the coast,
metrics could include tide elevations, or storm surge elevations, and locations
near streams could include stage and discharge data. Ultimately we chose Wind
speed, precipitation and distance from the hurricane eye as these factors are
available everywhere (vs metrics that are only applicable along streams and

rivers) and because they are commonly available and collected by even basic

: : : : : o wind * rain rain
meteorological stations. Nine different functions, 1) BRI 2) o
3) wind ) wind * rain ) rain ) wind ) wind_x rain ) rain

distance’ Vdistance ’ Vdistance’ Vdistance’ \3/distance ’ g/distance ’
an Vaistarcs: oM inin, e geospatial attributes were compared to identify
d 9) uind b th tial attribut d to identif
istance

the best suited model towards creating a relevance score for the tweets. In each
of the models, wind speed and precipitation acted as numerators (individually
or combined), where as distance was used as a denominator this was a heuristic
method, as tweets are likely more relevant if forcing conditions are more severe
(Higher wind, more precipitation, closer distance to hurricane)

Approximately 19,000 tweets from the Irma dataset were hand labeled by
human coders as Irma related or non-Irma related based on the tweet content.
The performance of each geospatial function was evaluated by comparing the
ratio of Irma related tweets to total number of tweets during each time win-
dow. The ratios obtained from each formula was normalised using three differ-
ent approaches - Min-max scaling, Log (log10()), and Box-Cox transformations.

Ranking of Shapiro-Wilk (SW) test statistics was used to assess normality. In
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addition, multiple observed statistics of mean, standard deviations, and per-
centage of values within 1, 2, and 3 standard deviations from the mean were
calculated to evaluate normality. The goal of this normalization procedure was
to establish a comparative scoring range for each of the models. The scores en-
able development of a combined overall model for filtering tweets relevant to the
hurricane (as described in Section 2.4. Apart from the ratio, we also evaluated
the Fl-score (F1 = 21%7%) for the model, where precision = %,

recall = TPZ%, and TP, FP, TN, and FN represent the number of true

positives, false positives, true negatives, and false negatives, respectively.

2.3.2. Image model

Supervised machine learning models were used to develop automated image
classification of images in the Twitter dataset. The goal of this model is two
fold: 1) to develop, a binary classifier capable of distinguishing hurricane-related
images from the non-related ones, and 2) to then develop a multi-label annotator
capable of classifying the hurricane-related images into one or more of three
incident categories — 1) Flood, 2) Wind, and 3) Destruction.

A key hurdle in the approach was the lack of available labeled training data
for supervised classification. We developed a web platform for image labeling
for annotation by human coders. The platform took unlabeled images, and dis-
played them on a browser for human coders to annotate. Within the browser,
the coder was asked the question of — Does this image have any of the fol-
lowing — 1) Flooding, 2) Windy, and 3) Destruction? An image is considered
“Flooding” if there is water accumulation in an area of the image. An image
is considered “Windy” if there are visual elements in the picture which show
tree branches are moving in a direction or some objects that are flying or heavy
rain visible in the image. An image is considered to have “Destruction” if there
is damage to property, vehicles, roads, or permanent structures. An image can
be in one or more of the previous classes. If an image has one of the codified
classes, it is labelled as Irma related and if it does not have any of them the

image is labelled as not related.
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For the dataset, approximately 7,000 images were labeled by 3 human coders/raters

where the data was divided equally between them. Following codification result-
ing dataset had the following distribution — Related: 817 / Not-Related: 6081
images, and Wind: 120 images; Flooding: 266 images; Destruction: 571 images.
We also evaluated the inter-rater reliability using Light’s Kappa [40] for 100
sampled images (with balanced distribution of related and not-related classes)
that were labeled by all three coders. Agreement between all three coders for
related versus not-related was at 0.77, and across tags Flooding - 0.88; Windy
0.27; and Destruction 0.78. This shows significant agreement among the coders
on the labeling [41] other than the Windy tag (poor/chance agreement).

This annotated dataset was used to train deep learning models based on con-
volutional neural network (CNN) architectures. Convolutional networks have
been widely used in large-scale image and video recognition [42]. CNN archi-
tecture consists of an input layer, an output layer, and several hidden layers in
between. A hidden layer can be a convolutional layer, a pooling layer (e.g. max,
min, or average), a fully connected layer, a normalization layer, or a concatena-
tion layer. Within our approach, we evaluated three modern CNN architectures
— 1)VGGNet, 2)ResNet, and 3)Inception-v3, and compared the performance
of each model to its counterparts.

In VGGNet [42], the image is passed through a stack of CNN layers, where
filters with a very small receptive field is used. Spatial pooling is done by
five max-pooling layers, which is followed by convolution layers. The limita-
tion of VGGNet is its large number of parameters, which makes it challenging
to handle. Residual Neural Network (ResNet) [43] was developed with fewer
filters and in turn has lower complexity than VGGNet. While the baseline ar-
chitecture of ResNet was mainly inspired by VGGNet, a shortcut connection
was added to each pair of filters in the model. In comparison, Inception-v3
[44] uses convolutional and pooling layers which are concatenated to create a
time/memory efficient architecture. After the last concatenation, a dropout
layer is used to drop some features to prevent overfitting before proceeding with

final result. The architecture is quite versatile, where it can be used with both

10
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low-resolution images and high-resolution images, and can distinguish any size
of a pattern, from a small detail to the whole image. This makes it useful in our
application as the quality and type of image can vary widely due to disparate
smart devices used by the Twitter population. The pre-trained Inception-V3 is
trained on the Imagenet [45] dataset which consists of hundreds of thousands
of images in over one thousand categories. The weights of this model are used
as a starting point for training and fine tuned using our sample images. The
approach takes advantage of transfer learning [46], where the classifier is able to
initially learn features of physical objects in a wide variety of scenarios and then
trained on specific observations within our data. This enables a more accurate
and generalizable model.

Data augmentation methods were used to expand the number of training
samples and therefore improve model accuracy. For example, additional training
images are generated by rotating and scaling of the original images. This was
done to balance the number of images of Irma related to the un-related ones.
The resulting dataset consisted of approximately 6,000 images in each class
for the binary classifier, and approximately 2,000 images in each class for the
annotator model. The models were trained and testing using a 70-30 split on
the dataset. For each model, performance scores (precision, recall, and F1) was
recorded. Probability scores for each tweet image were then recorded for every
class, which was further normalized using log-transform and re-scaled using

min-max scaling to be used in the overall model.

2.3.8. User model

It is essential to quantify the authenticity of user accounts which have posted
messages and images during a disaster event. For the purpose, our goal was to
develop a scoring model which can provide continuous probabilistic measures of
account authenticity.

Manually annotating user reliability in a large dataset such as Twitter is
not practical. As we did not have a labeled dataset, our starting point was to

consider the user “Verified” attribute within the tweets. The “Verified” attribute

11
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is annotated to user accounts which Twitter defines to be of public interest [47].
Within our dataset we had 94,445 non-verified users and 1,692 verified users.
Since Twitters methodology for finding verified accounts is not public, we aim
to develop a proxy automated model. The aim here is to create a model which
can help identify users who are also likely to be accounts of public interest
and authentic, but remain unverified. This can be used in conjunction with
the Twitter “Verified” accounts to provide a comprehensive source of authentic
accounts during a disaster event. Specifically, our approach provides the adjust
the authenticity thresholds based on the continuous probabilistic scores of the
model, which enables collection information from accounts which have not yet
been verified by Twitter but have similar properties to that of a “Verified”
account.

The automated model was developed based on supervised machine learning.
Specifically, machine learning models [48] were developed for binary classifi-
cation machine to predict the label user “Verified” (true/false) based on the
features of tweets content (weblinks, hashtags) and its creator (account age,
friends count, followers count, statuses count). Random Forest (RF) [49], Gra-
dient Boosted (GB) [50], and Logistic Regression (LR) [51] classifiers were used
to train and test the model.

RF is an ensemble model which consists of multiple decision trees trained
on the data and their voting to determine the label class of an observation
based on the features. A decision tree has a set of rules, when evaluated on
an input, it returns a prediction of a class or a value. RF also returns the
ratios of votes for each class it is trained on. A Gradient Boosted (GB) is also
an ensemble model which builds decision trees leveraging gradient descent to
minimize information loss. Similar to RF, GB also uses weighted majority vote
of all of the decision trees for classification. In comparison, Logistic Regression
(LR) is a non-parametric model which tries to find the best linear model to
describe the relationship between independent variables and a binary outcome
for classification.

The output of each of the trained binary models is a classifier capable of

12
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predicting if a user can be verified or not. The performance of the resulting
model was evaluated using a 10-fold cross validation [52], with a 70-30 train
test split used in each fold. Furthermore, grid search [53] was used on the best
performing model for hyper-parameter optimization. Grid search takes in a
set of values for each hyperparameter (e.g. number of trees in a forest, max
depth of a tree, sample splits, max number of leaf nodes, etc.), folds number,
and conducts a search using each possible combination of hyperparameters by
evaluating them on a scoring metric such as Fl-score. The final output of this
model is a min-maxed log-transformed value of the probability scores. This was
done to reduce the skewness in score distribution needed for the overall model

(described later).

2.8.4. Text model

The goal of the text model was to delineate tweets with Irma related text
from those addressing other topics. While generic search term such as the
“Hurricane Irma” can provide a starting point, prior research [54, 55, 56] in
the domain has shown that content organically develops to other words. An
automated system trained on a large corpus to recognize context may improve
the results, but this suffers from two significant pitfalls. First, training a learner
on large bodies of text is costly from the perspective of computational overhead
[67]. Second, the dynamic nature of discussions during a disaster, especially in
a format as compact as Twitter, can alter the most likely interpretation of a
words meaning, resulting in false positives in the captured tweets [58].

In order to address the issues we developed a dynamic word embedding model
which utilizes online learning to update its learned context. Specifically, we use
a neural network based word embedding architecture - Word2Vec [59, 60], which
captures the semantic and syntactic relationships between the words present in
tweets corpora. In the Word2Vec module, each word is evaluated based upon
its placement among other words within a tweet. This target word, combined
with its neighboring words before and after its occurrence in a given tweet, is

then given to a neural network whose hidden layer weights correspond with
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the vector representing the target word. Once the vectors for each word are
generated, the vectors can be compared based upon their cosine similarity. As
two words get closer in similarity, the vectors representing those words will
become closer within vector space; the angle internal to the vector will get
smaller; and the cosine of this angle will get closer to, but not exceed, 1. As
a result, the similarity in context between a word and its neighbors in vector
space can be compared numerically by looking at the cosine of the internal angle
formed by two word vectors [61].

Within our approach, tweets were parsed and grouped into 24-hour segments,
with primary testing done on the time period immediately before and after the
initial landfall. Prior to training the model, tweets were first cleaned to elimi-
nate punctuation, numbers, and extraneous/stop words. Each tweet temporally
isolated and parsed into token words, to create input vectors for training and
testing of Word2Vec module. Four different formulas - 1) Cosine Similarity of

Tweet Vector Sum (CSTVS) 1 — %, 2) Dot Product of Search Term
« i=1Ti

Vector and Tweet Vector Sum (DP) |« x |3 =] % cosf, 3) Mean Cosine
i=1
Similarity (MCS) £ 3" cos(67), 4) Sum of Cosine Similarity over Square Root
i=1

of Token Count (SCSSC) ﬁ Zﬁ:l cos(07i), were employed to score a tweet based
upon its component word vectors. CSTVS is a programmatic implementation of
the cosine distance formula [62] allows an efficient calculation of cosine distance.
Cosine Similarity can be calculated by subtracting this value from 1. DP treats
the sum of the vectors in a tweet as a vector itself (Zle 7;), and calculating
the dot product of this interpreted vector and the vector for the search term
() returns a value that is proportional to the cosine similarity. MCS is the
mean cosine similarity of the search term to all terms in a tweet, where n is the
number of terms in the tweet. SCSSC is similar in function to the MCS, where
it reduces the impact of a shorter tweet by dividing by the square root of the
count of tokens in a tweet (n). All formulas return a scalar score for a tweet -
search term similarity match.

In order to evaluate the model, the codified data set of 19,000 tweets were

14
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used. The codification was done by a single human coder and a sampled set of
tweets (100 with balanced distribution) was verified by two additional coders
to access the inter-rater reliability. Tweets were labelled to be Irma related if
matched the following criterion — 1) Explicitly contains references to “Irma” or
“Hurricane”; 2) Contains current meteorological data, such as wind speed, rain-
fall levels, etc.; 3) Refers to weather events such as storm, flood(ing) and rising
water, rainfall, tornado, etc.; 4) Describes the aftermath of extreme weather:
trees down, power out, damage to buildings or construction, etc.; 5) contains
references to emotional states exacerbated by the weather: worrying about shel-
ter, concerns for safety, pleas for help, etc.; 6) Lists availability or absence of
necessities: shelter, water, food, power, etc. A message was labelled not re-
lated if it met following criterion — 1) mentioning a location absent any of the
above content; 2) Containing an attached picture that may be Irma related, but
no additional text; 3) Fxpressing emotions about the state of an event, but its
connection to weather is ambiguous, i.e. a sporting event canceled, but no ex-
planation as to why; 4) Expressing emotions about a persons condition, but its
connection to weather is ambiguous: for ex: “I hope @abc123 gets better soon!”.
The resulting dataset had 8,296 tweets related to the Irma and 10,792 tweets not
related. The inter-rater reliability of the codified messages using Light’s Kappa
metric was at .69, suggesting significant agreement between coders [40, 41].
This dataset was then used to evaluate the aforementioned formulas for
different thresholds of the scores by analyzing the ratio of correctly classified
tweets by the model. Hyper-parameters of the Word2Vec model were also tuned
using the labeled tweets. The parameters selected for testing were context word
window sizes from 1 to 10 words on either side of the target word; hidden layer
dimensionality in 50D increments from 50D to 500D; minimum word occurrence
from 0 to 9; negative sampling from 0 to 9 words. The cross product of the values
contained in these ranges were used as the testing set of tuples for the training
operations. For each set of parameters, the NN was trained through varying
epochs, and the resultant word embeddings used in conjunction with the four

scalar formulas to calculate scores for each tweet. The scores for each iteration
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the thresholds of the scores in relation to the human-coded tweets.

2.4. QOwverall model
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Figure 2: Overall information flow model. The Metadata Extraction stage develops variables

from the raw Twitter data, Filtering stage utilizes the developed 1) Geospatial, 2) User, 3)
Image, and 4) Text analysis modules to score tweets, and the Visualization stage is used to

observe the at location posted image along with Google Street View

Following the creation of individual models, we combined the results of each

into a single overall model (Figure 2) which consists of three distinct stages - 1)

16
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Metadata extraction, 2) Filtering, and 3) Visualization of filtered tweets. For
the first stage, the input is a tweet as a data-point. The metadata extraction
stage mines the relevant attributes (image, geolocation, user, text) needed for
the individual models of 1) Geospatial, 2) User, 3) Image, and 4) Text analysis.

The results of the individual models are then combined in the second stage
of filtering, where the normalized scores (decision score ranging from 0-100) for
each models are combined at different thresholds to filter the relevant Twit-
ter messages for Hurricane Irma. Any tweets without images are assigned an
imgScore = 0, this allows users to view messages which contain images by set-
ting the threshold to be imgScore > 0. The flexibility of the approach is in
its ability to select different thresholds for respective models. This allows for a
more generalizable model where a user can choose different set of thresholds for
disparate disaster events. A logical AN D operation is used to obtain messages
which pass all of the thresholds for each of the individual models. Specifically,
a datapoint can only pass the filtering stage if all of its individual model scores
are greater than or equal to the thresholds set.

The filtered data are then stored in a database (Scored Tweets), where each
datapoint can then be viewed on a visualization platform. The visualization
platform extracts the location information from each datapoint (Geolocation),
which is then cross-referenced with Google Maps API to provide three attributes
— 1) Google Street View [63, 64], 2) Physical address, and 3) A 2D top down
view of the map at the location. These attributes (Street View - Map) along
with the Tweet Data (text of the tweet, date-time, user, image, etc) and Score
& Annotation information (P(Related/Not — Related) and P(Tag), where P is
the probability and T'ag € {Flooding, Windy, Destruction}) is then displayed
on a web viewer. This presents an easy to use interface to view and visualize

the messages for situational awareness.
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Figure 3: Precipitation and wind speed in relation to the distance from Hurricane Irmas eye.

3. Results

3.1. Geospatial

Preliminary exploration of the sensor readings for precipitation and wind
speed with relative distance from the eye of the hurricane are shown in Figure 4.
Precipitation decreases exponentially farther away from the eye of the hurricane,
measuring 5 - 20 inches. Median wind speeds have their peak around 300 miles
from the eye of the hurricane.

Nine different geospatial models were developed and compared for their per-
formance to filter Irma related tweets. Specifically, for each model the results
calculated ratio of Irma related tweets, i.e. number of Irma related tweets / total
number of tweets, at different thresholds between 0 and 1 (all values were min-
maxed for normalization). Irma related tweets were identified by codification
of 19,000 messages by human coder (annotation criteria described in Section
2.3.4). Figure 3, compares the cumulative distribution function (CDF) plots
between the each of the functions within a subplot. The plots (a, b, ¢) further
compare the results between - a. Min-Max Normalization, b. Log (log;,()), and
¢. Box-Cox (7())) transformation scores.

As observed, the results of the Log and Box-Cox transformations show a
wider distribution of the ratio in comparison to the Min-Max normalized val-

ues, across the different thresholds. The results are also confirmed by the
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Figure 4: Cumulative Distribution Function (CDF) for Min-Max Normalization, Log, and
Box-Cox transformed geospatial scores for the nine models. The common legend of all three

figures is shown in Figure c.

Shapiro-Wilks test (Table 2) where the Log and Box-Cox transformed mod-
els have higher scores, suggesting a more normal distribution of the results

than the non-transformed ones. Based on the test the top five functions identi-

wind )7 ,y(wind * rain wind_* rain)7 ,y(wind * rain)’ and

fied were - (,7( Vdistance distance )’ lOglO( distance Vdistance

loglo(%). Each of the models were in very close proximity to the scores

observed in the test.
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Table 1: Shapiro-Wilk statistics value for all the models . Top 5 values highlighted.

Normalization method

Model Hhi)i((+mn(j(n)()() lOglo() ’Y()

wind x rain 0.07 0.99 | 0.99

distance

rain 0.06 0.92 0.93

distance

wind 0.13 0.95 0.97

distance

wind * rain
Vdisioree 0.53 0.98 0.98

\/% 0.51 0.88 0.89

ind
\/% 0.88 0.88 0.98

v et 0.65 0.98 | 0.98

Faistarcs 0.65 0.85 0.86

% 0.96 0.85 0.99

Additional analysis was conducted to observe the statistical properties of
the top five models. Figure 5 shows the CDF and F1-Scores for each of these

functions. Table 2, show the general statistical properties. Out of the five,

wind * rain

lOglo( Vdistance
the closest to 0.5.

) was chosen as a final model function, based on its mean being

8.2. Image classification

The performance of various image classifiers are shown in Table 3. In the first
stage of classification, which uses a binary classifier distinguish hurricane and
non-hurricane related images, the Tuned Inception V3 architecture performed
the best with an overall F1-score of 0.962. Figure 6, shows the comparative AU-
ROC curves for the different models. Between the classes, the Tuned Inception
V3 model also performed well with an Fl-score of 0.959 for class 1 (hurricane
related) and 0.965 for class 0 (non-hurricane related) images.

The hurricane related images were then fed through a second round of clas-
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Figure 5: Cumulative Distribution Function (CDF) and F1-Scores for the top five geospatial

models.
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Table 2: General data statistics for top 5 models. loglo(%) was selected as the

normalization model for geospatial analysis as its distribution mean was closest to 0.5

Data Statistics

Model Shapiro-Wilks Standard Mean | % of Data within
Deviation (o) 7 -1<0s<1
wind
7(7m) 0.99 0.12 0.28 0.66
wind * rain
y(ind x rain) 0.99 0.14 0.38 0.65
logyo(ind + rain) 0.99 0.14 0.39 0.65
wind * rain
7(7\/% ) 0.98 0.16 0.43 0.64
logyo(2ind * rain 0.98 0.16 0.46 0.64
910( Vdistance
1.0 - =
0.8
T o6{
= o
= 0.4 /,/
" wwe VGGNet, AUROC = 0.96
] v ResNet, AU-ROC =0.96
0. v = Inception-V3, AU-ROC = 0.96
,/, o Tuned
o Inception-V3, AU-ROC = 0.99
0.0+ : : : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6: Area Under - Receiver Operating Characteristics (AU-ROC) Curves for V3, VGG
net, ResNet architecture and Tuned Inception V3 models for binary classification of images

(hurricane related versus non-hurricane related).

sification trained on multi-label annotation of - 1) flood, 2) wind, and 3) de-
struction. Table 3 also compares the results of the analysis, where the Tuned

Inception V3 architecture outperformed the other models, with an average F1-
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Table 3: Performance comparison of deep-learning models (Inception-V3, VGGNet, ResNet,

and Tuned Inception-V3) for binary classification and multi-label annotation.

Performance Measures

Model ‘ Binary Classifier Multi-Label Annotator ‘
‘ Precision Recall | F1-Score | Precision | Recall | F1-Score
VGGNet 0.88 0.87 0.88 0.70 0.60 0.64
ResNet 0.88 0.89 0.89 0.68 0.61 0.64
Inception-V3 0.89 0.88 0.88 0.75 0.72 0.73
Tuned
0.96 0.95 0.95 0.90 0.92 0.91
Inception-V3
1.0 ;},J'w”- N _,...,‘.,...A,.,,,,..‘.4_.,..\.........4.._....,n.,.;,,
é 0.4—" e
0.2 /’// e (Class 'Rain’, AU-ROC = 0.96
Class 'Wind’, AU-ROC = 0.98
/’/ = (lass 'Destruction’, AU-ROC = 0.97
U'UUAU 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7: Area Under - Receiver Operating Characteristics (AU-ROC) Curves for Tuned
Inception V3 model for multi-label annotation for images - 1) ’Flood’, 2) "Wind’, and 3)

’Destruction’.

a0 score of 0.896. Within the classes, the F1l-scores were well distributed with class
1) as 0.821, 2) as 0.888, and 3) 0.941. Figure 7 shows the AU-ROC curves for

the different annotations performed on the images by the Tuned Inception V3
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architecture.

Analyzing the cutoff thresholds of the probability scores for the Tuned In-

ception V3 model, shows a distribution with a mean of 0.63, a median of 0.75,

and a standard deviation of 35.07. The values show a wide distribution of prob-

ability scores, which is useful in having a wider range in the cutoff thresholds

used for filtering the images.

3.3. User
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Figure 8: AU-ROC Curves for Random Forest, Gradient Boosted, and Logistic Regression

Classifiers in predicting Verified users.

The Fl-score of the Random Forest (RF), Gradient Boosted (GB), and Lo-

gistic Regression (LR) models of the models trained on predicting user verifi-

cation were recorded at 0.97, 0.92, and 0.88 respectively. Figure 8 shows the

comparative AU-ROC scores of the different models, where the RF classifier is

able to outperform the rest of the models. The best performing RF model was

developed by using a grid search approach, where multiple model parameters

(number of estimators, depth, leaf splits, etc.) were evaluated. The resulting

model had a precision, recall, and AU-ROC were observed to be 0.96, 0.98, and

0.99 respectively.
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The classifier was balanced in its prediction accuracy in both verified (class
1) versus non-verified (class 0) users (Figure 10). The output probability values
of the binary model were further min-maxed to a threshold score between 0 and

100. The resulting normal distribution had a mean of 50.56, a median of 66.26,

and a standard deviation of 39.69.

3.4. Text

The results of the text analysis module were based on the binary categoriza-
tion of the tweets codified as irma related (class 0) or non irma related (class 1).
Evaluation of the four different resulted in the Fl-scores of .6553 - MCS, .7824
- DP, .7049 - CSTVS, and .7347 - SCSSC. We observe the dot product between
search term vector and tweet vector sum (DP) gives us the best result. Figure 9

shows the AU-ROC curves comparing the different formula performance in the

analysis.

1.0 g
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®,
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n
n

True Positive Rate
e
.
..

02 i
o DP, AU-ROC = 0.8342

4 MCS, AU-ROC = 0.7326
; = SCSSC, AU-ROC = 0.8327
- CSTVS, AU-ROC = 0.7987
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Figure 9: AU-ROC Curves for text — 1) Cosine Similarity of Tweet Vector Sum (CSTVS) , 2)
Dot Product of Search Term Vector and Tweet Vector Sum (DP) , 3) Mean Cosine Similarity
(MCS), 4) Sum of Cosine Similarity over Square Root of Token Count (SCSSC).

Each model was further evaluated to identify the best set of parameters.

Within the analysis we found the DP formula was still the best performing with
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a word window size of 1, hidden layer dimensionality of 150, a minimum word
count of 5, a negative sampling value of 1, and training the Word2Vec model
through 25 epochs. The resulting normal distribution had a mean of 24.73, a
median of 21.64, and a standard deviation of 14.05.

4. Discussion

We address each individual model separately before discussing the final com-

bined model and providing limitations/ future directions for this work.

4.1. Individual models

4.1.1. Geospatial

The geospatial models developed in the study provide a measure of rele-
vance to a tweet by including the forcing sensor data (wind speed, precipitation,
and distance from the eye of the hurricane). The best performing function of
loglo(%) combines the values into a single normalized score which can
be used to weight a geographic/sensor relevancy factor for any tweet. More
specifically, the function helps us identify Twitter messages at locations which
are in close proximity to the hurricane forcing and have observed increased
amount of precipitation and wind speed. As seen in the results, the chosen
loglo(%) was the closest to a normally distributed function. This al-
lows for a greater granularity on threshold cutoff points in comparison to other
functions, leading to a fine-grained control over filtering based on the geographic
relevance of the tweets. The statistical properties of the function also enables
analysis of confidence intervals which can be used to ascertain the reliability of a
message within the context of sensor data. In other words, tweets with anoma-
lous sensor readings can be easily identified, leading to more reliable mining of
messages related to the disaster event.

We envision that filtering tweets using their geospatial information relative

to storm position and also environmental factors can help isolate tweets from

heavily impacted locations. By examining locations close to the storm, with high
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wind gusts, or heavy precipitation allows users to quickly examine locations that

might be expected to show the most severe imapcts from storm events.

4.1.2. Image

Comparing the performance of the CNN architectures (Inception V3, VGG,
ResNet, and Tuned Inception V3) for binary classification (hurricane and non-
hurricane related), we observe that the Tuned Inception V3 model (Fl-score
0.95) has almost a 6-7% accuracy gain over others. In comparison to the VGG
and ResNet architectures, the Tuned Inception V3 larger number of parameters
which can be trained to observe the nuances between the images. While the base
Inception V3 classifier contains the same number of parameters, re-tuning the
weights to our training sample of images improved its accuracy considerably for
the binary classification. This can be attributed to the pre-training and transfer
learning of the model, where it already had prior weights based on classification
of physical objects, and our image data tuned it further for disambiguating
physical and non-physical scenes.

We do observe a slight performance decrease (F1-score 0.91) of the architec-
ture trained on the multi-label annotation of the images. This can be attributed
to the limited number of training samples that were available to the classifier.
The complexity of the images in the samples further degrades the performance,
for example, images of lakes and sea water are not much different from images
of flooding.

Prior research in the area of automating image analysis (using machine learn-
ing) from social media has primarily focused on quantifying the level of damage
in disaster situations [65, 66, 67]. Our approach uses a dual stage model, where
the first stage is responsible for increasing the quality of images by filtering
out the non-relevant / non-physical images. The output is then fed into the
second stage for categorization into different groups based on situational con-
ditions (flooding, wind, and destruction). While prior studies have looked at
disambiguating fake/altered images [68, 69], they are based on analyzing the

content of the tweet along with user reliability measures for training machine
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learning models. Within our approach we only utilize the image features for
the training our models. The output is image scores are based on normalized
probability values, which can be used for threshold cutoffs, where setting a high
threshold will only mine the most hurricane related images. The second stage
then annotates the images for further filtering of images based on the needs of
the domain.Filtering images permits users to quickly focus on a small subset
of visual information that is presumed to be most valuable for storm impact
assessment, compared to needing to scroll through many images to find useful

information.

4.1.8. User

Prior studies [70, 71, 72, 73] focused on identifying incorrect/fake/altered
information in social media have established the source of information (social
media user) as a key component. A large proportion of the studies [74, 75, 76, 77]
have been based on developing machine learning approaches towards detection
of bots or fake user accounts [78] on social media. For example, [79] identify the
credibility of the user as an important element in mining good quality situational
awareness information from social media. Within our approach, we leverage
prior work done in the field by identifying the user features of account age,
status count, number of followers, number of friends, existence of url links,
number of hashtags, existence of images, retweets, geolocation, and message
frequency in training our machine learning models.

Comparing the results between the parametric (Logistic Regression) and the
non-parametric ensemble models (Random Forest and Gradient Boosting), we
observe the ensemble models are able to outperform by a margin of 4-7%. The
developed Random Forest model has a very high accuracy (Fl-score 0.97, AU-
ROC 0.99) in disambiguating between verified and non-verified users. While
the ratio of the number of verified versus non-verified users was imbalanced
(approximately 1:100) in our data, the developed RF model is able to accurately
distinguish between the classes as shown by the confusion matrix (Figure 8).

Further analyzing the RF model, we calculated the average decrease in Gini
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impurity /information gain (entropy) among all estimators to observe the im-
portance of features. Specifically, as estimators are developed on a subset of
features, the decrease in information gain across a subset of features can be
used to infer the relative importance of features. Figure 9, shows the relative
importance of four features (rest where too low to observe), where the number
of followers, status, and friends, along with the account age are the top features
which affect the decision of the model towards the credibility of a Twitter user
in our data.

The analysis of features within our model shows similar feature importance
measures to that used in prior research to identify reliable information sources
[79]. However, our approach provides a more generalized model where a thresh-
olding on probability scores can be used to select user sources based on needs
of a specific event. The approach is also dynamic where a model can be quickly
retrained using the available ” Verified” tags instead of manually re-annotating
accounts. This prevents temporal dilation of features where a model trained on
an older labeled dataset cannot perform as well due to the changes in account

statistics over time.

4.1.4. Text

With the observed dot-product based model performing the best with the F1-
score analysis, we applied the model towards an hourly aggregated corpus within
our data. Specifically, when the corpus was confined to the tweets from a single
hour, the vector representations of word embeddings were only influenced by
the contexts derived from that hour. Words would have a unique vectorization
specific to that hour, and relationships between words were dependent on the
context interpretations within that time. The cosine similarity of two terms
could be calculated for this duration, and words with the highest scoring cosine
similarity to a term would indicate an observed relationship that was finite
within the timeframe. In short, two words could be similar in one hour, and
completely different the next, depending on the content of the tweets at the

time.
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Table 4 shows the output of the DP model for the hourly aggregated tweets.

Prior to landfall (time 13:00), we observe mentions of the “storm”, “wind”,
“eye”, “ese” (East-South-East), “e” (East), etc, having prominence in the top

s 20 words as identified by the DP model to be semantically similar to search
term “irma”. There is consistency in the thematic representation where these
words did occur across the 6 hours prior to the hurricane. During the window

« 7

of the hurricane Irmas landfall we observe “shelter”, “#hurricaneirma”, “eye”,
“landfall”, “help”, “plea”, etc., as the most related terms to “irma’”. After the
s hurricane the context of the “irma” changes to reflect more help/rescue/concern
words where “shelter”, “safe”, “check”, “food”, “power”, etc. become the most

prominent words.

Table 4: Hourly aggregate of top 20 semantically related to terms to Irma, for six hours prior
and after landfall. The words have been stemmed to their root. #hirma denotes the hashtag
#hurricaneirma used in the tweet. Colors indicate similar terms across the different time

windows of the hurricane.

Time ‘
Word

Rank

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 ‘

Irma Landfall

2 offici outsid outsid tri vet. time first whole tampa ‘want outsid safe eye

3. meed  sleep moder  help time ek ] wait tampa beauti  time  food  outsid  bay

1 beauti  yet see good get open  first

5. want sleep outsid eye tri tri GG #nirma tampa | safe updat  time

6 #key  nation |8 friend  might make open  prep  get watch  hurrican  wait

7. #key wind moder first night could food guess  time make

8. wind tropic  need sleep night  first made get  come  hurrican peopl  prayer  outsid

9. topic good  wind heavi lst  close see friend  watch last know  fist  #hirma2017
10, see  beach  fuck wellington close  coffe eye read  yet see got make

1. much #irma  #sflraffc  wind #traffic  friend #hirma world  time love  wait  food

12.  #ima florida  pleas fuck strong  help world SR siecp  peopl  power  everyon us

13, beach |'Stommstorm tropic outsid  last night good  ride come  gouna  [[Chel ) RCHCN
14, florida #mA  beach  good make  follow peopl time  fust  |JOYe #irma  see get

15. storm  aso peopl see well outsid close come get friend still home last

16, know lauderdal firma  pleas want  make outsid make [ERGRIN food  bhumican power  point

17, #mA power  florida  storm 0 phone  sleep help fist  go day #0fl #hirma [Jo8G0

18.  power mesonet f flood sleep  strong landfal beauti know  see make  okay open

19.  call  rain rain beach (TR #imageddon  come wait  open  make  home  watch  alway

20. aso safe mesonet rain florida  open pleas home  tri way want yet video

The results show that the word embedding based dot product model is capa-
ble of identifying tweets which are most relevant to the search/seed term. This
e3s is highlighted by the example of the term “ese”, which when taken by itself,

might reference an informal Spanish colloquialism for “man”. When interpreted
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within the hourly-divided corpora within this dataset, it takes on a different se-
mantic interpretation. For the tweets occurring within each of the four hours
immediately preceding landfall, “ese” is in the top twenty most related terms
to “irma”, and does not appear in the hourly lists following. Looking at the
terms related to “ese” it can be determined that this refers to the abbreviation
for East-South-East, likely referencing the direction from which the hurricane
approached. After landfall, this term was no longer as relevant, and therefore

less likely to appear as a related term.

4.2. Owerall model
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Figure 11: CDF of Overall Model and percentage of tweets passing different model thresholds.

In the overall model, the number of possible combinations for the thresholds
is large (at 100*), where each of the four models can have a value ranging from
0-100. A cumulative distribution plot (CDF') was used to analyze the percentage
of data-points passing the thresholds set for each of the models. Figure 11 shows

the comparative analysis of each of the model, where the curves are inversely
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proportional to the thresholds indicating a decrease in the percentage of tweets
passing higher thresholds. Within the analysis, low thresholds are representative
of more reliable sources and related contents, resulting in a low percentage of
overall tweets passing through the filter. Similarly, at the threshold of 100, all
tweets pass the filter providing complete access to all data.

The CDF plot also highlights the comparative performance of various mod-
els, where the text based filter includes a higher percentage of tweets at lower
thresholds while the user verification filter includes most users at higher thresh-
olds. Image classification also results in a similar performance to user verifi-
cation (including most users at higher thresholds), whereas filtering based on
geospatial scores filters more linearly. We observe high quality results (low false
positives) at a likelihood occurrence of 0.6. by setting initial thresholds to 30
for text, 50 for geospatial, and 85 for both image and user scores. These recom-
mended thresholds for Hurricane Irma provide a baseline for comparison with

different events , and for hurricanes in different locations.

4.8. Limitations and Future Work

Our current work explores the utilization of multiple modalities present in
social media data to filter hazard event related information. We acknowledge
certain limitations of this approach. Our approach is to cumulatively evaluate
the operation of all sub-models in capturing the messages. As a result, we
focused in this work on tweets that have all attributes: geolocation, text, and
image (note all tweets have user attributes). However a smaller overall model
with specific combinations of the sub-models can be used in certain conditions.
For example, researchers who are interested in just messages with text can use
an overall model that excludes the image sub-model and subsequently not filter
based on a threshold for images.

Furthermore, our models are evaluated using the data from a single event
(Hurricane Irma) and a single location (Florida, USA). As a part of our fu-
ture effort we plan to extend this framework to other hurricane events (and

locations), such as, Maria, Harvey, and Florence, along with application of the
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approach to other disaster scenarios, such as fires, earthquakes, floods, etc. to
aid in understanding the filtering step and thresholds in other contexts. Each
event will likely have different specifications on the quality of data that needs
to be extracted, for which we need to cross evaluate the approach against var-
ious events to provide recommendations for thresholds to be used for different
disaster categories.

Our approach can operate as a primary filtering mechanism for additional
anlysis to extracting information during a disaster event. Additional models
which help with categorization of messages, such as, disaster damage quantifi-
cation, information, requests of help, resources offerings, organizing efforts, etc.,

can be implemented to extract higher level information from the data.

5. Conclusion

In this study, a multimodal filtering approach was developed and evaluated
to extract and subset geocoded images posted on Twitter within the context
of Hurricane Irma. Our prototype model consisted of four sub-models: geospa-
tial, image classification, user credibility, and text analysis. Each sub-model
returned a score in the range of 0-100 and allowed for user-defined filtering
based on bespoke thresholds. Each of the four models aim to filter information
about reliability, information consistency, and overall usefulness of the mes-
sage. This single combined model shows potential for application in disaster
and emergency contexts, allowing users to quickly search and filter for relevant

geolocated tweets.
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