
   
 

1 
 

Characterizing People’s Daily Activity Patterns in the Urban 
Environment: A Mobility Network Approach with Geographic Context-
Aware Twitter Data 
 

Abstract: People’s daily activities in the urban environment are complex and vary by 

individuals. Existing studies using mobile phone data revealed distinct and recurrent transitional 

activity patterns, known as mobility motifs, in people’s daily lives. However, the limitation in 

using only a few inferred activity types hinders our ability to examine general patterns in detail. 

In this study, we proposed a mobility network approach with geographic context-aware Twitter 

data to investigate granular daily activity patterns in the urban environment. We first utilized 

publicly accessible geo-located tweets to track the movements of individuals in two major U.S. 

cities: Chicago and Greater Boston, where each recorded location is associated with its closest 

land use parcel to enrich its geographic context. A direct mobility network represents the daily 

location history of the selected active users, where the nodes are physical places with 

semantically labeled activity types, and the edges represent the transitions. Analyzing the 

isomorphic structure of the mobility networks uncovered 16 types of location-based motifs, 

which describe over 83% of the networks in both cities and are comparable to those from 

previous studies. With detailed and semantically labeled transitions between every two activities, 

we further dissected the general location-based motifs into activity-based motifs, where 16 

common activity-based motifs describe more than 57% transitional behaviors in the daily 

activities in the two cities. The integration of geographic context from the synthesis of geo-

located Twitter data with land use parcels enables us to reveal unique activity motifs that form 

the fundamental elements embedded in complex urban activities. 

Keywords: activity pattern, mobility network, activity motif, geographic context, geo-located 
tweets 
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1. Introduction 
Today’s urban infrastructures and entities, such as residential places, working facilities, and 

shopping malls, scatter across the urban landscape to accommodate the needs of people’s daily 

activities. Understanding detailed spatial and temporal activity patterns about how citizens 

interact with their surrounding urban environments is of great importance to urban planning and 

its applications, such as characterizing urban spatial-temporal structures (Jiang, Ferreira, and 

González 2012b), assessing the impact of urban form on public health (Frank and Engelke 2001), 

and tackling sustainability issues of the urban system (Ahas et al. 2010). Intuitively, people’s 

daily activities in interacting with urban space vastly differ by individual. By using mobile phone 

call data for tracking people’s movements, studies revealed that spatiotemporal human 

movements in navigating urban space are highly predictable because of people’s tendency to 

revisit places, which are known as preferential return behaviors (González, Hidalgo, and 

Barabási 2008; Song et al. 2010) and can be well modeled by a series of Markov chain-based 

models (Lu et al. 2013). 

Recent studies continue to uncover unique and recurrent mobility patterns, known as the 

mobility motifs, in people’s daily travel networks by using mobile phone call data (Schneider, 

Belik, et al. 2013). For example, a typical home-to-work mobility motif represents the daily 

transitions between the home location and the work location. That study suggested that 90% of 

people use just one of 17 mobility motifs in their daily lives, and nearly half of the population 

follows a simple two-location mobility motif. Indeed, as humans are creatures of habit, distinct 

motif patterns are also observed in the transitions in people’s daily activities by using travel 

survey data (Jiang, Ferreira, and González 2012a). Cao et al. (2019) suggested differentiating the 

two types of motifs as location-based motifs (LBM), which only concern the transitions among 
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different locations, and activity-based motifs (ABM), which focus on the transitions among 

various types of activities. 

One major research challenge found in the existing literature, as the premise to enable 

seeking spatiotemporal activity patterns, is the lack of information about detailed activity 

location and type. While such information is often collected in surveys, it is an expensive and 

labor-intensive process to survey a large population, and it often covers an individual’s location 

history over only a few days. Despite privileged access to mobile phone data, the intrinsic low 

spatial accuracy on the order of several kilometers is often limited to inferring two major activity 

locations (i.e., home and work) and types (Jurdak et al. 2015; Huang and Wong 2016). 

Therefore, some studies began to explore publicly accessible location-based social media data 

with a higher spatial resolution, such as geo-located Twitter data and check-in records as means 

to track the locations of individuals. A variety of data-driven models and methods were 

developed to first derive the activity locations based on the agglomeration of recorded user 

locations and then infer the corresponding activity types (Liu et al. 2015; Sun et al. 2015; Jenkins 

et al. 2016). For example, a common approach is to identify the spatial clusters of the record 

locations to infer the activity locations in people’s daily lives. Owing to the lack of geographic 

context associated with recorded locations as semantic labels, it is difficult to differentiate one 

spatial cluster from another, let alone to tie specific activity types to the derived activity 

locations. However, recent studies have revealed unique spatial and temporal signatures tying 

collective human activity patterns to different land uses in the urban environment (Liu et al. 

2015; Soliman et al. 2017). Studies on human activity patterns also benefit from integrating land 

use information as geographic context to infer activity types (Soliman et al. 2015; Huang and 

Wong 2016). Ideally, tracking the movement of individuals with geographic context-aware user 
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locations will bring more clarity to each transition between two activities and enable us to 

examine the activity transition patterns (e.g., ABMs) in greater detail. 

In this study, we propose a mobility network approach to studying people’s daily activity 

patterns in the urban environment. More specifically, we aim to discover activity patterns 

concerning both LBMs and ABMs for characterizing the transitions in people’s daily activities. 

To enable this study, we first utilized publicly accessible geo-located Twitter data with high 

spatial accuracy to track the movements of individuals in the urban environment. To enrich its 

geographic context, we linked each recorded user location with its closest land use parcel. Eleven 

activity types (e.g., home, work, and shopping) were defined based on their correspondence to 

the land use information, which was used to construct the geographic context-aware daily 

location history for each Twitter user.  

Since this study aimed to address daily activity patterns, we defined the criteria for 

selecting active users whose daily whereabouts could be identified. The details of such criteria 

are introduced in Section 3.2. By analyzing the shape of the collective location histories of the 

active users, we identified preferential return patterns and confirmed the existence of recurrent 

transitional behaviors. A graph was then constructed to represent each user’s daily location 

history as a mobility network. For LBMs, the nodes were the visited activity locations, and the 

edges were the movements transitioning from one location to another. In contrast, for ABMs, the 

nodes were semantically labeled activity types, whereas the edges represented the transitions 

among those activities. Further exploration into the isomorphic structure within the daily 

mobility networks uncovered detailed LBMs. With the transitions labeled by detailed activity 

types, we further dissected general activity patterns into detailed ABMs for characterizing 

transitions among different activities in people’s daily lives. The study provided us with deeper 
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insights into the unique activity motifs that form the fundamental elements embedded in complex 

urban activities. The case studies conducted in two U.S. cities Chicago and Greater Boston 

suggested that our findings with geo-located Twitter data were consistent across geographic 

space. 

The remainder of this manuscript is organized as follows. Section 2 describes the 

background and related work about the activity patterns of individuals in urban environments. 

Section 3 details the data and methods used in this study for capturing and measuring the 

spatiotemporal activity patterns of individuals in the urban environment. Section 4 presents a 

detailed analysis of the spatial and temporal activity patterns of the individuals in Chicago and 

Greater Boston. Section 5 concludes this study with discussions about the contributions and 

limitations of our mobility network approach. 

2. Background and Related Work 

2.1 Spatiotemporal human activity patterns and activity motifs 
Human activities are complex behaviors and are confounded by human variability. To seek 

spatiotemporal human activity patterns in the urban environment, existing research primarily 

encompasses two main perspectives: the collective level and the individual level (Chi and Zhu 

2019). Collectively, various types of human activities take place across the urban space 

simultaneously, such as people staying at home, taking trips at transportation sites, and shopping 

at malls. Researchers attempt to understand the relationships between the agglomeration of 

people’s activity locations and the configurations of the urban environment (Liu et al. 2015). 

Individually, people navigate through those activities at different locations based on their own 

time schedules and routines. The recent research efforts focus on seeking common structures that 
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can be used to characterize the transition patterns of individuals in moving across geographic 

spaces. Determining whether the spatial configuration of the urban environment confines human 

activities in it or whether human activities shape and define the image a city is an ongoing 

philosophical and scientific quest in understanding how cities function (Lynch 1960). 

Nevertheless, because human activities in the urban environment are essentially different forms 

of spatial interactions between citizens and the urban infrastructures and entities, insights gained 

from both collective and individual perspectives can complement each other to provide a more 

holistic view. 

Abundant emerging studies have uncovered new insights into individual human activity 

patterns in the urban environment, using various types of data sources and methods. For 

example, González, Hidalgo, and Barabási (2008), using mobile phone call data in the form of 

call detail records (CDR), revealed that trajectories of human movements across the urban space 

are not random but show a high degree of spatial and temporal regularity. The mobility patterns 

of individuals characterized by time-independent travel distances revealed preferential return 

behaviors, suggesting that people are likely to revisit a few highly frequented locations. The 

authors analyzed the shapes of the trajectories of individuals and found out that people’s 

movements tend to center around the principal axes determined by these dominated locations. 

The inherent anisotropy of each trajectory when aligning them in the same intrinsic reference 

frame could be described by a single spatial probability distribution, which indicated that humans 

follow simple reproducible patterns despite their different travel histories. Further investigations 

into preferential return behaviors, using mobile phone data, confirmed the existence of recurrent 

transitions among those frequently visited locations, which suggested that people’s spatial and 

temporal visitation behaviors are highly predictable (Song et al. 2010) and can be well modeled 
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by a series of Markov chain-based models (Lu et al. 2013). Similar mobility patterns at a larger 

spatial scale were observed by using geo-located Twitter data (Jurdak et al. 2015). Although 

these studies focused on people’s movements without explicitly examining the exact activity 

types associated to the movements, the developed methods and methodologies laid the 

foundations to advance recent studies on human activity patterns. 

Therefore, acquiring information about the specific activity types at the visited locations 

becomes a necessary step before activity pattern analysis. Such information is usually collected 

by explicitly asking in surveys and questionnaires, or it is inferred using a set of heuristics 

tailored to datasets used to track the movements of individuals. For example, the most frequent 

mobile phone call location at night indicates that the individual is at home, while the second 

most frequent location is the workplace (Ahas et al. 2010; Kung et al. 2014). When geo-located 

social media data are used, the home and work locations are often inferred by the locations with 

the most and the second-most social media posts, such as when people use check-ins (Cho, 

Myers, and Leskovec 2011) and geo-located Twitter data (Luo et al. 2016). Using travel survey 

data to analyze activity-annotated location histories of individuals allows identification of an 

activity-based signature of daily travel patterns (Jiang, Ferreira, and González 2012a).  

Further, by modeling the transitions among individuals’ activity locations as travel 

networks, researchers found unique daily urban mobility motifs, which were evident from a 

week-long survey dataset (Schneider, Rudloff, et al. 2013) and mobile phone call data 

(Schneider, Belik, et al. 2013). The notion of motif is derived from the term “network motif”, 

which is defined as the recurrent and statistically significant subgraph within a network 

collection (Newman 2018). For example, gene expression motifs were extracted from gene 

expression data that a subset of genes can be simultaneously conserved across many samples 
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(Chechik et al. 2008). Motifs were also used as the overrepresented DNA sequences to identify 

gene expression patterns (Lu et al. 2013). Although people’s daily activities in the urban 

environment are complex behaviors, the prominent motifs in people’s daily travel networks 

transitioning from one frequently visited activity location to another indicate that their daily 

activity patterns are highly generalizable and can be depicted by a few motifs. For example, 

Schneider, Belik, et al. (2013) suggested that 90% of people use one of just 17 mobility motifs in 

their daily life. Furthermore, motifs in human daily activities have been observed in multiple 

cities. Jiang, Ferreira, and González (2017) developed a framework to derive mobility motifs 

using mobile phone CDR data in Singapore and suggested that the results were comparable to 

the ones from travel survey data. However, the mobility motifs extracted in those studies did not 

identify the specifications of the activity at the locations. For example, a two-node mobility motif 

can be a “home-to-work” transition but can also be a “home-to-school” transition. Indeed, these 

mobility motifs were conceptualized as LBMs, where the nodes of the motifs are frequently 

visited activity locations but with unknown activity types. In contrast, the nodes in ABMs are the 

locations with annotated activity types (Cao et al. 2019). 

To study ABMs, it is logical to first get a better sense of the visited locations and then 

infer the corresponding activity types, which is in line with the research interests in seeking 

human activity patterns at the collective level. At that level, the research questions often focus on 

the linkages between the agglomerations of human activity space and the characteristics (e.g., 

functionality and structure) of urban areas. The fundamental idea is that people’s activities are 

tightly connected with the socio-economic features of the environment and therefore reflect the 

spatial configurations of the physical space (Liu et al. 2015). For example, Jiang et al. (2015) 

developed a method for urban land use classifications by using online point-of-interest data for 
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inferring people’s activity locations. Mobile phone call data were used to infer human activities 

for revealing spatiotemporal structure of urban areas (Jiang, Ferreira, and González 2012b), geo-

located tweets were collected to examine the alignment between Twitter hotspots and 

corresponding physical locations across multiple cities (Jenkins et al. 2016), check-in data were 

used to generate the movement flows for identifying city centers (Sun et al. 2015), and geo-

Weibo (micro-blogs with geo-tags) data were used to extract and analyze a city’s tourism 

districts (Shao, Zhang, and Li 2017).  

Examining the aggregated/spatially clustered human activities provides a bird’s-eye view 

in terms of the correspondence of those activities to urban structures/functionalities. In turn, the 

land use information of the urban environment can be integrated as a geographic context to each 

activity location to better understand the activity patterns of individuals. For example, Huang and 

Wong (2016) used an urban land planning map to associate the locations of Twitter users with 

one of the four activity zones to characterize their activity space. In another study, Soliman et al. 

(2015) used parcel-level detailed land use maps to understand activity types related to the 

locations of Twitter users in Chicago. Although the main scope of this study is on activity 

patterns at the individual level, we aim to connect the research in studying collective human 

activity patterns to better characterize people’s daily activity patterns in the urban environment. 

2.2 Geo-located Twitter data for studying human activity patterns 
Studies on detailed human activity patterns in the urban environment rely on data sources that 

are capable of tracking individuals moving across the urban space (Huang and Wong 2016). 

Conventional data sources are available in the form of travel surveys (Jiang, Ferreira, and 

González 2012a) and activity diary records (Chen et al. 2011). However, it is labor-intensive and 

expensive to survey a large group of people or monitor their movements for a relatively long 
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period. The existing literature suggests that mobile phone call data are a popular data source for 

examining detailed human activity patterns across a larger spatial scale. However, high-quality 

mobile phone data are privileged information, and researchers have only limited access because 

of privacy concerns (Crawford and Finn 2015; Huang and Wong 2016). The low spatial accuracy 

of mobile phone data, on the order of several kilometers (Jurdak et al. 2015), also makes it 

difficult to infer activity types of recorded locations. 

Consequently, many recent studies utilize publicly accessible location-based social media 

data with a higher spatial accuracy, such as geo-located tweets and check-in records, to study 

human activity patterns. In particular, geo-located Twitter data have been proven to be a useful 

data source for studying human mobility patterns at large spatial scales (Hawelka et al. 2014; Yin 

et al. 2016), and the findings are comparable to those of studies that used CDR data (Jurdak et al. 

2015). Check-in records have enabled further analysis of the characteristics of human activity 

patterns: they provide information about the venues where a check-in was made, such as whether 

it is a residence, an arts and entertainment center, or a business venue. To some extent, venue 

information serves as the geographic context of user location, which can be linked to the 

particular activity a user is engaging in at that moment. As previously mentioned, check-in data 

are popular for reflecting urban activity patterns at the collective level, but because of data 

sparsity, they may not be suitable for studying mobility and activity patterns at the individual 

level. For example, users post check-in messages when visiting a place of interest (usually a 

place that is new to them). It is unlikely, though, that anyone would frequently check in at a 

previously visited place and/or at a home or workplace. Nevertheless, it inspires a logical step for 

enhancing geographic context in geo-located tweets by developing a similar approach employed 

in the check-in data. 
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3. Materials and Methods 

3.1 Geo-located tweets and parcel-level land use maps 
This study used geo-located tweets for characterizing people’s daily activity patterns in Chicago 

and Greater Boston from January 1 to December 30, 2014. The data collection utilized the 

Twitter Streaming API (https://developer.twitter.com) by setting up two geographical bounding 

boxes and retrieving all geo-located tweets that fell within them. The bounding boxes used the 

lower-left and upper-right coordinates for Chicago (41.20, –88.70; 42.49, –87.52) and Greater 

Boston (41.41, –72.66; 43.12, –69.45). Because data collection was done at the city level, it did 

not exceed the data volume limit (i.e., 1% of the total real-time tweets generated on twitter.com) 

mentioned in Hawelka et al. (2014). In other words, we were able to collect almost all available 

geo-located tweets over the two cities. The entire data collection contains over 10.2 million geo-

located tweets from Chicago and 12.5 million from Greater Boston.  

The original location information embedded in the geo-tag is given in units of latitude 

and longitude. We examined the “geo” attribute in each raw tweet and kept the one with location 

information derived from GPS receiver rather than from geocoding process. Note that many 

tweets are generated by non-human Twitter users (i.e., bots). In the case of geo-located tweets, 

the geo-tagged locations are either stationary (tagged with the same geo-location) or have 

excessive relocating speed (one tweet with the same message content but with multiple preset 

geo-locations for broadcasting purposes). To exclude non-human Twitter users, we filtered the 

raw tweets in five steps. First, we removed duplicated tweets and kept those that fell within the 

administrative boundaries of Chicago and Greater Boston. Second, we filtered out tweets related 

to advertising (e.g., job, recruiting, and hiring) and broadcasting activities (e.g., weather and 

traffic warnings) because those tweets were often generated by artificial Twitter accounts 
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(Hawelka et al. 2014). Third, for each remaining tweet, we performed a geospatial operation to 

search for its nearest land use parcel, and we assigned the land use type to the tweet location. A 

detailed description of this process is provided in the next section. We constructed a location 

history for each Twitter user by appending all the recorded locations in chronological order, 

sorted by timestamps. To remove artificial Twitter accounts with stationary locations, we 

identified the accounts with the same locations labeled with a land use type other than 

residential, which was one of the benefits of using land use parcels to infer the geographic 

context of tweet locations. Fourth, we removed non-human users on the basis of unusual 

relocation speed by examining consecutive locations of each user and excluding those with 

relocation speed in excess of the threshold of 240 m/s used by Jurdak et al. (2015). Finally, to 

reflect activity patterns of residents rather than tourists, we imposed a criterion that a user who 

has stayed in the study region more than 30 days is considered as a citizen, as suggested by Yin 

et al. (2017). Note that this 30-day criterion was subjectively defined but strict to ensure that the 

observed Twitter population is actively observed in the study regions. At that stage, our data 

contained 87,866 and 98,024 individual Twitter users from Chicago and Greater Boston, 

respectively. The spatial coverage of the filtered geo-located tweets from the two cities is shown 

in Figure 1, where each point corresponds to a geo-located tweet collected for this study. 
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(a) Chicago 

 
(b) Greater Boston 

Figure 1: Spatial coverage of the geo-located Twitter data across the two cities in this study (a) Chicago 
and (b) Greater Boston 
 

The reasons for selecting Chicago and Greater Boston as the study regions are twofold. 

First, previous studies seeking human activity patterns (e.g., LBMs) were conducted in Chicago 

using travel survey data (Jiang, Ferreira, and González 2012a; Schneider, Rudloff, et al. 2013) 

and in Boston using mobile phone data (Jiang et al. 2016). It sets the foundation that the results 

from our study using geo-located Twitter data may be comparable to the ones from using mobile 

phone and/or travel survey data. Second, this study employed parcel-level detailed land use maps 

to infer the geographic context of tweet locations, but the complex land uses in densely built 

metropolitan areas, such as Manhattan in New York City, could induce significant uncertainty. 

For example, a tall building in a downtown area can have different uses from the ground floor 

and up, which is often labeled “urban mix” for the land use category. Note that while the 

situation is relatively less complicated in Chicago and Greater Boston, those land use parcels 

labeled as “urban mix” remained in this study. 
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Urban land use in any city is expected to be constantly changing. It was desirable that the 

land use maps in our study had been updated as close as possible to 2014 (i.e., the same year of 

our Twitter data collection). Parcel-level detailed land use maps of Chicago were not available 

for 2014 but had been updated through 2013 and were extracted from the Land Use Inventory for 

Northeast Illinois, 2013 (CMAP 2019). Land use maps of 2014 covering Greater Boston were 

extracted from the MassGIS (Bureau of Geographic Information) Level 3 Assessors’ Parcel 

Mapping dataset (MassGIS 2019). For Chicago and Greater Boston, there are 164,619 and 

1,116,482 polygonal land use parcels, respectively. Each dataset is accompanied by a coding 

scheme that defines the corresponding land use categories (e.g., there are 60 land use classes in 

the Chicago dataset).  

To reflect the activities in those land use parcels, we adopted the activity scheme 

developed by Jiang, Ferreira, and González (2012a) for inferring activity types from travel 

surveys, which consisted of nine aggregated activity classes. Further, we made some 

modifications to the activity scheme in reclassifying land use to activity types as suggested by 

Soliman et al. (2017). In specific, we separated school activity into K-12 schools and 

universities/colleges because those two activities can differ vastly, and the detailed land use 

parcels were able to help us identify which was which. Also, we added the label “mixed-use” to 

urban-mix land use parcels. Finally, because hotel/resort activities were missing in travel 

surveys, we listed them as an individual activity class. 

The spatial coverage of the land use parcels of the two cities, with corresponding activity 

classes, are shown in Figure 2. The relationships between the activity code and land use category 

and the percentage of each type of land use parcels are shown in Table 1. Notice that the 

residential land use parcels are the most prominent urban features in both datasets. 
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(a) Chicago 

 
(b) Greater Boston 

 
Figure 2: Spatial coverage of the land use parcels reclassified into 12 activity categories over the two 
cities in this study (a) Chicago and (b) Greater Boston 

Table 1: Activity code and percentage of the land use parcel categories in Chicago and Greater Boston 
Activity Code Land Use Category Chicago Greater Boston 

1 Residential 74.15% 92.65% 

2 Hotel/Resort 0.12% 0.04% 

3 Mixed-Use 12.36% 0.80% 

4 K-12 Schools 0.79% 0.10% 

5 University/College 0.15% 0.11% 

6 Office/Workplace 2.71% 1.36% 

7 Services 0.50% 0.56% 

8 Civic/Religious 1.91% 0.26% 

9 Shopping/Retail 0.07% 0.99% 

10 Recreation/Entertainment 0.85% 0.66% 

11 Transportation 3.49% 0.55% 

12 Others 2.90% 1.94% 

Total number of parcels  164,619 1,117,027 

3.2 Activity locations and active Twitter users 
For each location in the constructed trajectory for each Twitter user, we performed a geospatial 

operation searching for its nearest land use parcel within 250 meters of its radius. The distance 
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value of 250 meters was set to account for the inaccuracy of locations read from the GPS units in 

mobile devices (Jurdak et al. 2015). If there was no parcel within the radius, the activity code 

assigned to the location was set to 12 as unknown (i.e., “others”). Each trajectory was 

transformed as the activity sequence of an individual in the year 2014, where each activity was 

inferred from its corresponding geographic context-aware location. It is important to note that a 

Twitter user posting a tweet at those locations does not necessarily mean those are the locations 

at which normal daily life activities take place (this concern also applies to mobile phone call 

locations). Although random locations do exist, many studies have shown that frequently visited 

locations provide prominent correspondence to users’ activity locations, owing to people’s 

tendency of returning to previously visited places. Previous studies relied on spatial clustering 

methods to derive users’ active locations, such as the density-based spatial clustering of 

applications with noise method (Jurdak et al. 2015; Shao, Zhang, and Li 2017; Soliman et al. 

2017). However, those methods treat each location equally and often rely on a global parameter 

in determining the clusters, which is problematic between dense-built and less dense-built urban 

environments (Kwan 2016). In this study, because each location in a user’s trajectory was 

anchored to the nearest land use parcel, two criteria were applied to active locations: (1) only 

those land use parcels with tweet counts above the average number of tweets in a user’s 

trajectory were considered active locations; and (2) the popularity of those active locations were 

ranked by the number of tweets at each parcel. This approach serves as a de facto spatial 

clustering method that also benefited the inference of a user’s home location. Because the most 

tweeted locations are not necessarily users’ home locations, the home locations were determined 

based on the following rules. First, only the residential land use parcel with the most tweets 

between 9:00 pm and 6:00 am was chosen as the user’s home location. Second, if the first 
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condition was not met, the residential land use parcel with the highest rank was chosen as the 

user’s home location. Otherwise, a user’s home location was set to be unknown and excluded 

from this study. 

 Before we analyzed activity patterns, we made note of the representativeness issues in the 

Twitter user population versus the actual population. Although addressing the representativeness 

of the Twitter user population is outside the scope of this study, we performed a regression 

analysis of the Twitter user population versus the actual population at the census tract level for 

the two cities. The Twitter user population in a census tract is the number of Twitter users with 

their home locations falling within the census tract and the actual population was obtained from 

the American Community Survey (ACS) 2012-2016 five-year estimates (U.S. Census Bureau 

2016). Figure 3 showed that the Twitter user population in this study correlated well with the 

ACS population estimates at the census tract level, which is measured by Pearson’s r value 0.72 

in Chicago (p < 0.001) and 0.71 in Greater Boston (p < 0.001). Although this approach does not 

fully support generalizing the findings in this study to the whole population, it does provide an 

indication of the extent of the Twitter user population representing the whole population of the 

two cities in this study. 
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(a) Chicago 

 
(b) Greater Boston 

Figure 3: Representativeness of the Twitter user population versus actual population at the census tract 
level in (a) Chicago (Pearson’s r = 0.72) and (b) Greater Boston (Pearson'’ r = 0.71). The x-axis is the 
population estimates from the census, and the y-axis is the estimated number of Twitter users 

 

One critical data processing step in this study was to select active users. As mentioned 

above, when digital geo-located data (e.g., CDR data and geo-located tweets) were used as 

proxies for tracking people’s locations, the latent locations between two observed locations can 

be missing. To study people’s daily activity patterns, it is necessary to impose a stricter criterion 

to minimize the impact of missing latent locations. Indeed, when addressing such an issue with 

mobile phone data, researchers conclude that a user can be considered actively observed (i.e., an 

active user) when she/he is found in at least of 8 out of 48 time slots during an entire data 

observation (i.e., 24 hours into 48 half-hour time slots) (Schneider, Belik, et al. 2013; Jiang, 

Ferreira, and González 2017). Considering the location information is only available when 

people tweet, using at least 8 tweets per day as a selection criterion will make the Twitter user 

population skew away from the general population. Therefore, we relaxed the criterion and 
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considered a user as active (with her/his locations and transitions actively observed) only when 

observed in at least 6 of the daily 48 time slots.  

3.3 Mobility networks and activity motifs  
In this study, we constructed a mobility network for every individual active user’s daily location 

history. Each mobility network was represented by a directed graph 𝐺𝐺 ≡ ⟨𝑉𝑉,𝐸𝐸⟩, where 𝑉𝑉 is a set 

of nodes corresponding to the activity locations, and 𝐸𝐸 is a set of edges representing the 

transitions between the node pairs. Note that the property of node 𝑉𝑉 regarding the activity type 

associated with the location was ignored in searching for LBMs, but it was explicitly considered 

in searching for ABMs. From the perspective of seeking activity patterns, the tasks can be 

naturally translated into finding common structural patterns among a collection of mobility 

networks. In the cases of pursuing activity motifs, it is essentially a process of finding the 

recurrent subgraphs (also known as network motifs) to represent the common transition 

sequences in people’s daily activities. For example, let {𝐺𝐺1 ≡ ⟨𝑉𝑉,𝐸𝐸⟩,𝐺𝐺2 ≡ ⟨𝑉𝑉,𝐸𝐸⟩,𝐺𝐺𝑖𝑖 ≡

⟨𝑉𝑉,𝐸𝐸⟩, 𝑖𝑖 = 1, 2, . .𝑛𝑛} be a mobility network collection representing a person’s daily location 

histories in 𝑛𝑛 days or 𝑛𝑛 persons’ location histories in one day. The activity motifs to be sought 

(i.e., LBMs and ABMs) should correspond to the network motifs among the network collection. 

To better explain the concept of the mobility network and the differences between LBMs and 

ABMs, two scenarios of daily activities are illustrated in Figure 4. The first scenario is a two-

node activity motif, whereas the second scenario is a four-node activity motif. The nodes in the 

mobility networks are physical locations (i.e., places), and the edges are the transitions 

representing people’s visits among those locations. The difference between an LBM and an 

ABM is that the node types are explicitly annotated in the case ABMs. 
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Figure 4: Illustration of peoples’ daily activity motifs (LBMs and ABMs) 

 

In graph theory, network motifs can be identified by exploring the network isomorphism 

(Newman 2018). Let 𝐺𝐺1 ≡ ⟨𝑉𝑉1,𝐸𝐸1 ⟩ and 𝐺𝐺2 ≡ ⟨𝑉𝑉2,𝐸𝐸2⟩ be two graphs. If 𝑉𝑉2 is a subset of 𝑉𝑉1 

(noted as 𝑉𝑉2 ⊆ 𝑉𝑉1) and 𝐸𝐸2 is a subset of 𝐸𝐸1 (𝐸𝐸2 ⊆ 𝐸𝐸1), then 𝐺𝐺2 is a subgraph of 𝐺𝐺1. Note that 

there are two types of subgraphs: vertex induced (or simply induced) and edge induced. A 

vertex-induced subgraph is a subset of the vertices of a graph 𝐺𝐺 together with any edges whose 

endpoints are both in that subset, whereas an edge-induced subgraph is a subset of the edges of a 

graph 𝐺𝐺 together with any vertices that are their endpoints. In this study, we considered only 

vertex-inducted subgraphs because both LBMs and ABMs are vertex-based (i.e., node-based) 

sequences. If 𝐺𝐺2 is a vertex-induced subgraph of 𝐺𝐺1, and there is a one-to-one (i.e., bijection) 

mapping function 𝑓𝑓:𝑉𝑉(𝐺𝐺2) → 𝑉𝑉(𝐺𝐺1) in which any two vertices 𝑢𝑢 and 𝑣𝑣 of 𝐺𝐺2 are adjacent if and 
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only if 𝑓𝑓(𝑢𝑢) and 𝑓𝑓(𝑣𝑣) are adjacent in 𝐺𝐺1, then 𝐺𝐺1 and 𝐺𝐺2 are considered isomorphic (𝐺𝐺2 ↔ 𝐺𝐺1). 

The mapping 𝑓𝑓 is called an isomorphism between 𝐺𝐺1 and 𝐺𝐺2. When there is a subgraph 𝐺𝐺1′  of 𝐺𝐺1 

(𝐺𝐺1′ ⊂ 𝐺𝐺1) and 𝐺𝐺1′  is isomorphic to 𝐺𝐺2, it means an appearance of 𝐺𝐺2 in 𝐺𝐺1. The total number of 

appearances is the frequency 𝐹𝐹G of 𝐺𝐺2 in 𝐺𝐺1. Once the frequency 𝐹𝐹G(𝐺𝐺2) exceeds a predefined 

cut-off value, 𝐺𝐺2 is considered a recurrent/frequent graph in 𝐺𝐺1. Such a cut-off value is often 

defined as the arithmetic mean frequency 𝐹𝐹G(𝐺𝐺2) in a set of 𝑁𝑁 randomized graphs generated 

from 𝐺𝐺1 using the null model (Milo 2002). Given the fact that randomized mobility networks are 

not meaningful, motifs in this study were the daily mobility networks whose frequencies were 

more than 0.5 percent of the total number of mobility networks in the dataset (Schneider, Belik, 

et al. 2013).  

There are various existing implementations of network motif discovery algorithms 

(Masoudi-Nejad, Schreiber, and Kashani 2012). In particular, some recent network motif 

discovery algorithms were developed for mobility networks (Schneider, Belik, et al. 2013) and 

temporal networks (Paranjape, Benson, and Leskovec 2017). While these algorithms could 

potentially be employed in this study for analyzing LBMs, it is difficult to customize the inherent 

data structure to include an extra attribute of the nodes (i.e., activity type) in the case of ABMs. 

Therefore, this study utilized the improved graph-matching algorithm, named VF2 (Cordella et 

al. 2001), to detect the network motifs, which was implemented in NetworkX (Hagberg, Schult, 

and Swart 2008). NetworkX is a Python library for studying complex graphs and networks. It 

provides us the flexibility to configure the nodes in a directed mobility network with or without 

attributes. Note that the detection of network motifs is computationally challenging. Because 

network motifs are considered the fundamental elements that uncover the structural design 

principles of the network collection, they are often subgraphs with a limited number of nodes 
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(Milo 2002). For example, the maximum number of nodes in the activity motif detected using 

mobile phone data was set at 6 by Schneider, Belik, et al. (2013) and at 5 by Jiang, Ferreira, and 

González (2017). Therefore, we set the maximum number of nodes in a motif at 6 in this study. 

4. Results 

4.1 Preferential return behaviors 
In this study, mobility networks are used to represent the transitions in people’s daily activities in 

the urban environment. By definition, activity motifs represent recurrent transitions among 

frequently visited locations/activities. In other words, the existence of activity motifs depends on 

the premise that people are likely to revisit a few frequently visited locations (i.e., preferential 

return behaviors). Previous work has demonstrated that confirmation of preferential return 

behaviors can be achieved by analyzing the shapes of individuals’ trajectories/location histories 

(González, Hidalgo, and Barabási 2008). Suppose an active Twitter user’s trajectory (i.e., 

location history) is a set of (𝑥𝑥, 𝑦𝑦) pairs {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)}, where (𝑥̅𝑥, 𝑦𝑦�) is the center 

of mass of the trajectory. The shape of individual trajectories can be described by two properties: 

the gyradius of each location deviating from (𝑥̅𝑥, 𝑦𝑦�) and the direction of the trajectory along which 

most of the recorded locations occur, known as the principal axis. In this study, we followed the 

methods illustrated by Frank et al. (2013). First, a two-dimensional matrix known as the tensor of 

inertia was calculated for each active Twitter user’s trajectory. The principal axis corresponds to 

the eigenvector with the largest eigenvalue. Considering the inherent anisotropy of the gyradius 

and direction across different individual trajectories, all individual trajectories were aligned in a 

common intrinsic reference frame. To do so, the principal axis of each trajectory was rotated 

pointing due west, and locations in each trajectory were translated anchored to (𝑥̅𝑥, 𝑦𝑦�) as (𝑥𝑥𝑖𝑖 −



   
 

23 
 

𝑥̅𝑥,𝑦𝑦𝑖𝑖 − 𝑦𝑦�) to ensure that the shape of each individual’s trajectory fell in the reference frame. The 

intrinsic reference frame can be interpreted as a probability density function 𝑃𝑃(𝑥𝑥, 𝑦𝑦) of observing 

an individual. Instead of using the actual distance of the gyradius (Jurdak et al. 2015), which 

varies significantly among different individuals, we calculated the standard deviation 𝜎𝜎𝑥𝑥 and 

𝜎𝜎𝑦𝑦 for each trajectory and normalized values by dividing their x- and y-coordinates as 𝑥𝑥/𝜎𝜎𝑥𝑥 and 

𝑦𝑦/𝜎𝜎𝑦𝑦, respectively. 

In Figure 5, we plot the heat map of the probability density function of the normalized 

locations of all active Twitter users. The shapes of the two heat maps are similar between the two 

cities. Interestingly, the observed shape is different from the teardrop shape reported by Frank et 

al. (2013), and the shape with higher values exists only on the positive side of the x-axis reported 

by Jurdak et al. (2015). The approaches of both studies were applied to individual trajectories of 

Twitter users at the national level. In contrast, the shape of the probability density function is 

similar to the ones reported by González, Hidalgo, and Barabási (2008), which were from the 

trajectories of mobile phone users at the city level. The probability density function demonstrates 

that people travel predominantly along their principal axis, with deviations in the orthogonal 

direction becoming shorter and less frequent as they move farther away from the origin. It shows 

that individuals spend vast majority of their time in a few locations; for example, the locations in 

dark red regions are referred to as home locales, and the ones in the red regions are referred to as 

work locales. The shape of active Twitter users’ trajectories confirms the preferential return 

behaviors that people (i.e., active Twitter users) frequently return to those locations and therefore 

there is a chance that these transitions are recurrent across the group. 



   
 

24 
 

 
(a) Chicago 

 
(b) Greater Boston 

Figure 5: Probability density function 𝑃𝑃(𝑥𝑥, 𝑦𝑦) of observing an individual in the intrinsic reference frame. 
The origin corresponds to each individual’s expected location, 𝑥𝑥/𝜎𝜎𝑥𝑥 and 𝑦𝑦/𝜎𝜎𝑦𝑦 represent the standard 
deviations of (𝑥𝑥,𝑦𝑦) away from the origin in each respective axis, and 𝜎𝜎𝑦𝑦 = 0 corresponds to their 
principal axis rotated to the intrinsic reference frame. The maps are generated for active Twitter users in 
(a) Chicago and (b) Greater Boston. 
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4.2 Daily location-based motifs 
In this study, we investigated two types of motifs, i.e., LBMs and ABMs, by constructing 

mobility networks of the daily location histories of individuals. Given that previous studies have 

shown that people’s weekday and weekend daily activities can be quite different (Schneider, 

Belik, et al. 2013; Jiang, Ferreira, and González 2017; Soliman et al. 2017), our study focuses on 

weekday activity motifs. There are 104,861 weekday equivalent observations of daily location 

histories from 10,001 active Twitter users in Chicago and 144,790 from 12,499 active Twitter 

users in Greater Boston. By constructing a mobility network for every daily location history, we 

could detect the LBMs using the VF2 algorithms as mentioned above. 

 Although a network motif often consists of only a few nodes, for a given network with N 

number nodes, a number of edge combinations exist (2𝑁𝑁2−𝑁𝑁). Because we are interested only in 

those mobility networks that reflect people’s real daily transitional activities, we were able to 

significantly reduce the number of possible activity motifs by adopting the same two constraints 

used by Schneider, Belik, et al. (2013). The first constraint ensured that a user’s daily location 

history starts and ends at the same activity location (in this case, a user’s home location). The 

second constraint ensured each node in a daily mobility network (with 𝑁𝑁 > 1) was visited at 

least once, which means each node had at least one ingoing and one outgoing edge. Figure 6 

illustrates the 20 most recurrent daily LBMs in Chicago. The order of those motifs is ranked by 

their frequency. Because the network isomorphism does not support one-node networks, the one-

node motif was calculated separately and was not plotted in the figure. 
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Figure 6: Top 20 most recurrent daily LBMs in Chicago; the order is ranked by frequency (note that the 
one-node motif is calculated separately and is not plotted in the figure) 
 

Schneider, Belik, et al. (2013) identified 17 types of LBM using mobile phone data (in 

Paris) and travel survey data (in Chicago and Paris), which are shown in Figure 7(a). A similar 

study using mobile phone data and travel survey data in Singapore showed that some of the 

LBMs were not significant, where 11 (out of 17) LBMs were identified (Jiang, Ferreira, and 

González 2017). In our study, 16 types of LBM are significant and consistent between Chicago 

and Greater Boston, which are shown in Figure 7(b). In fact, 14 (out of 16) LBMs are identical to 

the ones identified by Schneider, Belik, et al. (2013). The LBMs with ID numbers 13, 16, and 17 

are not significant in our study, but two new types of LBMs (one three-node LBM with ID 18 
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and one four-node LBM with ID 19) emerge as significant. Nevertheless, the 16 types of LBM 

account for over 83% of the total mobility networks in the two cities (83% in Chicago and 85% 

in Greater Boston). It should be noted that although the spatial accuracy of the locations in the 

three mobility data sources vary, the general LBMs are strikingly similar. The results suggest 

that (1) people’s daily urban movements in visiting those frequently visited locations are 

significantly more recurrent than visiting other locations (2) the observations of LBMs are still 

valid when the movements are examined at land use parcel level.  

 

 
(a) 

 
(b) 

 
Figure 7: Identified LBMs in the daily mobility networks. (a) 17 types of LBM identified in Schneider, 
Belik, et al. (2013); (b) 16 types of LBMs in Chicago and Greater Boston identified in this study (the blue 
circle indicates the starting/finishing node in a user’s daily mobility network). 
 

Given the similarity between the LBMs identified in this study using geo-located Twitter 

data and the ones from using mobile phone and travel survey data, we compared the frequency 

distribution of those motifs together. Because of the differences in the LBMs identified in two 

studies (14 out of 19 were identical), instead of comparing the motifs one by one, we grouped 

them based on their node size, with a range from one to six. Figure 8 shows the percentage of the 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Thr ee Nodes Four Nodes Five NodesT  wo NodesOne Node Six Nodes

Location Based Motif ID

1 2 3 4 5 6 7 8 9 10 11 12 14 15

Thr ee Nodes Four Nodes Five NodesT  wo NodesOne Node Six Nodes

Location Based Motif ID

18 19
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daily LBMs grouped by node size from using geo-located Twitter data (red, Chicago; green, 

Greater Boston), the surveys (dark red, Paris; blue, Chicago), and the phone data (light green, 

Paris). Despite the fact that those motifs came from multiple data sources and from different 

cities, the order and the percentage of a specific LBM group showed similar behavior, which 

suggests certain “unity” in people’s daily mobility behavior. 

 

 
Figure 8: Percentage of daily LBMs grouped by node size from geo-located Twitter data (red, Chicago; 
green, Greater Boston) from our analysis, the surveys (dark red, Paris; blue, Chicago) from Schneider, 
Belik, et al. (2013), and the phone data (light green, Paris) from Schneider, Belik, et al. (2013). 
 

Figure 8 shows that the percentages of daily LBMs grouped by nodes size appear to be 

similar among different cities, except the ones measured by survey data in Paris. However, the 

lack of accurate geographic locations in mobile phone and survey data makes it difficult to 
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measure the variations in the spatial distances associated with people’s daily LBMs across 

different urban landscapes. As the geographic locations captured in geo-located Twitter data are 

with high spatial accuracy, we calculated the spatial distances associated with various daily 

LBMs. First, since each user’s home location was identified, we calculated the daily gyradius of 

each visited location (i.e., land use parcel) deviating from the home location, instead of deviating 

the center of mass of a daily trajectory. The results suggest that the average daily gyradius from 

home is 2.02 km in Chicago and 3.29 km in Greater Boston. Further, we calculated the average 

daily trip distance (𝑑𝑑𝑙𝑙� ) and the average total daily distance (𝐷𝐷𝑙𝑙�) associated with different LBMs 

grouped by nodes size (Table 2). The results show that (1) 𝑑𝑑𝑙𝑙�  ranges from 0.63 km to 1.11 km in 

Chicago and from 1.07 km to 1.86 km in Greater Boston (2) the LBMs with more nodes 

accumulate a larger 𝐷𝐷𝑙𝑙�, and (3) Greater Boston has a larger 𝐷𝐷𝑙𝑙�  than Chicago in all scenarios. 

Although the area of Greater Boston is nearly 8 times the size of Chicago, it is not proportional 

to the differences of the spatial distances. The results suggest that (1) most of the daily LBMs 

tend to concentrate at the small locale and (2) the spatial distances associate with a same type of 

LBM vary in different urban settings. 

Table 2: The average trip distances and total daily distances associated with LBMs. Note that the 
distances are measured in km, and the percentage values correspond to the ones in Figure 8. 

  
Two 

Nodes 
Three 
Nodes 

Four 
Nodes 

Five 
Nodes 

Six  
Nodes 

Seven 
Nodes+ 

Chicago 
(548 km2) 

Percentage 29% 20% 11% 6% 3% 16% 
𝑑𝑑𝑙𝑙�   0.63 0.91 1.02 1.11 1.07 1.06 
𝐷𝐷𝑙𝑙� 6.42 10.04 12.52 15.13 16.89 22.7 

Greater 
Boston 

(4375 km2) 

Percentage 29% 23% 13% 7% 3% 15% 
𝑑𝑑𝑙𝑙�  1.07 1.56 1.82 1.86 1.75 1.78 
𝐷𝐷𝑙𝑙� 8.73 13.99 18.87 22.03 23.98 33.86 
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4.3 Daily activity-based motifs 
While the identified LBMs show promise in using geo-located Twitter data for studying urban 

activity patterns, the exact details of the LBMs remain unclear. For example, the two-node LBM 

cannot test the assumption used in many prior studies that it is most likely the transition between 

home and work locations. With the ability to annotate the node types in people’s daily mobility 

networks, we can now dissect the general LBMs into more detailed ABMs. For example, the top 

5 two-node ABMs in Chicago and Greater Boston are illustrated in Figure 9 (a) and Figure 9 (b). 

Not surprisingly, the “Home-Work (noted as office)” motif was still the most prominent activity 

motif type. However, it accounted for only around 48% of the two-node mobility networks in 

both Chicago and Grater Boston. Some other two-node LBMs were considered significant in 

people’s daily activities, such as “Home-Urban Mix”, “Home-School”, “Home-College”, and 

others. 

 

 
(a) 

 
(b) 

 
Figure 9: Top 5 two-node ABMs in (a) Chicago and (b) Greater Boston. Home (H): orchid; Work/Office 
(W): medium aquamarine; School (S): dark salmon; Urban mix (U): light cyan; Transportation (T): light 
slate gray; College (C): rosy brown; Residential (R): royal blue; Shopping (Sh): olive drab. 
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However, a deeper examination into the multi-node (N > 2) activity networks revealed 

more diverse transitional activity patterns. A noticeable pattern is that some nodes within a 

multi-node LBM were of the same activity type (e.g. an example is illustrated in Figure 10). One 

explanation is that a person may have multiple work locations, visit multiple friends (at different 

residential addresses), or go to multiple shopping locations. The activity types of the nodes in the 

identified LBMs show the unique and diverse daily activities of individuals. From the 

perspective of seeking activity patterns in the form of ABMs, we can merge the intermediate 

nodes with the same activity type but still preserve the order of transitions in people’s daily 

activities. By applying this procedure, we identified 17 types of ABMs in Chicago and 21 in 

Greater Boston. Figure 11 illustrates the most recurrent ABMs in the two cities (two one-node 

ABMs were calculated separately). 

 

 

Figure 10: Illustration of the existence of multiple nodes at different locations with the same activity type 
in multi-node LBMs. Home (H): orchid; Work/Office (W): medium aquamarine; School (S): dark 
salmon; Shopping (Sh): olive drab. 
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(a) Chicago 
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(b) Greater Boston 

Figure 11: Most recurrent daily ABMs in (a) Chicago and (b) Greater Boston. The order is ranked by 
frequency (the one-node motif was calculated separately and is not plotted in the figure). Home (H): 
orchid; Work/Office (W): medium aquamarine; School (S): dark salmon; Urban mix (U): light cyan; 
Transportation (T): light slate gray; College (C): rosy brown; Residential (R): royal blue; Shopping (Sh): 
olive drab; Entertainment (E): pale goldenrod; Civic service (Se): gray; Other (O): wheat 
 

The percentages of the common daily ABMs in Chicago and Greater Boston are 

summarized in Figure 12. Most of the ABMs have similar behaviors between the two cities, 

except for a relatively larger difference in motif 11 (i.e., a two-node ABM representing home-

shopping activity). Nevertheless, these common ABMs describe over 57% (57.5% in Chicago 

and 58.3% in Greater Boston) of the transitional behaviors in daily activities in the two cities. 
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Figure 12: Percentages of common daily LBMs in Chicago and Greater Boston. H: home; W: 
work/office; S: school; U: urban mix; T: transportation; C: college; R: residential; E: entertainment; Se: 
civic service; Sh: shopping; O: others 
 
 Another major advantage of using geographic context-aware Twitter data to study 

activity patterns is that we can measure accurate spatial distances in the transition from not only 

one location to another (LBMs), but also from one type of activity to another (ABMs). For 

example, we calculated the average trip distances (𝑑𝑑𝑎𝑎�) in several two-node LBMs (Table 3). 

While 𝑑𝑑𝑎𝑎� between home and other activities are slightly shorter in Chicago than Greater Boston, 
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an interesting observation is that 𝑑𝑑𝑎𝑎� between home and school (H-S) is 4.52 km in Chicago and 

3.39 in Greater Boston. It suggests that on average people in Chicago take longer daily trips from 

home to school than people do in Greater Boston. Although the result should be verified by some 

official data or to be confirmed with future studies in other cities, it does provide a link to the 

spatial homogeneity of the distribution of urban infrastructures/land use (schools in this context) 

can impact the spatial distances in people’s daily LBMs in different urban settings. Further, we 

calculated the average total daily distance (𝐷𝐷𝑎𝑎�) associated with different ABMs grouped by 

nodes size. The results report a similar trend observed in the spatial distances associated with 

LBMs (1) the ABMs with more nodes accumulate a larger 𝐷𝐷𝑙𝑙�, and (2) Greater Boston has larger 

𝐷𝐷𝑎𝑎�   than Chicago in all scenarios. 

Table 3: The average trip distances and total daily distances associated with ABMs. Note that the 
distances are measured in km, and the percentage values correspond to the ones in Figure 12. 

 H-W H-S  H-Sh  H-T  
Two-
Node  

Three-
Node 

Four-
Node 

Five-
Node 

Six-
Node 

Seven
-

Node
+ 

Percentag
e     47% 26% 9% 3% 1% <1% 

Chicago 7.32 4.52 5.00 4.32 4.48  11.26  16.20  
20.6

8  27.29  31.06  
Percentag

e     46% 27% 8% 3% 1% <1% 

Boston 9.15 3.39 6.65 7.00 7.63  17.37  24.99  
33.5

1  48.00  61.01  
H: home; W: work/office; S: school; Sh: shopping; T: transportation 

5. Conclusions and Discussions 
The overarching goal of this study is to gain insights into people’s daily urban activity patterns. 

People’s daily activities are complex and vary by individuals. Existing studies using mobile 

phone call data to infer people’s daily activities have suggested that, collectively, people’s 

movements across the urban space can be well modeled, are highly predictable with a tendency 
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for people to return to previously visited locations, and most of the transitional behaviors in 

traversing from one activity location to another can be described by a set of distinct and recurrent 

mobility motifs. In this connection, the fundamental hypothesis of this study is that there are 

significant regularities in the transitions among people’s daily activities (i.e., activity patterns) 

despite the large variation in human activities (e.g., different individuals, different cities, and 

different dates).  

In this study, we proposed a mobility network approach to further examining detailed 

daily activity patterns in the urban environment. To ensure our findings are consistent across 

geographic space, the case studies were conducted in two major U.S. cities Chicago and Greater 

Boston. Geo-located Twitter data with high spatial accuracy were used to first track the locations 

and movements of individuals. The novelty of this study is the synthesis of geo-located tweets 

with detailed land use parcel maps to enhance the geographic context of the mobility dataset for 

inferring specific activities (e.g., home, work, and shopping activity). To ensure those activities 

were actively observed, we utilized a criterion to select active users for further analysis. A 

mobility network was constructed for every active user’s daily location history. For LBMs, the 

nodes in a network are visited activity locations, and the edges are movements transitioning from 

one location to another. For ABMs, the nodes are semantically labeled activity types, whereas 

the edges represent transitional behaviors traversing those activities. By analyzing the shape of 

the collective location histories of the active users, we identified preferential return patterns that 

confirm the existence of recurrent transitional behaviors among different urban activities. Further 

exploration into the isomorphic structure within the collection of daily mobility networks 

uncovered 16 types of unique LBMs, which described over 83% of the daily mobility networks 

in the two cities and were comparable to the ones from previous studies using mobile phone data 
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and travel surveys. With the detailed and semantically labeled transitions between each two 

activity types, we were able to further dissect the general location-based motifs into 16 common 

ABMs that described over 57% (57.5% in Chicago and 58.3% in Greater Boston) of the 

transitional behaviors in the daily activities in the two cities. Note that although the general 

activity motif patterns both LBMs and ABMs in Chicago and Greater Boston were similar, the 

spatial heterogeneity of urban land use can potentially contribute to the variations of spatial 

distances associated with different activity motifs grouped by nodes size. This study 

demonstrates that, by utilizing the combination of data sets capable of tracking people’s 

movements with high spatial accuracy and detailed land use parcels to enrich the geographic 

contexts of the recorded locations, we can gain further insights into revealing the unique activity 

motifs that form the fundamental elements embedded in complex urban activities.  

The ability to track people’s movement is critical for studying urban activity patterns. 

While mobile phone data and travel surveys are two popular data sources, we discussed the 

advantages and disadvantages of both data sources, focusing on data accessibility and 

spatiotemporal accuracy/granularity. For example, because of the low spatial accuracy of mobile 

phone data, it is difficult to engineer such a dataset for inferring people’s activities other than 

staying home or working, which is why prior studies have focused on primary mobility patterns 

(e.g., LBMs), where people’s visited locations can be inferred but the semantics/types of those 

locations are unknown). In terms of data accessibility and availability, the scalability of these 

datasets for different cities/regions is also challenging. Therefore, the combination of publicly 

accessible geo-located Twitter data and parcel-level land use maps provides a unique opportunity 

to examine not only LBMs but also to examine detailed ABMs. 
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It should be noted that there are limitations in using geo-located tweets to track people’s 

whereabouts and explore their activity patterns. First, although this study showed that Twitter 

user populations correlate well with the actual population at the census tract level in the two 

cities, the Twitter user population may not be a representative sample of the actual population 

with its particular demographic composition (Yin, Chi, and Van Hook 2018) and skewed 

popularity among younger people (Greenwood, Perrin, and Duggan 2016). Indeed, the prominent 

existence of the two-node ABMs, such as “Home-School” and “Home-College”, indicates this 

issue. Some studies have attempted to develop methods to make Twitter data more representative 

(Zagheni and Weber 2015), and others have explored the different demographic characteristics 

of human mobility patterns with geo-located Twitter data (Luo et al. 2016). However, until the 

representativeness of Twitter data can be addressed, identified activity patterns will likely not be 

fully generalizable to the whole population.  

Second, the methodologies developed in this study utilized geo-located Twitter data to 

track the movements of individuals. Ideally, the methods would work better for movement data 

capable of tracking people’s locations continuously, such as using GPS units. Both mobile phone 

call data and geo-located tweets are treated as proxies for tracking user locations. Owing to 

variations in people’s behaviors when using mobile phones or Twitter, the latent locations might 

not be recorded—hence, those activities were not considered. For example, suppose a user posts 

one tweet at home in the morning and another at work at noon; the whereabouts or activities of 

this user during the gap between tweets were unknown. Related to this, the temporal 

characteristics of the activity motifs in Chicago and Greater Boston were not explored in this 

study, which should be addressed and compared in future studies. Although imposing a strict 

criterion to select active users helps minimize the impact of missing latent locations, the included 
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population in the studies may skew toward people who are actively engaging in particular 

activities, such as making phone calls or tweeting. Therefore, methods that address such a 

situation should be employed in future studies. 

Finally, the synesis of geo-located Twitter data with parcel-level land use maps poses 

potential privacy concerns. On one hand, the high spatial accuracy enables us to examine 

detailed spatial and temporal activity patterns. On the other hand, those derived activity locations 

can expose where people live, work, and study, etc., which can raise significant privacy concerns 

of individuals. In this study, we have taken some precautions in processing the data, such as 

removing the Twitter user identities, reassigning IDs to the land use parcel, and using only the 

types of the land use parcels in the analysis. However, more widely accepted guidelines and 

practices should be developed for future studies involving observation of individuals with high 

spatial accuracy and temporal granularity.   
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