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Abstract: Automated tracking of physical fitness has sparked a health revolution by allowing
individuals to track their own physical activity and health in real time. This concept is beginning to
be applied to tracking of cognitive load. It is well known that activity in the brain can be measured
through changes in the body’s physiology, but current real-time measures tend to be unimodal and
invasive. We therefore propose the concept of a wearable educational fitness (EduFit) tracker. We use
machine learning with physiological data to understand how to develop a wearable device that
tracks cognitive load accurately in real time. In an initial study, we found that body temperature,
skin conductance, and heart rate were able to distinguish between (i) a problem solving activity (high
cognitive load), (ii) a leisure activity (moderate cognitive load), and (iii) daydreaming (low cognitive
load) with high accuracy in the test dataset. In a second study, we found that these physiological
features can be used to predict accurately user-reported mental focus in the test dataset, even when
relatively small numbers of training data were used. We explain how these findings inform the
development and implementation of a wearable device for temporal tracking and logging a user’s
learning activities and cognitive load.

Keywords: cognitive load; machine learning; wearable sensor; studying; learning analytics

1. Introduction

Monitoring engagement with learning materials in real time can be challenging. Many of us can
likely recall instances where we had to re-read a paragraph because we were thinking about something
else and had no recollection of what the paragraph said. We envision a system that helps learners
identify when they are not putting appropriate mental effort into learning, and believe that real-time
classification of one’s cognitive load could improve study habits. We describe the development and
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implementation of the Educational Fitness (EduFit) system, which utilizes physiological data from a
wearable sensor and machine learning to differentiate between different levels of cognitive load for
the user.

While the literature shows an abundance of research focused on applying the concept of cognitive
load, mental effort, or mental workload to different domains, the measurement of cognitive load has
remained rife with limitations throughout the educational literature [1,2]. Current popular measurement
techniques are limited by subjectivity and can interfere with regular activities [3], or require the use of
expensive, specialized equipment [4]. Recently, the use of basic physiological measures in learning
contexts has drawn renewed attention by researchers, perhaps in part due to the growing availability
of minimally invasive wearable sensors. For example, a decrease in heart rate between the beginning
and end of a 60-min class may suggest that students lose alertness and neurocognitive excitability [5].
Further, electrodermal activity (EDA) has demonstrated usefulness in distinguishing between engaged
and non-engaged students [6]. Recently, researchers used a multimodal approach, measuring EDA,
heart rate, body temperature, and blood volume pressure to capture a student’s reported learning
experience, and then examined these data in relation to satisfaction, perceived usefulness of the
learning experience, and performance measures [7]. However, present studies do not explore the
usefulness of physiological data for real-time classification of activity or reported cognitive load,
which would be necessary for a wearable sensor that is useful for tracking cognitive load. We therefore
describe the development, implementation, and validation of a non-invasive wearable multi-modal
physiological sensor for real-time tracking and logging of cognitive load during learning tasks.
In this article, we describe two studies. In the first study, we explore the efficacy of electrodermal
activity, skin temperature, and heart rate for classifying three activities, which are associated with
varying levels of cognitive load. In the second study, we evaluate the efficacy of these physiological
measures for classification of whether or not a learner is focused on a task.

2. Review of Literature

2.1. Theoretical Framework

It is widely accepted that humans engage their working memory to evaluate new information [8,9].
This puts a cognitive burden on the working memory, a construct commonly known as cognitive
load in the education literature, and working memory load or mental workload in other fields [10,11].
The overall premise of cognitive load theory is that the working memory only has a finite and limited
number of resources available at any point in time, and they should ideally be used for processing
the necessary information rather than distractions [8,9]. For the purposes of this paper, we refer to
cognitive load as the amount of mental effort being expended on the task.

According to cognitive load theorists, mental effort can be expended in different ways when
learning. Specifically, effort directed directly towards the learning task due to the complexity of the
learning materials is known as intrinsic cognitive load, of which germane cognitive load is a subtype
focused on the construction of mental models, whereas the mental effort directed towards learning that
is due to the way the materials are presented is known as extraneous cognitive load [8,12]. The goal
of instruction therefore is to minimize the extraneous load and moderate the intrinsic load to be at
an appropriate level for the learner so one does not exceed their working memory capacity when
completing the learning task [8,9,12].

2.2. Measuring Cognitive Load and Mental Workload

While cognitive load theory is conceptually relatable for many who design instruction, it is limited
by theoretical and practical measurement issues. Self-report and secondary task measures have been
the most commonly used methods. However, self-reports force the learner to stop the learning process
and respond to a survey instrument [3]. Similarly, secondary task techniques have the potential to
interfere with the primary learning task [13], meaning that they may have to be changed depending on



Sensors 2020, 20, 4833 3 of 14

how instruction is being provided [14], and they may be challenging to monitor depending on the task.
Real-time physiological measures, including electroencephalography (EEG) [15], eye-tracking [16],
and heart rate-related measures [4], avoid both of these problems but have often been viewed as
invasive and lacking sensitivity [4].

Differentiating between the different types of cognitive load has also been a persistent challenge,
and some have suggested that it may not be possible to distinguish between different load types [12].
As such, measuring overall cognitive load may be a more fruitful approach, and that is what some
physiological measures are viewed to measure [15,17]. Accordingly, in this study we view the
physiological data we collect as an indicator of overall cognitive load and do not claim to be measuring
specific types (e.g., intrinsic or extraneous load).

As noted, cognitive load and mental workload are similar constructs. Although physiological
measurement in learning or studying contexts is relatively new, it has been applied more widely in
other fields. Since the autonomic nervous systems automatically and unconsciously respond to mental
workload demands [18], physiological measures can be used as an index of workload [11]. While a
variety of measures have been used in the literature, we focus on skin temperature, heart rate, and EDA
in terms of galvanic skin response (GSR).

Skin temperature has been used as a non-intrusive measure of mental workload, although its use
in the literature is sparse. For example, [19] examined how facial skin temperature changed during
simulated and actual driving tasks, finding significant correlations between nose temperature and
a subjective workload measure. Meanwhile, in [20], heart rate predicted changes in cognitive load
correctly 62.5% of the time. In regards to GSR, [20] found that GSR could be used to classify mental
effort with 75% accuracy. Finally, [3] examined the use of GSR in relation to educationally relevant
tasks in math and reading. Their results showed that once the data were normalized, GSR could
discriminate between tasks of different difficulties. However, despite these successes, GSR results have
not always shown such promise [21].

As shown, a number of different physiological measures have been used to examine mental
workload in fields other than education (for reviews, see [22–24]). However, a recent systematic review
concluded that there was no one particular measure that may work well in all circumstances [24].
While multimodal measures have been used to predict cognitive load, few, if any, studies have extended
the predictive function to an actual learning task. As the ubiquity of wearable fitness sensors continues
to increase, it makes sense to explore the efficacy of these types of data for classification of cognitive
load in education contexts.

2.3. Using Physiological Data in Education Contexts

The use of physiological data in education contexts is relatively limited, especially when compared
to self-report approaches to measuring cognitive load, but some promising research does exist.
For example, researchers have shown that heart rate and EDA are promising features for classification
of mental engagement [5,6]. Specifically, in a study with 30 students using an Arduino-based sensor,
heart rate was shown to provide a measure of alertness and neurocognitive excitability [5]. Meanwhile,
Empatica E4 wearable sensor data from 24 students, 9 teachers, and 41 lectures showed that EDA can
provide a useful measure of emotional arousal, which is associated with engagement or non-engagement
in classroom contexts [6]. In addition, [25] examined EDA and skin temperature in relation to high
and low complexity tasks. Using wrist-worn wearables and survey methods, they found that mean
physiological scores did not differ by the complexity of the activity; however, EDA was positively
correlated with self-reported mental effort when individuals completed the high complexity task. Yet,
the low complexity task did not show the same significant correlation [25].

While these individual physiological measures show interesting results, only recently have
multimodal physiological measurements been applied in educational research. As such, relatively
few studies exist, but some have shown promising findings. For example, in a study of 31 students
from 93 class sessions, [7] equated measures of heart rate, EDA, body temperature, and blood
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volume pressure collected using the Empatica E4 to self-reported 7-point Likert measures of perceived
satisfaction, usefulness, and performance. Using temporal features within a support vector machine
with a polynomial kernel, predictions within one Likert scale point could be obtained using an average
of 25 min of data [7]. However, this study did not evaluate the data in real-time and did not focus on
cognitive load.

2.4. The Present Studies

As discussed, physiological data has been used extensively for measuring cognitive load outside
of educational contexts, yet the use of physiological data in education contexts has often been viewed
as problematic for a multitude of reasons. Researchers have recently begun exploring the relations
between physiological measures from wearable sensors and the learning process, but this work is
limited. Furthermore, we are unaware of any studies that have used multimodal physiological data to
predict cognitive load in real time, as would be required to create the cognitive load tracker we envision.

In this paper, we describe two studies that work towards a non-invasive, wearable sensor that
can help a learner self-regulate their learning process. The first study aimed to examine if EDA,
skin temperature, and heart rate are useful for the classification of activities hypothesized to represent
different levels of cognitive load. This work is needed to help validate the use of these measures for
multimodal cognitive load measurement. Building on these findings, the second study examined the
efficacy of these measures for the classification of a learner’s self-reported focus on a task. Together,
these studies provide a foundation for a wearable sensor that can monitor cognitive load using
physiological data that is easily obtainable from wearable fitness trackers.

3. Study 1

Since few studies have examined the use of wearable sensors for the monitoring of cognitive load
in learning contexts, and few studies have examined the use of different types of physiological data in
this context, it is important to first confirm the extent to which these measures are useful for classifying
activities associated with different levels of cognitive load. Above we discussed how few studies
have utilized multimodal measures in this regard. As such, in Study 1 we sought to examine the
extent to which three commonly used physiological measures, specifically Skin Temperature (TEMP),
EDA, and Heart Rate (HR), could be used together to classify activities representing varying levels of
cognitive load.

3.1. Methods

3.1.1. Measurement of Physiological Parameters

We collected participant data with the Empatica E4, an unobtrusive wrist-worn physiological
sensor. The E4 is similar to a traditional fitness tracker in design [26] and measures Blood Volume Pulse
(BVP), Heart Rate (HR), Interbeat Interval (IBI), Skin Temperature (TEMP), 3-Axis Acceleration (ACC),
and Electrodermal Activity (EDA). We focus on TEMP, EDA, and HR. EDA is the measurement of
electrical conductance of the skin, also called galvanic skin response (GSR), for detection of autonomic
nervous system arousal [27]. For this study, we used the amplitude of the participant’s EDA signal,
which was output directly from the E4 device. The device measured EDA and TEMP at 4 Hz. HR (1 Hz)
was calculated based on BVP (64 Hz). Since the respective activities, completed on the order of minutes,
served as the ground truth labels, we downsampled EDA and TEMP to 1 Hz in order to match the
HR sampling frequency. Although there was some loss of information in this downsampling process,
we found this preferable to upsampling, which would add more noise to the data.
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3.1.2. Transformation of Physiological Features

Before using statistical models and machine learning, we put all features onto the same scale similar
to [3]. With respect to our study design, this normalization process also needed to account for individual
baseline and variability differences in TEMP, EDA, and HR. We therefore used z-standardization,
which maps the features on a scale of standard deviations centered at the mean. In order to account
for individual baseline and variability, we mapped each participant’s features on a scale of his/her
standard deviation centered at his/her own mean across all trials. This ensured that each participant’s
values for TEMP, EDA, and HR accounted for his/her unique variability with respect to his/her unique
average value.

3.1.3. Experimental Design

In Study 1, we were interested in the efficacy of TEMP, EDA, and HR in classifying a participant’s
activity. We used three activities comprising different hypothesized levels of cognitive load (Table 1):
(1) deep cognition—a state associated with active problem solving like completing a math problem or
solving a puzzle; (2) leisured cognition—a state associated with passive cognitive activity like reading
a novel or browsing the internet; and (3) daydreaming—a state associated with lack of focus on a
particular task. To represent these different cognitive states, we asked participants to engage in three
activities (Table 1): (1) playing Sudoku without distractions, which represents an activity with high
cognitive load; (2) browsing the internet or checking e-mail, which represents an activity with moderate
cognitive load, and (3) sitting and doing nothing, which represents an activity with low cognitive load.

Table 1. Summary of the three tasks used in Study 1, with cognition state and hypothesized level of
cognitive load.

Cognition State Cognitive Load Associated Task

Deep Cognition High Playing Sudoku
Leisured Cognition Moderate Browsing the Internet

Daydreaming Low Sitting and Doing Nothing

Seven adults (4 male and 3 female), ranging from 27–38 years of age, participated in the study
(descriptive statistics in Table 2). Three of the participants ranged from 26–28 years of age, two of the
participants were 32 years of age, and one participant was 38 years of age. Each participant placed the
E4 band on the wrist approximately 3 cm below the base of the hand. After approximately 2 min of
wearing the E4, each participant was first asked to play a game of Sudoku at the difficulty level of their
choice. Immediately after finishing the Sudoku game, they were asked to spend 15–20 min checking
e-mail or browsing social media. After finishing this, they were asked to spend 10–15 min sitting and
doing nothing, with no external forms of engagement. Two of the participants did these three activities
twice, one participant did them 4 times, two participants did them 5 times, and two participants did
them 6 times. This resulted in a total of 30 trials for each activity across the 7 participants. On average,
each Sudoku session took 18 min and 16 s, each computer browsing session took 14 min and 41 s,
and each period of non-engagement lasted 13 min and 18 s. Across all subjects, trials, and activities,
this totaled 23 h and 7 min and 19 s of sensor data.
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Table 2. Descriptive statistics for each participant’s physiological measures across each activity in Study
1. N = number of measurements (1 measure per second), EDA = electrodermal activity, HR = heart
rate, and TEMP = body temperature.

EDA (µS) HR (Beats/Minute) TEMP (◦C)

Person Activity N Mean SD Mean SD Mean SD

1 Sudoku 1198 0.06 0.03 72.61 10.70 32.32 1.67
Browsing Internet 1273 0.04 0.02 81.37 18.26 31.96 1.92

Daydreaming 1359 0.05 0.01 68.55 7.68 31.16 1.53
2 Sudoku 9813 4.07 3.03 92.08 10.33 32.53 0.43

Browsing Internet 9074 3.27 2.19 92.24 12.32 32.52 0.38
Daydreaming 8860 2.81 2.68 88.74 12.90 32.55 0.33

3 Sudoku 4260 0.17 0.03 78.69 7.62 30.92 1.64
Browsing Internet 3900 0.19 0.05 73.42 8.55 30.92 1.58

Daydreaming 3229 0.19 0.08 73.50 8.15 31.56 0.60
4 Sudoku 2296 0.10 0.09 84.98 6.70 33.52 1.65

Browsing Internet 2562 0.14 0.08 80.96 3.87 32.54 0.99
Daydreaming 1735 0.09 0.01 89.97 3.85 34.49 0.78

5 Sudoku 2227 0.16 0.11 82.92 14.37 30.05 1.30
Browsing Internet 2169 0.11 0.06 74.94 8.83 33.01 0.62

Daydreaming 1804 0.05 0.04 71.89 11.35 31.93 2.53
6 Sudoku 2880 0.13 0.06 70.02 7.77 32.59 2.38

Browsing Internet 3600 0.14 0.05 68.92 8.64 32.70 1.94
Daydreaming 3420 0.14 0.08 74.29 7.60 32.06 2.61

7 Sudoku 10200 0.38 0.23 75.17 5.32 32.93 0.71
Browsing Internet 3840 0.39 0.25 80.10 16.35 32.65 0.42

Daydreaming 3540 0.43 0.44 73.85 6.25 32.31 0.89

3.1.4. Training and Testing of Classifiers

In order to understand how machine learning may be used in a physiological sensor designed
for detecting the type of activity, we utilized a variety of machine learning algorithms, which can
be distinguished into 3 types: (1) a constant model which uses the bias in the data as a predictor,
(2) baseline models, which are designed to be conceptually simple and relatively easy to interpret,
and (3) black box models, which contain many parameters and are comparatively difficult to interpret
but can build more complex models and tend to outperform the baseline models.

The constant model, the simplest possible model, which makes predictions based on the most
commonly occurring outcome, provided a lower bound for classification performance. Baseline models
included logistic regression (weak L1 regularization: C = 1000), naïve Bayes, k nearest neighbors
(Euclidean distance with k = 3), and decision tree (maximum depth = 4, no splitting of subsets
smaller than 5, minimum number of instances in leaves = 1). Black box models included multi-layer
neural network (sigmoidal activation function, 1 hidden layer with 100 neurons), support vector
machine (SVM) (sigmoidal kernel, cost = 1, epsilon = 0.01), AdaBoost (10 estimators, learning rate = 1),
and random forest (100 trees, no splitting of subsets smaller than 5). We used the scikit-learn toolbox in
Python to fit the models. In the interest of evaluating the robustness of the models with new data,
we used a shuffle-split process for validation, where 100 random samples were drawn with replacement
from the data. To obtain a liberal estimate of performance, we first drew 95% of the data within each
random draw to train the models, and then tested the models on the remaining 5% within each random
draw. To obtain a more conservative estimate, we drew 10% of the data within each random draw to
train the models, and then tested them on the remaining 90% of the data within each random draw.
Strength of classification of the models on the test dataset was assessed through the average area under
the receiver operator characteristic (ROC) curve (AUC), precision, recall, and F1 score, which is the
harmonic mean of precision and recall [28], across the 100 random draws.
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3.2. Results

Cognitive Task Prediction

Data from this study show that TEMP, EDA, and HR are useful for classifying a participant’s
cognitive task under both conservative and liberal assumptions related to the number of training data
available (Table 3).

Table 3. Classification performance of the test dataset. Models include the constant (outcome bias),
baseline models (k-nearest neighbors (KNN), logistic regression, naïve Bayes, decision tree), and black
box models (support vector machine (SVM), neural network, AdaBoost, and random forest).

Activity (Resting, Web,
Sudoku) Liberal (95% Training) Conservative (10% Training)

Model AUC F1 Precision Recall AUC F1 Precision Recall

Constant 0.49 0.22 0.16 0.40 0.50 0.22 0.16 0.39
K-Nearest Neighbors (k = 3) 0.97 0.93 0.93 0.93 0.89 0.84 0.84 0.84

Logistic Regression 0.52 0.23 0.44 0.41 0.36 0.28 0.41 0.41
Naïve Bayes 0.65 0.45 0.46 0.47 0.67 0.44 0.45 0.46

Decision Tree (depth = 4) 0.68 0.43 0.57 0.49 0.67 0.45 0.53 0.48
Support Vector Machine 0.50 0.31 0.33 0.32 0.44 0.28 0.31 0.29

Neural Network 0.79 0.61 0.61 0.61 0.33 0.45 0.47 0.47
AdaBoost 0.93 0.92 0.92 0.92 0.78 0.80 0.80 0.80

Random Forest 0.99 0.94 0.94 0.94 0.93 0.85 0.85 0.85

Of the baseline models, k-nearest neighbors (KNN) was the best performing (AUC = 0.89–0.97,
F1 = 0.84–0.93). The classification performance of the other three baseline models was moderate to
poor, with AUC values below 0.7 and F1 values below 0.5. Of the black box models, random forest
was the best performing (AUC = 0.93–0.99, F1 = 0.85–0.94), followed by AdaBoost (AUC = 0.78–0.93,
F1 = 0.80–0.92).

3.3. Discussion

We were surprised that the SVM and neural networks performed relatively poorly given
their capacity to model complex relationships between input features and the output classes,
with classification performance paralleling that obtained from the baseline models. This potentially
demonstrates the necessity of ensemble approaches such as AdaBoost and random forest for
classification of learning activities within this type of framework. Random forest performed quite well
even when very little training data were used (AUC = 0.93, F1 = 0.85), which demonstrates its utility
for providing useful labels even when relatively small numbers of data are available. This is significant
because many factors affect physiology, and it is often difficult to control a student’s environmental
circumstances within a learning or studying situation. All of these aspects add noise to the data,
and ensemble methods, such as AdaBoost and random forest tend to be robust to these types of noise
by building several weak rules that can factor in the different conditions under which a certain activity
or cognitive workload can occur. This is also a good place to point out that there is noise due to
imperfect control of the experiment itself, which mirrors what the training process for the EduFit
device for activity classification may entail. Namely since cognitive load was not reported directly by
participants, there is likely individual variation in the levels of mental effort put forth in the respective
activities. This seems particularly likely given that cognitive load can vary by individual due to their
prior knowledge or familiarity with a task [8]. We did not set specific constraints on what the person
was doing when browsing the internet, what she was thinking about when sitting and resting, or the
difficulty of the Sudoku puzzle. The differing performance of these classifiers may reflect the limitation
that we were not able to control the types of mental activities in which the participants were engaging,
and corresponding cognitive load, as they were sitting at rest or browsing the internet. An experiment
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that utilizes self-report measures of cognitive load in response to specific tasks may help overcome this
limitation and improve model classification performance.

4. Study 2

The results from Study 1 showed that the amplitude of a person’s electrodermal activity,
body temperature, and heart rate could be used to effectively classify activities representing varying
levels of cognitive load. However, a limitation of this work was that there was not a self-reported
measure from the participants for comparison. To address this limitation, in the second study, we were
interested in the efficacy of TEMP, EDA, and HR for predicting self-reported mental focus in real time.

4.1. Methods

4.1.1. Experimental Design

We used the Empatica E4 for data collection, and measurement and transformation of the
physiological features was similar to Study 1. Given the efficacy of TEMP, EDA, and HR for predicting
a participant’s activity in Study 1, the purpose of the experimental design in Study 2 was to obtain a
self-report measure of mental focus from each participant in the context of a pre-defined set of activities
(descriptive statistics in Table 4). Each participant completed similar activities while wearing the
E4, and were asked to rate their level of mental focus after each activity. Study 2 involved 7 adult
participants—5 female and 2 male. Four of the participants were 18–19 years of age, and one participant
was 23 years of age. The other two participants were 39 and 49 years of age, respectively.

Table 4. Descriptive statistics for each participant’s physiological measures across the activities in Study
2. N = number of measurements (1 measure per second), EDA = electrodermal activity, HR = heart
rate, and TEMP = body temperature.

EDA (µS) HR (Beats/Minute) TEMP (◦C)

Person Focused N Mean SD Mean SD Mean SD

1 No 60 0.19 0.04 98.18 15.36 31.84 0.08
Yes 514 0.22 0.02 74.74 7.05 32.29 0.13

2 No 0
Yes 855 0.09 0.03 97.94 18.28 33.68 0.43

3 No 117 0.07 0.01 80.29 4.37 30.85 0.06
Yes 880 0.09 0.01 75.10 5.03 30.48 0.18

4 No 176 0.04 0.02 89.62 16.05 29.16 0.21
Yes 583 0.05 0.02 90.47 8.59 30.69 1.44

5 No 0
Yes 475 0.20 0.07 79.36 9.74 32.33 0.15

6 No 293 0.38 0.08 71.40 10.63 33.53 0.35
Yes 250 0.42 0.05 80.45 11.80 33.50 0.12

7 No 653 0.11 0.03 96.29 19.11 33.80 0.27
Yes 238 0.06 0.02 101.41 13.67 33.38 0.58

Using Qualtrics survey software, each participant was asked to complete five puzzles developed
by the American Alzheimer’s Association, which the participants reported ranged in difficulty from
extremely easy to extremely difficult. The five puzzles took participants an average of 10.6 (SD = 4.1)
minutes to complete. Completion times ranged from 6.1 to 16.6 min. A total of 85 min of data were
collected, which comprised a single trial for six of the participants, and two trials for one participant.

Before beginning the puzzles, each participant was asked to wear the Empatica E4 device for
approximately 2 min. We placed the E4 band on the wrist approximately 3 cm below the base of the
hand. After the participant completed each puzzle, she was asked to rate the level of mental focus
given to the puzzle (not focused, somewhat focused, or focused). Since our interest is in a device that
can detect a state of high cognitive load, we coded a report of high focus as ‘1′ and moderate focus or
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lack of focus as ‘0′ (reported in Table 4). Two of the participants (Table 4) indicated that they were
focused the entire duration of the experiment. Although this lack of variance in the outcome would
contraindicate successful training of a device on that single participant, we elected to retain these data
since our training and testing procedure was not stratified at the participant level. These participants
followed the experimental procedures, and we were interested in using as many data as possible in the
classification models.

4.1.2. Training and Testing of Classifiers

We utilized the bias in the data, four baseline models, and four black box models, to classify each
participant’s self-reported mental focus (0 = not focused; 1 = focused).

Baseline models included logistic regression (weak L1 regularization: C = 1000), naïve Bayes,
k nearest neighbors (KNN) (Euclidean distance with k = 3), and decision tree (maximum depth = 4,
no splitting of subsets smaller than 5, minimum number of instances in leaves = 1). Black box models
included multi-layer neural network (sigmoidal activation function, 1 hidden layer with 100 neurons),
support vector machine (SVM) (sigmoidal kernel, cost = 1, epsilon = 0.01), AdaBoost (10 estimators,
learning rate = 1), and random forest (100 trees, no splitting of subsets smaller than 5).

Since an individual’s actual level of cognitive load within a particular activity was not quantified
in Study 1, the self-report measure for mental focus collected in Study 2 made way for an evaluation
of how cognitive load affects a person’s TEMP, EDA, and HR. We began with studying the logistic
regression model to understand the relationship between the physiological features (TEMP, EDA,
and HR) and self-reported focus. This included the relative importance of each of the features as well
as the direction of the relationships. We used binary logistic regression with a multi-level modeling
approach to explore and control for individual cluster effects [29]. Using SPSS 21.0, we first fitted a
main effects model that included TEMP, EDA, and HR as predictors for the outcome of focus. Next,
we fitted an intercept-by-person model, which allowed each participant to have a unique model
intercept while constraining the effects of TEMP, EDA, and HR to be similar across participants. Third,
we fitted an intercept- and trend-by-person model, which allowed each participant to have both a
unique intercept and unique trends. We evaluated the main effects using odds ratios with respect to
the best fitting model (95% confidence). The odds ratio was defined as the effect of a one standard
deviation increase in a predictor on the odds of reporting a high level of focus. Significance of the odds
ratio was evaluated at the 95% confidence level.

We used the scikit-learn toolbox in Python to fit the machine learning models. As described
previously for Study 1, in the interest of evaluating the robustness of the models with new data, we used
a shuffle-split process for validation, where 100 random samples were drawn with replacement from
the data. A liberal estimate of model performance was obtained by drawing 95% of the data within
each random draw to train the models, and then testing the models on the remaining 5% within each
random draw. To obtain a more conservative estimate, we drew 10% of the data within each random
draw to train the models, and then tested them on the remaining 90% of the data within each random
draw. The liberal approach represents a scenario where there are many data from each individual to
train the classifier. The conservative approach represents a situation where there are relatively few data
available, and where predictions for one individual may need to be made based on another individual’s
data. Strength of classification was assessed through the area under the receiver operator characteristic
(ROC) curve (AUC), precision, recall, and F1 score, which were averaged over the 100 random draws.

4.2. Results

4.2.1. Statistical Modeling and Inference for Feature Importance

The logistic regression model containing only the main effects of EDA, HR, and TEMP fitted
the data significantly better than simply using the outcome bias as a predictor (χ2 = 28.79, df = 3,
p << 0.001). Allowing the outcome bias to change between participants (χ2 = 2527.09, df = 10, p << 0.001)
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significantly improved model fit over the model with just the main effects (difference χ2 = 2498.30,
df = 7, p << 0.001). A model allowing both model bias and trends to change between participants
(χ2 = 4224.09, df = 31, p << 0.001) improved model fit even further (difference χ2 = 1697.00, df = 24,
p << 0.001). This may demonstrate the role that individual differences play in understanding how the
body reacts to changes in cognitive load. It may also be demonstrative of differences in how individuals
perceive their own state of mental focus, which may affect their self-reports.

When these individual differences were accounted for, the model indicated an increase in heart
rate with increased mental focus (Table 5). A 1 standard deviation increase in an individual’s heart
rate was found to increase the odds of being in a focused state 1.4 times (OR = 1.39). Conversely,
body temperature and EDA were found to decrease with increased cognitive load. A 1 standard
deviation increase in body temperature and EDA reduced the odds of reporting a focused state by 2.6
times (OR = 0.39) and 4.2 times (OR = 0.24), respectively. These values (Table 5) suggest that EDA and
TEMP are relatively important predictors in comparison to HR when predicting mental focus on a task.

Table 5. Binary logistic regression model for predicting a user’s reported state of focus based on EDA,
body temperature, and heart rate. This model controls for variations in each participant’s intercepts
and trends (χ2 = 4224.09, df = 31, p << 0.001).

Variable B SE χ2 (df = 1) p-Value OR

EDA −1.424 0.114 157.288 0.000 0.241
TEMP −0.954 0.098 94.613 0.000 0.385

HR 0.332 0.111 8.941 0.003 1.394

4.2.2. Prediction of Self-Reported Mental Focus

When moving to the target variable of user-reported mental focus, we observe a similar trend as
in Study 1 in terms of the classifiers which perform well, and those that struggle with classification
(Table 6). Of the baseline models, KNN performs best (AUC = 0.81–0.87, F1 = 0.79–0.80). The similarity
in classification performance under both conservative and liberal assumptions suggests that KNN
may also perform well with limited data. Although it does not perform as well as KNN, the same can
be said for the decision tree (depth = 4, AUC = 0.71–0.73, F1 = 0.74–0.75). As with classification of
activity in Study 1, the ensemble methods provided the best performance for classifying user-reported
mental focus. With limited data, the random forest classifier performed similarly to KNN (AUC = 0.85,
F1 = 0.81). However, its performance improved when 95% of the data were used for training
(AUC = 0.96, F1 = 0.90).

Table 6. Classification performance of the test dataset. Models include the constant (outcome bias),
baseline models (k-nearest neighbors (KNN), logistic regression, naïve Bayes, decision tree), and black
box models (support vector machine (SVM), neural network, AdaBoost, and random forest).

Reported Focus (Yes/No) Liberal (95% Training) Conservative (10% Training)

Model AUC F1 Precision Recall AUC F1 Precision Recall

Constant 0.46 0.64 0.56 0.75 0.50 0.64 0.56 0.75
K-Nearest Neighbors (k = 3) 0.87 0.80 0.80 0.80 0.81 0.79 0.79 0.79

Logistic Regression 0.54 0.64 0.56 0.75 0.52 0.64 0.69 0.75
Naïve Bayes 0.68 0.64 0.56 0.75 0.66 0.66 0.68 0.74

Decision Tree (depth = 4) 0.73 0.75 0.81 0.80 0.71 0.74 0.74 0.77
Support Vector Machine 0.51 0.61 0.61 0.61 0.53 0.64 0.62 0.67

Neural Network 0.54 0.64 0.56 0.75 0.52 0.64 0.68 0.75
AdaBoost 0.86 0.90 0.90 0.90 0.72 0.78 0.78 0.78

Random Forest 0.96 0.90 0.90 0.91 0.85 0.81 0.81 0.82
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4.3. Discussion

In light of the challenge of controlling the level of a person’s focus on a specific activity in
Study 1, we accompanied specific tasks with the participant’s self-reported measures of mental focus
in this study. It is interesting that the strongest classifiers for user-reported mental focus (Study 2)
were very similar to those for type of activity (Study 1). Specifically, the ensemble models were the
best-performing of the black box models, with random forest providing the strongest classification
performance (AUC = 0.85–0.96, F1 = 0.81–0.90). Although KNN was the best performing of the baseline
models (AUC = 0.81–0.87, F1 = 0.79–0.80), we were surprised that a simple decision tree (depth = 4)
also performed moderately well and was robust to limited data (AUC = 0.71–0.73, F1 = 0.74–0.75),
which may suggest that this type of model would be useful in the early stages of training an individual’s
EduFit device.

Logistic regression gives direct insight into the relative importance of the features by telling us
how a standard deviation of change in one feature affects the outcome while holding the other features
constant. The logistic regression model (Table 5) suggested that EDA was the most important feature
(χ2(1) = 157.3, OR = 0.24) followed by TEMP (χ2(1) = 94.6, OR = 0.39). Although statistically significant
(χ2(1) = 8.9, OR = 1.39), HR was of lesser importance. This yields insight into the general trends on
how mental focus was manifested physiologically after controlling for individual differences. Given
the large individual differences, these trends are not likely to provide a basis for strong classification.
However, these general trends may be useful as a starting point, or informative prior, in the training
of an individual’s device. The fact that decreased body temperature and EDA were associated with
mental focus in our data suggests that concentration on a mental task is associated with a state of
relaxation [6,30]. The association of mental focus with increased heart rate derived from the data
suggests that these participants concurrently experienced a higher level of mental alertness as they
were focused on the task [5]. Bringing this together, we can characterize user-reported focus on a task
as a state of emotional and physical relaxation accompanied by mental alertness, which (simplistically)
is expressed physiologically by decreased body temperature and EDA accompanied by an increase in
heart rate.

5. Overall Discussion and Limitations

Just as physical fitness trackers have revolutionized the culture around physical health and exercise,
the EduFit system may revolutionize studying by improving one’s awareness of unique study habits,
including the level and duration of cognitive load used during study sessions. Although previous
studies have shown that the concept of a fitness sensor to monitor studying is promising [5–7], no study
has shown strong classification performance using the real-time measures that can be collected from
ubiquitous wearable technology. We used the Empatica E4 similarly to [6,7], but the data suggest that
any wearable technology that collects accurate and repeatable real-time measures for heart rate, EDA,
and body temperature can be used to provide useful predictions for both the type of activity in which
a student is engaged (Study 1) as well as whether or not the student is focused on a task (Study 2).

Automated feedback provided by fitness sensors has enabled people to track their exercise,
lending a measure of accountability to their physical health. In the same way, when studying, it is
important for a student to get feedback on whether or not she is actually engaged in a task and studying
effectively. It is well-known that this metacognition is essential to effective personal development and
learning [31], and real-time feedback provided by this type of wearable technology may help users
develop the necessary personal awareness needed to study more effectively.

Many aspects of implementation of this type of technology are straightforward. Similar to current
fitness trackers, data from the wearable sensor can be exported to a server for processing, and then
sent back to the user’s smartphone where graphics such as charts and tables representing the level of
cognitive load and temporal trends can be presented to the user (Figure 1).
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Figure 1. Conceptual diagram of the EduFit system, including the user, the wearable sensor,
the smartphone app, and a web server.

However, the models and relationships are less straightforward than with traditional fitness
trackers. Models using accelerometer data to quantify magnitude and duration of movement, and those
using heart rate to infer the aerobic activity of a person of specific gender and age, are relatively
straightforward in comparison to quantifying cognitive load. Many confounding factors deteriorate
these models, including the uniqueness of how we think and engage with different tasks, and react
physiologically to our thought processes. To add further complexity, we have differences in how
we interact with other aspects of our learning environments that are external to the task. Finally,
these factors lead to errors in the training process itself. For example, our perceptions of whether or not
we are focused will shift from person to person, and even from day to day. The extent to which this
happens will affect any classifier trained with user-report data. In lieu of user-reports, observational
data could be used to infer whether or not a person is focused. However, this would then contain
observer error, which would likely be even greater than self-report error unless the observer is both
expertly trained and knows the subject of observation well. Another option would be to go back
to a design like Study 1 and thoughtfully link specific activities to specific mental demands. It may
be straightforward to infer that completing a task like writing an essay or solving a math problem,
which is aligned to a person’s ability level, would require mental focus. However, inferring that a task
does not solicit mental focus is more challenging unless the participant self-reports it. For example,
a person appearing to sit and do nothing may be daydreaming, or he may be thinking about a complex
problem involving a higher level of cognitive load.

Although these questions of experimental design and causation pertaining to reliably training
a system like EduFit will not go away anytime soon, we consider it promising that both Study 1,
which relied on a person’s observed activity, and Study 2, which relied on self-reported mental focus,
both demonstrated strong classification using KNN and the ensemble models, even in the case of
limited training data. Given the limitations, we feel an effective way to start with this technology is
to rely on user-reported data from the outset (Figure 1). We envision that in the beginning stages of
implementation of EduFit with an individual, the user will control much of the labeling, including
the types of activities of engagement as well as perceived level of cognitive load, thereby building a
personalized workload monitoring system. These data can then be utilized to iteratively tweak the
classification model so that it provides continually stronger predictions of the individual’s learning
activities and cognitive load over time.
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