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Abstract

Here we present major element, trace element, and oxygen isotope data for garnet
from an amphibolitized eclogite block from Ring Mountain, Franciscan Complex,
California, USA. Garnetite veins 1-5 cm thick are laterally continuous up to 10 m within
an Mg-rich blackwall zone of the eclogite block. Complex major and trace element
zoning patterns reveal multiple stages of garnet growth in both the matrix and garnetite
veins. Similarities in major and trace element zoning between matrix and vein garnet
suggest that crystallization of the garnetite veins began toward the end of matrix garnet
core growth, and continued throughout the garnet growth history of the rock. Oscillatory
zoning in rare earth elements suggests garnet growth in pulses, with matrix-diffusion
limited growth in between pulses. Oxygen isotope analyses of matrix and vein garnet
have a range in 8'®0 values of 5.3-11.1 %o. Differences in 5'%0 values of up to ~4 %o
between garnet core and rim are observed in both the matrix and vein; garnet cores range
from 9.8—11.1 %o (median 10.4 %o), garnet mantles range from 8.3—10.0 %o (median 9.7
%o0), and garnet rims range from 5.8—7.8 %o (median 6.7 %o). Late-stage vein
crystallization appears as a garnet “cement” that fills in a network of small (typically 5—
50 um) garnet cores, and likely crystallized from an amorphous phase. The low §'%0
values of this latest stage of garnet growth are consistent with interaction with
serpentinites, and likely represent the physical incorporation of the eclogite block into the

serpentinite matrix mélange.

Keywords: garnetite; trace elements; fluids; subduction zones; mélange
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1. Introduction

Many minerals record information about the pressure (P), temperature (7), time
(7), composition (X), and deformation (D) history of rocks. Of these, garnet is one of the
most ubiquitous. Numerous workers have used trace element (e.g., Hickmott et al. 1987;
Otamendi et al. 2002; Pyle and Spear 2003; Yang and Rivers 2004; Skora et al. 2006;
Rubatto et al. 2020) and stable isotope (e.g., Kohn and Valley 1994; Jacob 2004; Page et
al. 2010, 2014; Russell et al. 2012; Martin et al. 2014; Rubatto and Angiboust 2015)
compositions in garnet to unravel rock-forming processes in subduction zones and other
metamorphic environments. The distribution and zoning of rare earth elements (REE) in
garnet have been used widely to track changes in the reactive assemblage during garnet
growth (Konrad-Schmolke et al. 2006, 2008; Moore et al. 2013), and interpret
geochronology in the Lu-Hf and Sm-Nd systems (Anczkiewicz et al. 2007; Kelly et al.
2011; Smit et al. 2013; Cruz-Uribe et al. 2015).

In situ analyses of oxygen isotope ratios in garnet have been extensively used to
elucidate fluid histories in metamorphic rocks (e.g., Russell et al. 2012; Martin et al.
2014; Page et al. 2014; Rubatto and Angiboust 2015; Vho et al. 2020b), including during
extreme metamorphic events (e.g., Vielzeuf et al. 2005; Page et al. 2010). Many orogenic
eclogites show minimal core-rim zoning in 8'*0, with core-rim variations of ~1.5-2.5 %o
(Russell et al. 2012). However, core-rim variations in 8'30 on the order of 3—10 %o have
been reported in high pressure garnet (Errico et al. 2013; Martin et al. 2014; Page et al.
2014, 2019; Rubatto and Angiboust 2015) and are interpreted as records of metasomatic

fluid interactions.
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The focus of this study is the geochemistry of garnetite veins (Fig. 1) in an
amphibolitized eclogite from the Tiburon Peninsula, Franciscan subduction complex,
California. We use major and trace element zoning in conjunction with oxygen isotopes
in garnet to track the origin and evolution of fluids during mélange formation. Matrix
garnet cores and initial vein chemistry suggest that early fluids were internally-derived,
whereas lower-6'%0 vein garnet and matrix garnet rims point to an external fluid source,
likely coincident with the breakup of the high-grade block and incorporation into the
serpentinite mélange.

The subduction interface is a critically important region whereby the physical and
chemical mixing of subducted oceanic crust, slab-top sediments, and the mantle wedge
promotes the formation of hybrid, or mélange, rocks (Cloos and Shreve 1988; Bebout and
Barton 2002; Miller et al. 2009; Marschall and Schumacher 2012). One of the
characteristic features of many mélange zones is the formation of a block-and-matrix
texture, which preserves often high-grade blocks within serpentinite, chlorite, and/or
sedimentary matrix. The reaction rinds on high-grade blocks are often intensely hydrated
zones consisting of amphibole, mica, and epidote (Sorensen and Grossman 1993;
Penniston-Dorland et al. 2010; Bebout and Penniston-Dorland 2016). In the Franciscan,
and elsewhere, these reaction rinds are typically Mg-rich and are dominated by actinolite,
talc, and high-Si white mica, and have been interpreted to be the result of metasomatism
associated with the serpentinization of ultramafic rocks within the subduction channel

(Nelson 1995; Catlos and Sorensen 2003; Horodyskyj et al. 2009).

1.1 Geologic setting and sample description
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The Jurassic Franciscan Complex of coastal California consists of high-grade
blocks of amphibolite, eclogite and blueschist within a tectonic mélange composed
primarily of serpentinite and shale (Wakabayashi 1990). Most Franciscan high-grade
blocks are proposed to have counter-clockwise pressure-temperature (P—7) paths, with
early epidote-amphibolite-facies metamorphism followed by peak eclogite-facies
metamorphism and finally blueschist overprinting (Wakabayashi 1990; Tsujimori et al.
2006; Page et al. 2007). Eclogite blocks from Ring Mountain (Tiburon Peninsula) record
peak pressures of 2.2-2.5 GPa and temperatures of 550-620 °C, followed by blueschist-
facies overprinting between ~1-2 GPa and ~300-500 °C (Tsujimori et al. 2006).
Amphibolite blocks generally fall into two categories: those that were early amphibolites
later overprinted by eclogite- and then blueschist-facies assemblages (Wakabayashi 1990;
Tsujimori et al. 2006), and eclogites that were overprinted by amphibolite and then
blueschist-facies assemblages (Mulcahy et al. 2018). This second type of amphibolite
may indicate a clockwise P—T history (Mulcahy et al. 2018).

Samples RM-1C 13TIB3 are from an amphibolitized eclogite block ~15 x 30 m in
size from the Ring Mountain locality on the Tiburon Peninsula (IGSN: IEOMGO0010).
This high-grade block is found within a serpentinite matrix mélange (Brothers 1954; Bero
2014) and is the same block from which sample EA (IGSN: IESRM0002) was reported
by Mulcahy et al. (2018). Mulcahy et al. (2018) reported garnet Lu-Hf ages for matrix
garnet with a minimum age of initial garnet growth of 166 + 1 Ma and a maximum age of
final garnet growth of 155 = 1 Ma. They also reported zircon U-Pb weighted mean ages
of 176 = 4 Ma for zircon enclosed within garnet, which is interpreted as the timing of the

eclogite formation, and 160 + 4 Ma for zircon within the matrix, which records the
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amphibolite overprint (Mulcahy et al., 2018). Though noted by the authors, Mulcahy et
al. (2018) specifically did not sample the garnetite veins in this block for geochronology.
Samples RM-1C and 13TIB3 are from an amphibolitized zone of the eclogite
block. The primary phases are garnet, calcic amphibole, omphacite, high-Si white mica,
apatite, zoisite, and rutile. Matrix rutile is partially altered to titanite, and hornblende is
partially replaced by glaucophane. Euhedral titanite is also present in the matrix in
association with chlorite and is interpreted to be part of the late blueschist overprint (Fig.
S1). Garnet occurs both as matrix porphyroblasts (2—5 mm) and as small grains (5-50
um) in thick (1-5 cm) garnetite veins that are laterally continuous up to ~10 m across the
outcrop (Fig. 1a—d). Garnet in the garnetite veins shows clear core, mantle, and rim zones
in BSE (Figs. 1h, S3), and the rims of the garnet form a “cement” that links together the
interiors of the vein garnet grains (Fig. 1g). In the case of the garnetite vein analyzed in
13TIB3 (Fig. 1d), the rim “cement” also makes up a low-BSE zone at the edge of the
vein. A medium-sized (hundreds of um) population of garnet occurs at the edges of the
veins; these are henceforth referred to as vein-edge garnet (Fig. le, f). Many of the vein-
edge garnet grains have square or rectangular cross sections (Figs. 1, 2, S5, S8, S10).
Garnetite veins consist primarily of garnet (95 % by volume) with minor amounts of
rutile, white mica, amphibole, zircon, and sulfides (chalcopyrite and pyrrhotite). The
garnetite veins themselves are zoned chemically, as evidenced by the difference in color
across the vein (Figs. 1b, 1c, S2, S7). All of the garnet grains in this study contain zones
that exhibit optical anisotropy (birefringence); this is particularly noticeable in the vein

and vein-edge garnet (Fig. 2a, b).
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2. Analytical methods

2.1 Electron beam instrumentation

Garnet major element maps for RM-1C Grt2, Grt3, Grt4, and 13TIB3 GrtD, GrtG,
were produced using an EDAX Pegasus energy dispersive spectrometry (EDS) system on
the Tescan Vega Il XMU scanning electron microscope at the University of Maine.
Conditions for EDS maps were 20 kV accelerating voltage with a probe current of ~500—
700 nA, and a dwell time of 100 ms. Garnet major element maps for RM-1C Grt5 and
Grt6 were produced by electron probe microanalysis (EPMA) using a CAMECA SX100
at Rensselaer Polytechnic Institute with an accelerating voltage of 15 kV using a focused
beam, a beam current of 100 nA, a dwell time of 0.03 s, and a step size of 2 um. Major
element maps were processed using XMapTools in order to correct for intensity drift
during map acquisition (Lanari et al. 2014, 2018). Final images were processed using
Imagel.

Major element concentrations in garnet, amphibole, and white mica in sample
RM-1C were determined by EPMA using a CAMECA SX100 at Rensselaer Polytechnic
Institute. Major element concentrations in garnet in samples RM-1C and 13TIB3 were
determined by EPMA using a CAMECA SX100 at the University of Michigan. A
focused beam was used with an accelerating voltage of 15 keV and a beam current of 20
nA for analyses on both instruments. Calibration was done using natural and synthetic
silicate and oxide standards, and a CAMECA PAP-type correction was applied. Dwell
times for Mg, Al. Cr, V, Mn, and Si were 20 s on peak and 10 s each on high and low
backgrounds, and for Ti and Fe were 10 s on peak and 5 s each on high and low

backgrounds. Backgrounds were measured at every point.
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2.2 Laser ablation inductively coupled plasma mass spectrometry

Trace element concentrations in garnet were determined by laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) at the University of Mainz,
Germany (sample RM-1C), and the University of Maine, USA (sample 13TIB3). Values
for reference glasses were taken from the Max Planck Institute GeoReM database
(http://georem.mpch-mainz.gwdg.de/, Application version 27, Jochum et al. 2005).
Isotopes of elements such as Al, Ca, Ti, Zr, and La were monitored in individual time-
resolved signals to avoid inclusions in garnet during data processing. Ablation and
processing methods are given below, with conditions for analyses done at UMaine given
in parentheses where different than those at the University of Mainz.

Instrumentation at the University of Mainz consisted of a New Wave Nd:YAG
213 nm laser ablation system equipped with a large format ablation cell coupled to an
Agilent 7500ce quadrupole ICP-MS (Jacob 2006). The University of Maine MAGIC Lab
(MicroAnalytical Geochemistry and Isotope Characterization Laboratory) housed an ESI
NWR193YC 193 nm laser ablation system equipped with a TwoVol2 large format
ablation cell, coupled to an Agilent 8900 ICP-MS/MS. Garnet was ablated using 12 (15)
um round spots with a beam energy density of ~7 (2.2) J/cm? and a repetition rate of 20
(5) Hz using He as the carrier gas. Each analysis consisted of 20 s (15 s) background
measurement during laser warmup, 20 s (15 s) of ablation, and 10 s of washout. The
following isotopes were monitored: 2*Mg, 2’Al, 2°Si, **Ca, (*’Sc), 4’Ti, ¥Mn, (*’Fe), ¥Y,
27Zr (Mainz only), '*°Ce (Mainz only), '#!Pr, 1%Nd, 4’Sm, !33Eu, '%’Gd, '*°Tb, 6Dy,

165Ho, 1Er, 19Tm, !72YDb, !7>Lu. Dwell time for all isotopes was 10 ms, except for '’Sm,
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153Eu, 1%7Gd, and '°Lu at the University of Mainz (30 ms). For calibration, NIST SRM
610 (GSD-1G) was analyzed at the beginning and after every 15-50 unknowns. Time-
resolved signals were processed using the Trace Elements IS data reduction scheme in
Tolite v3.63 (v3.75) (Paton et al. 2011) using »°Si as the internal standardization element
based on microprobe values and NIST SRM 610 (GSD-1G) as the calibration material,
applying the reference values of Jochum et al. (2011). Reference glasses USGS BCR-2G
and GSD-1G (BHVO-2G) were run as quality control materials; measured concentrations
were indistinguishable from reference values within uncertainties (see Online Resource 2
Table S1 for quality assurance/quality control data). Measured concentrations for BCR-
2@ are the same within 1 S.E. analytical uncertainty for the Mainz and Maine laboratories
(Tables S1, S2).

Trace element maps of Yb, Dy, and Eu of a vein-edge garnet (Grt7) in sample
RM-1C were collected at the University of Maine. The mapping setup consists of the ESI
dual concentric injector (DCI) fast washout tubing and ICP-MS torch. The He carrier gas
flow rate was 1.1 L/min; all other ICP-MS parameters were the same as for spot analyses.
A 5 x 5 um square spot was rastered in parallel lines across the garnet with a scan speed
of 62 um/s, a beam energy density of 6 J/cm?, and repetition rate of 150 Hz, for a total
acquisition time of ~1 hr 40 min. The total ICP-MS duty cycle was 80 ms (counting times
were 1 ms on Si, 30.4 ms on Eu, 14 ms on Dy, and 19 ms on Yb), which was
synchronized to the laser pulse width of 40 ms, resulting in 2 laser pulses per duty cycle.
This synchronization of ICP-MS and laser parameters was optimized based on Van
Malderen et al. (2018) and van Elteren et al. (2019), and resulted in a pixel size of 5 x 5

um for trace element maps. Two lines of glass NIST SRM 610 were rastered using the

10
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same conditions as garnet at the beginning and end of the garnet data collection. Time
resolved signals were processed using the Trace Elements DRS in Iolite4 (v4.4.4) using
2Si as the internal calibration element and NIST SRM 610 as the calibrant material. An
average concentration of 17.5 wt % Si was applied to the entire map; thus, the
concentrations in other minerals in the map are not the true concentrations for those
minerals, but the concentrations in garnet are fully quantified. Initial trace element maps
were produced using CellSpace in Iolite 4 (Woodhead et al. 2007; Paton et al. 2011; Paul

et al. 2012). Final maps were processed in XMapTools (Lanari et al. 2014, 2018).

2.3 Secondary Ion Mass Spectrometry (SIMS)

Thin sections of samples RM-1C and 13TIB3 were cut into 25 mm rounds for
oxygen isotope analysis by ion microprobe. Target grains were within 5 mm of the center
of the mount. A small hole (~0.5 mm) was drilled near the center of each round, and
multiple pieces of garnet oxygen isotope reference material UWG-2 (8'30 = 5.80 %o
VSMOW, Valley et al. 1995) were embedded in epoxy in the hole and then polished until
they were co-planar with the sample surface. Locations in garnet cores, mantles, and rims
were chosen based on zoning in BSE images and major and trace element zoning.

Oxygen isotope ratios were determined using a CAMECA ims-1280
multicollector ion microprobe at the WiscSIMS Facility at the University of Wisconsin-
Madison (Kita et al. 2009; Valley and Kita 2009). Samples were cleaned and gold coated
prior to analysis. A 2-3 nA Cs+ primary ion beam with 20 kV total accelerating voltage
was focused on the sample surface with a beam diameter of ~12 pm. Ions for °O-, 'OH-

and '80" were measured with three Faraday cup detectors. Background corrected 'OH-

11
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/'O ratios serve to monitor OH in garnet and to guard against hydrous inclusions (Wang
et al. 2014). Four analyses of UWG-2 were run before and after every ~10 sample
analyses (Table S16). Sample analyses were corrected for instrumental bias and drift
using the bracketing eight analyses of UWG-2 and a correction for matrix effects. The
reproducibility of UWG-2 ranged from 0.11 to 0.48 %o (2 S.D.) A single bracket with
uncertainty of 0.8 %o (2 S.D.) was repeated (Table S16). Matrix effects due to Ca
composition in garnet was corrected for using the method of Page et al. (2010). A
calibration curve that compositionally brackets the sample garnets was established using
reference materials R-53 and GrsSE (Page et al., 2010) and UWPrp-1 (Kitajima et al.,
2016) at the beginning of the analysis session (Table S16). Although an instrumental bias
effect from Mn concentration has been documented (Martin et al. 2014), the effect is not
as consistently observed as the Ca-related bias (Vho et al. 2020c). In the present study
three (3) sample analyses have spessartine concentrations greater than 10 mol % (10.7,
18.6, 18.9 %) where a Mn-correction might be appropriate. However, there is no
correlation between Mn and oxygen isotope ratio in these data, so a secondary Mn-
correction was deemed unnecessary. Compositional bias due to a Ca-correction is
estimated to have an uncertainty of 0.3 %o (2 S.D., Page et al. 2010), which, when added
in quadrature to the analytical precision, results in a range of 0.32—0.57 %o (2 S.D.).
Oxygen isotope ratios are reported as delta values (5'%0, %o) relative to VSMOW

(Vienna Standard Mean Ocean Water).

3. Analytical results

3.1 Major element chemistry

12
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Major element maps for matrix and vein-edge garnet can be found in Figures 2—4
and Online Resource 1 (ESM1.pdf, Figs. S8—S10). Major element concentrations in
garnet, amphibole, and white mica are summarized in Online Resource 2 (ESM2.xIsx,
Tables S3—S11). Amphibole compositions are typically barroisite and
magnesiohornblende with actinolitic rims and late glaucophane overgrowth (see Online
Resource 1, Figs. S1, S7). White mica generally has high Si contents (3.44-3.58 Si p.f.u.;
Table S4).

Garnet in RM-1C and 13TIB3 is Fe-rich, with a range of 48—61 % almandine in
both matrix and vein garnet. Matrix garnet has a relatively restricted range of spessartine
contents (2—9 wt. %), with some of the highest values occurring in the outermost rims of
grains. Vein garnet has an exceptionally wide range of spessartine contents, from 5-26
wt. %, with higher spessartine contents in vein garnet cores, and lower spessartine in vein
garnet rims. Oscillatory zoning is observed in Mn in matrix garnet in sample RM-1C
(Grt2, Fig. 3), and both Ca and Mn in vein-edge garnet (Fig. 2; e.g., Dudley 1969). Vein-
edge garnet displays sector zoning, for instance, in the inner mantle, and is visible in BSE
and major element maps (Fig. 2). Individual vein garnet grains show clear core, mantle,
and rim zones that can been seen in the BSE images and the major element zoning (Fig.
1h). The garnetite veins are also zoned in their major element composition perpendicular
to the length of the vein (Figs. 1, S2, S4, S8; see also the supplementary material of
Mulcahy et al. 2018).

Major element zoning in matrix garnet in samples RM-1C and 13TIB3 is
consistent with that reported by Mulcahy et al. (2018); that is, two general types of

zoning patterns are observed. Some garnet grains have cores that are higher in Fe and Mn
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and lower in Ca and Mg compared to the surrounding mantle (RM-1C Grt2, Fig. 3),
whereas others have cores that are higher in Ca and Mn and lower in Mg and Fe (13TIB3
GrtD, Fig. 4). Matrix and vein-edge garnets in sample RM-1C have a Mn annulus in the
garnet mantle, possibly the result of resorption. All matrix garnet grains have a Mn-
enriched outermost Mn rim; this is most prominent in sample RM-1C (Fig. 3), but can

also been seen at the very edges of GrtD in 13TIB3 (Fig. 4).

3.2 Trace element chemistry

Trace element concentrations in garnet and rutile in all samples can be found in
Online Resource 2 (Tables S12-S14). Zirconium concentrations in rutile in sample RM-
1C (Table S12) can be divided into three groups: those found in garnet cores (Population
1;63-179 pg g, those found in garnet mantles and rims (Population 2; 58-266 ug g™!),
and those found disseminated in the matrix and garnetite veins (Population 3; 39-281 pg
g'!). Zirconium-in-rutile thermometry presented in Table S12 and in the supplementary
text are based on the calibration of Tomkins et al. (2007). Our preferred Zr-in-rutile
temperatures are 624 + 20 °C for Population 1, 620 + 20 °C for Population 2, and 558 +
20 °C for Population 3 (see Online Resource 1 for details). Zr-in-rutile temperatures and
petrologic observations are consistent with (1) relatively isothermal decompression from
eclogite to eclogite—amphibolite conditions, remaining in the rutile stability field,
followed by (2) relatively isobaric cooling from eclogite—amphibolite to blueschist
conditions, associated with overgrowth of rutile by titanite (Fig. S19).

Trace element traverses across garnets are shown in Figures 5-8 and S12—-S15.

Profiles of Lu, Er, Dy, and Eu are shown as representative of the HREE to lighter MREE,

14
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respectively. Trace element maps of Yb (mimics Lu and other HREE), Dy, and Eu in
vein-edge garnet Grt7 are shown in Figure 9. Matrix garnet in sample RM-1C (Grt2) has
a core that shows increasing HREE from the center outward, followed by a series of
oscillations (marked by black arrows, Fig. 5a). The chondrite-normalized REE patterns
for this core zone are steep in the MREE to HREE. The core zone (white, Fig. 5) also
shows rimward peaks in progressively lighter REE (Fig. 5a—d), with the REE patterns
reflecting enrichment in MREE (Fig. 5e—f); this zone is henceforth referred to as Stage 1
(Fig. 11). The mantle zone in this garnet is characterized by multiple oscillations in REE
and a strong enrichment in MREE relative to HREE (mauve, Fig. 5); the mantle zone is
deemed Stage 2. Finally, in the outer rim of this garnet there is an HREE-rich annulus,
followed by more oscillations in REE (purple zone, Fig. 5), here called Stage 3.

Matrix garnet in sample 13TIB3 (GrtD) follows the same general patterns in REE
(Fig. 6) as does matrix Grt2 in RM-1C (Fig. 5). This garnet has a unique zone (Fig. 6f) in
which REE and Ca oscillations occur, coincident with a zone of the garnet that appears to
have overgrown many smaller grains, as seen in the Ca map (Figs. 4c, 6d).

Vein-edge garnet in sample RM-1C (Grt3, Grt4, Grt5, Grt7) shows the same
patterns as the matrix garnets, but on a smaller scale, as each is only a few hundred
microns across (Figs. 7, 9, S12, S13). Vein-edge garnet cores (Stage 1) are enriched in
HREE and have steep MREE to HREE patterns (Figs. 7a, d; 9); these cores are typically
inclusion-rich (e.g., Fig. 2a), as are many of the matrix garnet cores. Oscillatory zoning,
particularly in MREE, characterizes the vein-edge garnet mantles (Stage 2), and garnet

rims are generally more depleted in REE (Stage 3).
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Vein garnet is characterized by REE patterns that are enriched in MREE relative
to HREE (Figs. 8, S14). Individual vein garnet grains (for instance, GrtG in sample
13TIB3; Fig. S14) have cores (Stage 1) and mantles (Stage 2) that are more enriched in
light (L)REE and MREE relative to HREE than the rims (purple, Stage 3). There is also a
wide range in vein garnet grain size, with the larger grains ~250 pm and the smaller 5-50
um; larger vein garnet cores are enriched in MREE relative to HREE (Fig. 8e), whereas
the smaller cores have flat chondrite-normalized REE patterns that are flat across the
MREEs and HREEs (Fig. 8f). On a broader scale, the veins are zoned in REE; for
instance, Figure 8a shows that Lu is low in the larger vein garnet grains that are at the
interior of the vein (left side of traverse), then Lu is higher in the part of the vein that has
very small garnet grains (central section of traverse), and is low in the outer low-BSE
zone (purple; right side of traverse) at the vein edge. At the same time, Eu is high in the
vein interior and decreases toward the vein edge (Fig. 8c). It is important to keep in mind
that the traverse shown in Figure 8 represents spots that are a mix of multiple zones of
vein garnet (cores, mantles, and rims), particularly in the central section of the traverse.
The low-BSE vein garnet “cement” zone (Stage 3) is characterized by lower

concentrations of REE overall.

3.3 Oxygen isotope ratios

Oxygen isotope data can be found in Tables S16 and S17. Garnet 5'%0 values in
samples RM-1C and 13TIB3 range from 5.3—11.1 %o (Figure 11). The cores of all of
garnet (Stage 1; matrix and vein) range from 9.8—11.1 %o (median 10.4 %o, n=21). A shift

to slightly lower values occurs from core to mantle (Fig. 11); this mantle zone ranges
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from 8.3-10.0 %o (median 9.7 %o, n=28). This shift toward slightly lower §'30 values
occurs after the Mn annulus identified in RM-1C matrix Grt2. Garnet growth post-
annulus typically coincides with other changes in garnet major element chemistry,
including Ca and Mg. However, it is unlikely that the difference in 830 is due to a slight
overcorrection of the garnet composition effect in the calculation of 5'80 because the
decrease in 8'80 is present in garnet that has both higher Ca in the adjacent core (i.e.,
Grt2, Fig. 5b) and also lower Ca in the adjacent core (i.e., Grt3, Fig. 7b). 8'%0 values in
garnet rims in the matrix and vein range from 5.8—7.8 %o (median 6.7 %o, n=11), which is

distinctly lower than the core and mantle populations.

4. Discussion

The three stages of garnet growth (Stage 1 cores, Stage 2 mantles, Stage 3 rims +
cement) are observed in all three populations of garnet (matrix, vein-edge, vein). The
presence of large-scale (many meters long) vein networks of garnetite through the
amphibolitized part of the eclogite block and the consistency in the geochemistry of
matrix and vein garnet suggests that fluids were present throughout much of the history
of garnet growth. The cores of vein-edge garnet grains share major and trace element
chemistry with the cores of matrix garnets, and vein garnet core chemistry is consistent
with the outer core of matrix garnets, which suggests that the garnetite veins were
beginning to form during Stage 1 garnet growth. Hence, we invoke fluids as a key

component of many of the points discussed below.

4.1 Major and trace element zoning in garnet
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The major and trace element zoning in matrix Grt2, sample RM-1C, reveals a
complex history (Fig. 5; for full rim-to-rim profile see Fig. S15). The core of this garnet
does not contain the classic central peak in HREE (e.g., Hollister 1966; Otamendi et al.
2002), though other matrix garnet grains in the rock do. This garnet is also less inclusion-
rich in the core than other matrix garnet in the sample. These features are likely due to
either later nucleation compared to other matrix garnet, or slightly asymmetric sectioning
in the thin section. The outer core of the garnet has a series of peaks or annuli in the
REEs that occur progressively rimward with a decrease in atomic mass of the element.
These peaks/annuli could be interpreted as the result of diffusion-limited growth.

Many workers have reflected upon the idea of matrix diffusion-limited growth in
garnet, and its effects on trace element patterns, specifically for REEs (e.g., Skora et al.
2006; Moore et al. 2013; Rubatto et al. 2020). The basic tenet of this hypothesis is that
diffusion through the matrix is slower for lighter REE than it is for heavier REE, thereby
producing peaks in REE in garnet that progress rimward with decreasing atomic number.
We suggest that diffusion-limited growth is one controlling factor in the core zones of
garnet in sample RM-1C (Figs. 5, 7, S12-S13). However, we propose a modification to
this interpretation, as explained below.

Our first observation is that successively rimward peaks are characterized by
progressively lighter REE. Three peaks in Lu within the garnet core (Stage 1, white) are
indicated by black arrows in Figure 5a—d. All three Lu peaks are of approximately the
same magnitude. The same peaks occur in Er, Dy, and Eu (and the REE in between), but
the coremost peak in Er is far smaller than the next peak rimward; the coremost peak for

Dy is very small, the next peak rimward is significant and the most rimward peak is the
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most prominent. The same is true for Eu. This first observation of progressively rimward
peaks in lighter REE could be explained by depletion of the REE in the reactive bulk
during progressive garnet growth. Because the HREE are the most compatible in garnet,
the first garnet that nucleates incorporates a high abundance of HREE, leaving a reactive
bulk that is slightly depleted in these elements. The next increment of garnet to grow then
has a smaller pool of HREE to draw upon, and so it is relatively enriched in the next
lighter REE. This growth, uptake, and depletion progressively depletes the reactive bulk
in heavy-to-light REE. Such a process has been proposed to produce a fractionation trend
similar to that observed in Fig. Se—f (e.g., Skora et al., 2006; Konrad-Schmolke et al.
2008). However, these features could also be explained by episodic pulses of fluid release
during mineral breakdown (e.g., Taetz et al. 2018), which could cause a shift in the
reactive bulk due to spatial and temporal non-uniformity in REE availability. Given the
presence of oscillatory zoning and the successively rimward peaks that are characterized
by progressively lighter REE, pulses of fluid are highly likely (see subsequent discussion
of oxygen isotope data).

The second observation of the core zone of RM-1C matrix Grt2 is that the
location of each peak shifts slightly rimward with decreasing atomic number. The arrows
designating three peaks in the core in Figure 5a—d are drawn at exactly the same x
position in each figure panel. The second and third Er and Dy peaks are 15 um rimward
of the respective peak in Lu. The second and third Eu peaks are even farther rimward.
This may reflect diffusion-limited growth in this sample. Reactions in the rock are likely
driven by pulses of fluid (e.g., Baxter et al. 2016; Taetz et al. 2018). The presence of

fluids can massively increase the diffusivity of ions to a reaction site, enabling garnet
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growth. When no fluid is present, transport through the intergranular medium is likely to
be orders of magnitude slower. In between pulses of fluid are periods of quiescence;
these are the diffusion-limited times. At the same time, the reactive bulk REE budget in
the matrix shifts to be more enriched in MREE, because new garnet growth has
sequestered the HREE. These mechanisms fully account for both the general trend in
rimward migration of the largest peaks in progressively lighter REE and the differences
in the exact location of any given peak based on heavy versus light REE.

The coremost part of the mantle zone of RM-1C matrix Grt2 (Stage 2, mauve,
Fig. 5) begins rimward of a Mn annulus that we interpret as a resorption feature. We have
used this resorption feature to delineate the boundary between Stage 1 (core) and Stage 2
(mantle) growth. Within this mantle zone are a series of oscillations in REE, and a
general enrichment in the MREE over the HREE. The oscillatory zoning is likely due to
continued pulses of fluid through the rock, which result in changes in the transient
permeability of the rock and cyclic trace element zoning (e.g., Yardley et al. 1991).

The mantle region of RM-1C matrix Grt2 is overgrown by a rim that has an
abrupt peak in HREE and an increase in Mn (Stage 3, purple, Fig. 5). This re-enrichment
in HREE is consistent with an influx of an externally sourced fluid or the breakdown of a
new, HREE-bearing phase, or both (see subsequent discussion of oxygen isotope data).
The oscillatory, pulsed nature of garnet growth continues in this outer rim zone, with a
second peak that is not present in the HREE but can be seen in Er and Dy, and is the only
Eu peak in Stage 3. We interpret this shift from HREE- to MREE-enriched trace element

patterns in garnet to be the result of progressive fractionation during garnet growth.
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4.2 Fluids and oxygen isotopes

The oxygen isotope systematics in garnet provide a framework to integrate the
various features of the major and trace element geochemistry. The cores, mantles, and
rims of all garnet in both samples (RM-1C and 13TIB3) show the same zoning patterns in
8'80. 8'%0 values of garnet cores (Stage 1) range from 9.8—11.1 %o (median 10.4 %o).
Garnet mantles (Stage 2) shift to slightly lower 8'30 values of 8.3—10.0 %o (median 9.7
%o0; Fig. 11).

Given the relative similarity in 'O values of Stages 1 and 2, it is likely that the
fluids present during core and mantle garnet growth in the matrix and vein were
internally-derived or derived from a protolith with a similar oxygen isotope composition.
The 8'80 values in Stages 1 and 2 are consistent with the range of §'30 values expected
of a basalt protolith that experience low temperature hydrothermal alteration with
seawater, as is observed for garnet in metabasalt from Sifnos with reported §'%0 values of
9.2-11.5 %o (Putlitz et al. 2000). The shift in 3'0 values between Stages 1 and 2 could
also be explained by a change in mineralogy in the bulk rock (e.g.. Martin et al. 2014;
Vho et al. 2020a); this is consistent with internally-derived pulses of fluid.

Stage 3 garnet, which includes the rims of all garnets and the garnet “cement” in
the garnetite veins, has distinctly lower §'30 values (5.8-7.8 %o, median 6.7 %o) than
earlier garnet. As the primary phases in the rock (garnet, omphacite, calcic amphibole)
could only account for perhaps 1 %o fractionation (e.g., Martin et al. 2014), it is unlikely
that a change in mineralogy would have provide sufficient leverage to explain the lower
8180 values of Stage 3. The shift in §'30 values from Stage 2 to Stage 3 indicates

involvement of a fluid source that was external to the rock. We suggest that the most
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likely candidate for the source of this low 8'%0 signature is the serpentinite mélange.
King et al. (2003) reported 5'%0 values of 6.3-8.1 %o for Franciscan serpentinite
separates from Jade Cove and Sand Dollar Beach. Peridotite phases from these localities
are consistent with mantle values, with 6'%0 values of 5.32 %o reported for olivine and
5.96 %o for clinopyroxene (King et al. 2003). Barnes et al. (2013) reported §'30 values of
6.0—7.3 %o for Franciscan serpentinites from Ring Mountain and the Tiburon Peninsula.
The amphibolitization and development of the blackwall on the block studied here
is similar to other blocks at Ring Mountain; blackwall rinds are characterized by
actinolite, talc, and white mica, consistent with interaction with serpentinites. The oxygen
isotope composition of Stage 3 garnet growth (garnet rims and garnetite “cement”) is
consistent with interaction with the surrounding serpentinite mélange. These observations
are similar to those of Errico et al. (2013) for 8'%0 in Franciscan garnet from three
localities, including Ring Mountain, for which they reported core-to-rim decreases in
8180. The low-8'80 zones likely reflect the point at which the block was physically
removed from a larger, more coherent piece of subducted oceanic crust and was
incorporated into the mélange, allowing access for new fluids derived from the
serpentinite to take advantage of the vein structures that were already present in the rock.
A similar story was proposed by Page et al. (2014) for oxygen isotope zoning in
Franciscan eclogite from the Junction School locality and hornblendite from Panoche
Pass. In the Junction School eclogite, low-8'30 cores (~4 %o) have higher §!30 rims (67
%o). At Panoche Pass, high-8'80 cores (~10.9-11.7 %o) have rims of recrystallized zones

with 330 values of 8-9 %o and outer rims of 6.2—6.8 %o (Page et al. 2014). All of these
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studies, including the present study, point to late stage garnet rim growth in high-grade

blocks under the influence of fluids derived from the Franciscan serpentinite mélange.

4.3 Garnetite formation

Garnetites are an uncommon, but not unheard-of, component of metabasic
terranes (e.g., Nishiyama et al. 2020; Hertgen et al. 2017; Rivalenti et al. 1997; Xie et al.
2004). One of the most striking optical features of the garnet in these samples,
particularly the garnetites and vein-edge garnet, is the presence of birefringent zones
(Figs. 2, S3, S5, S6). Recent work showed that birefringent garnet in blueschists from the
Franciscan Complex and Corsica, and phyllites and micaschists from the eastern and
central Italian Alps, can be attributed to tetragonal crystal structure (Cesare et al. 2019).
We suggest that our birefringent garnets are likely due to a similar process. There are
some notable similarities and differences between the garnet reported here and those
reported by Cesare et al. (2019), which are outlined below.

In samples shown here, birefringent zones in garnet are clearly visible in a
standard 30 pm thin section, particularly in the vein and vein-edge garnet, though
birefringent zones are also visible in the rims of the matrix garnet. Cesare et al. (2019)
did show one example of birefringent garnet that was visible in a standard thin section,
but most of the samples they investigated required a 100 um thick section for
birefringence to be noticeable. We also observe sector zoning in the garnets from Ring
Mountain. The sector zones in our samples correspond to differences in chemistry,
whereas Cesare et al. (2018) reported that their optical sector zones did not correspond to

chemical discontinuities. The sector zoning, for instance, in RM-1C Grt6 is very clearly
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visible in the maps of Mn, Mg, and Fe (Fig. 2). The samples in this study are also higher
in metamorphic grade (eclogite-amphibolite facies, as opposed to the blueschist-facies
and lower in Cesare et al. 2019). Our garnets also have higher pyrope contents (12-22 %
Py) than those in Cesare et al. (1-11 % Py).

Similar to Cesare et al., the garnet in this study is anhydrous. During SIMS
analyses we monitored '®OH /%O ratios in order to monitor OH in garnet and avoid
hydrous mineral inclusions. Background corrected OH7/'®O" ratios in hydrospessartine
reference material are ~4x1073; the garnet in this study has background corrected 'OH-
/'O ratios that are ~2 orders of magnitude lower, so it is likely that the birefringence is
due to tetragonal structure (Cesare et al. 2019), as opposed to the birefringence reported
for hydrogrossular garnets (Rossman and Aines 1991). Confirmation of this difference in
structure is evident in cross-polarized light photomicrographs with the lambda plate
inserted (Figs. 2, S3, S5, S6), which highlight the structural anisotropy of the birefringent
zones compared to the isotropic zones of garnet.

Perhaps the most intriguing aspect of the garnetite veins is the garnet “cement”
that forms a connective medium between the vein garnet cores (Figs. 1g-h, S4). The
garnet cement is typically low in BSE intensity compared to the garnet vein cores, due to
lower Fe and Mn and higher Ca contents, and forms a fairly significant zone at the edge
of the vein in sample 13TIB3 (Fig. S4). The garnet cement is somewhat similar to the
honeycomb garnet structures identified in eclogite-facies metasediments from the Tauern
Window, Austria (Hawkins et al. 2007), though the honeycomb garnets in that study do
not manifest as veins as they do in this study, instead showing evidence of precipitation

around quartz grains.
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More recently, there have been studies of amorphous phases as mediators for
dissolution-reprecipitation reactions (e.g., Keller et al. 2006; Hellmann et al. 2012;
Konrad-Schmolke et al. 2018). Essentially, when minerals grow, there are short-lived
transient structures that then progress into crystallizing typical mineral structures. The
permeability of an amorphous phase is high, but when it crystallizes into a mineral, it
becomes relatively impermeable, akin to the precipitation of quartz veins during
hydrothermal fluid convection (e.g., Scott & Driesner 2018). These kinds of processes
would tend to create monomineralic rocks such as garnetites, omphacitites, or even quartz
veins. Konrad-Schmolke et al. (2018) showed that these amorphous phases have a much
higher capacity to carry ions than do aqueous fluids, thereby drastically increasing
transport and reaction rates. It is unlikely that garnet would precipitate in this manner (as
a cement) from an aqueous fluid, as the total dissolved solids (TDS) in aqueous fluids in
subduction zones below 600 °C are on the order of 30—40 g/kg water (Manning 2004).
Konrad-Schmolke et al. (2018) estimated that an amorphous phase could have TDS ~140
g/kg water or more, which is five times that of an aqueous fluid. We suggest that it is
much more likely that the garnet cement precipitated from an amorphous phase rich in Si,
Al, Ca, Mg, and Fe (e.g., Konrad-Schmolke et al., 2018). An amorphous phase would
also create a direct link between the reactants and the growth surface, facilitating the
cement-like structure observed in the garnetite.

It is also possible that the mantles and rims of the matrix garnets, in addition to
the garnetite cement, precipitated from an amorphous phase. Evidence for this comes
from sample 13TIB3 GrtD (Figs. 4, 6). It is most plainly seen in the Ca map of Figure 4

between the higher-Ca core and lower-Ca mantle of this grain, where it appears the

25



568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

garnet overgrew a zone of smaller garnet grains that have the same composition as the
mantle (a larger version of this Ca map is provided in Fig. S17). The higher-Ca garnet
that infiltrates and grows around the small lower-Ca grains is similar to a honeycomb-like
structure, akin to the cement of the garnetite veins. This also appears elsewhere in the
sample, where the late very high-Ca overgrowth rim envelops a number of smaller grains,
again with mantles that have the same low Ca as the mantle of GrtD. However, this
alternative overgrowth occurs on a much broader scale, as the proportion of small

enveloped grains is much lower relative to the honeycomb-type texture.

5. Conclusions

An amphibolitized eclogite with garnetite veins from Ring Mountain, California,
tells an eventful story of garnet growth. Three stages of garnet growth are identified: in
Stage 1, garnet cores crystallize and fractionate HREE from the reactive bulk rock. At
some point toward the end of core growth, small garnets nucleate along linear features
that form the beginnings of the garnetite vein. Garnet growth progressively depletes the
surrounding rock in HREE, leading to an enrichment in MREE. A series of offset REE
peaks in this zone is consistent with pulsed fluid flow, in which a pulse of fluid promotes
reactions in the rock that result in garnet growth; in between pulses are periods of
quiescence during which transport though the matrix is diffusion-limited. Oscillatory
zoning in trace elements is present through all stages of garnet growth and can be
explained by pulses of fluid that change the transient permeability of the rock. The
oscillations represent transitions between fluid-buffered and rock-buffered conditions and

result in cyclic trace element zoning. A growth discontinuity in Mn marks the beginning
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of Stage 2 growth, which is also characterized by oscillatory REE zoning and a general
enrichment of MREE relative to HREE. We observe new HREE incorporation during
Stage 3, along with increased Mn in garnet rims, followed by continued fluid pulses
resulting in oscillatory REE zoning.

Oxygen isotope ratios of 9.8—11.1 %o in the cores of the garnets (Stage 1) and 8.3—
10.0 %o in the mantles (Stage 2) are consistent with an altered oceanic crust protolith that
underwent low-7 hydrothermal alteration in seawater. Garnet rim and vein cement (Stage
3) 880 values of 5.8-7.8 %o suggest an external source of oxygen during rim growth,
consistent with fluid-mediated interaction with mélange serpentinites. We suggest that
Stage 3 garnet growth signifies a time when this block was physically incorporated into
the mélange matrix, greatly enhancing interaction with surrounding serpentinite.

Stage 3 garnet growth also involved the crystallization of a garnetite cement that
effectively glued tiny earlier garnets together into a cohesive vein. We suggest that a
possible mechanism for this cementation is crystallization from an amorphous phase.
This has far-reaching implications for how major and trace elements are transported at
high pressures, and the role of amorphous phases during mineral dissolution and
reprecipitation (e.g., Konrad-Schmoke et al, 2018). Additionally, the presence of
birefringent zones in garnet are likely due to tetragonal garnet growth. This is one of the
first cases of tetragonal garnet growth reported in the amphibole-eclogite facies, and
supports the suggestion made by Cesare et al. (2019) that these types of features may be

more common than previously thought.
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621  Figure Captions

622  Fig. 1 Field photos and thin section images of garnetite veins in amphibolitized eclogite
623  block, Ring Mountain, California. (a—b) Outcrop photos of garnetite veins. (c) Scan of
624  thin section of sample RM-1C showing locations of various highlighted sections. (d)
625  Reflected light photo of RM-1C matrix Grt2. (e) Cross polarized light (XPL) photo of
626  vein-edge garnets shown in (f). (f) Plane polarized light photo (PPL) of vein-edge garnet
627  and vein garnet in sample RM-1C. (g) Backscattered electron (BSE) image of vein garnet
628  showing cores surrounded by low-BSE garnet “cement” in sample 13TIB3. (h) BSE
629  image of vein garnet showing clear core, mantle, and rim textures in sample RM-1C.
630

631  Fig. 2 Photomicrographs highlighting optical anisotropy and WDS major element maps
632  of vein-edge Grt6, sample RM-1C. (a) XPL. (b) XPL with lambda plate inserted. (c) Ca
633  map. (d) Mn map. (¢) Mg map. (f) Fe map. Green indicates higher concentrations and
634  blue indicates lower concentrations here and in subsequent figures.

635
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Fig. 3 EDS major element maps of matrix Grt2, sample RM-1C. (a) Ca map. (b) Mn
map. (¢c) Mg map. (d) Fe map. §'80 analysis locations and values (%o) are shown with

white circles on the Mn map.

Fig. 4 Images and EDS major element maps of matrix GrtD, sample 13TIB3. (a) XPL.
(b) BSE. (¢) Ca map. (d) Mn map. (¢) Mg map. (f) Fe map. 5'0 analysis locations and

values (%o) are shown with white circles on the Ca map.

Fig 5 Core-rim zoning in matrix Grt2 in sample RM-1C. (a—d) Major elements (grey
lines, wt % oxide), trace elements (black lines, pg g!') and 8'*0 values (diamonds), and
(e-h) chondrite-normalized REE patterns. (a) Lu (black filled circles) and MnO (grey
filled triangles. (b) Er (black filled diamonds) and CaO (grey filled squares). (d) Dy
(black filled inverse triangles). (e) Eu (black filled squares). Chondritic values from Sun
and McDonough (1989) in all figures. Garnet growth stages indicated by white (Stage 1),

mauve (Stage 2), and purple (Stage 3) backgrounds here and in subsequent figures.

Fig 6 Core-rim zoning in matrix GrtD in sample 13TIB3. (a—c) Major elements (grey
lines, wt % oxide), trace element (black lines, pug g!') and §'30 values (diamonds), (d) Ca

map, and (e—h) chondrite-normalized REE patterns. Symbols as in Fig. 5.

Fig. 7 Rim-to-rim zoning in vein-edge Grt3 in sample RM-1C. (a—c) Major elements
(grey lines, wt % oxide), trace element (black lines, ug g™!) and 3'30 values (diamonds),

and (d—f) chondrite-normalized REE patterns. Symbols as in Fig. 5.
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Fig 8 Zoning across garnetite vein traverse in sample 13TIB3. (a—c) Major elements
(grey lines) and trace element (black lines), (d) BSE image, and (e-h) chondrite-

normalized REE patterns. Symbols as in Fig. 5.

Fig 9 LA-ICP-MS trace element maps of vein-edge Grt7, sample RM-1C. (a) Raw signal
intensity map of Si, counts per second (cps). (b-d) Quantified Eu, Dy, and Yb trace
element maps. Color scale for each map indicates concentrations in pg g'. Cooler colors

indicate lower concentration and warmer colors indicate higher concentration.

Fig 10 Schematic diagram outlining the three stages of garnet growth, and the chemical

signatures typical of each stage.

Fig 11 Probability density plot of 'O values for Stage 1 (grey), Stage 2 (mauve), and

Stage 3 (purple) garnet growth.
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937

Vein-edge garnet Vein garnet Vein garnet

Figure 1: Field photos and thin section images of garnetite veins in amphibolitized eclogite block, Ring Mountain,
California. (a—b) Outcrop photos of garnetite veins. (c) Scan of thin section of sample RM-1C showing locations of
various highlighted sections. (d) Reflected light photo of RM-1C matrix Grt2. (e) Cross polarized light (XPL) photo of
vein-edge garnets shown in (f). (f) Plane polarized light photo (PPL) of vein-edge garnet and vein garnet in sample RM-
1C. (g) Backscattered electron (BSE) image of vein garnet showing cores surrounded by low-BSE garnet “cement” in
sample 13TIB3. (h) BSE image of vein garnet showing clear core, mantle, and rim textures in sample RM-1C.
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Figure 2 Photomicrographs highlighting optical anisotropy and WDS major element maps of vein-edge Grt6,
sample RM-1C. (a) XPL. (b) XPL with lambda plate inserted. (c) Ca map. (d) Mn map. (e) Mg map. (f) Fe map.
Green indicates higher concentrations and blue indicates lower concentrations here and in subsequent figures.
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Figure 3. EDS major element maps of matrix Grt2, sample RM-1C. (a) Ca map. (b) Mn map. (c) Mg map. (d) Fe
map. 880 analysis locations and values (%o) are shown with white circles on the Mn map.
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Figure 4. Images and EDS major element maps of matrix GrtD, sample 13TIB3. (a) XPL. (b) BSE. (c) Ca map.
(d) Mn map. (e) Mg map. () Fe map. §'°0 analysis locations and values (%o) are shown with white circles on
the Ca map.
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Figure 5. Core-rim zoning in matrix Grt2 in sample RM-1C. (a—d) Major elements (grey lines, wt % oxide),
trace elements (black lines, ug g”') and &80 values (diamonds), and (e~h) chondrite-normalized REE patterns.
(a) Lu (black filled circles) and MnO (grey filled triangles. (b) Er (black filled diamonds) and CaO (grey filled
squares). (d) Dy (black filled inverse triangles). (e) Eu (black filled squares). Chondritic values from Sun and
McDonough (1989) in all figures. Garnet growth stages indicated by white (Stage 1), mauve (Stage 2), and
purple (Stage 3) backgrounds here and in subsequent figures
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Figure 6. Core-rim zoning in matrix GrtD in sample 13TIB3. (a—c) Major elements (grey lines, wt % oxide),
trace element (black lines, ug g') and 60 values (diamonds), (d) Ca map, and (e~h) chondrite-normalized
REE patterns. Symbols as in Fig. 5.
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Figure 7. Rim-to-rim zoning in vein-edge Grt3 in sample RM-1C. (a—c) Major elements (grey lines, wt % oxide),
trace element (black lines, ug g*) and 550 values (diamonds), and (d—f) chondrite-normalized REE patterns.

Symbols as in Fig. 5.
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Figure 9. LA-ICP-MS trace element maps of vein-edge Grt7, sample RM-1C. (a) Raw signal intensity map of Si,
counts per second (cps). (b-d) Quantified Eu, Dy, and Yb trace element maps. Color scale for each map

indicates concentrations in ug g”'. Cooler colors indicate lower concentration and warmer colors indicate
higher concentration.
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Figure 10. Schematic diagram outlining the three stages of garnet growth, and the chemical signatures typical
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Figure 11. Probability density plot of §%0 values for Stage 1 (grey), Stage 2 (mauve), and Stage 3 (purple)

garnet growth.
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