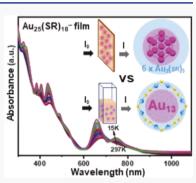


pubs.acs.org/JPCL Letter

Observation of Core Phonon in Electron—Phonon Coupling in Au₂₅ Nanoclusters

Zhongyu Liu, Yingwei Li, Wonyong Shin, and Rongchao Jin*

Cite This: J. Phys. Chem. Lett. 2021, 12, 1690–1695


ACCESS

Metrics & More

Supporting Information

ABSTRACT: Temperature-dependent optical properties are of paramount importance for fundamentally understanding the electron—phonon interactions and phonon modes in atomically precise nanocluster materials. In this work, low-temperature optical absorption spectra of the icosahedral $[Au_{25}(SR)_{18}]^-$ nanocluster are measured from room temperature down to liquid helium temperature by adopting a thin-film-based technique. The thin-film measurement is further compared with results from the previous solution-based method. Interestingly, the previously missing core phonon is revealed by a quantitative analysis of the film data through peak deconvolution and fitting of the temperature trend with a theoretical model. The two lowest-energy absorption peaks (at 1.6 and 1.8 eV) of Au_{25} are determined to couple with the staple-shell phonon (average energy $\sim 350 \text{ cm}^{-1}$) in the solution state, but in the solid state these electronic transitions couple with the core phonon (average energy $\sim 180 \text{ cm}^{-1}$). The suppression of the staple-shell phonon in the solid state is attributed to the intracluster and cluster—matrix interactions.

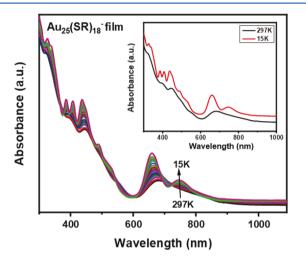
A tomically precise Au nanoclusters (NCs), consisting of tens to hundreds of Au atoms per cluster with precise structures, offer many opportunities for tackling some fundamental issues in nanoscience research. Among the physicochemical properties, understanding the optical properties and carrier dynamics of metal NCs is of paramount importance to their applications (such as photovoltaic energy conversion and photochemical energy storage). 2-5

The atomic-level structures of metal NCs provide ideal systems to probe the correlation between the structure and optical/electronic properties of these ultrasmall nanomaterials.^{4–7} While much work has been carried out toward achieving the correlations, many fundamental issues still remain, for instance, the correlation between the structure and carrier dynamics of Au NCs; 4,5 in particular, how does the electronphonon coupling affect the photoexcited carrier lifetime?⁸⁻¹³ Temperature-dependent optical absorption measurements can provide insights into the fundamental electron-phonon coupling since cryogenic measurements offer a direct way to extract information on electron-phonon coupling and phonon modes.¹⁴ In previous work, this method has been commonly used to characterize conventional semiconductors, perovskite materials, and conjugated organic molecules. 15-18 However, temperature-dependent optical properties of Au NCs are still barely studied.

Ramakrishna et al. reported the first temperature-dependent optical absorption measurements (down to 77 K), which provided deep insights into the electron–phonon coupling and exciton–phonon coupling in Au-thiolate (SR) NCs. ^{19,20} Their work focused on the comparison of Au NCs of known structures containing Au_{13} icosahedral (I_h) core or fused ones,

i.e., Au₂₅ sphere vs Au₂₅ rod.^{21–23} In previous solution-based tests (note: "glass" was formed at sufficiently low temperatures), core—shell electron—phonon interactions were identified as the dominant contributor to the optical properties of sphere-like Au₂₅ and bi-icosahedral Au₃₈ NCs.^{19,20} In contrast, the rod-like Au₂₅—which was protected by ternary ligands (SR, PPh₃, and Cl)^{22,23} and possessed no staple motifs—was found to have much weaker electron—phonon coupling strength.²⁰ Despite these interesting discoveries, no core phonon was identified except the surface staple phonon, which was perplexing and motivated our current work.

Herein, we report the observation of the core phonon of Au_{25} NCs by a solid thin-film-based method. Specifically, our cryogenic optical absorption spectroscopic measurements are based on polystyrene thin films of the icosahedral $[Au_{25}(PET)_{18}]^-$ NC (where PET = 2-phenylethanethiolate, simplified as I_h Au_{25} hereafter owing to its icosahedral core). By adopting the thin-film technique, the testing range of temperature-dependent absorption spectra can be extended down to liquid helium temperature. Lowering the temperature minimizes the peak broadening and can lead to observation of fine features or new trends in the temperature-dependent spectra. By combining the Au_{25} solution and film-based


Received: January 6, 2021 Accepted: February 1, 2021 Published: February 9, 2021

cryogenic optical measurements, the distinct effect of physical environments on the active phonon modes is discovered, which will open up new opportunities for investigating the electron—phonon coupling and phonon properties of metal NCs.

The synthesis of I_h Au₂₅ followed our earlier report.²⁴ The Au₂₅ NCs were then embedded in a polystyrene thin film, which was made by a drop-cast method (see details in the Supporting Information). Cryogenic spectroscopic measurements were performed from room temperature down to 15 K. Figure 1 shows the temperature-dependent optical absorption

Figure 1. Cryogenic optical absorption spectra at different temperatures of Au_{25} in a thin film of polystyrene. The inset shows the spectra at room temperature and 15 K.

spectra of I_h Au₂₅ in a solid film. At room temperature, the spectrum shows three main peaks at 400, 450, and 675 nm (Figure 1 inset, black profile). The observed optical absorption features in the solid sample are consistent with the solution-phase spectrum. When the temperature decreased, several new features appeared in the 300–600 nm region of the spectra of the Au₂₅ film, and the initially broad peak at 675 nm was also split into two sharp peaks at 660 and 740 nm. Additionally, the absorption spectra of the I_h Au₂₅ film exhibited a distinct blueshift of the absorption maxima and an increase in the oscillator strength at low temperatures.

For a comparison between the film- and solution-based systems, we also measured the temperature-dependent absorption spectra of I_h Au₂₅ dissolved in 2-methyltetrahydrofuran (a "glass"-forming solvent). Similar optical absorption spectra and temperature-dependent trends were observed (Figure S1), and our results of I_h Au₂₅ solution (note: "glass" was formed at sufficiently low temperatures) are similar to the previous observations by Ramakrishna et al. ¹⁹ While the spectroscopic trends of the film and solution measurements are qualitatively similar, quantitative analyses reveal some interesting differences in the phonon modes coupled with the electronic transitions (*vide infra*).

Among all the temperature-dependent optical absorption features, the shift of absorption maximum is the most valuable one, because it indicates a change to the corresponding electronic transition gap and such a change discloses information on thermal lattice contraction/expansion and electron—phonon coupling. Ramakrishna et al. 19,20 previously applied a modified Bose—Einstein relationship that was developed by O'Donnell and Chen 17 to model the absorption peak dependence on the temperature and obtained the electron—phonon coupling strength and average phonon

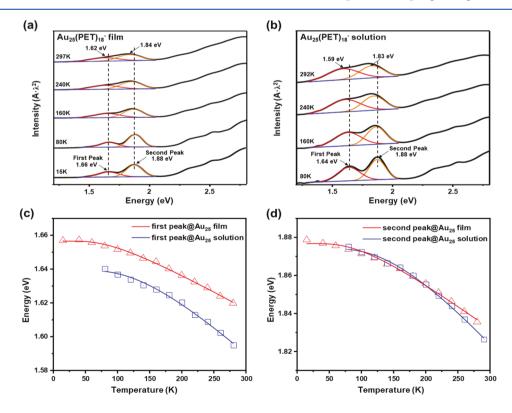


Figure 2. Photon energy-scale spectra and the curve fitting of the 1.3–2.1 eV region at different temperatures for I_h Au₂₅ in (a) thin film and (b) solution. Below, the trends and fitting results of absorption maxima with temperature are shown in (c) the first peak and (d) the second peak.

energy for Au NCs in solution. Here, we use the same method to analyze the temperature-dependent energy gap (E_{σ}) in our solid film samples. The analytical form of the O'Donnell-Chen equation can be written as

$$E(T) = E(0) - \langle C \rangle \langle \hbar \omega \rangle \left[\coth \left(\frac{\langle \hbar \omega \rangle}{2kT} \right) - 1 \right]$$
 (1)

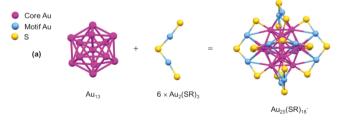
where $\langle \hbar \omega \rangle$ represents the average energy of phonons that contribute to the electron-phonon coupling of the specific electronic transition, $\langle C \rangle$ is the coupling constant which indicates the electron-phonon coupling strength, and E(0) is the corresponding electronic transition gap at 0 K. We note that the HOMO-LUMO transition energy differs from the value of the HOMO-LUMO gap energy. The latter is typically obtained by extrapolating the optical absorbance to zero, while the HOMO-LUMO transition energy will shift to the blue due to Franck-Condon vertical transition. When we analyze the shift of E(T), an accuracy of \sim 0.01 eV is required due to the overall small shift, but the method of absorbance extrapolation leads to large errors; thus, we use the peak position, rather than the onset position of absorption, to carry out our data analysis.

In order to better determine the peak position, the wavelength-scale absorption spectra are first transformed to the photon energy (eV)-scale spectra, that is, the plot of absorption intensity $(A\lambda^2)$, where A is the absorbance and λ is the wavelength) vs photon energy (Figure 2a,b). Furthermore, we fit the absorption peaks to Gaussian profiles to obtain the accurate positions of absorption maxima. Two Gaussian peaks are needed to reproduce the line shape in the region between 1.3 and 2.1 eV of the I_h Au₂₅ (Figure 2a,b). The successful peak deconvolution (Tables S1 and S2) permits us to analyze the two lowest-energy peaks, as opposed to one peak only in Ramakrishna's analysis. 19 Different electronic transitions may couple with different phonon modes. Previous density functional theory (DFT) calculations revealed that the 1.8 eV peak (675 nm) was the HOMO-LUMO transition of Au₂₅, but later refinements found a splitting in this region, indicating that the first (1.6 eV) and second (1.8 eV) peaks arise respectively from HOMO-to-LUMO and HOMO-1-to-LUMO transitions.²⁶

The first peak (HOMO-to-LUMO transition) of Au₂₅ in the solid film shows a 0.04 eV blueshift when the temperature decreases from room temperature to 15 K. The positions of this peak are different in the two different environments, solid state vs solution (Figure 2c). At room temperature, the first peak in solution is 0.03 eV lower than that in the solid state, and as the temperature decreases, the difference between the film and solution values becomes slightly smaller. The shape and full width at half-maximum (fwhm, Tables S1 and S2) of peaks for the film and solution samples share a close resemblance, suggesting that the effects of solvation and collisions²⁷ are less significant in our cases. The second peak of I_h Au₂₅ presents a similar temperature-dependent blueshift (Figure 2d). For a quantitative fitting analysis, we employ the O'Donnell-Chen equation to obtain the intrinsic information on I_h Au₂₅. The fitting curves are shown in Figure 2c,d, and the fitting parameters are listed in Table 1.

From Table 1, it can be seen that the average energies of phonons for the first and second absorption peaks of Au₂₅ are almost the same in either environment (e.g., 23 vs 25 meV in film, 42 vs 43 meV in solution), and so is the coupling

Table 1. Transition Energy at 0 K (E(0)), Average Phonon Energy ($\langle \hbar \omega \rangle$), and Electron-Phonon Coupling Constant $(\langle C \rangle)$ for Sphere-like I_h Au₂₅ in Thin Film and Solution, as Well as Rod-like Au₂₅ in Thin Film^a


sar	nple	<i>E</i> (0) (eV)	$\langle\hbar\omega angle \ ({ m meV})$	$\langle C \rangle$
[Au ₂₅ (SR) ₁₈] ⁻ solid film	1st peak 2nd peak	1.661 ± 0.001 1.877 ± 0.001	23 ± 2 25 ± 2	1.3 ± 0.1 1.4 ± 0.1
	1st peak 2nd peak	1.64 ± 0.001 1.874 ± 0.001	42 ± 4 43 ± 3	2.4 ± 0.2 2.5 ± 0.2
$ [\mathrm{Au_{25}}(\mathrm{PPh_3})_{10}(\mathrm{SR})_5\mathrm{Cl_2}]^{2+} \text{ solid} $ film		1.88 ± 0.01	18 ± 2	1.8 ± 0.1

^aSee additional data in Figure S2 and Table S3. All parameters are obtained by fitting the data of the temperature-dependent absorption spectra.

constant. These results suggest that the electronic transitions from the doubly degenerate 1P_{3/2} to LUMO and nondegenerate $1P_{1/2}$ to LUMO couple with the same phonon mode. Interestingly, when comparing the two different environments, we found that the average phonon energy for the case of Au₂₅ film is significantly smaller than that of Au₂₅ in solution (24 vs 42.5 meV), and so is the coupling constant (1.35 vs 2.45). These differences indicate that the solutionstate Au₂₅ phonons and electron-phonon coupling strength are suppressed in the solid state, leading to the manifestation or exposure of new phonons and their coupling with the electronic transitions in the Au₂₅ solid state. Below we rationalize the phonon modes that couple with the first and second peaks of Au₂₅ in solution and solid states.

Unlike small molecules, [Au₂₅(SCH₂CH₂Ph)₁₈] possesses 349 atoms, and its number of vibrational normal modes is very large (i.e., 3N-6 = 1041, where N = 349 atoms); all these modes form a quite dense distribution that can be represented by the vibrational density of states. 28-32 The assignment of vibrational (phonon) modes relies on the structure-based DFT calculations on Au₂₅(SR)₁₈ NCs²⁸⁻³² and experimental results from far-infrared absorption and terahertz Raman scattering measurements of Au NCs. 33-38 The structure of the I_h Au₂₅ possesses an icosahedral Au₁₃ core and six Au₂(SR)₃ dimeric surface motifs (Scheme 1). DFT calculations of the Au₂₅

Scheme 1. Core-Shell Structure of Au₂₅(SR)₁₈

^aRedrawn from ref 21.

vibrational properties by Tlahuice-Flores et al. revealed that the 0-350 cm⁻¹ region hosts the Au-S-Au bending modes, the core breathing and staple breathing modes, and the Au–S stretching modes. ^{29,30} The core modes (including the breathing mode and Au-Au stretching ones) are in the range of $0-120~{\rm cm}^{-1}$ for ${\rm Au}_{25}({\rm SR})_{18}$ with R = CH₃ or CH₂CH₃, $^{28-30}$ but with increasing the R group size to

Table 2. Theoretical Vibrational (Phonon) Modes of Au₂₅(SR)₁₈ Nanoclusters^a

DFT model	core (cm ⁻¹)	core-shell Au _{core} -S (cm ⁻¹)	shell Au ^I –S (cm ⁻¹)	refs		
$[Au_{25}(SCH_3)_{18}]^-$	103.8 (core breathing)	240 (stretching)	268.6 (staple breathing), 174.4 (S-CH $_3$ bending)	29, 30		
$[Au_{25}(SC_2H_5)_{18}]^-$	20-120 (various modes of the core)		$320/375 \; (Au^I - S \; stretching)$	36		
$[{ m Au}_{25}({ m PET})_{18}]^-$	110 (core breathing) 150–180 (stretching)	325 (stretching)	303 (breathing), 360 (stretching), 205/230 (bending)	31		
^a Note: Au _ = the core gold stom Au ^I = the stanle gold stom and DET = SCH CH Dh						

^aNote: Au_{core} = the core gold atom, Au^I = the staple gold atom, and PET = SCH₂CH₂Ph.

 ${
m CH_2CH_2Ph}$, Häkkinen and co-workers³¹ found that the core modes span a wider range (0 to 180 cm⁻¹), with the 150–180 cm⁻¹ region mainly consisting of Au–Au stretching modes of the Au₁₃ core. Table 2 compiles these literature results, which together with other reports^{32–38} facilitates our assignment of phonons in electron–phonon coupling of Au₂₅ below. Note that the modes with frequencies of 400–4000 cm⁻¹ are solely from the organic tail (R group)³⁰ and are not listed in Table 2.

Bürgi and co-workers 36,37 performed detailed investigations on the staple Au^I-S vibrations and found a range of 250-360 cm⁻¹. These modes are consistent with theory 28-31,36 (Table 2). In our cryogenic optical measurements, the observed ~350 cm⁻¹ (42-43 meV) phonon mode that couples with the first and second absorption peaks of Au₂₅ in solution is assigned to the staple Au^I-S stretching of the Au₂(SR)₃ motif. ^{19,33,37} In contrast, the phonon mode for the Au₂₅ film case is much lower than that for the Au₂₅ solution case, indicating that the corresponding electronic transitions no longer couple with the surface-motif phonon mode in the solid state. We attribute the absence of the ${\sim}350~\text{cm}^{-1}$ phonon mode in the Au_{25} film to the suppression of Au-S-Au-S-Au vibrations by intracluster and cluster-matrix interactions in the solid state.³⁹ Specifically, the benzene rings from PET ligands can form intracluster C- $H \cdots \pi$ interactions (Figure S3), which suppress the free vibrations of the staple motifs. In addition, the stronger Coulomb interaction between [Au₂₅(PET)₁₈]⁻ and its counterion ⁺N(C₈H₁₇)₄ owing to the bound state in solids can also restrain the vibrations of staple motifs. Based upon the previous calculations on $[Au_{25}(PET)_{18}]^-$ (Table 2), we assign the observed ~ 180 cm⁻¹ (22–23 meV) phonon to the core mode (Au-Au stretching³¹). This average phonon energy should correspond to the optical phonons of the Au₁₃ core, as opposed to the lower-frequency acoustic phonons (both the breathing and quadrupolar deformation modes) of the core. The breathing mode involves the totally symmetric, radial expansion/contraction and is typically below ~120 cm⁻¹ for different-sized Au_n(SR)_m NCs. 30,40 Both the breathing mode and the quadrupolar deformation mode³⁰ are often observed in ultrafast electron dynamics. 4,11,12,32,41,42

We also note that the $180~\rm cm^{-1}$ core phonon for the sphere-like I_h Au_{25} in the film state is comparable to the $150~\rm cm^{-1}$ (18 meV) phonon mode observed in the rod-like Au_{25} (see data in Figure S2 and Table S3), which consists of two icosahedral Au_{13} units sharing a common vertex Au atom (Figure S4). Since there is no staple motif in the rod-like Au_{25} structure, the phonon mode of $150~\rm cm^{-1}$ (18 meV) should arise from the core vibrations in the Au_{13} dimer. DFT simulations by Akola and co-workers reported vibrational modes of $107~\rm and$ $144~\rm cm^{-1}$ for the rod-like Au_{25} . We note that our result of the rod-like Au_{25} (core phonon: $150~\rm cm^{-1}$) is very close to the ealier

reported solution result (160 cm^{-1}) .² Thus, the results on rod-like Au₂₅—which possesses a bi-icosahedral core but no staple motifs—also support the assignment for the sphere-like I_h Au₂₅. The observed ~180 cm⁻¹ phonon mode of the sphere-like I_h Au₂₅ in films should arise from the Au core vibrations and is optically active.

In summary, we have investigated the temperature-dependent optical absorption of [Au₂₅(PET)₁₈]⁻ in both solution and solid-state environments. The film-based method extends the temperature to the liquid helium temperatures. The temperature-dependent absorption data analyses through peak deconvolution and fitting with a theoretical model make it possible to extract the Au-S shell phonon mode and the Au core phonon mode in I_h Au₂₅. The first two absorption peaks (lowest-energy) for the I_h Au₂₅ in solution are found to couple with the shell phonon mode (~350 cm⁻¹) with strong coupling strength, but the solid state gives rise to the coupling with the core phonon mode (~180 cm⁻¹) with weak coupling strength. The suppression of shell phonon modes in the I_h Au₂₅ solid state is ascribed to intracluster and cluster-matrix interactions. Our findings demonstrate the temperaturedependent optical spectroscopic analysis for gaining important information about electron-phonon coupling and the associated phonon modes. Future work will lead to more fundamental understanding of phonon-coupled optical properties^{5,7,44,45} and electron dynamics, ^{8,32,41,42} as well as the evolution of phonon properties with size^{30,41,46} for metal nanoclusters, and based upon such progress, new applications of atomically precise nanoclusters will be developed.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00050.

Experimental section; absorption spectra of Au_{25} solution (Figure S1); absorption spectra of rod-like Au_{25} film (Figure S2); intracluster interaction of Au_{25} sphere (Figure S3); structure of Au_{25} rod (Figure S4); and data for deconvoluted peaks (Tables S1–S3) (PDF)

AUTHOR INFORMATION

Corresponding Author

Rongchao Jin — Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States; orcid.org/0000-0002-2525-8345; Email: rongchao@andrew.cmu.edu

Authors

- Zhongyu Liu Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States; orcid.org/0000-0002-2777-8360
- Yingwei Li Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States; orcid.org/0000-0002-4813-6009
- Wonyong Shin Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpclett.1c00050

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.J. acknowledges financial support from the National Science Foundation (NSF) under Grant No. DMR-1808675.

REFERENCES

- (1) Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. *Chem. Rev.* **2021**, *121*, 567–648
- (2) Chen, Y.-S.; Choi, H.; Kamat, P. V. Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%. *J. Am. Chem. Soc.* **2013**, *135*, 8822–8825.
- (3) Abbas, M. A.; Kamat, P. V.; Bang, J. H. Thiolated Gold Nanoclusters for Light Energy Conversion. *ACS Energy Lett.* **2018**, 3, 840–854.
- (4) Zhou, M.; Jin, R. Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. *Annu. Rev. Phys. Chem.* 2021, 72, 72
- (5) Weerawardene, K. D. M.; Pandeya, P.; Zhou, M.; Chen, Y.; Jin, R.; Aikens, C. M. Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with Eight Superatomic Electrons. *J. Am. Chem. Soc.* **2019**, *141*, 18715–18726.
- (6) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. *Chem. Rev.* **2016**, *116*, 10346–10413.
- (7) Kang, X.; Zhu, M. Tailoring the Photoluminescence of Atomically Precise Nanoclusters. *Chem. Soc. Rev.* **2019**, *48*, 2422–2457
- (8) Zhou, M.; Higaki, T.; Hu, G.; Sfeir, M. Y.; Chen, Y.; Jiang, D.-E.; Jin, R. Three-Orders-of-Magnitude Variation of Carrier Lifetimes with Crystal Phase of Gold Nanoclusters. *Science* **2019**, *364*, 279–282.
- (9) Zhou, M.; Higaki, T.; Li, Y.; Zeng, C.; Li, Q.; Sfeir, M. Y.; Jin, R. Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters. *J. Am. Chem. Soc.* **2019**, *141*, 19754–19764.
- (10) Zhou, M.; Jin, R.; Sfeir, M. Y.; Chen, Y.; Song, Y.; Jin, R. Electron Localization in Rod-Shaped Triicosahedral Gold Nanocluster. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114*, E4697—E4705.
- (11) Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. *J. Phys. Chem. Lett.* **2017**, *8*, 4898–4905.
- (12) Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T. Critical Size for the Observation of Quantum Confinement in Optically Excited Gold Clusters. *J. Am. Chem. Soc.* **2010**, *132*, 16–17.
- (13) Higaki, T.; Zhou, M.; He, G.; House, S. D.; Sfeir, M. Y.; Yang, J. C.; Jin, R. Anomalous Phonon Relaxation in Au₃₃₃(SR)₇₉ Nanoparticles with Nascent Plasmons. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116*, 13215–13220.
- (14) Huang, K.; Rhys, A. Theory of Light Absorption and Non-radiative Transitions in F-centres. *Proc. R. Soc. London A* **1950**, 204, 406–423.

- (15) Hoch, F. L. Low-Temperature Absorption Spectroscopy (Cryoabsorption Spectroscopy). J. Chem. Educ. 1955, 32, 469.
- (16) Varshni, Y. P. Temperature Dependence of the Energy Gap in Semiconductors. *Physica* **1967**, *34*, 149–154.
- (17) O'Donnell, K.; Chen, X. Temperature Dependence of Semiconductor Band Gaps. Appl. Phys. Lett. 1991, 58, 2924–2926.
- (18) Kok, D. J.; Irmscher, K.; Naumann, M.; Guguschev, C.; Galazka, Z.; Uecker, R. Temperature-Dependent Optical Absorption of SrTiO₃. *Phys. Status Solidi A* **2015**, *212*, 1880–1887.
- (19) Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au₂₅ and Au₃₈ Clusters. *J. Phys. Chem. Lett.* **2011**, *2*, 2752–2758.
- (20) Devadas, M. S.; Thanthirige, V. D.; Bairu, S.; Sinn, E.; Ramakrishna, G. Temperature-Dependent Absorption and Ultrafast Luminescence Dynamics of Bi-icosahedral Au₂₅ Clusters. *J. Phys. Chem. C* **2013**, *117*, 23155–23161.
- (21) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au₂₅ Cluster and Optical Properties. *J. Am. Chem. Soc.* **2008**, *130*, 5883–5885.
- (22) Shichibu, Y.; Negishi, Y.; Watanabe, Ta; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. Biicosahedral Gold Clusters $[\mathrm{Au}_{25}(\mathrm{PPh}_3)_{10}(\mathrm{SC}_n\mathrm{H}_{2n+1})_5\mathrm{Cl}_2]^{2+}$ (n=2-18): A Stepping Stone to Cluster-Assembled Materials. J. Phys. Chem. C **2007**, 111, 7845–7847.
- (23) Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. Crystal Structures of Au₂ Complex and Au₂₅ Nanocluster and Mechanistic Insight into the Conversion of Polydisperse Nanoparticles into Monodisperse Au₂₅ Nanoclusters. *Inorg. Chem.* **2011**, *50*, 10735–10739.
- (24) Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically Controlled, High-yield Synthesis of Au₂₅ Clusters. *J. Am. Chem. Soc.* **2008**, *130*, 1138–1139.
- (25) Murray, R. W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. *Chem. Rev.* **2008**, *108*, 2688–2720. (26) Jiang, D.-E.; Kühn, M.; Tang, Q.; Weigend, F. Superatomic Orbitals under Spin-Orbit Coupling. *J. Phys. Chem. Lett.* **2014**, *5*, 3286–3289.
- (27) Bulović, V.; Burrows, P.; Forrest, S.; Cronin, J.; Thompson, M. Study of Localized and Extended Excitons in 3, 4, 9, 10-Perylenetetracarboxylic Dianhydride (PTCDA) I. Spectroscopic Properties of Thin Films and Solutions. *Chem. Phys.* **1996**, 210, 1–12.
- (28) Guberman-Pfeffer, M. J.; Ulcickas, J.; Gascón, J. A. Connectivity-Based Biocompatible Force Field for Thiolated Gold Nanoclusters. *J. Phys. Chem. C* **2015**, *119*, 27804–27812.
- (29) Tlahuice-Flores, A. Normal Modes of $Au_{25}(SCH_3)_{18}^-$, $Ag_{12}Au_{13}(SCH_3)_{18}^-$, and $Ag_{25}(SCH_3)_{18}^-$ Clusters. *Mol. Simul.* **2013**, 39, 428–431.
- (30) Tlahuice-Flores, A.; Whetten, R. L.; Jose-Yacaman, M. Vibrational Normal Modes of Small Thiolate-Protected Gold Clusters. *J. Phys. Chem. C* **2013**, *117*, 12191–12198.
- (31) Akola, J.; Kacprzak, K. A.; Lopez-Acevedo, O.; Walter, M.; Grönbeck, H.; Häkkinen, H. Thiolate-Protected Au₂₅ Superatoms as Building Blocks: Dimers and Crystals. *J. Phys. Chem. C* **2010**, *114*, 15986–15994.
- (32) Senanayake, R. D.; Akimov, A. V.; Aikens, C. M. Theoretical Investigation of Electron and Nuclear Dynamics in the $[Au_{25}(SH)_{18}]^{-1}$ Thiolate-Protected Gold Nanocluster. *J. Phys. Chem.* C 2017, 121, 10653–10662.
- (33) Petroski, J.; Chou, M.; Creutz, C. The Coordination Chemistry of Gold Surfaces: Formation and Far-Infrared Spectra of Alkanethiolate-Capped Gold Nanoparticles. *J. Organomet. Chem.* **2009**, *694*, 1138–1143.
- (34) Parker, J. F.; Choi, J. P.; Wang, W.; Murray, R. W. Electron Self-Exchange Dynamics of the Nanoparticle Couple [Au₂₅(SC₂Ph)₁₈]^{0/1-} By Nuclear Magnetic Resonance Line-Broadening. *J. Phys. Chem. C* **2008**, *112*, 13976–13981.
- (35) Antonello, S.; Arrigoni, G.; Dainese, T.; De Nardi, M.; Parisio, G.; Perotti, L.; René, A.; Venzo, A.; Maran, F. Electron Transfer

- Through 3D Monolayers on Au_{25} Clusters. ACS Nano 2014, 8, 2788–2795.
- (36) Varnholt, B.; Oulevey, P.; Luber, S.; Kumara, C.; Dass, A.; Bürgi, T. Structural Information on the Au-S Interface of Thiolate-Protected Gold Clusters: A Raman Spectroscopy Study. *J. Phys. Chem.* C **2014**, *118*, 9604–9611.
- (37) Bürgi, T. Properties of the Gold-Sulphur Interface: from Self-Assembled Monolayers to Clusters. *Nanoscale* **2015**, *7*, 15553–15567.
- (38) Kato, M.; Shichibu, Y.; Ogura, K.; Iwasaki, M.; Sugiuchi, M.; Konishi, K.; Yagi, I. Terahertz Raman Spectroscopy of Ligand-Protected Au. Clusters. *J. Phys. Chem. Lett.* **2020**, *11*, 7996–8001.
- (39) Li, Y.; Jin, R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. *J. Am. Chem. Soc.* **2020**, *142*, 13627–13644.
- (40) Palacios-Álvarez, O.; Tlahuice-Flores, A. Tri-icosahedral Au₃₇ Cluster as a Carrier/Detector for Anti-Cancer Cisplatin Drug. *J. Raman Spectrosc.* **2019**, *50*, 52–62.
- (41) Maioli, P.; Stoll, T.; Sauceda, H. E.; Valencia, I.; Demessence, A.; Bertorelle, F.; Crut, A.; Vallee, F.; Garzon, I. L.; Cerullo, G.; Del Fatti, N. Mechanical Vibrations of Atomically Defined Metal Clusters: From Nano-to Molecular-Size Oscillators. *Nano Lett.* **2018**, *18*, 6842–6849.
- (42) Williams, L. J.; Herbert, P. J.; Tofanelli, M. A.; Ackerson, C. J.; Knappenberger, K. L., Jr Superatom Spin-State Dynamics of Structurally Precise Metal Monolayer-Protected Clusters (MPCs). J. Chem. Phys. 2019, 150, 101102.
- (43) Goh, J.-Q.; Malola, S.; Häkkinen, H.; Akola, J. Role of the Central Gold Atom in Ligand-Protected Biicosahedral Au₂₄ and Au₂₅ Clusters. *J. Phys. Chem. C* **2013**, *117*, 22079–22086.
- (44) Green, T. D.; Yi, C.; Zeng, C.; Jin, R.; McGill, S.; Knappenberger, K. L., Jr Temperature-Dependent Photoluminescence of Structurally-Precise Quantum-Confined Au₂₅(SC₈H₉)₁₈ and Au₃₈(SC₁₂H₂₅)₂₄ Metal Nanoparticles. *J. Phys. Chem. A* **2014**, *118*, 10611–10621.
- (45) Toh, Y.-R.; Yu, P.; Wen, X.; Tang, J. The Enhancement of Electron-Phonon Coupling in Glutathione-Protected Au₂₅ Clusters. *J. Colloid Interface Sci.* **2013**, 402, 86–89.
- (46) Sauceda, H. E.; Garzón, I. L. Structural Determination of Metal Nanoparticles from Their Vibrational (Phonon) Density of States. *J. Phys. Chem. C* **2015**, *119*, 10876–10880.