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Abstract

For text generation from semantic graphs, past neural models encoded input structure via gated
convolutions along graph edges. Although these operations provide local context, the distance
messages can travel is bounded by the number of encoder propagation steps. We adopt recent
efforts of applying Transformer self-attention to graphs to allow global feature propagation. In-
stead of feeding shortest paths to the vertex self-attention module, we train a model to learn them
using generalized shortest-paths algorithms. This approach widens the receptive field of a graph
encoder by exposing it to all possible graph paths. We explore how this path diversity affects per-
formance across levels of AMR connectivity, demonstrating gains on AMRSs of higher reentrancy
counts and diameters. Analysis of generated sentences also supports high semantic coherence of
our models for reentrant AMRs. Our best model achieves a 1.4 BLEU and 1.8 CHRF++ margin

over a baseline that encodes only pairwise-unique shortest paths.

1 Introduction

Text generation from sequences manifests in tasks such as story generation, sum-
marization, and question-answering. Generation from semantic structures includ-
ing Abstract Meaning Representation (Banarescu et al., 2013) instead involves
graph inputs. An AMR is a rooted, tree-like structure that captures propositional
meaning through labeled vertices and edges called concepts and relations. In this
setting a model must recover the original sentence annotated by the AMR, which
lacks syntactic specification (e.g., tense and plurality). The model must grapple
with the denser connectivity of semantic graphs in addition to ambiguity in pre-
dicting the surface string.

The arbitrary structure of edges in a semantic graph allows it to express meaning
compactly, yet also presents a challenge in learning global representations. Given
sequential inputs, a neural encoder can repeatedly apply recurrent or convolutional
operations to encode full strings. This local function sharing does not transfer
easily to the varied neighborhoods of graphs, however.

Previous neural AMR-to-text models (Beck et al., 2018; Song et al., 2018) have
favored graph neural networks (GNNs) that iteratively update each vertex’s state
as a function of those in its first-order neighborhood. To capture paths within the
AMR, these models include gated recurrent units within the GNN vertex update
function. Since paths may contain word order information, encoding them faith-
fully could help a model’s decoder flatten the input graph into a target sequence.
Though a GNN applies to arbitrary graphs, its number of stacked layers controls
the length of encoded paths. Tuning this parameter is non-trivial since it depends
on the size distribution of training graphs.
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Rather than preserving state between distant vertices using RNNs, another approach is to bring vertex
pairs closer together. This idea has been popularized by Transformer (Vaswani et al., 2017) self-attention
networks (SANs) on sequences. Relaxing the linear nature of RNNs, SANs support parallelized attention
on any subset of tokens per encoding step. The SAN’s blindness to sequential positions seems ideal
for unordered graph vertices. However, this lack of order also precludes the use of relative position
embeddings (Shaw et al., 2018) to distinguish graph vertices within self-attention. Thus, the clique
formed by vertex-level attention coefficients may obscure true graph structure.

In spite of the obstacles, recent AMR-to-text models have surpassed GNN-based encoders by using
Transformer-based ones. Wang et al. (2020) and Yao et al. (2020) apply a form of graph attention
networks (Veli¢kovi¢ et al., 2017) that mask out non-adjacent vertices in self-attention layers. Similar to
GNNgs, these encoders only propagate vertex state through local neighborhoods. Zhu et al. (2019) remove
the constraint by exploring relation encoders (e.g., SAN- or CNN-based) between all vertex pairs. Cai
and Lam (2020) similarly learn relation embeddings from pairwise shortest paths fed to the model. They
maintain that richer modeling of paths injects global graph structure into self-attention between vertices.

In this work, we propose to include a mixture of paths in the relation encoding of each vertex pair.
This can be done by applying generalized shortest-paths algorithms—Floyd-Warshall and adjacency
matrix multiplication. We draw inspiration from a generalized shortest-paths framework (Mohri, 2002)
to learn relation embeddings. The benefits of this approach are threefold: (i) shortest paths need not be
precomputed, (ii) the relation encoder can consider more than one path per vertex pair, and (iii) graph
paths can be chosen based on properties besides distance. The latter is useful as shortest paths may
oversimplify input structure of more densely connected AMRs.

A graph with reentrancies, or instances where a vertex has multiple incoming edges, can contain
competing shortest paths between a vertex pair. For example, in Figure 1a the concept ‘man’ has two
incoming edges from ‘please-01’. Dropping either path between the two concepts would alter the AMR’s
meaning. Shortest paths may also inadequately express the relation between concept pairs. Figure 1b
shows two possible paths between ‘want-01" and ‘boy’. The longer path in fact describes the boy’s role
in the subgraph rooted at ‘think-01’—without which the model may fail to produce the pronoun ie. Our
relation encoder avoids both illustrated issues since it considers all graph paths.

2 Related Work

Initial work in AMR-to-text generation relied on grammar-based approaches. Flanigan et al. (2016) used
tree transducers to map between spanning tree representations of AMRs and strings. These transducers
generalize finite-state transducers (FSTs) to recursively rewrite trees as strings. Song et al. (2017) by-
passed tree extraction and learned a synchronous node replacement grammar (SNRG) to align graph and
string fragments directly. Though such approaches were well-founded, the grammars suffered from data
sparsity due to the structural complexity of graphs relative to corpus size.

Amid the dominance of attentive recurrent models, Konstas et al. (2017) linearized AMRs and trained
sequence transduction models in both the parsing and generation directions. They applied a paired train-
ing procedure such that the generator could be trained on synthetic data produced by the parser (and
vice versa). Gated GNNs (Beck et al., 2018; Song et al., 2018) soon replaced the sequential encoders,
reducing the need to compensate for noisy linearizations with synthetic data. Damonte and Cohen (2019)
evaluated the use of GNNs over simpler sequential and tree encoders, showing that encoding reentran-
cies boosts generation performance. They further found that stacking a recurrent layer above a GNN is
superior to previous gated GNNs, verifying the importance of modeling AMR sequential dependencies.

Recently, Transformer self-attention has been adapted to encode AMRs for generation tasks. As pre-
viously noted, the worst-case communication cost between vertices is constant in SANs as opposed to
linear in GNNs. Yet treating the input as a clique has the side-effect of weakening a model’s grasp
of AMR structure and long-range paths. We build on the relation encoder developed by Cai and Lam
(2020) to bias self-attention on all paths in an AMR. Our methods mediate between the efficiency gains
of SAN-based graph encoders and the need to capture fine-grained AMR topology. Progress in past
models attests to the utility of high resolution path encoding for the language modeling objective.



New lines of work have modified aspects of AMR-to-text generation besides the graph encoder. Song
et al. (2020) explore autoencoder-style loss terms that encourage decoder states to reconstruct the graph.
Ribeiro et al. (2020) avoid graph encoding entirely, instead applying pretrained language models on
linearized AMRs. These additions of input reconstruction and pretrained embedding are orthogonal to
the graph encoder changes we introduce.

3 Graph Transformer

Here we establish a base adaptation of the Transformer to a graph-to-sequence model. Due to discrepan-
cies between sequences and graphs, we highlight efforts to make the encoder SAN structure-aware.

3.1 Encoder

For sequence transduction let X = {x;...x,} denote source token em-
beddings and ) = {y1 ...ym} the targets. For source token x; and context
X;, the encoder SAN by Vaswani et al. (2017) applied dot-product attention
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mension. The attention coefficients . ; are used to retrieve a weighted av-
erage of value vectors v; = W,x; as z; = Z?:l o jV; using parameters
W,. The token embeddings X" are biased with encodings that indicate rel-
ative position to make the SAN sequence-aware. Multi-head attention allows for multiple sets of key,
query, and value projection matrices to be learned and aggregated in parallel. After applying attention,
each SAN Ilayer also employs several linear projections, a residual connection, and layer normalization
to update the embeddings X fed into the next layer.

Note that the relative position of any token pair is equal to the length of the path connecting them,
which lets the positional bias specify a token sequence. In the case of unordered graph vertices X,
defining the structure between any pair of vertex embeddings requires more care. The existence of
numerous paths between vertex pairs nullifies the notion of relative position. Whereas an RNN limits the
context of each token x; to {x; ...x;_1} and a GNN allows each vertex to receive messages from only
its neighbors, an SAN lacks such spatio-temporal control.

Relation encoder To make the SAN structure-aware, several models (Zhu et al., 2019; Cai and Lam,
2020) have learned a unique relation embedding r;; for each vertex pair. This embedding participates in
computing the attention coefficients «; ;, typically via addition with x; and/or x;. As the baseline we
adopt the formulation of Cai and Lam (2020):

Figure 2: Encoder SAN
with relation embeddings.

Qi = softmax; ((Wq (Xj + I‘ji))—r Wi (XZ' + I‘ij) /\/E) .

They encode r;; using bidirectional GRUs along the path of relation labels between vertices 7 and j. The
AMR is augmented with backward relations (labeled accordingly), self loops, and a global vertex with
vector X that connects to all existing vertices. In contrast to the original directed acyclic graph (DAG)
structure, the authors claim that this unrestricted information flow aids both vertex- and graph-level
representation learning.

3.2 Decoder

After encoding AMR vertices X using an SAN, the sequence decoder is largely unchanged from that
of the original Transformer. At each output position j € [1,m], the decoder not only applies masked
self-attention within target tokens {y ...y, } but also cross-attention on all n encoded vectors X'. Cross-
attention is implemented using eq. 1, except that query vector q is a function of decoder outputs ) while
key k and value v arise from X. This way the decoder can efficiently attend to valid gold target tokens
in tandem with all source tokens.



As in the model by Cai and Lam (2020), we initialize the decoder state at each step j with global vertex
embedding xg described in §3.1. This injects global content learned from the AMR along the length of
the predicted token sequence. In a previous gated RNN model (Song et al., 2017), the first decoder state
similarly consisted of an average over encoder vertex states. Following the decoder initialization, stacked
layers of multi-head attention proceed as before.

During token prediction, the AMR-to-text decoder also includes a copy mechanism (Gu et al., 2016)
that is common among neural text generation models. The mechanism addresses data sparsity of rare
tokens (e.g., numbers, dates, named entities) by allowing the model to directly copy from AMR concept
labels. The probability of drawing from the copy distribution as opposed to generating from the target
vocabulary is found via a single feedforward layer: pcopy = softmax(Wch;) for state h; € R% of token
j and learned weights W, € R2*9t. Given target vocabulary distribution p/(y | h;) stemming from
decoder attention, the final token distribution is computed as

p(y | hy) = (1 _pcop}’)pl(y | hyj) + Deopy Z Qi g, (2)
i€C(y)

where C(y) contains the set of concepts whose labels correspond to y and attention distribution a. j is
over labeled source concepts.

4 Generalized Shortest-Paths Encoders

We now discuss how the relation encoder incorporates all possible AMR paths using generalized shortest-
paths algorithms. The goal is to learn comprehensive pairwise path embeddings that inform the graph
encoder SAN. This approach relegates the choice of ‘best’ paths between vertices to the model instead
of merely including them as model input. G = (V, E) denotes a directed AMR graph with vertex set
V ={vi...v,} and edge set £ = {(u,v) | u,v € V}.

4.1 Floyd-Warshall

The Floyd-Warshall algorithm solves the all-pairs shortest-paths problem in time O(n?). It iteratively
relaxes the shortest path between each vertex pair ¢ and j by introducing a new potential intermediate
vertex k € [1,n]. The shortest pairwise distance using only vertex set {1...k} is written as dg.c). At
each step k the following update is made:

(k) agj ifk=0
dig> = " k=1) (k1) | (k—1) . 3)
mm(dij Ay T+ dkj ) otherwise,

where A = (a;;) € R1%1 is the adjacency matrix.

Though this procedure may not be the most efficient, it encounters all paths in G through its recursive
bottom-up routine. As such, it provides a scaffold upon which a neural function can assign weights to
paths for vertex self-attention. We replace the (min, +) semiring of eq. 3 on integer distances with (+, f)
on path embeddings, where f is a neural function that merges sub-path vectors. Parameterized by W
and by, the definition of f atstep k € [1,n] is

k1) (k=1 k-1)_ (k=1
Fel o) = ReLUGW e ixlly 1+ b)), @
After linearly projecting the concatenated sub-path vectors, the result is passed through a ReLLU nonlin-
earity. Path embeddings between vertices ¢ and j are summed together over indices k via
k k—1 k—1) (k-1
r) = 1k > 0 - reely e, (5)
where R(0) = (rl(?)) contains relation label embeddings based on adjacency matrix A. This formula-
tion allows the relation encoder to sum over all path representations, each computed using the neural
function f. The final relation embedding combines the first and last k-indexed path embeddings through
concatenation and linear projection, parameterized by W,:
i = Wo[r(o)' r(n)] + b,. (6)

ij g



4.2 Adjacency Matrix Multiplication

An alternative to Floyd-Warshall is repeated adjacency matrix multiplication. In this case, the algorithm
extends the current shortest paths by one edge and compares them to those of the previous iteration.
Indicating the path length by m, the assignment made for the shortest distance between vertex ¢ and j is

(m) Ajj ifm=1
dij " =9 . m=1) . [ (m—1) . (7)
min(d ,ming{d;, '+ ap;}) otherwise.

ij

We try to shorten dg-n_l), the best path of length at most m — 1, by extending prefix dg;n_l) by edge ay;.

This can be generalized as matrix multiplication if we replace (min, +) with (+, f) as in §4.1:

dz(;n) = Z dg;n_l)akj,
k=1

which is simply D™ = D(m=1) 4,
The operations between all rows of D and columns of A can be extended to compute relation embed-
dings r;;. For initial relation label embeddings R(?), the below recurrence finds R™ for m € [1,n]:

e =" fel Y ), (8)
k=1

where f is the sub-path composition function in eq. 4. Similarly to eq. 6 an output projection layer is
applied to the final rl(;).

Relation self-attention Since f in eq. 8 is an expensive linear projec- p m
tion over two embeddings, we propose to push the sum over k into f. cwafl
. . . please-01 SEL
This means that f is computed once per path, and we sum over all possi- N argl
ble subpath pairs (i ... k), (k... j) using attention over k. Specifically, at < argor
. . . man SEL
step m, the attention mechanism uses step (m — 1)’s path embedding for arglr

(i...7) to softly select path prefixes (i ...k), Vk € [1,n]. The attention ) ANGO RO
coefficient for a particular path (i ... k... j) is found as Piz; 41,3 < SAN(r, Ry
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Now eq. 8 can be written in terms of path prefix p;; and suffix s;;, which Figure 3: Relation SAN.
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where W, € R¥*24 g a linear projection matrix. We also apply a residual connections and layer nor-
malization across successive steps of m. As (i...k) and (i... j) belong to the same row we can apply
row-wise self-attention over R~ to efficently compute o] _;. Thus, our model requires O(n?d? +n?)
operations for eq. 8 instead of O(n3d?). See Figure 3 for an example application of the relation SAN.

5 Experiments

We evaluate two generalized shortest-paths encoders, using the model by Cai and Lam (2020) as a base-
line. All components besides the relation encoder are held constant to test whether feeding the graph en-
coder a wider scope of path embeddings improves downstream language modeling. Experiments are run
on the LDC2017T10 dataset that consists of 36,521 training, 1,368 development, and 1,371 test AMR-
sentence pairs. Results are reported in terms of BLEU (Papineni et al., 2002) and CHRF++ (Popovi¢,
2017) for direct comparison to the baseline.
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Figure 4: Histograms for graph connectivity metrics.

5.1 Preprocessing

We follow the same vertex- and token-level preprocessing steps as the baseline model—entity simplifica-
tion and anonymization—that were introduced by Konstas et al. (2017). The former includes removing
sense tags and ‘instance-of” relations, while the latter replaces subgraphs rooted at entity types with
indexed entity labels (e.g., ‘country_0’) and standardizes ‘date’ entities. Postprocessing reverses these
effects after model predictions are made.

Data attributes Since our approach targets densely connected AMR, we examine a few properties
indicative of such in the dataset. Figure 4a shows the distribution of AMR reentrancy counts for devel-
opment and test splits after preprocessing. 14.4% of the former and 16.3% of the latter has no reentran-
cies. Among reentrant AMRs, the average number of reentrancies is 3.33 and 3.43 for the two splits.
Figure 4b reveals how the number of competing shortest paths is distributed over AMRs; 37.4% of de-
velopment and 42.0% of test split AMRs have at least one set of tied paths. Over all AMRs the mean
(maximum) number of ties is 1.63 and 1.81. In Figure 4c is the distribution of shortest path lengths. Per
split, 30.8% and 29.8% of the paths are zero-length (i.e., self-loops)—without which the mean lengths
are 1.97 and 2.00, respectively. In summary, most AMRs are reentrant, ~40% of AMR have tied shortest
paths, and pairwise unique vertices are on average two hops away. We explore performance relative to
these attributes in §5.4.

5.2 Setup

The Floyd-Warshall (FLOWAR) and adjacency matrix multiplication (ADJIMATMUL) model variants
inherit the same base settings. Encoder vertex embeddings and decoder token embeddings of size 300
each are randomly initialized. Both embeddings types also include output from a character-level CNN.
Model hyperparameters excluding those of the relation encoder are replicated from Cai and Lam (2020).
Notably, the encoder and decoder SANs share a set of settings: hidden states of size 512, feed-forward
projections of size 1024, and eight attention heads. Parameters of the model are optimized using Adam
(Kingma and Ba, 2015) with default settings of & = 0.001, 51 = 0.9, $2 = 0.999, and € = 1078,

FLOWAR includes relation embeddings of size 200 and a final relation projection of size 512. We
found that larger relation embeddings degrade performance—perhaps contributing to overfitting. As
Floyd-Warshall combines subproblems in a tree-like fashion, the model may struggle to generalize with
complex embeddings across large values of k. We tried adding gated recurrent operations to eq. 5 to
address this suspicion; however, it was not helpful.

ADIMATMUL has an added maximum m-value hyperparameter that limits the length of candidate
shortest paths. Empirically a maximum m of 6 performed the best with performance dropping precipi-
tously at higher values. The problem may stem from a mismatch with the corpus graph distribution; the
average diameter (i.e., maximum pairwise vertex distance) per AMR is 3.43 for both evaluation splits.
The best model also featured relation embeddings of size 216 and a final relation projection of size 512.
The inter-relation SAN employs hidden states of size 216 and eight attention heads.



5.3 Results

Performance on AMR-to-text generation from the LDC2017T10 corpus is reported relative to the base-
line model results. We outperform all previous systems in §2 that primarily target the graph encoder
except those of Zhu et al. (2019) and Yao et al. (2020). The former uses a different preprocessing
method that includes BPE (Sennrich et al., 2016) applied to a shared concept-token vocabulary. Their
ablation studies show that this method raises their baseline’s scores by 6.1 BLEU and 8.4 CHRF++ on
LDC2015E86. Although these vocabulary changes may complement our proposed models, we do not
include them since the authors do not release their preprocessing code. Yao et al. (2020) also applies
BPE to AMR concept labels, without which their model suffers a 2.0 drop in BLEU on LDC2015ES86.
In addition, they apply Levi graph transformation and encode several views of the AMR graphs (e.g.,
reverse edges only, fully connected). Since their work is concurrent to ours, we were unable to explore
the effects of these changes.

BLEU CHRF++

Cai and Lam (2020)  29.8 59.4
FLOWAR 30.0 60.1
ADIMATMUL 31.2 61.2

Table 1: LDC2017T10 test split scores.

As shown in Table 1, ADJMATMUL improves on Cai and Lam (2020) by 1.4 BLEU and 1.8 CHRF++.
FLOWAR achieves a 0.2 BLEU and 0.7 CHRF++ boost over the baseline. It is surprising that FLOWAR
is inferior to ADIMATMUL; the former captures all possible paths in an AMR, while the latter halts
upon reaching a maximum path length m. The sheer number of paths encountered in FLOWAR may in
fact be harmful for downstream text generation. Since consecutive sentence-aligned AMR concepts are
often close together in the graph, encoding long paths may not be critical. FLOWAR’s higher CHRF++
compared to the baseline indicates that it still offers a modest advantage at the character level.

5.4 Analysis

To delve deeper into how our relation encoders improve upon the baseline, we analyze how their perfor-
mance varies over measures of graph connectivity. We hypothesized earlier that our generalized shortest-
paths encoders offer a more complete view of AMR structure to the graph encoder.
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Figure 5: Test split average sentence-level CHRF++ over binned graph connectivity metrics.

Reentrancies In §1 we asserted that introducing multiple paths between vertex pairs (e.g., Figure 1)
can be problematic for models that encode only shortest paths. We found in §5.1 that a majority of the
evaluation AMRs exhibit reentrancies (Figure 4a). To show the impact of encoding such structure, Fig-
ure 5a plots average sentence-level CHRF++ for AMRSs over varying bins of reentrancy counts. FLOWAR
maintains a lead over the baseline across all reentrancy counts, with noticeable gains for AMRs with
above two reentrancies. We speculated in §5.3 that the high volume of paths FLOWAR encodes may



hurt its performance. However, it does not appear to suffer at higher reentrancy counts even though
the number of paths increases exponentially in graph size (correlated with reentrancy). The gap of 1.97
CHRF++ between ADJMATMUL and the baseline is widest for AMRs containing five or six reentran-
cies. This margin is present across AMRs with between one and six reentrancies, though it vanishes for
non-reentrant AMRs.

Diameter The maximum distance between vertex pairs, or diameter, of an AMR is another metric of
interest. It captures the worst-case communication cost between two vertices in terms of path length.
Figure 5b compares trends in CHRF++ over different AMR diameters. FLOWAR consistently outper-
forms the baseline on diameters above one, with performance waning at lower diameters. ADTMATMUL
follows the same pattern relative to the baseline as FLOWAR. It is possible that the density of paths en-
coded by FLOWAR and ADIMATMUL dilutes graph structure of lower diameter AMRs, whose vertices
may be highly interconnected. The fact that both generalized shortest-paths encoders perform well at
higher graph diameters supports their efficacy on AMRs with distant vertices.

Manual inspection For a more holistic view of performance, we inspect a few model-generated sen-
tences. The examples in Table 2 are chosen with special attention to graph complexity. The AMR of
example (2) has three reentrancies and a diameter of four, while those of (1) and (3) have three reen-
trancies and a diameter of three. We observe in (1) that the baseline substitutes the phrase as opposed
to with the word but, which lends the reverse meaning to the sentence. FLOWAR and ADJMATMUL
choose the appropriate phrases rather than and instead of, respectively. In (2) the preposition at in the
phrase look at the script is replaced with like by the baseline. It appears that the model misplaces like
from life is like a show. Both FLOWAR and ADJIMATMUL are able to recover the correct reference
phrase. Finally, (3) consists of several interrelated clauses and may test models’ ability to synthesize
global AMR information. The baseline fails to mention chavez in the first clause, instead linking castro
to cuba. In the second clause it then inserts the irrelevant word india in place of castro. Neither FLOWAR
nor ADJMATMUL drop chavez, and they both curiously use a pronoun to refer to castro in the second
clause—though FLOWAR applies the wrong gender.

(1) REF to me that just sounds like you being overly anxious , as opposed to having really bad ocd .
Cai & Lam "20  that just sounds over anxious to me , but you have a really bad ocd .
FLOWAR that just sounds over anxious to me rather than having really bad ocd .
ADIMATMUL that just sounds like you are overly anxious to me instead of having really bad ocd .
(2) REF no one is easy . life is like a show , you must have a look at the script to know how to
perform

Cai & Lam 20 no one is easy as a show ( you have to look like a script to know how the performance
would be performed . )

FLOWAR life is - like a show , but no one is easy , you have to look at a script to know how the
performance is .

ADIMATMUL life like a show , you have to look at a script to know how performed . no one ’s easy .

(3) REF cuban leader fidel castro is chavez ’s his major ally and chavez is growing closer to castro .
Cai & Lam "20  cuba ’s leader fidel castro is a major ally of cuba and has grown closer to india .
FLOWAR cuba ’s leader fidel castro is a major ally and chavez is growing closer to her .

ADIMATMUL  cuba leader fidel castro is a major ally with chavez and has grown closer to him .

Table 2: Sample sentences.

In the selected sentences, FLOWAR and ADJIMATMUL exhibit more semantic accuracy and cohesion
than the baseline does. This difference is especially apparent in (3), which contains several relations
between the entities fidel castro and chavez. Perhaps the ability of FLOWAR and ADJMATMUL to model
multiple pairwise paths allows them to preserve meaning in such scenarios. Moreover, the generalized
shortest-paths encoders are robust to the preposition-related errors shown in (1) and (2).

6 Conclusion

We presented two relation encoders based on generalized shortest-paths algorithms for graph encoders.
Due to their expansive graph path encoding, we proposed that the encoders’ more global context would



especially benefit complexly structured AMRs for text generation. Experiments revealed that their per-
formance gains are most consistent on higher-diameter AMRs, verifying their efficacy on encoding long-
distance vertex relations. Our adjacency matrix multiplication relation encoder scores above the base-
line shortest-paths model in terms of both BLEU and CHRF++. Furthermore, sentence-level inspection
showed that both our model variants produce more semantically sound output. Encouraging the model to
learn encoder-specific parameters (e.g., maximum path length) may improve its adaptivity to variations
in AMR structure and remedy its sensitivity to low AMR reentrancy. We leave this experimentation for
future work.
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