How Students Unit Test: Perceptions, Practices, and Pitfalls

Gina R. Bai
North Carolina State University
Raleigh, NC, USA
rbai2@ncsu.edu

ABSTRACT

Unit testing is reported as one of the skills that graduating students
lack, yet it is an essential skill for professional software developers.
Understanding the challenges students face during testing can help
inform practices for software testing education. To that end, we
conduct an exploratory study to reveal students’ perceptions of
unit testing and challenges students encounter when practicing
unit testing. We surveyed 54 students from two universities and
gave them two testing tasks, one involving black-box test design
and one involving white-box test implementation. For the tasks,
we used two software projects from prior work in studying test-
first development among software developers. We quantitatively
analyzed the survey responses and test code properties, and qualita-
tively identified the mistakes and smells in the test code. We further
report on our experience running this study with students.

Our results regarding student perceptions show that students
believe code coverage is the most important outcome for test suites.
For testing practices, most students were ineffective in finding
known defects. This may be due to the task design and/or chal-
lenges with understanding the source code. For testing pitfalls, we
identified six test smells from student-written test code; the most
common were ignoring setups in the test code and testing happy
path only. These results suggest the students needed more intro-
duction to these common testing concepts and practices in advance
of the study activity. Through this experience, we have identified
testing concepts that require emphasis for more effective future
studies on testing behavior among students.

CCS CONCEPTS

« Applied computing — Education; . Software and its engi-
neering — Software verification and validation.

KEYWORDS

test smell; unit testing; testing education

ACM Reference Format:

Gina R. Bai, Justin Smith, and Kathryn T. Stolee. 2021. How Students Unit
Test: Perceptions, Practices, and Pitfalls. In 26th ACM Conference on Innova-
tion and Technology in Computer Science Education V. 1 (ITiCSE 2021), June
26—Fuly 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3430665.3456368

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8214-4/21/06...$15.00
https://doi.org/10.1145/3430665.3456368

Justin Smith
Lafayette College
Easton, PA, USA

smithjus@lafayette.edu

Kathryn T. Stolee
North Carolina State University
Raleigh, NC, USA
ktstolee@ncsu.edu

1 INTRODUCTION

Unit testing is widely practiced in industry [23, 43], and the ACM
suggests that software testing should be integrated into Computer
Science and Software Engineering curricula [1]. The topic of soft-
ware testing in education is gaining momentum, with the first
Software Testing Education Workshop being held in 2020,! which
suggests that testing education is an important and timely topic
worthy of study.

As with any topic in computer science, there are many ap-
proaches for teaching software testing. In an effort to understand
students’ misconceptions and challenges—so that we can address
those in our educational practices—we conducted a baseline empir-
ical study with 54 undergraduate and graduate students from two
universities. In this study, students answered survey questions and
participated in a two-hour lab activity. Their testing tasks covered
both black-box and white-box testing projects, each with accom-
panying specifications (adapted from prior work [18]). During the
study, students were instructed to test as thoroughly as possible.

Based on our analysis of students’ survey responses and the 794
unit tests written over the course of our study, we reveal students’
perceptions of testing, overall performance on testing projects, and
summarize the challenges they encountered. Our findings include:

(1) Students do not have a clear consensus on what makes a
unit test good (Section 4.1).

(2) More Java experience and prior education in unit testing
correspond with higher code coverage (Section 5.1).

(3) While students do not admit to having trouble with un-
derstanding specifications, their code suggests otherwise.
Students frequently created test cases that mismatched the
program specifications (Section 5.2).

(4) Students will likely to ignore setups and only test the happy
path when creating unit tests (Section 5.3).

We summarize our contributions as follows:

e We provide an analysis of students’ unit testing practices.

e We discuss challenges students encounter during unit testing
and share insights as to how we can better help students
overcome these challenges.

2 RELATED WORK

To our knowledge, this is the first work reporting students’ unit
testing practices and perceptions outside the classroom.

2.1 Software Testing in Education

Educators have been exploring different approaches to introduce
testing in Computer Science curricula, such as requiring students to
turn in tests along with their solutions [16, 22], asking students to

!TestEd 2020 - https://testedworkshop.github.io/

https://doi.org/10.1145/3430665.3456368
https://doi.org/10.1145/3430665.3456368
https://testedworkshop.github.io/

perform black-box testing in a software seeded with errors [28, 38],
and instructing students to conduct peer testing [21, 45].

Closest to our work, Aniche and colleagues [4] survey 84 first-
year CS students about challenges learning software testing, and
explore the mistakes made in 230 students’ labwork. They report
eight categories of common mistakes: test coverage, maintainability
of test code, understanding testing concepts, boundary testing, state-
based testing, assertions, mock objects, and tools. We likewise use
a testing survey and labwork for assessing student perceptions.

Prior work explores the quality of student-written test code [4,
9, 13, 14] and students’ perspectives on unit testing [4, 21]. The
metrics used in these studies include the number of bugs detected
by student-written test cases as well as branch coverage. Kazerouni,
et al. [30] introduced novel metrics, the balance and sequence of
testing effort, to assess the incremental testing practices of the
software development projects. Carver and Kraft [9] evaluated the
testing ability of senior-level CS students and found that students
lack the ability to use test-coverage tools effectively. These studies
were conducted in the classroom environment and the activities
were graded. In addition, these prior works only asked students to
perform white-box testing.

We take a more comprehensive approach to measure individual
test and test suite quality via requirement coverage, code coverage,
and test code smells. Our study is conducted outside the class-
room setting and uses black-box and white-box activities. We study
students with a range of experience by recruiting graduate and
undergraduate students from two different Universities.

2.2 Developer Surveys about Testing

Beyond surveying students about testing challenges [4], researchers
have surveyed professional developers about their testing prac-
tices [10, 11, 38, 46] and the level of their related education and
training [10, 38]. In this work, we adapt survey questions from prior
work [11] and investigate how the students perceive unit testing,
including the goal and the important aspects of unit testing, and
the processes that they find challenging.?

2.3 Test Code Quality and Smells

Test code quality is usually evaluated by coverage [3, 11, 32, 40],
effectiveness [23, 51] and maintainability [26]. Grano, et al. [23]
measure test code effectiveness via code coverage, test smells, code
metrics, code smells, and readability. Athanasiou, et al. [5] introduce
a model that assesses test code quality by combining source code
metrics related to complateness, effectiveness, and maintainability.

As test smells make test code less maintainable [7, 39, 47], how
to identify and get rid of test smells is actively discussed among
practitioners and researchers [35, 44, 49]. Various studies have
been done on smell prevention [29, 53], smell detection [37, 41,
42, 50], and smell correction [8, 24], though none have focused on
student-written test code. In this study, we adopt the definitions
and classifications from prior work [20, 35, 49] and report smells
in student-written test code. We also qualitatively categorize the
mistakes observed in student-written test code.

ZNote that the prior work surveying students on their testing challenges [4] was done
concurrently with our own, so our survey questions are adapted from those used to
study industry developers.

Introduction Test Perception Black-box White-box Post-activity
15 min Survey Testing Project Testing Project Survey
~5 min ~20min ~60min ~5min
Figure 1: Study Procedure

Our goal is to explore how students perceive unit testing, identify
the challenges students encountered when practicing unit testing,
and recognize the smells that appear in student-written test code.
We explore the following research questions:

Perceptions:

RQ1: What standards do students perceive make unit tests good?
We adapt survey questions from prior work [11], to explore
students’ perceptions of test quality.

RQ2: What aspects of unit testing do students perceive to be chal-
lenging?

We analyze survey responses about the challenges of creat-
ing, editing, and maintaining unit tests.

Practices & Pitfalls:

RQ3: How well do students perform unit testing?
We quantitatively analyze student-written unit tests, mea-
suring requirements coverage, code coverage, and mutation

RQ4: What challenges do students encounter when creating or
editing tests?
We investigate students’ responses to the open-ended survey
question, “What challenge(s) did you encounter when creat-
ing/editing the test cases?” in post surveys.

RQ5: Does student-written test code smell good?
We adopt the definitions and classifications of test smells
from prior studies [20, 35, 49] and qualitatively classify test
smells in student-written tests.

3.1 Procedure

Students were given two surveys (one preliminary testing percep-
tions survey and one post-activity survey) via Qualtrics and two
testing projects to perform in the Eclipse IDE. Prior to the study,
we conducted a pilot (n = 4) to clarify our survey questions and
testing projects. As a result, we modified the survey choices to avoid
ambiguity; removed questions unsuitable for a student population;
and adjusted the suggested times allocated for each task (Figure 1).

The study was conducted in a lab setting over four sessions,
two hours each. Each student attended one lab session only. At the
beginning of the study, students received a 15-minute introduction
on the procedure of the study and the overview of each testing
project, including the expected functionalities and testing goals.
Students were guided to a GitHub repository [6] containing links to
both surveys, a black-box testing project, and a white-box testing
project. Students were instructed to complete the tasks in sequence,
as shown in Figure 1. Students were allowed to use any Eclipse
plug-ins and consult any online resources for assistance. Students
uploaded their test code via Google Form upon completion of the
study. During the study, screens were recorded to facilitate analysis.

3.2 Surveys

We adapted the survey from Daka, et al. [11] for the Test Percep-
tions Survey (preliminary survey) [6]. This survey asks about the
techniques they use and the difficulties they have in writing/edit-
ing/fixing unit tests. The preliminary survey consists of four types
of questions: selection questions, ranking questions, rating ques-
tions and distribution questions.

At the end of the study, students completed a Post-activity Sur-
vey [6] that prompts them for the challenges they encountered
during testing and their demographic information such as program-
ming experience, working experience, and prior testing education.
The Post-activity Survey consists of open-ended and selection ques-
tions.

3.3 Testing Projects

There were two testing projects. The black-box testing task focuses
on designing a test suite based on specifications. The white-box
testing task focuses on writing unit tests based on an implemen-
tation and specification. For both tasks, we provide example test
cases, either in natural language or JUnit. Students are instructed to,
“test the program as thoroughly as possible based on the specifications.”
Study materials are available at [6].

3.3.1 Test Design Project - Mars Rover API. We adopt this task
from a prior study [18], as it is also used in other testing-related
studies (e.g. [19, 48]). The objective is to test an API that follows the
movement of a planet exploration vehicle (rover) and keeps track
of its position and the obstacles that it may have encountered on a
tour. The planet is set up as a 100 X 100 grid.

This testing project provides students with a description of ex-
pected behaviors, and asks them to write skeleton test cases that
each contain: 1) a test name, 2) a description of testing scenario
(in comments), 3) input (in comments), and 4) expected output (in
comments). This implementation-free project allows students who
have limited experience with Java or JUnit to carry out the testing
plan in natural language. Students had approximately 20 minutes
to complete the task.

3.3.2 Implementation Project - Bowling Score Keeper. We adopt
this task from a prior study [18]; it is also used in multiple other
testing-related studies (e.g. [19, 48]). The objective is to test an
application that calculates the score of a single bowling game.

This testing project provides students with: 1) a description
with expected behaviors, and 2) a completed program with one
malfunctioning method (three classes, LOC = 86). Students are asked
to create JUnit tests to verify the behavior of this implementation
against the specification. Students had approximately 60 minutes
to complete the task.

3.4 Data

In total, 54 students completed 108 surveys, designed 361 tests for
the Test Design Project, and wrote 433 unit tests for the Implemen-
tation Project.

3.5 Analysis

3.5.1 Survey Responses. For rating questions, we convert text Lik-
ert scale to numbers, where 0 maps to the lowest score, such as

“Strongly disagree” and “Not at all important”, and 1 maps to “Dis-
agree” and “Slightly important” and so on. We treat them as interval-
scaled data [25], and report the average numeric value of each
option (e.g., Table 1). We use Borda count for ranking questions:
among n candidates, a candidate receives n-1 points for a first rank,
n-2 points for a second rank, and so on, with zero points for being
ranked last (e.g., Table 2).

3.5.2 Metrics for Test Design Project. Since students are not ex-
pected to implement test code in the Test Design Project, we evalu-
ate students’ performance by manually measuring the requirement
coverage with the project specifications. An example test is pro-
vided that covers the requirement that, “the rover moves one position
on the grid towards the direction it is facing given command f”, intro-
ducing a baseline requirements coverage of 10%.

3.5.3 Metrics for Implementation Project. For the Implementation
Project, we first manually measure the requirement coverage with
the project specifications. An example test is provided that covers
the requirement that, “the score of a frame is the sum of two throws
and it ranges from 0 to 107, introducing a baseline requirements
coverage of 7.7%.

Next, we analyze the quality of student-written test code. We
adopt EclEmma? to measure the completeness via instruction cov-
erage (baseline = 20.3%) and branch coverage (baseline = 13.6%).
We measure the test suite effectiveness via mutation score (baseline
= 11.5%), which is the percentage of killed mutants with the total
number of mutants, supported by PITest?.

We identified potential smells in student-written unit tests via
test smell detector tsDect [41] and then manually validate the smells
using their definitions [20, 35, 44, 49] as well as classifications
from prior work [20]. No inter-rater reliability was considered in
this process as only one author coded the smells, and the process
required little personal interpretation [34].

3.6 Study Participants

We first conducted this study with 36 graduate students from North
Carolina State University. To avoid the results being too specific
to that context, we replicated this study with 18 undergraduate
students from Lafayette College. All study participants are taking
or have taken a software engineering course. Five students, includ-
ing one undergraduate student and four graduate students, have
working experience in industry. Students are eligible to receive
extra credit upon completion of the study.

Overall, students have an average of 4.1 years of programming
experience (4.0 for undergraduates, 4.2 for graduates), and 70% of
students believed that they are at least competent in programming
and 50% of them were confident in Java, while only 26% of students
considered themselves competent at unit testing.

All undergraduate students are taking or have taken a Computer
Science course that involves unit testing (18/18), and the majority
of them gained experience with creating/editing/maintaining unit
tests (17/18). There were 23 (63.9%) graduate students who claimed
that they are taking or have taken a Software Testing course in Com-
puter Science education program; however, only 21 of them claimed

3https://www.eclemma.org/jacoco/trunk/doc/counters.html
“http://pitest.org/

https://www.eclemma.org/jacoco/trunk/doc/counters.html
http://pitest.org/

Table 1: “How important are the following aspects for you
when you write new unit tests?” (5-point Likert Scale (0 - “No#
at All Important”, 2 - “Moderately Important”, 4 - “Extremely
Important”), Preliminary Survey, 37 respondents)

Aspect ‘ Overall | UGrad Grad
Rating Rating Rating
How easily faults can be localised... 3.0 3.0 31
...or debugged if the test fails ’ ’ ’
Code coverage 3.0 29 3.0
Robustness against code changes 3.0 2.6 3.3
Sensitivity against code changes 2.9 2.7 3.1
How realistic the test scenario is 29 2.8 3.0
How easily the test can be updated... 2.9 26 31
..when the underlying code changes ’
Execution speed 2.4 1.8 3.0

that they are taking or have taken a course involves unit testing,
and only 20 of them have experience with creating/editing/main-
taining unit tests. A potential explanation is that some graduate
students were given unit tests in programming assignments but
not required to create new tests.

In Section 4, we report students’ perceptions of unit testing by
surveying 37 students who have experience with creating/edit-
ing/maintaining unit tests. We analyze and discuss the quality of
student-written test code generated by all 54 students in Section 5.

4 RESULTS - PERCEPTIONS

We report the general agreement on standards of good unit tests
from the 37 students (17 undergraduates, 20 graduates) who have ex-
perience with creating/editing/maintaining unit tests (Section 4.1),
and the aspects of unit testing they found challenging (Section 4.2).

4.1 RQ1: What standards do students perceive
make unit tests good?

Summary: Students find that the ease of bug localization and
code coverage are crucial outcomes of unit tests, but they did
not seem to have a consensus on what makes a unit test good.

We explored the aspects that students perceived to be important
when writing new unit tests (Table 1). These perceptions are based
on their experiences before the study took place. Both undergradu-
ate students (UGrad Rating) and graduate students (Grad Rating)
rated the ease of bug localization and code coverage, a common
indication of test completeness, as the most important aspects of
good unit tests.

Graduate students also ranked highly the robustness of test cases
against code changes, but undergraduate students believed it is less
important. Additionally, undergraduate students overwhelmingly
rated execution speed as the least important aspect. Overall, re-
sponses were distributed uniformly among the six options, which
indicates most aspects are equally important to students, especially
graduate students, in this study. That is, students did not have a
clear standard of high-quality test code in terms of effectiveness
and maintainability.

As our takeaway for teaching, we plan to introduce discussions
about each aspect of software testing present in the survey. For ex-
ample, while execution speed was not seen as important, research at

Table 2: “Please rank the following aspects of writing a new
unit test according to their difficulty” (Borda Count in paren-
thesis, Preliminary Survey, 37 respondents)

A + Overall | UGrad Grad
spec Rank Rank Rank
Determining what to check 1(98) 2 (44) 1(54)
Identifying which code/scenarios to test 2(95) 1(43) 2(52)
Finding a sequence of calls to bring the...
...unit under test into the target state 3(64) 3(28) 3(6)
Finding and creating relevant input values | 4 (58) 3 (28) 4 (30)
Isolating the unit under test 5 (55) 5(27) 5(28)

Google indicates it is of the utmost importance [17]. Therefore, pre-
senting case studies and other evidence illustrating the importance
of various aspects of testing may challenge the students’ views and
help them think more critically about testing.

4.2 RQ2: What aspects of unit testing do
students perceive to be challenging?

Summary: Students find it challenging to comprehend source
code and handle flaky tests when fixing failing tests.

We investigated two aspects of difficulty: 1) challenges that arise
when writing new unit tests, and 2) challenges that arise when
fixing failing tests.

Table 2 summarizes the difficulties students faced (Aspect) when
writing new unit tests. Both undergraduate and graduate students
reported that the most challenging aspect is to determine what to
check and identify which code/scenarios to test (UGrad Rank &
Grad Rank). Meanwhile, students consider isolating the unit under
test was the least difficult aspect of writing a new unit test.

As for students’ perceptions toward failing tests, they responded
that it was complicated to fix a failing test when the code under
test is difficult to understand, or the test fails non-deterministically.

One possible explanation for these challenges is that students
feel like they are lacking tool support while writing tests. We found
that 76% of undergraduate students (Rating = 3.4, UGrad Rating in
Table 3) and 90% of graduate students (Rating = 4.6, Grad Rating)
agreed that they would like to be better supported by tools during
unit tests composition.

Overall, 85% of graduate students want more unit tests, 55% of
them claimed that they enjoyed writing unit tests, and only 30% of
them thought writing and maintaining unit tests is difficult. How-
ever, 76% of undergraduate students found writing and maintaining
unit tests difficult and only 6% of them enjoyed writing unit tests.
This demonstrates that students see value in unit testing, but also
report that writing (19/37) and maintaining tests is difficult (21/37).

Our takeaway for teaching is to present students with scenarios
in which each of these aspects is challenging in its own right. As
an example, for testing private classes, isolating the unit under test
can be particularly challenging, yet students find it to be the least
challenging aspect of the process. For hard-to-reach code, finding
input values can be particular challenging as well. Introducing
students to these situations can help show how the testing process
can be challenging in a variety of ways.

Table 3: “Please indicate your level of agreement with the fol-
lowing statements” (7-point Likert Scale (0 - “Strongly Dis-
agree”, 3 - “Neither Agree Nor Disagree”, 6 - “Strongly Agree”),
Preliminary Survey, 37 respondents)

Overall | UGrad Grad
Agreement on statements... . . .
Rating | Rating Rating
I'would hke? 'Fo havg more tool support... 45 44 45
..when writing unit tests
I would like to have more unit tests 4.1 3.4 4.6
Maintaining unit tests is difficult 3.3 3.5 3.2
Writing unit tests is difficult 3.2 3.7 29
T usually have sufficiently many unit tests | 2.9 2.6 3.2
I enjoy writing unit tests 2.8 2.2 34

5 RESULTS - PRACTICES & PITFALLS

In this section, we assess students’ performance in testing with data
from all 54 students (Section 5.1). We discuss the challenges that
all 54 students encountered during the testing process (Section 5.2)
and the smells in student-written test code (Section 5.3).

5.1 RQ3: How well do students perform unit
testing?

Summary: Experience and prior education in testing correspond
with better testing practices. Most students use print statements.

In this survey, when asked, “How do you test your own code”, 96%
(52/54) of students claimed to use print statements (including 100%
of the undergraduate students), 80% (43/54) of students claimed to
use unit tests, 39% (21/54) claimed to use testing tools when testing
their own code. The popularity of print-statement testing echoes
prior research showing it is the most popular testing strategies for
students [2, 36].

In the Implementation Project, students did not perform particu-
larly well when it comes to discovery of the seeded faults. Students
were informed that there was at least one bug in the source code
for the Implementation Project (three in total), yet only half of the
students (27/54) were able to detect one or more bugs. This low
level of fault discovery may mean that the projects—which were
designed for use in experiments involving professionals [18]-were
too difficult for the students.

Table 4 reveals students’ overall performance on designing tests
(Row Des) and implementing tests (Rows Imp). Students gener-
ally achieved higher requirement coverage in Test Design Project
than Implementation Project given the higher average (62.8% vs.
44.9%) and median (66.7% vs. 43.3%). This points to a potential im-
plementation barrier where students were better able to figure out
how they want to test the code (design) than actually test the code
(implementation).

While undergraduate students (UGrad (%)) performed consis-
tently in requirements coverage across the two projects, graduate
students (Grad (%)) did considerably better with the Design Project.
We infer that graduate students may not be as comfortable coding
compared to undergraduate students, an observation that is ampli-
fied by the other code-related metrics in the Implementation Project
where the undergraduate students consistently outperformed the
graduate students. These results suggest that unit testing experi-
ence and java experience (of which the undergraduate students had

Table 4: Coverage achieved by students in the Design Project
and the Implementation Project

[Overall (%) | UGrad (%) [Grad (%)
[[avg med [avg med [avg med
Des | Requirement | 62.8 66.7 | 71.2 66.7 | 59.7 55.6
Requirement | 449 433 | 61.6 60.0 | 351 333
Instruction 69.6 81.6 81.7 894 61.2 70.0
Branch 49.9 55.1 61.1 66.7 419 477
Mutation 43.6 474 56.6 60.3 339 295

Coverage

Imp

Table 5: “What challenge(s) did students encounter when cre-
ating/editing the test cases?” (Post Survey, 54 respondents)

Students encountered these challenges... #Par
Source code comprehension 17 (31.5%)
Determine "Testing Enough” 14 (25.9%)
Specification comprehension 7 (13.0%)
Mastery of Java 6(11.1%)
Mastery of JUnit 5(9.3%)
Unable to create test case for a scenario 4(7.4%)
Creation of test cases 3 (5.6%)
Familiarity of Eclipse IDE 2(3.7%)

more, 3.3 years vs 2.0 years on average) correspond with higher
coverage metrics.

As our takeaway for teaching, students make extensive use of
print statements, indicating a need to differentiate between debug-
ging activities and testing activities. The implementation barrier
stands out as important; teaching students how to design tests to
achieve various objectives (e.g., coverage) is important to build
confidence in testing techniques. However, it should not replace the
task of actually writing the test code. The quality of the tests should
be adjudged against the original specification of the program, pos-
sibly by running the tests against a reference implementation [16].

5.2 RQ4: What challenges do students
encounter when creating or editing tests?

Summary: Students reported that the most challenging aspects
of testing were “understanding source code” (17/54) and “de-
termining when to stop testing” (14/54). Although only seven
students reported having difficulty understanding program spec-
ifications, over 85% of students generated at least one test case
that mismatched the program specifications.

After the study, the most common challenges students reported
were understanding the source code implementation (17/54), and
determining when to stop testing (14/54). Similarly, Aniche, et al. [4]
found that over 40% of students and teaching assistants considered
“deciding how much testing is enough” a hard topic to learn.

Relatively few students reported that they had trouble with ac-
tually creating unit tests that can accurately reflect their intended
testing scenarios (4/54) or creating syntactically correct unit tests
(3/54). However, their code and test designs tell a different story. We
found eight students (14.8%) created tests cases with incorrect syn-
tax and were unable to fix the errors. Among 54 students, 46 (85.2%)
generated at least one test case whose testing scenario did not
match the program specifications. Similar student behaviors that
misunderstanding the problem leads to flawed implementations
were also observed in prior work [52].

As a takeaway for teaching, we plan to emphasize the importance
of understanding test oracles (the specifications). As for understand-
ing when to stop testing, introducing a principled approach such
as coverage metrics is a start, but coverage metrics are not always
strongly correlated with fault detection [27]. Practicing testing tech-
niques such as function-based input domain modeling (IDM) could
help students understand and transfer the semantic information
from project specifications to the IDM, and hence generate tests
that reflect the expected code behavior.

5.3 RQ5: Does student-written test code smell
good?

Summary: We observed six smells among student-written test
code. The most frequently occurring smells were Refused Bequest
(68.5%) and Happy Path Only (44.4%).

We ran the student-written tests against the test smell detec-
tor tsDetect[41]. We identified three code-related smells: Test Re-
dundancy [31, 53] (13 students, 32 tests), Bad Naming [12, 44] (20
students, 48 tests), and Lack Comments [33] (10 students, 43 tests);
one test semantic/logic related smells: Happy Path Only [20] (24
students); and two smells in test steps: Refused Bequest [7, 44, 49]
(37 students, 96 tests), No Assertions [44] (5 students, 6 tests).

We found that students were most likely to introduce smells
related to test steps: 37/54 (68.5%) students ignored the setups pro-
vided in the test class in at least one test case (Refused Bequest test
code smell). Furthermore, over 40% of students tested the happy
path only. This matches the observation in prior work [15] that
students tend to write basic test cases to cover expected behaviors
rather than detect hidden bugs.

As a takeaway for teaching, students might not fully understand
how each component in test class functions, such as the usage of
the @Before annotation; more instruction is needed in general and
especially before a study such as this. As for the happy-path testing,
this represents a common misconception about the testing process,
where the purpose is to verify expected behavior in addition to
uncover faults.

6 DISCUSSION

We observed that students found it challenging to understand the
source code and program specifications. This could be potentially
introduced by the study design, as both of the testing projects we
used were originally designed for a study involving professionals.
In this section, we briefly compare the students in our study to
professionals according to survey responses and discuss threats to
validity.

6.1 Students vs. Professionals

As our surveys were adapted from industry, we noticed several
disagreements on perceptions of unit testing among students and
professional testers/developers. For example, students believed that
the code coverage is one of the most important outcomes of unit
tests, while prior work reports that “realistic test scenarios” are
most important to professionals [11]—this aspect ranked last among
graduate students. Moreover, while professionals consider isolating

the unit under test somewhat challenging [11], students thought
it was the least difficult aspect of writing a new unit test. These
observations may suggest that students are not sufficiently aware of
the importance and difficulty of some testing activities, and should
be exposed to more complex testing scenarios.

6.2 Threats to Validity

Students were self-selected into this study. All graduate students
were from same university, same with the undergraduate students,
which made the sample relatively homogeneous. A replication with
a more diverse and larger set of students is needed.

We only observed students’ interactions with two unfamiliar
codebases. Students may perform differently on their own or peers’
programs with which they are more familiar.

The testing projects were relatively small, so test smells observed
may not be representative of smells in a larger codebase. Given the
time constraints of the study and the goal of testing as thoroughly
as possible, students may be inclined to take shortcuts, such as
choosing test names out of convenience (e.g., test1()) or neglecting
to write code comments. This may have artificially inflated the
frequency of some smells such as Bad Naming and Lack Comments.

7 CONCLUSION

Our goal was to better understand how students perceive and per-
form unit testing. We adopted study designs from prior work with
industrial participants and found our population of students often
struggled to understand the source code and specifications. Some of
this may have been due to the study design (e.g., short time limits)
or due to the artifacts themselves. Nevertheless, our results show
that students did not have a clear consensus on what makes a unit
test good, but they believed that the ease of bug localization and
code coverage are important. We found that the major challenges
that students had during testing was to understand the source
code and program specifications. These challenges frequently led
to mismatches between testing intention and program specifica-
tions, which also suggests a potential barrier where students had
a hard time to implement unit tests that correctly and precisely
reflect the testing intentions. We also identified six test smells from
student-written test code; Refused Bequest and testing Happy Path
Only are the most common smells. Overall, students who had more
experience and prior education on unit testing consistently out-
performed those who were less experienced in both designing and
implementing unit tests.

These results pinpoint the testing concepts and the real-world
testing scenarios that should to be presented and discussed in
classes. These concepts may better prepare the students for con-
fidence and success in testing practices, and for participation in
studies that can dive a little deeper into the specific misconceptions
that arise during software testing activities.

ACKNOWLEDGMENTS
This work is supported in part by NSF-SHF-#1749936.

REFERENCES

[1] ACM, 2013. Computer Science Curricula Recommendations: Curriculum Guide-
lines for Undergraduate Degree Programs in Computer Science. https://www.
acm.org/education/curricula-recommendations.

https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of
Patterns of Debugging Among Novice Computer Science Students. In Conference
on Innovation and Technology in Computer Science Education (ITiCSE '05). 84-88.
T. L. Alves and J. Visser. 2009. Static Estimation of Test Coverage. In International
Working Conference on Source Code Analysis and Manipulation. 55-64.

Mauricio Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In ACM Technical Symposium on Computer Science
Education (SIGCSE ’19). 414-420.

D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. 2014. Test Code Quality
and Its Relation to Issue Handling Performance. IEEE Transactions on Software
Engineering 40, 11 (Nov 2014), 1100-1125.

Gina Bai. 2021. ginaBai/TestingPerformanceStudy: StudyMaterials. https://doi.
org/10.5281/zenodo.4641202

G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. 2012. An empirical
analysis of the distribution of unit test smells and their impact on software
maintenance. In International Conference on Software Maintenance (ICSM). 56-65.
Rodrick Borg and Martin Kropp. 2011. Automated Acceptance Test Refactoring.
In Workshop on Refactoring Tools (WRT °11). 15-21.

[9] J. C. Carver and N. A. Kraft. 2011. Evaluating the testing ability of senior-

[10

(1

[12

(13

[14

[15

[17

[18

[19

[20

[21

[22

[23

[24

[26

[27

]

]

]

]

]

]

]

]

]

level computer science students. In 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE T). 169-178.

F. T. Chan, T. H. Tse, W. H. Tang, and T. Y. Chen. 2005. Software testing education
and training in Hong Kong. In Conference on Quality Software (QSIC’05). 313-316.

Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices
and Problems. In International Symposium on Software Reliability Engineering.
201-211.

Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating Unit Tests
with Descriptive Names or: Would You Name Your Children Thing1 and Thing2?.
In International Symposium on Software Testing and Analysis (ISSTA 2017). 57-67.

Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. j. Educ. Resour. Comput. 3, 3, Article 1
(Sept. 2003).

Stephen H. Edwards and Zalia Shams. 2014. Do Student Programmers All Tend
to Write the Same Software Tests?. In Conference on Innovation & Technology
in Computer Science Education (ITiCSE '14). 171-176.

Stephen H. Edwards and Zalia Shams. 2014. Do Student Programmers All Tend
to Write the Same Software Tests?. In Conference on Innovation Technology in
Computer Science Education (ITiCSE ’14). 171-176.

Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests Against Each Others’ Code: New Life for
an Old "Gimmick". In ACM Technical Symposium on Computer Science Education
(SIGCSE ’12). ACM, 221-226.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Environ-
ments. In International Symposium on Foundations of Software Engineering (FSE
2014). 235-245.

H. Erdogmus, M. Morisio, and M. Torchiano. 2005. On the effectiveness of the
test-first approach to programming. IEEE Transactions on Software Engineering
31, 3 (March 2005), 226-237.

Davide Fucci, Simone Romano, Maria Teresa Baldassarre, Danilo Caivano,
Giuseppe Scanniello, Burak Turhan, and Natalia Juristo. 2018. A Longitudi-
nal Cohort Study on the Retainment of Test-driven Development. In International
Symposium on Empirical Software Engineering and Measurement (ESEM ’18). ACM,
Article 18, 10 pages.

Vahid Garousi and Baris Kiiciik. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52 - 81.

Alessio Gaspar, Sarah Langevin, Naomi Boyer, and Ralph Tindell. 2013. A Prelim-
inary Review of Undergraduate Programming Students’ Perspectives on Writing
Tests, Working with Others, & Using Peer Testing. In SIGITE Conference on
Information Technology Education (SIGITE °13). ACM, 109-114.

Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Technical Symposium on Computer Science Education
(SIGCSE *02). 271-275.

G. Grano, F. Palomba, and H. C. Gall. 2019. Lightweight Assessment of Test-
Case Effectiveness using Source-Code-Quality Indicators. IEEE Transactions on
Software Engineering (2019), 1-1.

M. Greiler, A. van Deursen, and M. Storey. 2013. Automated Detection of Test
Fixture Strategies and Smells. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 322-331.

Spencer E. Harpe. 2015. How to analyze Likert and other rating scale data.
Currents in Pharmacy Teaching and Learning 7, 6 (2015), 836—850.

1. Heitlager, T. Kuipers, and J. Visser. 2007. A Practical Model for Measuring
Maintainability. In 6th International Conference on the Quality of Information and
Communications Technology (QUATIC 2007). 30-39.

Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In International Conference on Software Engineering
(ICSE 2014). ACM, 435-445.

[28

[29

[30

(38]

[39

[40

[41

[42

~
&

[49

[50

[51

(52]

(53]

Ursula Jackson, Bill Z. Manaris, and Renée A. McCauley. 1997. Strategies for
Effective Integration of Software Engineering Concepts and Techniques into
the Undergraduate Computer Science Curriculum. In Technical Symposium on
Computer Science Education (SIGCSE *97). 360-364.

Willy Jimenez, Amel Mammar, and Ana Cavalli. 2010. Software Vulnerabilities,
Prevention and Detection Methods: A Review. (07 2010).

Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco Ser-
vant. 2019. Assessing Incremental Testing Practices and Their Impact on Project
Outcomes. In Technical Symposium on Computer Science Education (SIGCSE ’19).
407-413.

Negar Koochakzadeh and Vahid Garousi. 2010. TeCReVis: A Tool for Test Coverage
and Test Redundancy Visualization. 129-136.

Ken Koster. 2008. A State Coverage Tool for JUnit. In Companion of the 30th
International Conference on Software Engineering (ICSE Companion "08). 965-966.
Attila Kovacs and Kristo6f Szabados. 2014. Test software quality issues and
connections to international standards. Acta Univ. Sapientiae, Informatica 5 (05
2014), 77-102.

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (Nov.
2019), 23 pages.

G. Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code. Pearson Education.
Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: The Good, the Bad, and the Quirky
- a Qualitative Analysis of Novices’ Strategies. SIGCSE Bull. 40, 1 (2008), 163-167.
Helmut Neukirchen, Benjamin Zeiss, and Jens Grabowski. 2008. An approach
to quality engineering of TTCN-3 test specifications. International Journal on
Software Tools for Technology Transfer 10, 4 (06 May 2008), 309.

S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen. 2004. A preliminary
survey on software testing practices in Australia. In 2004 Australian Software
Engineering Conference. Proceedings. 116-125.

F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia. 2016. On the
Diffusion of Test Smells in Automatically Generated Test Code: An Empirical
Study. In 2016 IEEE/ACM 9th International Workshop on Search-Based Software
Testing (SBST). 5-14.

Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic Test Case Generation: What if Test Code Quality
Matters?. In International Symposium on Software Testing and Analysis (ISSTA
2016). 130-141.

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2019. On the Distribution of Test Smells
in Open Source Android Applications: An Exploratory Study. In International
Conference on Computer Science and Software Engineering. IBM Corp., 193-202.
Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. tsDetect: An Open Source Test
Smells Detection Tool. In Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020).

Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In Foundations of Software Engineering
(FSE ’12). ACM, Article 33, 11 pages.

S. Reichhart. 2007. Assessing Test Quality: TestLint. Verlag nicht ermittelbar.
James Robergé and Candice Suriano. 1994. Using Laboratories to Teach Software
Engineering Principles in the Introductory Computer Science Curriculum. In
SIGCSE Symposium on Computer Science Education (SIGCSE *94). 106-110.

P. Runeson. 2006. A survey of unit testing practices. IEEE Software 23, 4 (July
2006), 22-29.

D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On the
Relation of Test Smells to Software Code Quality. In International Conference on
Software Maintenance and Evolution (ICSME). 1-12.

Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan, Hakan Er-
dogmus, Adrian Santos, Markku Oivo, Kimmo Toro, Janne Jarvinen, and Natalia
Juristo. 2017. An Industry Experiment on the Effects of Test-driven Development
on External Quality and Productivity. Empirical Softw. Engg. 22, 6 (Dec. 2017),
2763-2805.

Arie van Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. 2001. Refactoring
Test Code. Technical Report. Amsterdam, The Netherlands, The Netherlands.
Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger. 2007. On
The Detection of Test Smells: A Metrics-Based Approach for General Fixture and
Eager Test. IEEE Trans. Softw. Eng. 33, 12 (Dec. 2007), 800-817.

J. Voas. 1997. How assertions can increase test effectiveness. IEEE Software 14, 2
(Mar 1997), 118-119.

John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-
gramming Problem Comprehension.

Tao Xie, Darko Marinov, and David Notkin. 2004. Improving Generation of Object-
Oriented Test Suites by Avoiding Redundant Tests. Technical Report.

https://doi.org/10.5281/zenodo.4641202
https://doi.org/10.5281/zenodo.4641202

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Testing in Education
	2.2 Developer Surveys about Testing
	2.3 Test Code Quality and Smells

	3 Study
	3.1 Procedure
	3.2 Surveys
	3.3 Testing Projects
	3.4 Data
	3.5 Analysis
	3.6 Study Participants

	4 Results - Perceptions
	4.1 RQ1: What standards do students perceive make unit tests good?
	4.2 RQ2: What aspects of unit testing do students perceive to be challenging?

	5 Results - Practices & Pitfalls
	5.1 RQ3: How well do students perform unit testing?
	5.2 RQ4: What challenges do students encounter when creating or editing tests?
	5.3 RQ5: Does student-written test code smell good?

	6 Discussion
	6.1 Students vs. Professionals
	6.2 Threats to Validity

	7 Conclusion
	Acknowledgments
	References

