
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
ee

ri
n

g
:

S
o

ft
w

ar
e

E
n

g
in

e
er

in
g

 E
d

u
ca

ti
o

n
 a

n
d

 T
ra

in
in

g
 (

IC
S

E
-S

E
E

T
)

| 9
7

8
-1

-6
6

5
4

-0
1

3
8

-8
/2

0
/$

3
1

.0
0

 ©
2
0

2
1

 I
E

E
E

 |
D

O
I:

 1
0

.1
1

0
9

/I
C

S
E

-S
E

E
T

5
2

6
0

1
.2

0
2

1
.0

0
0

3
0

2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

SQLRepair: Identifying and Repairing Mistakes in

Student-Authored SQL Queries
Kai Presler-Marshall, Sarah Heckman, Kathryn T. Stolee

North Carolina State University

Raleigh, North Carolina

Email: {kpresle, sarahheckman, ktstolee}@ncsu.edu

Abstract—Computer science educators seek to understand the
types of mistakes that students make when learning a new
(programming) language so that they can help students avoid
those mistakes in the future. While educators know what mistakes
students regularly make in languages such as C and Python,
students struggle with SQL and regularly make mistakes when
working with it. We present an analysis of mistakes that students
made when first working with SQL, classify the types of errors
introduced, and provide suggestions on how to avoid them going
forward. In addition, we present an automated tool, SQLRepair,
that is capable of repairing errors introduced by undergraduate
programmers when writing SQL queries. Our results show
that students find repairs produced by our tool comparable in
understandability to queries written by themselves or by other
students, suggesting that SQL repair tools may be useful in
an educational context. We also provide to the community a
benchmark of SQL queries written by the students in our study
that we used for evaluation of SQLRepair.

I. In t r o d u c t i o n

Understanding how beginners work with a new program-

ming language and the types of mistakes that they make can

help instructors better tailor their lesson plans to avoid previ-

ous pitfalls [1], [2]. We consider SQL, a widely-used language

for interacting with relational databases. SQL is taught in many

undergraduate computer science programs [3], [4], but may

not be part of the core curriculum. It is regularly used by

professional and amateur developers alike [5], including those

with little formal computer science background [6], [7].

While the types of mistakes that students make when

working with languages such as C and Java are relatively

well studied [8]-[10], we know less about mistakes made in

special-purpose languages such as SQL. We seek to understand

the types of mistakes that undergraduate students, who are

relatively familiar with Java, make when working with SQL.

Understanding these mistakes can help educators ensure that

they have the resources necessary to support computer science

students and end-user programmers alike, which may include

automated support [11].

In addition to an analysis of student mistakes, we propose

a tool, SQLRepair, which can automatically fix some of the

errors students introduce.1 While there are tools for automated

1We adopt terminology used in existing work on SQL education: students
make a mistake while solving a problem, introducing one or more errors into
the query. Note that this diverges from terminology frequently used in testing
literature where the term would be fault instead of error. We choose error
for consistency with existing work.

repair of programs in languages such as C and Java [12]-[15],

to the best of our knowledge, no existing techniques attempt to

repair errors in SQL queries. Our repair process first attempts

non-synthesis repair based on a predefined ruleset. As needed,

it uses a satisfiability modulo theory (SMT) solver [16] to

further synthesize repairs.

We frame our work around the following research questions:

• RQ1: What types of mistakes do beginners make when

working with SQL?

• RQ2: How well can SQLRepair fix errors introduced by

beginning SQL programmers?

• RQ3: Do students find SQLRepair-repaired queries to

be more understandable than queries written by other

students?

To answer our research questions, we conducted an empiri-

cal evaluation to understand student mistakes (RQ1), evaluate

SQLRepair’s ability to repair the errors in the student-written

queries (RQ2), and determine the repair quality (RQ3). Stu-

dents in two undergraduate computer science courses at a large

public university in the United States, North Carolina State

University (NCSU), were given a short introduction to SQL

and then asked to write queries to solve problems associated

with a sample database. For each problem, students were

provided an example (s o u r c e , d e s t i n a t i o n) table pair

that demonstrated the desired transformation (similar to pro-

gramming by example (PBE) techniques) [17] and were asked

to write a SQL query that would complete the transformation.

Incorrect queries were followed by additional examples (up to

three) to demonstrate the intended behavior. Any SQL query

that did not correctly solve the problem was analyzed for errors

and considered a candidate for repair. Students were then

asked to evaluate up to four human-written or tool-generated

queries, judging each for understandability. Our work makes

the following contributions:

• quantitative and qualitative classifications of the types of

errors introduced by beginning SQL programmers,

• a tool capable of repairing 29.1% of the observed errors

in SQL queries,

• a benchmark dataset of realistic SQL errors gathered from

undergraduate computer science students, and

• a demonstration that tool-repaired SQL queries are equal

in understandability to human-written queries.

978-1-6654-0138-8/$31.00 ©2021 IEEE 199
DOI 10.1109/ICSE-SEET52601.2021.00030

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Ma j o r c o n c e p t i n e a c h p r o b l e m a n d t h e t o t a l n u m b e r o f

(S O U R C E , D E S T I N A T I O N) t a b l e s i n t h e p r o b l e m s p e c i f i c a t i o n s .

Problem Major Concept Number of Table Pairs

1 Single-condition select 3
2 Select with projection 2
3 Inequality 3
4 Projection and inequality 2
5 Compound select 2
6 Compound select with AND 2
7 Distinct 2
8 Ordering 2
9 Joins 2
10 Grouping 2

II. St u d y

To provide a dataset for analyzing mistakes (RQ1) and

evaluating SQLRepair (RQ2, RQ3), we conducted a two-phase

study with students from two undergraduate computer science

courses. In Phase 1, we conducted a study with students from

the Summer 2019 offering of a 2nd-year Java programming

course. This phase demonstrated the viability of our approach,

gave us preliminary data for RQ1 and RQ2, and motivated

additional enhancements to our tool. In Phase 2, we put repairs

produced by SQLRepair directly in front of students to under-

stand whether our tool-generated repairs are understandable

(RQ3). Students were recruited from the Fall 2020 offerings

of a 2nd-year Java programming course and a 3rd-year Software

Engineering course. our tool and instructions on how to set it

up are available.2

A. Phase 1
We collected a dataset of SQL queries written by introduc-

tory programmers to understand the type of mistakes students

make by analysing the errors they introduce, and ascertain

SQLRepair’s ability to repair the errors.

1) Design: Eighteen students were given a lecture on SQL

functionality and syntax, including compound select queries,

various datatypes, join , count , distinct , and group b y .

Students were informed that we were interested in studying

how beginners work with SQL and the types of mistakes that

they make. Next, they were given a ten-problems to solve;

each problem had a (s o u r c e , d e s t i n a t i o n) table pair

and students were asked to write a SQL query that would

accomplish the transformation. Each problem had two or three

pairs of (s o u r c e , d e s t i n a t i o n) tables that acted as

test cases that must be passed simultaneously for the query

to be considered correct. The major concept of each problem

is shown in Table I. For example, the major concept introduced

in Problem 10 was grouping, and there were two sets of

(s o u r c e , d e s t i n a t i o n) table pairs for evaluating the

query. The problems and data used were based on the UMLS

dataset, a health and biomedical vocabulary dataset made

available free-of-charge by the NIH, which was chosen for

offering a large amount of structured data [18].

2http://github.com/kpresler/sqlrepair

Fig. 1. The application for students to submit SQL queries.

Students were shown one (s o u r c e , d e s t i n a t i o n)

table pair at a time. Each student received a paper handout

that contained the first pair for each problem. To avoid learning

effects, the problems were given in a random order. Students

submitted their queries into a web application. If the applica-

tion detected that the first pair had been solved successfully,

the query was then tested against subsequent pairs. If a

query failed a subsequent pair, that pair was revealed to the

student. Students spent approximately 40 minutes working on

all problems and were reminded every ten minutes to move on

to the next problem if they had been stuck for more than five

minutes. Students were compensated with participation credit.

The web application is shown in Figure 1. In this example,

a student submitted the query select from where

m in 2 , which was incorrect, as communicated through the

message, “Unfortunately, your proposed query didn’t solve

the problem ... ”; the actual output from executing the query

is shown alongside the expected output (destination table). If

the query produces the correct output for all table pairs, the

student was congratulated and told to move on to the next

problem. The application records the participant’s unique ID,

submission time, proposed query, and whether the problem

was solved correctly or not. At the end of the study, students

completed a brief demographics survey, which asked questions

such as their prior programming experience, their experience

with SQL, and whether they had any comments on the

introduction to SQL or the problems themselves.

2) Participants: We recruited participants from a 2nd-year

Java programming course (cS2). cS2 is the second computer

science course taken by majors and minors at NCSU. By this

point, students are exposed to programming in Java. Eighteen

students from the Summer 2019 offering of CS2 participated,

but only 12 students submitted one or more SQL queries as

part of the study. o f the 12 active participants, three identified

as female. Ten students said they had three or fewer years

of programming experience (min: 0, max: 8, average: 2.6)

and none had more than a year of professional programming

experience. one student reported prior database experience.

200

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

3) Dataset: We collected 362 SQL queries written by

12 different students. Of these, 35 were correct. Of the

327 incorrect queries, 124 had syntax error(s) and 203 had

semantic error(s). Students submitted between 7 and 65 queries

(average: 32.2, median: 28.5). Students made between one

and 21 attempts per problem (average: 4.6, median: 3.5)

and attempted between two and ten problems (average and

median: 6.5).

B. Phase 2
In Phase 2, we build on Phase 1 and further evaluate

SQLRepair by putting repaired queries directly in front of

students to assess query quality.

1) Design: Phase 2 was similar to Phase 1 in that students

were given the same introductory SQL lecture and the same

set of problems to solve. However, some changes were made

to the study format and content, as follows:

Due to the COVID-19 pandemic, Phase 2 was performed

online via Zoom. After the introduction to SQL and the study,

each participant was assigned to an individual breakout room

to work in for the remainder of the session. To ensure that each

participant was engaged and working, the first author rotated

between each room at least once to answer any technical

questions that arose. Students could also use Zoom’s “Ask

for help” functionality to request assistance.

While the study problems were identical to Phase 1, we

made operational changes to suit the online format:

• Instead of a paper handout, each student received the

randomly ordered problems as a PDF.

• Instead of students entering their participant ID manually,

the web application automatically included each student’s

random ID in each problem submission.

• The post-study demographics survey was converted from

a paper handout to a Google Form. Students were asked

to include their participant ID in their submission.

Additionally, after composing queries for a problem, students

evaluated the understandability of several solution queries for

that problem (Section II-B2).

2) Evaluating SQLRepair: We wanted students to assess

the understandability of tool-repaired queries by comparing

them against human-written queries. As a majority of software

engineering effort is spent on maintenance [19], we consider

understandability, as a proxy for ease of maintenance, to be

paramount. We seek a minimally-invasive way of gathering

information on students’ program comprehension as they

evaluate queries without the feeling of being watched [20].

Thus, we opt for short surveys deployed after each question

and separately at the end of the study.

First, we populated a database with data from Phase 1,

giving us 29 unique correct queries and 19 unique repaired

queries SQLRepair produced from incorrect queries. Next, we

modified the web application to use SQLRepair to attempt to

repair incorrect queries that students wrote during the study.

We did this through brief post-problem surveys: after solving

each problem, students were asked to rate the understandability

of up to four different queries using a modified Likert scale,

We have several alternative queries which also solve this problem. Please indicate how easy each query is to understand:

Selected Rating: 4

Selected Rating: 6

Selected Rating 3

Explain your vote, i f you'd like. This pa rt is optional

Fig. 2. An example of how students voted on the understandability of queries.

with 1 indicating the query was very difficult to understand

and 7 that it was very easy to understand. As an alternate

workflow, after making at least five attempts at a problem over

at least five minutes, students were presented with an “I’m

tired of this problem” button. Upon clicking it, they would be

given the voting options shown, despite having never solved

the problem correctly.

The four possible queries presented to students were:

• MyCorrectQuery: A correct query written by the student

(available if they solved the problem correctly).

• MyRepairedQuery: A repair of an incorrect query writ-

ten by the student (available if they got the problem

wrong at least once, and SQLRepair was able to repair

one of their queries.3)

• OtherCorrectQuery: A correct query written by some-

one else (a participant from Phase 1 of the study; a query

from this category was always available).

• OtherRepairedQuery: A repair of an incorrect query

written by someone else (a participant from Phase 1 of the

study; a query from this category was always available).

The queries were labeled A through D, and presented in

a random order. An example with three queries is shown in

Figure 2. For queries written by others, query selection was

pseudo-random: each query was associated with a count of

how many times it had been shown to a student for voting,

and each time a query was needed for voting, the application

selected the query with the smallest vote count. Identical

queries were consolidated (for instance, if the first and fourth

queries were identical, the query would only appear once).

3) Participants: In Fall 2020, we distributed recruitment

emails to students in two undergraduate courses: CS2 and

a 3rd-year Software Engineering course (SE). SE is a fifth-

semester course, and by this point, students have been exposed

to Java, C, x86 assembly, and JavaScript. Additionally, prior

3Incorrect queries were considered starting with the most recent incorrect
submission, and repairs were attempted until a query was successfully
repairable, or, to ensure sufficient responsiveness of the web application, the
repair process had failed ten times.

201

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

TABLE II
A BREAKDOW N OF A LL OF THE QUERIES SU B M ITT ED .

Course

CS2 SE Total

Correct 157 94 251
Syntax Error 680 137 817
Semantic Error 1,185 529 1,714

Total 2,022 760 2,782

to our study, the SE students received an in-class lecture on

SQL, although not hands-on practice with it. Students in both

classes were invited to sign up for one of four two-hour virtual

lab sessions held. In all, 104 students signed up to participate

in a session; 71 students attended and participated for at least

thirty minutes. The first of four sessions was used as a pilot for

the improved SQLRepair tool and new format. Feedback was

collected and data from this group was discarded. Participants

from Phase 1 could not participate in Phase 2.

Seventy-three students from CS2 signed up; 46 ultimately

participated. Thirty-one students from SE signed up; 24 ulti-

mately participated. After discarding data from the pilot study,

we retained data from 33 CS2 and 19 SE students. Students

in CS2 reported up to seven years of prior programming

experience (average and median: 2); students in SE reported

up to 8 years (average: 5, median: 4). Sixteen participants from

CS2 and five from SE identified as female.

4) Dataset: We collected 2,420 SQL queries from 52

students. Of these, 216 were correct; of the 2,204 incorrect

queries, 693 had syntax error(s) and 1511 had semantic er-

ror(s). Students submitted between 1 and 118 queries (average:

42.4, median: 37.5). Students attempted between 1 and 10

problems (average and median: 7) and made between 1 and

50 attempts per problem (average: 6.4, median: 4).

The 33 students from CS2 submitted 1,660 queries. Of

these, 122 were correct; of the 1,538 incorrect queries, 556

had syntax error(s) and 982 had semantic error(s). Students

submitted a median of 41 queries (max: 118) and attempted

between 1 and 10 problems (average: 6.8, median: 7.5).

The 19 students from SE submitted 760 queries. Of these,

94 were correct; of the 666 incorrect queries, 137 had syntax

error(s) and 529 had semantic error(s). Students submitted a

median of 36 queries (max: 79). Students attempted between

1 and 10 problems (average: 7.4, median: 7).

C. Data Summary

A summary of all of the queries collected across both phases

of our study, and their correctness or error category, is shown

in Table II. We performed a Mann-Whitney test between the

two CS2 courses (Summer 2019 and Fall 2020 from Phase 1

and Phase 2, respectively) looking for significant differences

on successes per problem. Our analysis revealed that the

differences between them were not statistically significant

(p = .31), so the data from both were combined for further

analysis. The data from SE remained significantly different

(p = .0016) and was kept separate.

item price quantity country seller

apples 7 500 US Joe’s Fruits
bananas 3 400 MX Nancy’s Produce
oranges 11 300 MA Ahmed’s Fruits
grapes 1 200 US Raj’s Vinyard

item price quantity country

grapes 1 200 US

Fig. 3. Example source (top) and destination (bottom) tables.

D. Analysis
We use the errors that students introduce into SQL queries

they write as a proxy for the mistakes made while solving the

problem. To identify student mistakes for RQ1, we executed

each student-written query against the source and destination

tables using a MySQL 5.7 database. Any query where the

database returned an error message was considered to have

syntax error(s).4 For the remaining queries, we compared the

actual output table to the expected output for the problem.

When they were different, the query was considered to have

semantic error(s).

To identify syntax error categories, we manually grouped

queries with similar errors together. For example, students

submitted the queries:
SELECT FROM where
SELECT FROM WHERE

Both queries have an extra comma, so were grouped together.

We continued this process for all queries with a syntax error.

If there were three or more queries in a category, we gave

the category a name. Categories with fewer than three were

grouped together into a miscellaneous category.

For semantic errors, we manually investigated the query and

the output table it produced and grouped together queries with

similar errors. For example, students submitted the queries:

SELECT FROM
SELECT FROM

Both queries return only a subset of the columns expected

() so they were grouped together. A mis-

cellaneous category was created by grouping together all

categories with less than three queries.

A single query can contain multiple errors (for instance, a

broken operator and unquoted string literal) so some queries

were counted for multiple categories. However, when classi-

fying errors, a single query could be counted towards either

the syntax error category or semantic error category, but not

both.

III. SQLRe p a i r

SQLRepair follows the correct-by-construction approach to

automated program repair [21]. The subset of supported SQL

includes queries with compound WHERE clauses, integer and

string datatypes, order by , and distinct .

4This understates the number of SQL syntax errors as MySQL 5.7 supports
functionality not part of the official SQL specification, such as wrapping
strings in double quotes or using operators such as instead of AND.

202

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

To explain how SQLRepair builds constraints from the

(s o u r c e , d e s t i n a t i o n) tables and SQL query, con-

sider the following example. A user of SQLRepair sub-

mits the source and destination tables shown in Figure 3

and the SQL query select from where

800 . SQLRepair proceeds in two

steps: (1) non-synthesis repair, and (2) synthesis repair.

A. Non-Synthesis Repair
SQLRepair attempts three types of non-synthesis repair

over the following types of errors: operator mismatches that

result in parse errors, column mismatches that can cause an

otherwise correct query to be incorrect, and string repair where

a string literal shows up without proper quotes.

1) Operator Mismatch: SQLRepair replaces any C/Java-

style operators in the provided query with their SQL equiva-

lent. For example, C/Java use for equality checks and for

logical AND. SQL uses and a n d , respectively. SQLRepair

thus replaces operators such as these. In the example,

is replaced with a n d , giving us the query, select from

WHERE AND .

2) Column Mismatch: SQLRepair attempts to repair any

issues with the column list prior to the where clause. When

a column does not exist, a syntax error occurs. However,

column mismatch does not always start with a syntax error.

In the the running example, the source table has five columns

while the destination table only has four; however, the SQL

query has a select clause, SQLRepair detects and fixes

this mismatch. Thus, the query is updated to select

FROM WHERE

and 800 . In addition to correcting

the column list following select , SQLRepair can also rename

columns to match the destination table using a s .

3) String Repair: SQLRepair attempts to repair any is-

sues where a string literal is present in the query ei-

ther unquoted or quoted incorrectly. SQL requires strings

to be surrounded with single quotes. Thus, SQLRepair re-

moves double quotes and surrounds what appear to be un-

quoted string literals with single quotes. The query is thus

updated to SELECT FROM

WHERE AND .

Resolving operator mismatch, column mismatch, and fixing

strings resolves syntax errors, but often synthesis is needed to

fully correct the semantic errors.

B. Synthesis Repair
SQLRepair uses a SMT solver, Z3 [16] to synthesize parts

of a query in need of repair [21]. The synthesized parts, or

patches, are composed of individual constants, operators, and

column names. The (s o u r c e , d e s t i n a t i o n) tables are

used as test cases that must be simultaneously satisfied for a

query to be successfully patched.

For each query, SQLRepair builds a system of constraints to

represent the query logic. Given a set of example (s o u rc e ,

d e s t i n a t i o n) tables E and a SQL query q, SQLRepair

checks that: Ve £ E ,q A sourcee ^ destinationne. If the

equation evaluates to true, Z3 returns S A T and q is correct;

otherwise q is incorrect and a candidate for repair.
If q is a repair candidate, SQLRepair inserts holes into q,

for example by replacing a constant with , forming q',
and provides q' to the solver. If q' is repairable by SQLRepair,

Z3 returns S A T and the solver has identified values for

the holes in the satisfiable model. If q' is not repairable by

SQLRepair, Z3 returns U N S A T . SQLRepair supports five

types of synthesis repairs. After each repair stage, the process

terminates if a successful repair can be made. Repairs are

performed in the following order:
1) Constant Synthesis: For constants that are compared

to columns, SQLRepair replaces each constant in the where

clause with . If a query contains

_2 , SQLRepair does not replace either of the constants.

Synthesis is supported for integers and strings, although syn-

thesized strings must be exact matches without wildcards.
2) Operator Synthesis: SQLRepair replaces each operator

in q’s where clause with . SQLRepair supports synthe-

sising operators for both string and integer types. SQLRepair

supports and when dealing with strings, and , , , ,

, and when dealing with integers.
3) Column Synthesis: SQLRepair inserts holes for the

columns. For example, a query q = ...

is replaced with q' = ... , where

represents one of the columns in the source table.

If SQLRepair fails to find a solution, column synthesis is

repeated for each subclause in the original query, in order.
4) Clause Removal: SQLRepair will remove subclauses

one at a time to attempt a solution. For a query with n sub-

clauses, if a correct solution cannot be found for n subclauses,

but can be found with 1 . . . n - 1 subclauses, SQLRepair will

remove subsequent clauses that impede correctness. If this step

fails, the removed clauses are added back to the query before

proceeding with Clause Synthesis.
5) Clause Synthesis: Some queries require additional where

clauses or conditions. In this case, SQLRepair functions most

similarly to Scythe [22], and will synthesize new subclauses.

Suppose in the column synthesis step, SQLRepair inserts

holes such that q' = ... where , but is

not able to find any columns, operators, and constant values

that result in a solution. At this point, SQLRepair attempts

to make a repair by synthesizing in a new subclause. More

formally, SQLRepair will take a clause ... where

from the previous step, and add a new subclause, giv-

ing q' = ... WHERE

_2 , where _1 is a binary operator (and or or) and

_2 _2 _2 represents the abstracted form of a new

subclause to be synthesized. If values can be found, they are

inserted into the query, and the repair is complete. If no such

values can be found, the query will be expanded again. This

process repeats until either a solution is found, or the query

reaches the maximum of five subclauses, at which point the

process is aborted and the repair is marked as failed.5

5In our experiment, the maximum number of added clauses in a successfully
patched query was three.

203

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III

Cl a s s i f i c a t i o n s o f s y n t a x e r r o r s i n t r o d u c e d b y s t u d e n t s a c r o s s b o t h p h a s e s .

Error Type
CS2

Number (%)
SE

Number (%)
Total

Number (%)

Broken operator 188 (27.6%) 29 (21.2%) 217 (26.5%)

Column reference error 118 (17.3%) 16 (11.7%) 134 (16.4%)

Quotes on strings
Incomplete query
Wrong order

87 (12.8%)
91 (13.4%)
83 (12.2%)

40 (29.2%)
6 (4.4%)

14 (10.2%)

127 (15.5%)
97 (11.9%)
97 (11.9%)

Table reference error 68 (10.0%) 16 (11.7%) 84 (10.3%)

Extra commas
Missing commas
Miscellaneous

62 (9.1%)
20 (2.9%)
38 (5.6%)

13 (9.5%)
9 (6.6%)
1 (0.7%)

75 (9.2%)
29 (3.5%)
39 (4.8%)

Example

SELECT FROM WHERE
SELECT DISTINCT FROM WHERE

SELECT FROM WHERE
SELECT DISTINCT WHERE
select distinct from
SELECT FROM WHERE

SELECT FROM WHERE
SELECT FROM WHERE
SELECT from BY DESC

TABLE IV
Cl a s s i f i c a t i o n s o f s e m a n t i c e r r o r s m a d e b y s t u d e n t s a c r o s s b o t h p h a s e s .

Error Type
CS2 SE Total

Example
Number (%) Number (%) Number (%)

Wrong subclauses in WHERE 828 (69.9%) 406 (76.7%) 1,234 (72.0%) SELECT FROM
Missing or extra operator
(GROUP BY, DISTINCT, etc)

369 (31.1%) 122 (23.1%) 491 (28.6%)
SELECT FROM
WHERE GROUP BY

Wrong values in WHERE 241 (20.3%) 74 (14.0%) 315 (18.4%)
SELECT DISTINCT FROM WHERE

Wrong ordering 209 (17.6%) 68 (12.9%) 277 (16.2%)
SELECT DISTINCT FROM ORDER BY

DESC

Column mismatch 70 (5.9%) 46 (8.7%) 116 (6.8%)
SELECT FROM WHERE

Wrong operator in WHERE 83 (7%) 27 (5.1%) 110 (6.4%)
select from

where AND

Missing join (implicit or explicit) 43 (3.6%) 21 (4.0%) 64 (3.7%)
SELECT from
where

Miscellaneous 31 (2.6%) 3 (0.6%) 34 (2.0%) SELECT DISTINCT FROM

In the example, after repairing Operator Mismatch

and Column Mismatch and performing String Repair the

query: q = SELECT FROM

WHERE AND

is incorrect. Thus, SQLRepair creates: q' = select

FROM WHERE

AND . When Z3

returns SAT, SQLRepair uses the satisfiable model to replace

_1 ^1 = and _1 ^ 500, creating a correct query.

C. Analysis

To identify queries to repair for RQ2, we considered any

query that had a syntax error or semantic error. We report

on what SQLRepair can fix from Phase 1 and Phase 2.

Unlike with error classification, as discussed in Section II-D, a

repaired query could be counted towards both the synthesis and

non-synthesis categories, depending on precisely what repair

operations were performed.

With RQ3, we seek to understand the quality of the repairs

produced by sQLRepair. students in Phase 2 were shown mul-

tiple queries simultaneously (see Figure 2) and asked to rate

the understandability of each one on a seven-point Likert scale.

Because students were shown multiple queries simultaneously,

we are interested in the relative ratings given to each one.

Thus, we perform a series of paired Mann-Whitney U analyses

to understand how queries from one category compare to

queries from another category.

IV. Re s u l t s

in this section, we present quantitative and qualitative results

showing the types of errors students introduce (RQ1), the types

of repairs by SQLRepair (RQ2), and the repair quality (RQ3).

A. RQ1: SQL Mistakes
The students in sE were more successful at solving the

problems than the students in CS2 (see Table II). Among

queries submitted by SE students, 12.4% (94 of 760) were

correct, compared to 7.8% (157 of 2,022) from CS2 students.

Additionally, perhaps due to exposure to more programming

languages, the sE students introduced syntax errors at a lower

rate (20.6% of all queries with errors, vs. 36.4% among CS2

students). We performed a test of two proportions and found

that the difference in overall success rates between groups was

statistically significant (p < .001). For this reason, results for

students from each course are presented separately.

Table III and Table IV show the syntax and semantic

errors students introduced, respectively. Because individual

queries can contain multiple errors, a query can be counted

in more than one category. Each row in the table shows one

of the categories, how many queries had errors of that type, a

corresponding percentage, and a representative example from

the category. For example, the first row of Table III is our

syntax error category of a Broken operator, we saw 217

of these, representing 26.5% of the 817 queries with syn-

tax errors. The query select from where 1

204

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

== '00000039' was placed into the Broken operator group

because the query uses a == where it should have used a =.

We notice similarities between our categories in Table III

and those reported by Taipalus and Perala [3]; for instance,

we both observed a column reference error, wrong ordering

of SQL keywords, and miscellaneous syntax errors. Likewise,

there is overlap between our categories and those of Ahadi,

et al. [23]; the column reference error rank high in both lists,

and their general syntax error category appears similar to our

broken operator category. Unfortunately, because they do not

offer examples of their categories it is impossible to map our

categories to theirs precisely. The types of semantic errors

that we saw are shown in Table IV. The most common

issue was Wrong subclauses in the w h e r e clause; this is the

first row in the table and was observed in 1,234, or 72%,

of queries. The prevalence here indicates that students had

difficulty precisely describing the rows they wanted to include.

A Missing or extra operator was the second most common

issue, particularly among students in CS2. In contrast to our

categories of semantic errors, which represent cases where

the analyzed query returns an incorrect result, Brass and

Goldberg [24] focus on queries that are correct but complicated

or difficult to read. There is, however, overlap between our

categories and those of Taipalus and Perala [3], such as a

missing join. In addition, their category of duplicate rows is

similar to ours of a Missing [or extra] operator.
The breakdown of successful queries and submitted queries

on each problem is shown in Table V. We note that certain

problem types proved to be particularly challenging. For ex-

ample, Problem 9, which necessitated use of a join, was widely

attempted (with a total of 350 attempts from 42 different

participants) but was solved correctly by only a single student.

Problems involving compound where clauses (Problems 5 &

6) proved difficult as well, with less than a third of students

managing to solve each one correctly. The lower success

rates on these problems compared to single-condition selects

(Problems 1 & 2) likewise suggests that students struggle with

understanding the interactions between multiple columns.

RQ 1 Sum m ary: Students made eight main types of syntax

mistakes, including misusing an operator and ambiguity

with referenced columns, and seven main types of semantic

mistakes, including using the wrong column(s) in a w h e r e

clause, using wrong constants, and missing operators such

as g r o u p b y or d i s t i n c t . Joins and compound clauses

proved difficult for all students.

B. RQ2: SQLRepair

Our evaluation dataset consists of 2,531 incorrect SQL

queries. Of these, SQLRepair was able to find a repair for 737,

giving an overall repair success rate of 29.1%. The different

types of repairs made are shown in Table VI. The table is

organized based on the repair types: the first three correspond

to the three non-synthesis repairs supported, and the last five

to the synthesis repairs. For example, the first row, Column

Mismatch, is described in Section III-A2; this repair is made

to 67 (13.7% of 488) queries from CS2 and 40 (16.1% of 249)

from SE, totaling 107 (14.5% of 737) of all repaired queries.

The representative example modifies the select clause to

return three columns instead of two.

1) Repaired Queries: The most common repair type ob-

served was Column Synthesis (made to 393, or 53.3% of 737,

queries), where SQLRepair synthesizes an expression using

a new column, replacing an existing expression. The second

most common repair type observed was Clause Removal,
where SQLRepair identifies and removes a WHERE subclause

that results in incorrect output. The third most common syn-

thesis repair type is Clause Synthesis, where a new subclause

is generated for the WHERE clause. Together, these three repairs

correspond to the very common Wrong subclauses in WHERE

clause error observed across both classes (see Table IV), where

the resolution is to add, fix, or remove an incorrect clause.

We also observe that while the majority of repairs performed

(982 of 1,192 repairs, or 82.4%, from Table VI) involve a

synthesis repair, non-synthesis repairs play an important part

in success as well. In 107 cases, our tool fixes a Column Mis-
match error by identifying a query that is returning the wrong

set of columns and rewrites the SELECT clause accordingly.

Although this is a non-synthesis repair, it fixes queries from the

Column reference error category in Table III and the Column

mismatch category in Table IV, thus covering both syntax and

semantic errors. Fixing unquoted or misquoted string literals

(String Repair) and incorrect C/Java style operators (Operator

Mismatch) happen less often, but a fix from one of these

categories is still made to 75 and 28 queries, respectively.

Additionally, making non-synthesis repairs also opens up new

possibilities for synthesis repairs: queries must be well-formed

for synthesis repair to proceed, and non-synthesis repair fixes

some cases where they are not.

More often than not, repaired queries requires a combination

of repair operations. In fact, 433 (58.8%) of the successfully

repaired queries contained multiple repair operations. For

example, the query select from WHERE

was repaired by fixing both the columns to return (a Column

Mismatch repair and changing the 1696 to an 1865 (a Constant
Synthesis repair).

2) Not Repaired Queries: The remaining 1794 queries that

could not be repaired fall into two major categories:

a) Unsupported functionality: Some functionality nec-

essary to solve the problems in Table I is not supported in

SQLRepair, such as GROUP BY or joins. Students also used

functionality that was neither necessary nor supported (such as

between and limit), which rendered their queries unfixable.

b) Miscellaneous syntax errors: SQLRepair can fix some

but not all syntax errors. Errors such as a misspelled SQL

keyword (e.g., ... b y. ..) clauses placed in the wrong

order (e.g., select distinct. ..) are not fixed automatically

by our tool.

3) Performance: We tested the performance of SQLRepair

on an Intel i7-6700HQ running Linux Mint 18. Successful

repairs are found in a median of 231 milliseconds (max: 1,602)

205

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

Su c c e s s e s p e r p r o b l e m a n d p e r c o u r s e . Ea c h c e l l r e p r e s e n t s t h e r a t i o b e t w e e n t h e n u m b e r o f c o r r e c t a t t e m p t s a n d t h e t o t a l

N UM BER OF A TTE M PTS. SUCCESS PER PARTICIPANT REPRESEN TS THE RATIO BETW EEN THE N UM BER OF STU DENTS W HO ATTEM PTED THE PROBLEM

AND THE N UM BER OF STU DENTS W HO SOLVED IT SUCCESSFU LLY. SUCCESS PER ATTEM PT REPRESEN TS THE SUM OF CO RRECT ATTEM PTS TO TOTAL

a t t e m p t s a c r o s s CS2 a n d SE.

TABLE V

Course

Problem
Major Concept CS2 SE

Success
per participant

Success
per attempt

1 Single-condition select 31/115 (27.0%) 14/25 (56.0%) 45/51 (88.2%) 45/140 (32.1%)
2 Select with projection 17/233 (7.3%) 9/163 (5.5%) 26/49 (53.1%) 26/396 (6.6%)
3 Inequality 17/140 (12.1%) 13/55 (23.6%) 30/41 (73.2%) 30/195 (15.4%)
4 Projection and inequality 23/145 (15.9%) 12/39 (30.8%) 35/41 (85.4%) 35/184 (19.2%)
5 compound select 4/304 (1.3%) 7/101 (6.9%) 11/51 (21.6%) 11/405 (2.7%)
6 Compound select with AND 6/256 (2.3%) 8/113 (7.1%) 14/44 (31.8%) 14/369 (3.8%)
7 Distinct 23/153 (15.0%) 11/38 (28.9%) 34/52 (65.4%) 34/191 (17.8%)
8 ordering 19/201 (9.5%) 12/80 (15.0%) 31/49 (63.3%) 31/281 (11.0%)
9 Joins 1/280 (0.4%) 0/70 (0.0%) 1/42 (2.4%) 1/350 (0.3%)
10 Grouping 16/195 (8.2%) 8/76 (10.5%) 24/45 (53.3%) 24/271 (8.9%)

Successful 157/2022 94/760
attempts (7.8%) (12.4%)

TABLE VI
Ty p e s o f c o m p l e t e r e p a i r s f r o m SQLRe p a i r . No n -s y n t h e s i s r e p a i r s a r e p r e s e n t e d f i r s t , f o l l o w e d b y s y n t h e s i s r e p a i r s . Ea c h

s e c t i o n IS s o r t e d BY THE TOTAL N UM BER OF REPA IR S; PERCENTAGES A RE COM PU TED OVER THE TOTAL N UM BER OF REPAIRED Q U E R IES. BECAUSE

m a n y s u c c e s s f u l l y r e p a i r e d q u e r i e s c o n t a i n t w o o r m o r e r e p a i r s , t h e t o t a l s i n e a c h c o l u m n s u m t o m o r e t h a n 100%. Th e

i d e n t i f i e r a s s o c i a t e d w i t h e a c h r e p a i r t y p e c o r r e s p o n d s t o t h e d e s c r i p t i o n i n Se c t i o n III.
CS2 SE Total

Number (%) Number (%) Number (%)
Repair Type Representative Example

Column Mismatch (III-A2)

String Repair (III-A3)

Operator Mismatch (III-A1)

67(13.7%) 40(16.1%) 107(14.5%) SELECT FROM...
FROM ...

33(6.8%) 42(16.9%) 75(10.2%) ... WHERE

28(5.7%) 0(0%) 28(3.8%) ... WHERE m in ^ ... WHERE m in

SELECT

^ . .. WHERE

Column Synthesis (III-B3) 252 (51.6%) 141 (56.6%) 393 (53.3%) ... WHERE ^ . .. WHERE

S
y
n
th

es
is Clause Removal (III-B4) 109 (22.3%) 98 (39.4%) 207 (28.1%) ... WHERE OR ^

... WHERE
Clause Synthesis (III-B5) 131 (26.8%) 65 (26.1%) 196 (26.6%) SELECT FROM ^ SELECT

FROM WHERE
Constant Synthesis (III-B1) 114 (23.4%) 21 (8.4%) 135 (18.3%) ... WHERE ^ . . .WHERE
Operator Synthesis (III-B2) 39 (8.0%) 12 (4.8%) 51 (6.9%) ... WHERE ... ^ ... WHERE ...

and unsuccessful repairs in a median of 196 milliseconds

(max: 1,912).

RQ 2: SQLRepair automatically fixes 29.1% of student
queries with errors, covering both syntax and semantic

errors.

C. RQ3: Repair Quality
To understand the quality of the repairs produced by SQL-

Repair, once students in Phase 2 found a solution for a problem

(or gave up), we presented them with several alternative

solutions (see Section II-B). Students rated each query on a

scale of 1 (very difficult to understand) to 7 (very easy to

understand) and optionally provided a free response rationale.

We received a total of 281 voting responses (CS2: 183, SE:

98) and 81 rationales (CS2: 50, SE: 31).

Each query was from one of four categories (Section II-B):

MyCorrectQuery (MCQ), MyRepairedQuery (MRQ), Other-

CorrectQuery (OCQ), OtherRepairedQuery (ORQ). On aver-

age, students found their own queries (MCQ) to be more

understandable than their repaired queries (MRQ) (5.58 vs.

5.35, see Table VII), but the difference is not significant.

Thus, a student’s repaired query could be used as an alternate

way to solve a problem without sacrificing understandability,

a divergence from prior work in automated program repair

suggesting that machine-repaired code is less understandable

than human-written code [25].

Looking more closely at the data, a pairwise analysis can

determine the within-participant differences in understand-

ability between each query category. Using the four query

categories, we ran six paired Mann-Whitney U tests. As all the

p-values are above 0.1, the data show that there is no statistical

difference in understandability between human-written and

machine-repaired SQL queries. For example, comparing the

student’s own query (MCQ) with their repaired queries (MRQ)

yielded p = 0.662. While there is a 0.23 difference in

averages, representing a quarter of a level on the 7-point Likert

scale, the difference is not significant. Comparing a student’s

own correct query (MCQ) against a correct query written by

others (OCQ) also reveals no difference in understandability.

206

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
Av e r a g e Li k e r t -s c a l e u n d e r s t a n d a b i l i t y s c o r e s p e r c o u r s e

AND PER QUERY T Y P E , W H ER E 1 MAPS TO VERY DIFFICULT AND 7 MAPS

t o Ve r y Ea s y ; 4 i s a n e u t r a l r e s p o n s e (n e i t h e r e a s y n o r

d i f f i c u l t). Qu e r y c a t e g o r i e s a r e d e f i n e d i n Se c t i o n II-B.

Course
CS2 SE Overall

MyCorrectQuery (MCQ) 5.62 5.54 5.58
MyRepairedQuery (MRQ) 5.32 5.41 5.35
OtherCorrectQuery (OCQ) 5.04 5.41 5.17
OtherRepairedQuery (ORQ) 5.03 5.38 5.15

Therefore, we find evidence that repaired queries and queries

written by others are all viable candidates for presenting

students with alternate implementations of sQL queries.

Qualitatively, we observe that some students preferred their

own solutions over all others; we received written responses

such as “I literally wrote [this query]” and “I chose [this
query] because it was exactly my solution”. However, this was

not universally the case: one student remarked “I can’t believe

how [bad] my answer is”. This suggests that automated repair

can help students identify better solutions even after solving

a problem correctly.

RQ3: Queries repaired by SQLRepair are rated as equal
in understandability compared to queries written by the

students themselves, suggesting repaired queries could be

useful for presenting students with alternate queries.

V. Di s c u s s i o n

Here, we discuss the implications of our results, present

opportunities for future work, and discuss threats to validity.

A. Implications

By analyzing the SQL queries written by students new to

sQL, we see that certain topics are particularly challenging;

most students struggled with joins, ordering, and compound

clauses. When SQL is used, it is typically with more than

one table, so teaching joins is a necessity [26]. By contrast,

students had less difficulty with operators such as group b y .

All concepts were introduced to students in a similar way,

with background information provided through slides and live

examples showing how they work in practice. These results

suggest that some topics remained more difficult for students

to understand and thus may require additional instruction.

To the best of our knowledge, SQLRepair is the first auto-

mated repair (APR) tool for SQL queries, and our results pro-

vide preliminary evidence that this can be useful in education.

Patitsas, et al. report that presenting students with multiple

solutions side-by-side can improve learning outcomes [27]. In

cases where peer instruction is unavailable, our results suggest

repair tools may be able to provide alternative solutions for

students to visualize. Providing hints or iterative refinement

rather than just a new solution may further improve the

process.

While the overall repair rate of SQLRepair is lower than

many general-purpose repair tools, this is a first step and the

availability of our dataset should allow future SQL repair tools

to improve on our efforts reported here for educational and

professional audiences.

B. Future Work

We have identified several promising directions for future

work in program repair to support learners.

The single most challenging problem for students was one

that involved joining two different tables together on a com-

mon column. This suggests that students struggle to see the

big picture and how their data connects together. Tools such

as MySQL Workbench allow reverse-engineering an entity-

relation diagram from an existing database schema, and the

produced diagrams can be used much like uML class diagrams

to introduce new developers to an existing design. A database

iDE that automatically shows the relationship between tables

when two or more are included in a query could help users

see and utilise the connections in their data.

We observed, and several students affirmed in their com-

ments, that it is challenging to identify patterns within a table

and thus pick out desired rows (i.e., forming queries from

examples is challenging). Tooling that highlights similarities

and differences between selected columns of two or more rows

could help the user better identify relevant patterns.

More generally, our results suggest that program repair may

be a useful educational tool for presenting alternate solutions

to a problem. Notebooks such as Jupyter have become a

popular way for performing exploratory data analysis, par-

ticularly among end-user programmers, because they allow

intermingling code, written descriptions, and results [28].

While most such notebooks focus on Python or R, SQL has

a place within the data science world as well, and integrating

synthesis or repair tools could help make the learning process

easier for many students.

All of the repairs produced by SQLRepair follow the steps

listed in Section III. The order in which repairs are performed

has the potential to impact the query that is ultimately pro-

duced. Future work could study whether performing repairs

in a different order impacts the quality of the query produced

by potentially producing more concise or understandable so-

lutions.

C. Threats to Validity

our conclusions may not generalize to different student

body populations. The students who signed up to participate

for our Phase 2 evaluations did so on the promise of extra

credit. consequently, there may be a selection bias.

The problems we had students complete were based off

of the uMLS dataset; it is unknown whether the nature of

the dataset contributed to the difficulty students faced when

solving problems. The specific errors that students faced may

not generalize to different problems. it is possible that the

context of the data made problems more difficult than if

207

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

students had been working with more familiar data. However,

we expect the data to be equally unfamiliar to all students.

In this work, we use the understandability rating that a

student gives a query as a proxy for the quality of the query

that has been produced. However, this merely asks students to

read the query and then offer a vote on it; we do not ask them

to integrate the queries produced into a larger application or

modify the query to solve a problem that is similar but not

identical. Consequently, students who are using the queries

in a different context may have different priorities for what

makes a query understandable or not.

VI. Re l a t e d Wo r k

Existing work in teaching SQL to undergraduates focuses

on how students learn SQL [4], [29] and the types of semantic

and syntax errors made [3], [23], [24]. Migler and Dekhtyar [4]

break down the exercises students solve in an undergraduate

databases course around their primary concept, and find that

joins and subqueries are the most challenging. Our observa-

tions agree with theirs in that students have a harder time

solving problems involving multiple tables.

Poulsen, et al. [29] study SQL queries students write in

an upper-level databases course and find persistent issues

with not just difficult semantic concepts such as nested

queries and grouping, but syntax errors. Ahadi, et al. [23]

consider only syntax errors; we observe that students make

significantly more semantic errors than syntax errors. Brass

and Goldberg [24] present a list of semantic errors in SQL

queries, showing some errors guarantee an incorrect result and

others produce a query that is substantially more complicated

than is necessary. However, their work does not assess error

frequency, which we report in Section IV-A, and therefore

cannot be used as a basis for direct comparison. Most similar

to our work, Taipalus and Perala [3] and Taipalus, et al. [30]

present a breakdown of errors made into semantic and syntax

categories. However, their student population is from a more

advanced databases course. In our work, we offer a similar

breakdown for novice students.

Weise, et al. [31], [32] study student preferences for Java

and Python code written in different programming styles, and

their ability to understand code written in an “expert” style.

They find that many students prefer a more naive, or verbose,

approach, but are capable of understanding code that uses more

expert approaches. Similarly, our work asks students to choose

between several different queries, which may be more-or-less

expertly written, to select the one that is easiest to understand.

Maalej, et al. [33] study how professional developers compre-

hend and understand the code they are working with. While

we do not ask them to explain their comprehension process,

we nonetheless expect them to perform many of the same steps

by reading and comparing multiple queries.

Stolee and Elbaum [34] demonstrate that students can take

provided SQL queries and write corresponding input-output

table pairs for them. Our work asks them to do the reverse.

To the best of our knowledge, SQLRepair represents the first

application of automated program repair to SQL. However,

some research efforts have produced tools for SQL query con-

struction using program synthesis. SCYTHE [22] takes input-

output examples and generates a query capable of performing

the transformation, but is limited in that it does not support

common operators such as projection. Finally, SCYTHE sup-

ports only a single (s o u r c e , d e s t i n a t i o n) pair, while

SQLRepair supports arbitrarily many.
Existing work by Solar-Lezama [35] in program synthesis

by sketching demonstrates that it is feasible to provide part of

a program, and to have automated tools fill in the remainder

of it. This is the approach that we use for synthesis repairs.
Drosos, et al. [36] present a tool, Wrex, for performing pro-

gram synthesis in Jupyter notebooks. They focus on producing

Python code that is easy for humans to read and understand so

the code is more likely to be used going forwards. We report

results similar to theirs, showing that code synthesized by a

tool is of sufficiently high quality to be used.

VII. Co n c l u s i o n

In this work, we have analyzed the mistakes that under-

graduate students make when working with SQL for the

first time by studying the errors they introduce. We found

that the majority of queries contain one or more syntax or

semantic error, and that semantic errors make up a majority of

errors introduced. We found that junior-level students perform

better than sophomore-level students, solving more problems

correctly and introducing syntax errors at a lower rate. Among

the more advanced SQL topics covered, students particularly

struggle with joins, thus suggesting a need for teaching

students to see and utilise patterns in data. We have also

demonstrated that SQLRepair can fix 29.1% of queries with

errors. By demonstrating that APR techniques are applicable

to SQL, we pave the way for additional automated repair of

special-purpose programming languages. Finally, our results

suggest that automated repair may support students as they

learn SQL. Students rate our tool-produced repairs as good

as queries written by themselves or other students, and thus

automated repairs may make a compelling teaching tool when

peer instruction and feedback is unavailable.

Ac k n o w l e d g m e n t s

This work was supported in part by NSF SHF grants

#1645136 and #1749936. We would like to thank Gina R.

Bai for her comments on this work and the students of NC

State University’s Summer 2019 CSC 216 course and Fall

2020 CSC 216 and CSC 326 courses for allowing us to use

their data for analysis and evaluation.

Da t a Av a i l a b i l i t y

All queries collected, SQLRepair, and supporting tools for

analysis are available on Zenodo.

Re f e r e n c e s

[1] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi, “Mistakes
in uml diagrams: Analysis of student projects in a software engineering
course,” in Proceedings of the 41st International Conference on Software
Engineering: Software Engineering Education and Training, ser. ICSE-
SEET ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 100-109.
[Online]. Available: https://doi.org/10.1109/ICSE-SEET.2019.00019

208

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

[2] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic software
testing education,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: ACM, 2019, pp. 414-420. [Online]. Available:
http://doi.acm.org/10.1145/3287324.3287461

[3] T. Taipalus and P. Perala, “What to expect and what to focus on
in sql query teaching,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: ACM, 2019, pp. 198-203. [Online]. Available:
http://doi.acm.org/10.1145/3287324.3287359

[4] A. Migler and A. Dekhtyar, “Mapping the sql learning process
in introductory database courses,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
619-625. [Online]. Available: https://doi.org/10.1145/3328778.3366869

[5] “Stack overflow developer survey 2019,” 2019. [Online]. Available:
https://insights.stackoverflow.com/survey/2019

[6] J. Hardin, R. Hoerl, N. J. Horton, D. Nolan, B. Baumer, O. Hall-Holt,
P. Murrell, R. Peng, P. Roback, D. T. Lang, and M. D. Ward, “Data
science in statistics curricula: Preparing students to “think with data”,”
The American Statistician, vol. 69, no. 4, pp. 343-353, 2015.

[7] B. Baumer, “A data science course for undergraduates: Thinking with
data,” The American Statistician, vol. 69, no. 4, pp. 334-342, 2015.

[8] N. C. Brown and A. Altadmri, “Investigating novice programming
mistakes: Educator beliefs vs. student data,” in Proceedings of the Tenth
Annual Conference on International Computing Education Research,
ser. ICER ’14. New York, NY, USA: ACM, 2014, pp. 43-50. [Online].
Available: http://doi.acm.org/10.1145/2632320.2632343

[9] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’15. New York, NY, USA: Ac M,
2015, pp. 522-527. [Online]. Available: http://doi.acm.org/10.1145/
2676723.2677258

[10] N. C. C. Brown and A. Altadmri, “Novice java programming
mistakes: Large-scale data vs. educator beliefs,” ACM Trans. Comput.
Educ., vol. 17, no. 2, pp. 7:1-7:21, May 2017. [Online]. Available:
http://doi.acm.org/10.1145/2994154

[11] S. Gulwani, I. Radicek, and F. Zuleger, “Automated clustering
and program repair for introductory programming assignments,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 465-480. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192387

[12] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018. New York,
NY, USA: ACM, 2018, pp. 298-309. [Online]. Available: http:
//doi.acm.org/10.1145/3213846.3213871

[13] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: ACM, 2016, pp. 298-312. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837617

[14] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 691-701. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884807

[15] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 364-374.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070536

[16] L. De Moura and N. Bjprner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337-340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

[17] S. Gulwani, “Programming by examples (and its applications
in data wrangling),” in Verification and Synthesis of Correct
and Secure Systems. IOS Press, January 2016. [On-

line]. Available: https://www.microsoft.com/en-us/research/publication/
programming-examples-applications-data-wrangling/

[18] O. Bodenreider, “Unified medical language system (umls),” 2004.
[Online]. Available: https://www.nlm.nih.gov/research/umls/index.html

[19] R. L. Glass, Software Engineering: Facts and Fallacies. USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[20] L. A. Williams and R. R. Kessler, “Experiments with industry’s “pair-
programming” model in the computer science classroom,” Computer
Science Education, vol. 11, no. 1, pp. 7-20, 2001. [Online]. Available:
https://doi.org/10.1076/csed.11.L7.3846

[21] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. PP, pp. 1-1,
10 2017.

[22] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
sql queries from input-output examples,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 452-466. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062365

[23] A. Ahadi, V. Behbood, A. Vihavainen, J. Prior, and R. Lister, “Students’
syntactic mistakes in writing seven different types of sql queries and
its application to predicting students’ success,” in Proceedings of the
47th ACM Technical Symposium on Computing Science Education,
ser. SIGCSE ’16. New York, NY, USA: ACM, 2016, pp. 401-406.
[Online]. Available: http://doi.acm.org/10.1145/2839509.2844640

[24] S. Brass and C. Goldberg, “Semantic errors in sql queries: A quite
complete list,” J. Syst. Softw., vol. 79, no. 5, pp. 630-644, May 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2005.06.028

[25] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New York,
NY, USA: Association for Computing Machinery, 2012, p. 177-187.
[Online]. Available: https://doi.org/10.1145/2338965.2336775

[26] H. Lu, H. C. Chan, and K. K. Wei, “A survey on usage of sql,”
SIGMOD Rec., vol. 22, no. 4, pp. 60-65, Dec. 1993. [Online].
Available: http://doi.acm.org/10.1145/166635.166656

[27] E. Patitsas, M. Craig, and S. Easterbrook, “Comparing and contrasting
different algorithms leads to increased student learning,” in Proceedings
of the Ninth Annual International ACM Conference on International
Computing Education Research, ser. ICER ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 145-152. [Online].
Available: https://doi-org.prox.lib.ncsu.edu/10.1145/2493394.2493409

[28] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1-11. [Online].
Available: https://doi.org/10.1145/3173574.3173748

[29] S. Poulsen, L. Butler, A. Alawini, and G. L. Herman, “Insights from
student solutions to sql homework problems,” in Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer
Science Education, ser. ITiCSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 404-410. [Online]. Available:
https://doi.org/10.1145/3341525.3387391

[30] T. Taipalus, M. Siponen, and T. Vartiainen, “Errors and complications
in sql query formulation,” ACM Trans. Comput. Educ., vol. 18, no. 3,
Aug. 2018. [Online]. Available: https://doi.org/10.1145/3231712

[31] E. S. Wiese, A. N. Rafferty, D. M. Kopta, and J. M. Anderson,
“Replicating novices’ struggles with coding style,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC),
2019, pp. 13-18.

[32] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking code readability,
structure, and comprehension among novices: It’s complicated,”
in Proceedings of the 41st International Conference on Software
Engineering: Software Engineering Education and Training, ser.
ICSE-SEET ’19. IEEE Press, 2019, p. 84-94. [Online]. Available:
https://doi.org/10.1109/ICSE-SEET.2019.00017

[33] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, Sep. 2014. [Online]. Available:
https://doi-org.prox.lib.ncsu.edu/10.1145/2622669

[34] K. T. Stolee and S. Elbaum, “On the use of input/output queries for code
search,” in 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Oct 2013, pp. 251-254.

209

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

[35] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,
Berkeley, CA, USA, 2008, aAI3353225.

[36] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A
unified programming-by-example interaction for synthesizing readable
code for data scientists,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1-12. [Online].
Available: https://doi.org/10.1145/3313831.3376442

210

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

