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Abstract—Computer science educators seek to understand the 
types of mistakes that students make when learning a new 
(programming) language so that they can help students avoid 
those mistakes in the future. While educators know what mistakes 
students regularly make in languages such as C and Python, 
students struggle with SQL and regularly make mistakes when 
working with it. We present an analysis of mistakes that students 
made when first working with SQL, classify the types of errors 
introduced, and provide suggestions on how to avoid them going 
forward. In addition, we present an automated tool, SQLRepair, 
that is capable of repairing errors introduced by undergraduate 
programmers when writing SQL queries. Our results show 
that students find repairs produced by our tool comparable in 
understandability to queries written by themselves or by other 
students, suggesting that SQL repair tools may be useful in 
an educational context. We also provide to the community a 
benchmark of SQL queries written by the students in our study 
that we used for evaluation of SQLRepair.

I. In t r o d u c t i o n

Understanding how beginners work with a new program-

ming language and the types of mistakes that they make can 

help instructors better tailor their lesson plans to avoid previ-

ous pitfalls [1], [2]. We consider SQL, a widely-used language 

for interacting with relational databases. SQL is taught in many 

undergraduate computer science programs [3], [4], but may 

not be part of the core curriculum. It is regularly used by 

professional and amateur developers alike [5], including those 

with little formal computer science background [6], [7].

While the types of mistakes that students make when 

working with languages such as C and Java are relatively 

well studied [8]-[10], we know less about mistakes made in 

special-purpose languages such as SQL. We seek to understand 

the types of mistakes that undergraduate students, who are 

relatively familiar with Java, make when working with SQL. 

Understanding these mistakes can help educators ensure that 

they have the resources necessary to support computer science 

students and end-user programmers alike, which may include 

automated support [11].

In addition to an analysis of student mistakes, we propose 

a tool, SQLRepair, which can automatically fix some of the 

errors students introduce.1 While there are tools for automated

1We adopt terminology used in existing work on SQL education: students 
make a mistake while solving a problem, introducing one or more errors into 
the query. Note that this diverges from terminology frequently used in testing 
literature where the term would be fault instead of error. We choose error 
for consistency with existing work.

repair of programs in languages such as C and Java [12]-[15], 

to the best of our knowledge, no existing techniques attempt to 

repair errors in SQL queries. Our repair process first attempts 

non-synthesis repair based on a predefined ruleset. As needed, 

it uses a satisfiability modulo theory (SMT) solver [16] to 

further synthesize repairs.

We frame our work around the following research questions:

• RQ1: What types of mistakes do beginners make when 

working with SQL?

• RQ2: How well can SQLRepair fix errors introduced by 

beginning SQL programmers?

• RQ3: Do students find SQLRepair-repaired queries to 

be more understandable than queries written by other 

students?

To answer our research questions, we conducted an empiri-

cal evaluation to understand student mistakes (RQ1), evaluate 

SQLRepair’s ability to repair the errors in the student-written 

queries (RQ2), and determine the repair quality (RQ3). Stu-

dents in two undergraduate computer science courses at a large 

public university in the United States, North Carolina State 

University (NCSU), were given a short introduction to SQL 

and then asked to write queries to solve problems associated 

with a sample database. For each problem, students were 

provided an example ( s o u r c e ,  d e s t i n a t i o n )  table pair 

that demonstrated the desired transformation (similar to pro-

gramming by example (PBE) techniques) [17] and were asked 

to write a SQL query that would complete the transformation. 

Incorrect queries were followed by additional examples (up to 

three) to demonstrate the intended behavior. Any SQL query 

that did not correctly solve the problem was analyzed for errors 

and considered a candidate for repair. Students were then 

asked to evaluate up to four human-written or tool-generated 

queries, judging each for understandability. Our work makes 

the following contributions:

• quantitative and qualitative classifications of the types of 

errors introduced by beginning SQL programmers,

• a tool capable of repairing 29.1% of the observed errors 

in SQL queries,

• a benchmark dataset of realistic SQL errors gathered from 

undergraduate computer science students, and

• a demonstration that tool-repaired SQL queries are equal 

in understandability to human-written queries.
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TABLE I
Ma j o r  c o n c e p t  i n  e a c h  p r o b l e m  a n d  t h e  t o t a l  n u m b e r  o f  

( S O U R C E , D E S T I N A T I O N ) t a b l e s  i n  t h e  p r o b l e m  s p e c i f i c a t i o n s .

Problem Major Concept Number of Table Pairs

1 Single-condition select 3
2 Select with projection 2
3 Inequality 3
4 Projection and inequality 2
5 Compound select 2
6 Compound select with AND 2
7 Distinct 2
8 Ordering 2
9 Joins 2
10 Grouping 2

II. St u d y

To provide a dataset for analyzing mistakes (RQ1) and 

evaluating SQLRepair (RQ2, RQ3), we conducted a two-phase 

study with students from two undergraduate computer science 

courses. In Phase 1, we conducted a study with students from 

the Summer 2019 offering of a 2nd-year Java programming 

course. This phase demonstrated the viability of our approach, 

gave us preliminary data for RQ1 and RQ2, and motivated 

additional enhancements to our tool. In Phase 2, we put repairs 

produced by SQLRepair directly in front of students to under-

stand whether our tool-generated repairs are understandable 

(RQ3). Students were recruited from the Fall 2020 offerings 

of a 2nd-year Java programming course and a 3rd-year Software 

Engineering course. our tool and instructions on how to set it 

up are available.2

A. Phase 1
We collected a dataset of SQL queries written by introduc-

tory programmers to understand the type of mistakes students 

make by analysing the errors they introduce, and ascertain 

SQLRepair’s ability to repair the errors.

1) Design: Eighteen students were given a lecture on SQL 

functionality and syntax, including compound select queries, 

various datatypes, join , count , distinct , and group b y . 

Students were informed that we were interested in studying 

how beginners work with SQL and the types of mistakes that 

they make. Next, they were given a ten-problems to solve; 

each problem had a ( s o u r c e ,  d e s t i n a t i o n )  table pair 

and students were asked to write a SQL query that would 

accomplish the transformation. Each problem had two or three 

pairs of ( s o u r c e ,  d e s t i n a t i o n )  tables that acted as 

test cases that must be passed simultaneously for the query 

to be considered correct. The major concept of each problem 

is shown in Table I. For example, the major concept introduced 

in Problem 10 was grouping, and there were two sets of 

( s o u r c e ,  d e s t i n a t i o n )  table pairs for evaluating the 

query. The problems and data used were based on the UMLS 

dataset, a health and biomedical vocabulary dataset made 

available free-of-charge by the NIH, which was chosen for 

offering a large amount of structured data [18].

2http://github.com/kpresler/sqlrepair

Fig. 1. The application for students to submit SQL queries.

Students were shown one ( s o u r c e ,  d e s t i n a t i o n )  

table pair at a time. Each student received a paper handout 

that contained the first pair for each problem. To avoid learning 

effects, the problems were given in a random order. Students 

submitted their queries into a web application. If the applica-

tion detected that the first pair had been solved successfully, 

the query was then tested against subsequent pairs. If a 

query failed a subsequent pair, that pair was revealed to the 

student. Students spent approximately 40 minutes working on 

all problems and were reminded every ten minutes to move on 

to the next problem if they had been stuck for more than five 

minutes. Students were compensated with participation credit.

The web application is shown in Figure 1. In this example, 

a student submitted the query select from where 

m in 2 , which was incorrect, as communicated through the 

message, “Unfortunately, your proposed query didn’t solve 

the problem ... ”; the actual output from executing the query 

is shown alongside the expected output (destination table). If 

the query produces the correct output for all table pairs, the 

student was congratulated and told to move on to the next 

problem. The application records the participant’s unique ID, 

submission time, proposed query, and whether the problem 

was solved correctly or not. At the end of the study, students 

completed a brief demographics survey, which asked questions 

such as their prior programming experience, their experience 

with SQL, and whether they had any comments on the 

introduction to SQL or the problems themselves.

2) Participants: We recruited participants from a 2nd-year 

Java programming course (cS2). cS2 is the second computer 

science course taken by majors and minors at NCSU. By this 

point, students are exposed to programming in Java. Eighteen 

students from the Summer 2019 offering of CS2 participated, 

but only 12 students submitted one or more SQL queries as 

part of the study. o f  the 12 active participants, three identified 

as female. Ten students said they had three or fewer years 

of programming experience (min: 0, max: 8, average: 2.6) 

and none had more than a year of professional programming 

experience. one student reported prior database experience.
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3) Dataset: We collected 362 SQL queries written by 

12 different students. Of these, 35 were correct. Of the 

327 incorrect queries, 124 had syntax error(s) and 203 had 

semantic error(s). Students submitted between 7 and 65 queries 

(average: 32.2, median: 28.5). Students made between one 

and 21 attempts per problem (average: 4.6, median: 3.5) 

and attempted between two and ten problems (average and 

median: 6.5).

B. Phase 2
In Phase 2, we build on Phase 1 and further evaluate 

SQLRepair by putting repaired queries directly in front of 

students to assess query quality.

1) Design: Phase 2 was similar to Phase 1 in that students 

were given the same introductory SQL lecture and the same 

set of problems to solve. However, some changes were made 

to the study format and content, as follows:

Due to the COVID-19 pandemic, Phase 2 was performed 

online via Zoom. After the introduction to SQL and the study, 

each participant was assigned to an individual breakout room 

to work in for the remainder of the session. To ensure that each 

participant was engaged and working, the first author rotated 

between each room at least once to answer any technical 

questions that arose. Students could also use Zoom’s “Ask 

for help” functionality to request assistance.

While the study problems were identical to Phase 1, we 

made operational changes to suit the online format:

• Instead of a paper handout, each student received the 

randomly ordered problems as a PDF.

• Instead of students entering their participant ID manually, 

the web application automatically included each student’s 

random ID in each problem submission.

• The post-study demographics survey was converted from 

a paper handout to a Google Form. Students were asked 

to include their participant ID in their submission.

Additionally, after composing queries for a problem, students 

evaluated the understandability of several solution queries for 

that problem (Section II-B2).

2) Evaluating SQLRepair: We wanted students to assess 

the understandability of tool-repaired queries by comparing 

them against human-written queries. As a majority of software 

engineering effort is spent on maintenance [19], we consider 

understandability, as a proxy for ease of maintenance, to be 

paramount. We seek a minimally-invasive way of gathering 

information on students’ program comprehension as they 

evaluate queries without the feeling of being watched [20]. 

Thus, we opt for short surveys deployed after each question 

and separately at the end of the study.

First, we populated a database with data from Phase 1, 

giving us 29 unique correct queries and 19 unique repaired 

queries SQLRepair produced from incorrect queries. Next, we 

modified the web application to use SQLRepair to attempt to 

repair incorrect queries that students wrote during the study. 

We did this through brief post-problem surveys: after solving 

each problem, students were asked to rate the understandability 

of up to four different queries using a modified Likert scale,

We have several alternative queries which also solve this problem. Please indicate how easy each query is  to understand:

Selected Rating: 4

Selected Rating: 6

Selected Rating 3

Explain your vote, i f  you'd like. This pa rt is  optional

Fig. 2. An example of how students voted on the understandability of queries.

with 1 indicating the query was very difficult to understand 

and 7 that it was very easy to understand. As an alternate 

workflow, after making at least five attempts at a problem over 

at least five minutes, students were presented with an “I’m 

tired of this problem” button. Upon clicking it, they would be 

given the voting options shown, despite having never solved 

the problem correctly.

The four possible queries presented to students were:

• MyCorrectQuery: A correct query written by the student 

(available if they solved the problem correctly).

• MyRepairedQuery: A repair of an incorrect query writ-

ten by the student (available if they got the problem 

wrong at least once, and SQLRepair was able to repair 

one of their queries.3)

• OtherCorrectQuery: A correct query written by some-

one else (a participant from Phase 1 of the study; a query 

from this category was always available).

• OtherRepairedQuery: A repair of an incorrect query 

written by someone else (a participant from Phase 1 of the 

study; a query from this category was always available).

The queries were labeled A through D, and presented in 

a random order. An example with three queries is shown in 

Figure 2. For queries written by others, query selection was 

pseudo-random: each query was associated with a count of 

how many times it had been shown to a student for voting, 

and each time a query was needed for voting, the application 

selected the query with the smallest vote count. Identical 

queries were consolidated (for instance, if the first and fourth 

queries were identical, the query would only appear once).

3) Participants: In Fall 2020, we distributed recruitment 

emails to students in two undergraduate courses: CS2 and 

a 3rd-year Software Engineering course (SE). SE is a fifth- 

semester course, and by this point, students have been exposed 

to Java, C, x86 assembly, and JavaScript. Additionally, prior

3Incorrect queries were considered starting with the most recent incorrect 
submission, and repairs were attempted until a query was successfully 
repairable, or, to ensure sufficient responsiveness of the web application, the 
repair process had failed ten times.
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TABLE II
A BREAKDOW N OF A LL OF THE QUERIES SU B M ITT ED .

Course

CS2 SE Total

Correct 157 94 251
Syntax Error 680 137 817
Semantic Error 1,185 529 1,714

Total 2,022 760 2,782

to our study, the SE students received an in-class lecture on 

SQL, although not hands-on practice with it. Students in both 

classes were invited to sign up for one of four two-hour virtual 

lab sessions held. In all, 104 students signed up to participate 

in a session; 71 students attended and participated for at least 

thirty minutes. The first of four sessions was used as a pilot for 

the improved SQLRepair tool and new format. Feedback was 

collected and data from this group was discarded. Participants 

from Phase 1 could not participate in Phase 2.

Seventy-three students from CS2 signed up; 46 ultimately 

participated. Thirty-one students from SE signed up; 24 ulti-

mately participated. After discarding data from the pilot study, 

we retained data from 33 CS2 and 19 SE students. Students 

in CS2 reported up to seven years of prior programming 

experience (average and median: 2); students in SE reported 

up to 8 years (average: 5, median: 4). Sixteen participants from 

CS2 and five from SE identified as female.

4) Dataset: We collected 2,420 SQL queries from 52 

students. Of these, 216 were correct; of the 2,204 incorrect 

queries, 693 had syntax error(s) and 1511 had semantic er- 

ror(s). Students submitted between 1 and 118 queries (average: 

42.4, median: 37.5). Students attempted between 1 and 10 

problems (average and median: 7) and made between 1 and 

50 attempts per problem (average: 6.4, median: 4).

The 33 students from CS2 submitted 1,660 queries. Of 

these, 122 were correct; of the 1,538 incorrect queries, 556 

had syntax error(s) and 982 had semantic error(s). Students 

submitted a median of 41 queries (max: 118) and attempted 

between 1 and 10 problems (average: 6.8, median: 7.5).

The 19 students from SE submitted 760 queries. Of these, 

94 were correct; of the 666 incorrect queries, 137 had syntax 

error(s) and 529 had semantic error(s). Students submitted a 

median of 36 queries (max: 79). Students attempted between 

1 and 10 problems (average: 7.4, median: 7).

C. Data Summary

A summary of all of the queries collected across both phases 

of our study, and their correctness or error category, is shown 

in Table II. We performed a Mann-Whitney test between the 

two CS2 courses (Summer 2019 and Fall 2020 from Phase 1 

and Phase 2, respectively) looking for significant differences 

on successes per problem. Our analysis revealed that the 

differences between them were not statistically significant 

(p = .31), so the data from both were combined for further 

analysis. The data from SE remained significantly different 

(p =  .0016) and was kept separate.

item price quantity country seller

apples 7 500 US Joe’s Fruits
bananas 3 400 MX Nancy’s Produce
oranges 11 300 MA Ahmed’s Fruits
grapes 1 200 US Raj’s Vinyard

item price quantity country

grapes 1 200 US

Fig. 3. Example source (top) and destination (bottom) tables.

D. Analysis
We use the errors that students introduce into SQL queries 

they write as a proxy for the mistakes made while solving the 

problem. To identify student mistakes for RQ1, we executed 

each student-written query against the source and destination 

tables using a MySQL 5.7 database. Any query where the 

database returned an error message was considered to have 

syntax error(s).4 For the remaining queries, we compared the 

actual output table to the expected output for the problem. 

When they were different, the query was considered to have 

semantic error(s).

To identify syntax error categories, we manually grouped 

queries with similar errors together. For example, students 

submitted the queries:
SELECT FROM where 
SELECT FROM WHERE 

Both queries have an extra comma, so were grouped together. 

We continued this process for all queries with a syntax error. 

If there were three or more queries in a category, we gave 

the category a name. Categories with fewer than three were 

grouped together into a miscellaneous category.

For semantic errors, we manually investigated the query and 

the output table it produced and grouped together queries with 

similar errors. For example, students submitted the queries:

SELECT FROM 
SELECT FROM 

Both queries return only a subset of the columns expected 

( ) so they were grouped together. A mis-

cellaneous category was created by grouping together all 

categories with less than three queries.

A single query can contain multiple errors (for instance, a 

broken operator and unquoted string literal) so some queries 

were counted for multiple categories. However, when classi-

fying errors, a single query could be counted towards either 

the syntax error category or semantic error category, but not 

both.

III. SQLRe p a i r

SQLRepair follows the correct-by-construction approach to 

automated program repair [21]. The subset of supported SQL 

includes queries with compound WHERE clauses, integer and 

string datatypes, order by , and distinct .

4This understates the number of SQL syntax errors as MySQL 5.7 supports 
functionality not part of the official SQL specification, such as wrapping 
strings in double quotes or using operators such as instead of AND.
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To explain how SQLRepair builds constraints from the 

( s o u r c e ,  d e s t i n a t i o n )  tables and SQL query, con-

sider the following example. A user of SQLRepair sub-

mits the source and destination tables shown in Figure 3 

and the SQL query select from where 

800 . SQLRepair proceeds in two 

steps: (1) non-synthesis repair, and (2) synthesis repair.

A. Non-Synthesis Repair
SQLRepair attempts three types of non-synthesis repair 

over the following types of errors: operator mismatches that 

result in parse errors, column mismatches that can cause an 

otherwise correct query to be incorrect, and string repair where 

a string literal shows up without proper quotes.

1) Operator Mismatch: SQLRepair replaces any C/Java- 

style operators in the provided query with their SQL equiva-

lent. For example, C/Java use for equality checks and for 

logical AND. SQL uses and a n d , respectively. SQLRepair 

thus replaces operators such as these. In the example, 

is replaced with a n d , giving us the query, select from

WHERE AND .

2) Column Mismatch: SQLRepair attempts to repair any 

issues with the column list prior to the where clause. When 

a column does not exist, a syntax error occurs. However, 

column mismatch does not always start with a syntax error. 

In the the running example, the source table has five columns 

while the destination table only has four; however, the SQL 

query has a select clause, SQLRepair detects and fixes 

this mismatch. Thus, the query is updated to select 

FROM WHERE 

and 800 . In addition to correcting 

the column list following select , SQLRepair can also rename 

columns to match the destination table using a s .

3) String Repair: SQLRepair attempts to repair any is-

sues where a string literal is present in the query ei-

ther unquoted or quoted incorrectly. SQL requires strings 

to be surrounded with single quotes. Thus, SQLRepair re-

moves double quotes and surrounds what appear to be un-

quoted string literals with single quotes. The query is thus

updated to SELECT FROM 

WHERE AND .

Resolving operator mismatch, column mismatch, and fixing 

strings resolves syntax errors, but often synthesis is needed to 

fully correct the semantic errors.

B. Synthesis Repair
SQLRepair uses a SMT solver, Z3 [16] to synthesize parts 

of a query in need of repair [21]. The synthesized parts, or 

patches, are composed of individual constants, operators, and 

column names. The ( s o u r c e ,  d e s t i n a t i o n )  tables are 

used as test cases that must be simultaneously satisfied for a 

query to be successfully patched.

For each query, SQLRepair builds a system of constraints to 

represent the query logic. Given a set of example ( s o u rc e ,  

d e s t i n a t i o n )  tables E  and a SQL query q, SQLRepair 

checks that: Ve £ E ,q  A sourcee ^  destinationne. If the

equation evaluates to true, Z3 returns S A T  and q is correct; 

otherwise q is incorrect and a candidate for repair.
If q is a repair candidate, SQLRepair inserts holes into q, 

for example by replacing a constant with , forming q', 
and provides q' to the solver. If q' is repairable by SQLRepair, 

Z3 returns S A T  and the solver has identified values for 

the holes in the satisfiable model. If q' is not repairable by 

SQLRepair, Z3 returns U N S A T . SQLRepair supports five 

types of synthesis repairs. After each repair stage, the process 

terminates if a successful repair can be made. Repairs are 

performed in the following order:
1) Constant Synthesis: For constants that are compared 

to columns, SQLRepair replaces each constant in the where 

clause with . If a query contains 

_2 , SQLRepair does not replace either of the constants. 

Synthesis is supported for integers and strings, although syn-

thesized strings must be exact matches without wildcards.
2) Operator Synthesis: SQLRepair replaces each operator 

in q’s where clause with . SQLRepair supports synthe-

sising operators for both string and integer types. SQLRepair 

supports and when dealing with strings, and , , , , 

, and when dealing with integers.
3) Column Synthesis: SQLRepair inserts holes for the 

columns. For example, a query q = ... 

is replaced with q' =  ... , where 

represents one of the columns in the source table. 

If SQLRepair fails to find a solution, column synthesis is 

repeated for each subclause in the original query, in order.
4) Clause Removal: SQLRepair will remove subclauses 

one at a time to attempt a solution. For a query with n sub-

clauses, if a correct solution cannot be found for n subclauses, 

but can be found with 1 . . . n - 1  subclauses, SQLRepair will 

remove subsequent clauses that impede correctness. If this step 

fails, the removed clauses are added back to the query before 

proceeding with Clause Synthesis.
5) Clause Synthesis: Some queries require additional where 

clauses or conditions. In this case, SQLRepair functions most 

similarly to Scythe [22], and will synthesize new subclauses. 

Suppose in the column synthesis step, SQLRepair inserts 

holes such that q' =  ... where , but is 

not able to find any columns, operators, and constant values 

that result in a solution. At this point, SQLRepair attempts 

to make a repair by synthesizing in a new subclause. More 

formally, SQLRepair will take a clause ... where 

from the previous step, and add a new subclause, giv-

ing q' =  ... WHERE 

_2 , where _1 is a binary operator (and or or ) and 

_2 _2 _2 represents the abstracted form of a new 

subclause to be synthesized. If values can be found, they are 

inserted into the query, and the repair is complete. If no such 

values can be found, the query will be expanded again. This 

process repeats until either a solution is found, or the query 

reaches the maximum of five subclauses, at which point the 

process is aborted and the repair is marked as failed.5

5In our experiment, the maximum number of added clauses in a successfully 
patched query was three.
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TABLE III

Cl a s s i f i c a t i o n s  o f  s y n t a x  e r r o r s  i n t r o d u c e d  b y  s t u d e n t s  a c r o s s  b o t h  p h a s e s .

Error Type
CS2

Number (%)
SE

Number (%)
Total

Number (%)

Broken operator 188 (27.6%) 29 (21.2%) 217 (26.5%)

Column reference error 118 (17.3%) 16 (11.7%) 134 (16.4%)

Quotes on strings 
Incomplete query 
Wrong order

87 (12.8%) 
91 (13.4%) 
83 (12.2%)

40 (29.2%) 
6 (4.4%) 

14 (10.2%)

127 (15.5%) 
97 (11.9%) 
97 (11.9%)

Table reference error 68 (10.0%) 16 (11.7%) 84 (10.3%)

Extra commas 
Missing commas 
Miscellaneous

62 (9.1%) 
20 (2.9%) 
38 (5.6%)

13 (9.5%) 
9 (6.6%) 
1 (0.7%)

75 (9.2%) 
29 (3.5%) 
39 (4.8%)

Example

SELECT FROM WHERE 
SELECT DISTINCT FROM WHERE

SELECT FROM WHERE 
SELECT DISTINCT WHERE 
select distinct from 
SELECT FROM WHERE

SELECT FROM WHERE 
SELECT FROM WHERE 
SELECT from BY DESC

TABLE IV
Cl a s s i f i c a t i o n s  o f  s e m a n t i c  e r r o r s  m a d e  b y  s t u d e n t s  a c r o s s  b o t h  p h a s e s .

Error Type
CS2 SE Total

Example
Number (%) Number (%) Number (%)

Wrong subclauses in WHERE 828 (69.9%) 406 (76.7%) 1,234 (72.0%) SELECT FROM 
Missing or extra operator 
(GROUP BY, DISTINCT, etc)

369 (31.1%) 122 (23.1%) 491 (28.6%)
SELECT FROM 
WHERE GROUP BY 

Wrong values in WHERE 241 (20.3%) 74 (14.0%) 315 (18.4%)
SELECT DISTINCT FROM WHERE 

Wrong ordering 209 (17.6%) 68 (12.9%) 277 (16.2%)
SELECT DISTINCT FROM ORDER BY 

DESC

Column mismatch 70 (5.9%) 46 (8.7%) 116 (6.8%)
SELECT FROM WHERE 

Wrong operator in WHERE 83 (7%) 27 (5.1%) 110 (6.4%)
select from 

where AND 

Missing join (implicit or explicit) 43 (3.6%) 21 (4.0%) 64 (3.7%)
SELECT from 
where 

Miscellaneous 31 (2.6%) 3 (0.6%) 34 (2.0%) SELECT DISTINCT FROM 

In the example, after repairing Operator Mismatch 

and Column Mismatch and performing String Repair the

query: q =  SELECT FROM 

WHERE AND 

is incorrect. Thus, SQLRepair creates: q' = select 

FROM WHERE 

AND . When Z3

returns SAT, SQLRepair uses the satisfiable model to replace 

_1 ^1 =  and _1 ^  500, creating a correct query.

C. Analysis

To identify queries to repair for RQ2, we considered any 

query that had a syntax error or semantic error. We report 

on what SQLRepair can fix from Phase 1 and Phase 2. 

Unlike with error classification, as discussed in Section II-D, a 

repaired query could be counted towards both the synthesis and 

non-synthesis categories, depending on precisely what repair 

operations were performed.

With RQ3, we seek to understand the quality of the repairs 

produced by sQLRepair. students in Phase 2 were shown mul-

tiple queries simultaneously (see Figure 2) and asked to rate 

the understandability of each one on a seven-point Likert scale. 

Because students were shown multiple queries simultaneously, 

we are interested in the relative ratings given to each one. 

Thus, we perform a series of paired Mann-Whitney U analyses 

to understand how queries from one category compare to 

queries from another category.

IV. Re s u l t s

in this section, we present quantitative and qualitative results 

showing the types of errors students introduce (RQ1), the types 

of repairs by SQLRepair (RQ2), and the repair quality (RQ3).

A. RQ1: SQL Mistakes
The students in sE  were more successful at solving the 

problems than the students in CS2 (see Table II). Among 

queries submitted by SE students, 12.4% (94 of 760) were 

correct, compared to 7.8% (157 of 2,022) from CS2 students. 

Additionally, perhaps due to exposure to more programming 

languages, the sE  students introduced syntax errors at a lower 

rate (20.6% of all queries with errors, vs. 36.4% among CS2 

students). We performed a test of two proportions and found 

that the difference in overall success rates between groups was 

statistically significant (p < .001). For this reason, results for 

students from each course are presented separately.

Table III and Table IV show the syntax and semantic 

errors students introduced, respectively. Because individual 

queries can contain multiple errors, a query can be counted 

in more than one category. Each row in the table shows one 

of the categories, how many queries had errors of that type, a 

corresponding percentage, and a representative example from 

the category. For example, the first row of Table III is our 

syntax error category of a Broken operator, we saw 217 

of these, representing 26.5% of the 817 queries with syn-

tax errors. The query select from where 1
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== '00000039' was placed into the Broken operator group 

because the query uses a == where it should have used a =.

We notice similarities between our categories in Table III 

and those reported by Taipalus and Perala [3]; for instance, 

we both observed a column reference error, wrong ordering 

of SQL keywords, and miscellaneous syntax errors. Likewise, 

there is overlap between our categories and those of Ahadi, 

et al. [23]; the column reference error rank high in both lists, 

and their general syntax error category appears similar to our 

broken operator category. Unfortunately, because they do not 

offer examples of their categories it is impossible to map our 

categories to theirs precisely. The types of semantic errors 

that we saw are shown in Table IV. The most common 

issue was Wrong subclauses in the w h e r e  clause; this is the 

first row in the table and was observed in 1,234, or 72%, 

of queries. The prevalence here indicates that students had 

difficulty precisely describing the rows they wanted to include. 

A Missing or extra operator was the second most common 

issue, particularly among students in CS2. In contrast to our 

categories of semantic errors, which represent cases where 

the analyzed query returns an incorrect result, Brass and 

Goldberg [24] focus on queries that are correct but complicated 

or difficult to read. There is, however, overlap between our 

categories and those of Taipalus and Perala [3], such as a 

missing join. In addition, their category of duplicate rows is 

similar to ours of a Missing [or extra] operator.
The breakdown of successful queries and submitted queries 

on each problem is shown in Table V. We note that certain 

problem types proved to be particularly challenging. For ex-

ample, Problem 9, which necessitated use of a join, was widely 

attempted (with a total of 350 attempts from 42 different 

participants) but was solved correctly by only a single student. 

Problems involving compound where clauses (Problems 5 &

6) proved difficult as well, with less than a third of students 

managing to solve each one correctly. The lower success 

rates on these problems compared to single-condition selects 

(Problems 1 & 2) likewise suggests that students struggle with 

understanding the interactions between multiple columns.

RQ 1 Sum m ary: Students made eight main types of syntax 

mistakes, including misusing an operator and ambiguity 

with referenced columns, and seven main types of semantic 

mistakes, including using the wrong column(s) in a w h e r e  

clause, using wrong constants, and missing operators such 

as g r o u p  b y  or d i s t i n c t . Joins and compound clauses 

proved difficult for all students.

B. RQ2: SQLRepair

Our evaluation dataset consists of 2,531 incorrect SQL 

queries. Of these, SQLRepair was able to find a repair for 737, 

giving an overall repair success rate of 29.1%. The different 

types of repairs made are shown in Table VI. The table is 

organized based on the repair types: the first three correspond 

to the three non-synthesis repairs supported, and the last five 

to the synthesis repairs. For example, the first row, Column

Mismatch, is described in Section III-A2; this repair is made 

to 67 (13.7% of 488) queries from CS2 and 40 (16.1% of 249) 

from SE, totaling 107 (14.5% of 737) of all repaired queries. 

The representative example modifies the select clause to 

return three columns instead of two.

1) Repaired Queries: The most common repair type ob-

served was Column Synthesis (made to 393, or 53.3% of 737, 

queries), where SQLRepair synthesizes an expression using 

a new column, replacing an existing expression. The second 

most common repair type observed was Clause Removal, 
where SQLRepair identifies and removes a WHERE subclause 

that results in incorrect output. The third most common syn-

thesis repair type is Clause Synthesis, where a new subclause 

is generated for the WHERE clause. Together, these three repairs 

correspond to the very common Wrong subclauses in WHERE 

clause error observed across both classes (see Table IV), where 

the resolution is to add, fix, or remove an incorrect clause.

We also observe that while the majority of repairs performed 

(982 of 1,192 repairs, or 82.4%, from Table VI) involve a 

synthesis repair, non-synthesis repairs play an important part 

in success as well. In 107 cases, our tool fixes a Column Mis-
match error by identifying a query that is returning the wrong 

set of columns and rewrites the SELECT clause accordingly. 

Although this is a non-synthesis repair, it fixes queries from the 

Column reference error category in Table III and the Column 

mismatch category in Table IV, thus covering both syntax and 

semantic errors. Fixing unquoted or misquoted string literals 

(String Repair) and incorrect C/Java style operators (Operator 

Mismatch) happen less often, but a fix from one of these 

categories is still made to 75 and 28 queries, respectively. 

Additionally, making non-synthesis repairs also opens up new 

possibilities for synthesis repairs: queries must be well-formed 

for synthesis repair to proceed, and non-synthesis repair fixes 

some cases where they are not.

More often than not, repaired queries requires a combination 

of repair operations. In fact, 433 (58.8%) of the successfully 

repaired queries contained multiple repair operations. For 

example, the query select from WHERE 

was repaired by fixing both the columns to return (a Column 

Mismatch repair and changing the 1696 to an 1865 (a Constant 
Synthesis repair).

2) Not Repaired Queries: The remaining 1794 queries that 

could not be repaired fall into two major categories:

a) Unsupported functionality: Some functionality nec-

essary to solve the problems in Table I is not supported in 

SQLRepair, such as GROUP BY or joins. Students also used 

functionality that was neither necessary nor supported (such as 

between and limit), which rendered their queries unfixable.

b) Miscellaneous syntax errors: SQLRepair can fix some 

but not all syntax errors. Errors such as a misspelled SQL 

keyword (e.g., ... b y. ..)  clauses placed in the wrong 

order (e.g., select distinct. ..) are not fixed automatically 

by our tool.

3) Performance: We tested the performance of SQLRepair 

on an Intel i7-6700HQ running Linux Mint 18. Successful 

repairs are found in a median of 231 milliseconds (max: 1,602)
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Su c c e s s e s  p e r  p r o b l e m  a n d  p e r  c o u r s e . Ea c h  c e l l  r e p r e s e n t s  t h e  r a t i o  b e t w e e n  t h e  n u m b e r  o f  c o r r e c t  a t t e m p t s  a n d  t h e  t o t a l

N UM BER OF A TTE M PTS. SUCCESS PER PARTICIPANT REPRESEN TS THE RATIO BETW EEN  THE N UM BER OF STU DENTS W HO ATTEM PTED  THE PROBLEM  

AND THE N UM BER OF STU DENTS W HO SOLVED IT SUCCESSFU LLY. SUCCESS PER ATTEM PT REPRESEN TS THE SUM OF CO RRECT ATTEM PTS TO TOTAL

a t t e m p t s  a c r o s s  CS2 a n d  SE.

TABLE V

Course

Problem
Major Concept CS2 SE

Success
per participant

Success 
per attempt

1 Single-condition select 31/115 (27.0%) 14/25 (56.0%) 45/51 (88.2%) 45/140 (32.1%)
2 Select with projection 17/233 (7.3%) 9/163 (5.5%) 26/49 (53.1%) 26/396 (6.6%)
3 Inequality 17/140 (12.1%) 13/55 (23.6%) 30/41 (73.2%) 30/195 (15.4%)
4 Projection and inequality 23/145 (15.9%) 12/39 (30.8%) 35/41 (85.4%) 35/184 (19.2%)
5 compound select 4/304 (1.3%) 7/101 (6.9%) 11/51 (21.6%) 11/405 (2.7%)
6 Compound select with AND 6/256 (2.3%) 8/113 (7.1%) 14/44 (31.8%) 14/369 (3.8%)
7 Distinct 23/153 (15.0%) 11/38 (28.9%) 34/52 (65.4%) 34/191 (17.8%)
8 ordering 19/201 (9.5%) 12/80 (15.0%) 31/49 (63.3%) 31/281 (11.0%)
9 Joins 1/280 (0.4%) 0/70 (0.0%) 1/42 (2.4%) 1/350 (0.3%)
10 Grouping 16/195 (8.2%) 8/76 (10.5%) 24/45 (53.3%) 24/271 (8.9%)

Successful 157/2022 94/760
attempts (7.8%) (12.4%)

TABLE VI
Ty p e s  o f  c o m p l e t e  r e p a i r s  f r o m  SQLRe p a i r . No n -s y n t h e s i s  r e p a i r s  a r e  p r e s e n t e d  f i r s t , f o l l o w e d  b y  s y n t h e s i s  r e p a i r s . Ea c h  

s e c t i o n  IS s o r t e d  BY THE TOTAL N UM BER OF REPA IR S; PERCENTAGES A RE COM PU TED  OVER THE TOTAL N UM BER OF REPAIRED Q U E R IES. BECAUSE 

m a n y  s u c c e s s f u l l y  r e p a i r e d  q u e r i e s  c o n t a i n  t w o  o r  m o r e  r e p a i r s , t h e  t o t a l s  i n  e a c h  c o l u m n  s u m  t o  m o r e  t h a n  100%. Th e  

i d e n t i f i e r  a s s o c i a t e d  w i t h  e a c h  r e p a i r  t y p e  c o r r e s p o n d s  t o  t h e  d e s c r i p t i o n  i n  Se c t i o n  III.
CS2 SE Total

Number (%) Number (%) Number (%)
Repair Type Representative Example

Column Mismatch (III-A2) 

String Repair (III-A3)

Operator Mismatch (III-A1)

67(13.7%) 40(16.1%) 107(14.5%) SELECT FROM...
FROM ...

33(6.8%) 42(16.9%) 75(10.2%) ... WHERE 

28(5.7%) 0(0%) 28(3.8%) ... WHERE m in ^  ... WHERE m in

SELECT 

^  . ..  WHERE 

Column Synthesis (III-B3) 252 (51.6%) 141 (56.6%) 393 (53.3%) ... WHERE ^  . ..  WHERE 

S
y
n
th

es
is Clause Removal (III-B4) 109 (22.3%) 98 (39.4%) 207 (28.1%) ... WHERE OR ^

... WHERE 
Clause Synthesis (III-B5) 131 (26.8%) 65 (26.1%) 196 (26.6%) SELECT FROM ^  SELECT 

FROM WHERE 
Constant Synthesis (III-B1) 114 (23.4%) 21 (8.4%) 135 (18.3%) ... WHERE ^  . . .WHERE 
Operator Synthesis (III-B2) 39 (8.0%) 12 (4.8%) 51 (6.9%) ... WHERE ... ^ ... WHERE ...

and unsuccessful repairs in a median of 196 milliseconds 

(max: 1,912).

RQ 2: SQLRepair automatically fixes 29.1% of student 
queries with errors, covering both syntax and semantic 

errors.

C. RQ3: Repair Quality
To understand the quality of the repairs produced by SQL-

Repair, once students in Phase 2 found a solution for a problem 

(or gave up), we presented them with several alternative 

solutions (see Section II-B). Students rated each query on a 

scale of 1 (very difficult to understand) to 7 (very easy to 

understand) and optionally provided a free response rationale. 

We received a total of 281 voting responses (CS2: 183, SE: 

98) and 81 rationales (CS2: 50, SE: 31).

Each query was from one of four categories (Section II-B): 

MyCorrectQuery (MCQ), MyRepairedQuery (MRQ), Other- 

CorrectQuery (OCQ), OtherRepairedQuery (ORQ). On aver-

age, students found their own queries (MCQ) to be more

understandable than their repaired queries (MRQ) (5.58 vs. 

5.35, see Table VII), but the difference is not significant. 

Thus, a student’s repaired query could be used as an alternate 

way to solve a problem without sacrificing understandability, 

a divergence from prior work in automated program repair 

suggesting that machine-repaired code is less understandable 

than human-written code [25].

Looking more closely at the data, a pairwise analysis can 

determine the within-participant differences in understand- 

ability between each query category. Using the four query 

categories, we ran six paired Mann-Whitney U tests. As all the 

p-values are above 0.1, the data show that there is no statistical 

difference in understandability between human-written and 

machine-repaired SQL queries. For example, comparing the 

student’s own query (MCQ) with their repaired queries (MRQ) 

yielded p = 0.662. While there is a 0.23 difference in 

averages, representing a quarter of a level on the 7-point Likert 

scale, the difference is not significant. Comparing a student’s 

own correct query (MCQ) against a correct query written by 

others (OCQ) also reveals no difference in understandability.
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TABLE VII
Av e r a g e  Li k e r t -s c a l e  u n d e r s t a n d a b i l i t y  s c o r e s  p e r  c o u r s e  

AND PER QUERY T Y P E , W H ER E 1 MAPS TO VERY DIFFICULT AND 7 MAPS 

t o  Ve r y  Ea s y ; 4 i s  a  n e u t r a l  r e s p o n s e  (n e i t h e r  e a s y  n o r  

d i f f i c u l t ). Qu e r y  c a t e g o r i e s  a r e  d e f i n e d  i n  Se c t i o n  II-B.

Course
CS2 SE Overall

MyCorrectQuery (MCQ) 5.62 5.54 5.58
MyRepairedQuery (MRQ) 5.32 5.41 5.35
OtherCorrectQuery (OCQ) 5.04 5.41 5.17
OtherRepairedQuery (ORQ) 5.03 5.38 5.15

Therefore, we find evidence that repaired queries and queries 

written by others are all viable candidates for presenting 

students with alternate implementations of sQL queries.

Qualitatively, we observe that some students preferred their 

own solutions over all others; we received written responses 

such as “I literally wrote [this query]” and “I chose [this 
query] because it was exactly my solution”. However, this was 

not universally the case: one student remarked “I can’t believe 

how [bad] my answer is”. This suggests that automated repair 

can help students identify better solutions even after solving 

a problem correctly.

RQ3: Queries repaired by SQLRepair are rated as equal 
in understandability compared to queries written by the 

students themselves, suggesting repaired queries could be 

useful for presenting students with alternate queries.

V. Di s c u s s i o n

Here, we discuss the implications of our results, present 

opportunities for future work, and discuss threats to validity.

A. Implications

By analyzing the SQL queries written by students new to 

sQL, we see that certain topics are particularly challenging; 

most students struggled with joins, ordering, and compound 

clauses. When SQL is used, it is typically with more than 

one table, so teaching joins is a necessity [26]. By contrast, 

students had less difficulty with operators such as group b y . 

All concepts were introduced to students in a similar way, 

with background information provided through slides and live 

examples showing how they work in practice. These results 

suggest that some topics remained more difficult for students 

to understand and thus may require additional instruction.

To the best of our knowledge, SQLRepair is the first auto-

mated repair (APR) tool for SQL queries, and our results pro-

vide preliminary evidence that this can be useful in education. 

Patitsas, et al. report that presenting students with multiple 

solutions side-by-side can improve learning outcomes [27]. In 

cases where peer instruction is unavailable, our results suggest 

repair tools may be able to provide alternative solutions for 

students to visualize. Providing hints or iterative refinement 

rather than just a new solution may further improve the 

process.

While the overall repair rate of SQLRepair is lower than 

many general-purpose repair tools, this is a first step and the 

availability of our dataset should allow future SQL repair tools 

to improve on our efforts reported here for educational and 

professional audiences.

B. Future Work

We have identified several promising directions for future 

work in program repair to support learners.

The single most challenging problem for students was one 

that involved joining two different tables together on a com-

mon column. This suggests that students struggle to see the 

big picture and how their data connects together. Tools such 

as MySQL Workbench allow reverse-engineering an entity- 

relation diagram from an existing database schema, and the 

produced diagrams can be used much like uML class diagrams 

to introduce new developers to an existing design. A database 

iDE that automatically shows the relationship between tables 

when two or more are included in a query could help users 

see and utilise the connections in their data.

We observed, and several students affirmed in their com-

ments, that it is challenging to identify patterns within a table 

and thus pick out desired rows (i.e., forming queries from 

examples is challenging). Tooling that highlights similarities 

and differences between selected columns of two or more rows 

could help the user better identify relevant patterns.

More generally, our results suggest that program repair may 

be a useful educational tool for presenting alternate solutions 

to a problem. Notebooks such as Jupyter have become a 

popular way for performing exploratory data analysis, par-

ticularly among end-user programmers, because they allow 

intermingling code, written descriptions, and results [28]. 

While most such notebooks focus on Python or R, SQL has 

a place within the data science world as well, and integrating 

synthesis or repair tools could help make the learning process 

easier for many students.

All of the repairs produced by SQLRepair follow the steps 

listed in Section III. The order in which repairs are performed 

has the potential to impact the query that is ultimately pro-

duced. Future work could study whether performing repairs 

in a different order impacts the quality of the query produced 

by potentially producing more concise or understandable so-

lutions.

C. Threats to Validity

our conclusions may not generalize to different student 

body populations. The students who signed up to participate 

for our Phase 2 evaluations did so on the promise of extra 

credit. consequently, there may be a selection bias.

The problems we had students complete were based off 

of the uMLS dataset; it is unknown whether the nature of 

the dataset contributed to the difficulty students faced when 

solving problems. The specific errors that students faced may 

not generalize to different problems. it is possible that the 

context of the data made problems more difficult than if
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students had been working with more familiar data. However, 

we expect the data to be equally unfamiliar to all students.

In this work, we use the understandability rating that a 

student gives a query as a proxy for the quality of the query 

that has been produced. However, this merely asks students to 

read the query and then offer a vote on it; we do not ask them 

to integrate the queries produced into a larger application or 

modify the query to solve a problem that is similar but not 

identical. Consequently, students who are using the queries 

in a different context may have different priorities for what 

makes a query understandable or not.

VI. Re l a t e d  Wo r k

Existing work in teaching SQL to undergraduates focuses 

on how students learn SQL [4], [29] and the types of semantic 

and syntax errors made [3], [23], [24]. Migler and Dekhtyar [4] 

break down the exercises students solve in an undergraduate 

databases course around their primary concept, and find that 

joins and subqueries are the most challenging. Our observa-

tions agree with theirs in that students have a harder time 

solving problems involving multiple tables.

Poulsen, et al. [29] study SQL queries students write in 

an upper-level databases course and find persistent issues 

with not just difficult semantic concepts such as nested 

queries and grouping, but syntax errors. Ahadi, et al. [23] 

consider only syntax errors; we observe that students make 

significantly more semantic errors than syntax errors. Brass 

and Goldberg [24] present a list of semantic errors in SQL 

queries, showing some errors guarantee an incorrect result and 

others produce a query that is substantially more complicated 

than is necessary. However, their work does not assess error 

frequency, which we report in Section IV-A, and therefore 

cannot be used as a basis for direct comparison. Most similar 

to our work, Taipalus and Perala [3] and Taipalus, et al. [30] 

present a breakdown of errors made into semantic and syntax 

categories. However, their student population is from a more 

advanced databases course. In our work, we offer a similar 

breakdown for novice students.

Weise, et al. [31], [32] study student preferences for Java 

and Python code written in different programming styles, and 

their ability to understand code written in an “expert” style. 

They find that many students prefer a more naive, or verbose, 

approach, but are capable of understanding code that uses more 

expert approaches. Similarly, our work asks students to choose 

between several different queries, which may be more-or-less 

expertly written, to select the one that is easiest to understand. 

Maalej, et al. [33] study how professional developers compre-

hend and understand the code they are working with. While 

we do not ask them to explain their comprehension process, 

we nonetheless expect them to perform many of the same steps 

by reading and comparing multiple queries.

Stolee and Elbaum [34] demonstrate that students can take 

provided SQL queries and write corresponding input-output 

table pairs for them. Our work asks them to do the reverse.

To the best of our knowledge, SQLRepair represents the first 

application of automated program repair to SQL. However,

some research efforts have produced tools for SQL query con-

struction using program synthesis. SCYTHE [22] takes input-

output examples and generates a query capable of performing 

the transformation, but is limited in that it does not support 

common operators such as projection. Finally, SCYTHE sup-

ports only a single ( s o u r c e ,  d e s t i n a t i o n )  pair, while 

SQLRepair supports arbitrarily many.
Existing work by Solar-Lezama [35] in program synthesis 

by sketching demonstrates that it is feasible to provide part of 

a program, and to have automated tools fill in the remainder 

of it. This is the approach that we use for synthesis repairs.
Drosos, et al. [36] present a tool, Wrex, for performing pro-

gram synthesis in Jupyter notebooks. They focus on producing 

Python code that is easy for humans to read and understand so 

the code is more likely to be used going forwards. We report 

results similar to theirs, showing that code synthesized by a 

tool is of sufficiently high quality to be used.

VII. Co n c l u s i o n

In this work, we have analyzed the mistakes that under-

graduate students make when working with SQL for the 

first time by studying the errors they introduce. We found 

that the majority of queries contain one or more syntax or 

semantic error, and that semantic errors make up a majority of 

errors introduced. We found that junior-level students perform 

better than sophomore-level students, solving more problems 

correctly and introducing syntax errors at a lower rate. Among 

the more advanced SQL topics covered, students particularly 

struggle with joins, thus suggesting a need for teaching 

students to see and utilise patterns in data. We have also 

demonstrated that SQLRepair can fix 29.1% of queries with 

errors. By demonstrating that APR techniques are applicable 

to SQL, we pave the way for additional automated repair of 

special-purpose programming languages. Finally, our results 

suggest that automated repair may support students as they 

learn SQL. Students rate our tool-produced repairs as good 

as queries written by themselves or other students, and thus 

automated repairs may make a compelling teaching tool when 

peer instruction and feedback is unavailable.
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