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A significant challenge in numerical solution to the Poisson-Boltzmann equation is due 
to singular charge sources in terms of Dirac delta functions. To overcome this difficulty, 
several regularization methods have been developed, in which the potential function is 
decomposed into two or three parts so that the singular component can be analytically 
solved using the Green’s function, while other components become bounded. However, 
it was observed in the literature that some regularization methods are significantly less 
accurate than the others for unclear reasons, even though they are analytically equivalent. 
To understand this discrepancy, the numerical performance of four popular regularization 
methods is investigated in this work by implementing them with the Matched Interface 
and Boundary (MIB) approach, which is a sophisticated finite difference method for treating 
elliptic interface problems with discontinuous coefficients. With all four methods showing 
second order convergence, accuracy reduction is numerically observed in two schemes. This 
paper provides numerical analysis and experiment to trace the source of such reduction, 
and links the error to the fact that the Laplacian of Green’s function is dropped outside 
the protein domain. While this term is analytically vanishing, its numerical negligence 
introduces a discretization error. Formulating via a proper elliptic interface problem, an 
effective accuracy recovery technique is proposed so that all four methods yield the same 
high precision. With this study, all involved regularization schemes are better understood 
and well connected into a unified framework.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Poisson-Boltzmann equation (PBE) is an elliptic equation with singular source terms and discontinuous coefficients 
across an interface. This equation is widely used as the governing equation of electrostatic of solvated biomolecules in 
a solvent environment with dissolved electrolytes [2,14,29,21]. In practice, the PBE is solved numerically as its analytical 
solution is only available for simple shapes such as a sphere. However, there are several numerical difficulties in solving the 
PBE, such as complex molecular surface, discontinuous coefficients across the surface, singular sources, unbounded domain, 
etc. In this study, we focus on methods treating the singular sources, which come from the presence of the Dirac delta 
distributions in modeling of the partial charges located at the atomic centers of the biomolecules.
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Conventionally, the singular charges are distributed to the surrounding grid points [19,25,45,40] or approximated by the 
hat functions [35]. Recently, a second order accurate geometric discretization of the point charge sources has been intro-
duced in [12] for solving Poisson’s equation. A central difference discretization of the Dirac delta function representing a 
singular source across an interface has been developed in [36] for treating boundary conditions for Poisson problems on 
irregular domains. Alternatively an effective approach is to remove the delta functions from the PBE by using the Green’s 
function based decomposition. In this approach the solution of the PBE is decomposed into several parts with one part 
as the Green’s function, which is the fundamental solution to the Poisson equation with Dirac delta distributions as the 
source term. The remaining terms in the decomposition thus solve the regularized PBE without the singular sources. There 
are several regularization methods of this kind being proposed such as [6,8,17,23,9,38,47]. These methods differ from one 
another mainly in the way the potential solution is decomposed. In another regularization approach [4,27], the singular 
sources or delta functions are directly decomposed into local and global components, and are accurately approximated by 
range-separated tensor discretization. This is coupled with a splitting of the electrostatic potential, and the resulting long 
range component satisfies the PBE with a regularized source term. The range-separated regularization [4,27] can maintain 
the same interface and boundary conditions as the original PBE model at the expense of delta function tensor approxima-
tions, while the Green’s function based regularizations [6,8,17,23,9,38,47] usually lead to different interface and boundary 
conditions. Recently, regularization in a setting of smoothly varying dielectric functions over diffuse interfaces and complex 
shapes has been studied in [37].

In this paper, we compare, analyze, and simulate four popular Green’s function based regularization methods using finite 
difference and rigorous interface treatment. These methods, whose numerical algorithms are presented in the next section, 
are briefly reviewed below in the chronological order.

The first method was proposed and explored in [19,47]. This method decomposes the PBE solution into two components 
on the entire computational domain: the singular component which is the Green’s function and the remaining part called 
regular component. This scheme is a natural way to decompose the potential since each component has a physical meaning 
[23]. By analyzing the analytical solution of the PBE for a spherical cavity with a unit charge at its center, Holst et al. [23]
found that this scheme might suffer from numerical instability. More specifically, a small error in the numerical solution of 
the regular component can lead to a large relative error in the entire solution. Despite this accuracy reduction, this scheme 
was one of the pioneering works in the field and many other sub-sequential works are inspired by it.

The second method was proposed by Chern et al. [9]. In this method, the solution to the PBE is split into the Green’s 
function and two other regular components. One of the regular components handles the effect of the Green’s function on the 
molecular surface (the domain interface) and the other term is the remaining correction term, which solves a regularized 
PBE with a modified interface jump conditions. In the PBE model, the computational domain � is divided into the solvent 
region �+ and the molecular region �− . This solution decomposition takes place only in the molecular region �− , instead 
of on the entire domain �. This decomposition resolves the numerical instability that Holst discussed in [23]. This method 
was implemented with finite difference method (FDM) for the two-dimensional PBE in [9] and later implemented with 
another FDM named Matched Interface and Boundary method (MIB) in three-dimensions by Geng et al. [17].

The third method was proposed by Xie [38]. In this scheme, the solution is split into three parts on the entire domain �, 
with the first component being the Green’s function. The second component carries the nonhomogeneous data of interface 
and boundary conditions, leaving the third component carrying the nonlinearity of the PBE. This solution decomposition 
works for a solvent containing any number of ionic species. Thus, this scheme not only works for the symmetric 1:1 ionic 
model as in Eq. (1), but also for a more general setting. Furthermore, the components of the PBE solution are defined in both 
the weak sense and strong sense, therefore the scheme can be implemented with both FDM and Finite Element Method 
(FEM). Owing to FEM’s convenience in treating the interfaces, the FEM implementation of this scheme is more accurate than 
a standard FDM. In this paper, we implemented this scheme with the MIB method [46], which is discretized using finite 
difference but has a rigorous treatment of interface conditions.

The fourth method was proposed by Geng and Zhao [18] using the MIB discretization. Inspired by [6], Geng and Zhao 
split the PBE solution into two components. Similar to the method of Chern el al. [9], this decomposition takes place only 
in the molecular region �− . In comparison with the three-component method in [17], this method produces the same 
accuracy, but is easier to implement since it could avoid solving a boundary value Poisson equation inside the molecular 
region �− and some computation related to the interface jump conditions.

The first goal of this work is to compare the above mentioned four schemes under the framework of the Matched 
Interface and Boundary (MIB) method [46]. Being a second order accurate PBE solver, the MIB method is an effective 
approach for this comparison, because in terms of the discretized linear algebraic system Ax = b, different regularization 
schemes are only different on the source term b, that is associated with the boundary and interface conditions.

Our numerical experiments show that two regularization schemes [17,18] are significantly more accurate than the other 
two schemes [47,38] when implemented with the MIB, while all four schemes achieve second order convergence. This 
motivates us to investigate the errors numerically and theoretically and track down to the source of this accuracy reduction 
for the two schemes with lower accuracy. By appropriately incorporating the error source into the MIB interface algorithm, 
we are able to propose novel recovery techniques for these two schemes so that their accuracy is completely recovered.

The rest of the paper is organized as follows. Section 2 provides some background information about the Poisson-
Boltzmann model and a review of existing numerical solvers. Section 3 summarizes the MIB method and four regularization 
schemes, followed by numerical comparison of a benchmark test using these four schemes under the framework of MIB 
2
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Fig. 1. A 2-dimensional illustration of the 3-dimensional domain. The molecular surface � divides the molecule domain �+ and the solvent domain �− .

method. Section 4 discusses the source of accuracy reduction and proposes a recovery technique, followed by its numerical 
validation. Section 5 ends the paper with concluding remarks.

2. Background

2.1. The Poisson-Boltzmann model

The Poisson-Boltzmann (PB) model is illustrated in Fig. 1, where �− and �+ are the molecule region and solvent region, 
separated by the molecular surface � = �− ∩ �+ . Note �+ should be an infinite domain in the physical model, but a 
bounded computational domain such as the box � = �− ∪ �+ in the figure has to be applied for grid-based methods.

This model governs the electrostatic potential φ(r) on � by Gauss’s law as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε−�φ(r) = ρ(r), r ∈ �−

−ε+�φ(r) + κ̄2 sinhφ(r) = 0, r ∈ �+

[φ]� = 0, r ∈ �[
ε ∂φ

∂n

]
�

= 0, r ∈ �

φ(r) = φb(r), r ∈ ∂�,

(1)

where

ρ(r) = 4π
Nc∑
j=1

qiδ(r − ri), (2)

is the source term representing the distribution of the Nc partial charges carried by the molecule. This term is given as the 
superposition of the Dirac delta function centered at the atomic centers ri with charge quantity qi .

In Eq. (1), the dielectric coefficient ε(r) is a piecewise constant function

ε(r) =
{
ε+, r ∈ �+

ε−, r ∈ �−,
(3)

with ε+ and ε− as the dielectric constants in the solvent region and molecule region. In our computational configuration, 
we choose ε− = 1 for molecule and ε+ = 80 for the solvent. The ionic screening coefficient κ̄2(r) is also a piecewise 
constant function.

κ̄2(r) =
{
ε+κ2 r ∈ �+

0 r ∈ �−,
(4)

where κ is the inverse Debye screening length measuring the ionic strength I in mol/L as related by κ2 = 8.430325455I/ε+ . 
In our computation, the partial charge uses the unit ec , the fundamental charge and the length unit is Å. With these units, 
the unit of φ is ec/Å. As in [18], to convert the unit of φ to the commonly used unit of kcal/mol/ec , one needs to multiply φ
3
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by the constant 332.0716 for room temperature T = 298K . Readers can find more details about the units of these physical 
quantities in [21,15].

Additionally, [φ]� = φ+ −φ− and [εφn]� = ε+ ∂φ+
∂n −ε− ∂φ−

∂n are the interface conditions across the molecular surface with 
n as the normal direction. For the infinite domain with the PB model, we have the radiation condition lim|r|→∞ φ(r) = 0. 
However, for grid-based method, we will have to apply a Dirichlet boundary condition [21] imposed on ∂� as

φ(r) = φb(r) =
Nc∑
i=1

qie−κ |r−ri |

ε+|r − ri | . (5)

2.2. Numerical solutions

Numerical methods for the Poisson-Boltzmann equation (PBE) fall into two classes, (1) grid-based methods that discretize 
the entire domain, e.g. [24,10,25,3,31,6,7,39,11,32,33,13], and (2) boundary integral methods that discretize the molecular 
surface, e.g. [16,26,28,5,30,20,1,43,44,34]. These methods have various advantages and disadvantages in solving the PBE. 
Some of them focus on a particular aspect in solving the PBE or its biological applications.

The numerical solution to the PBE suffers many challenges such as 1) the molecular surface is geometrically complex; 
2) the biomolecule is represented by singular point charges; 3) the dielectric function and electric field are discontinuous 
across the molecular surface; 4) the nonlinearity appears when ionic strength is strong; 5) the domain is unbounded.

In treating these numerical challenges, particularly 1)–3), a second order accurate finite-difference based interface 
method named matched interface and boundary (MIB) method has been developed [46,40,17,7]. In this work, the MIB 
scheme will be adopted as the PBE solver for comparing four regularization schemes. We note that there are other accurate 
finite difference interface algorithms available for dealing with the above discussed challenges, such as the adaptive finite 
difference method [32,33,13]. In principal, the present numerical comparison can be conducted by using a different finite 
difference algorithm, but the conclusion should remain the same.

3. Numerical algorithms

In this section, we first introduce the MIB scheme, which lays the basic framework for solving the elliptic interface 
problems. The four regularization methods are introduced next. These methods are then implemented under the MIB scheme 
so that interface conditions and geometric singularities are uniformly addressed for a better comparison of these methods 
numerically.

3.1. Matched Interface and Boundary method (MIB)

We first introduce the second order MIB scheme using a 1-d example with the equation, interface condition, and bound-
ary condition given as in Eq. (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε− d2φ

dx2
(x) = g1(x), x ∈ (0,α)

−ε+ d2φ

dx2
(x) = g2(x), x ∈ (α,1)

[φ]� = β[
ε dφ

dx

]
�

= γ

φ(x) = φb(x), x ∈ ∂�.

(6)

Here, the domain � = [0, 1], the interface � = {α} divides the domain into [0, α) and (α, 1]. The dielectric coefficient ε(x)
is a piecewise constant function given as

ε(x) =
{
ε+ if x ∈ [0,α),

ε− if x ∈ (α,1]. (7)

Suppose we approximate the second derivative by the central difference

d2φ

dx2
(x) ≈ φ(x− �x) − 2φ(x) + φ(x+ �x)

�x2
. (8)

If all points on the finite difference stencil, i.e. x − �x, x, and x + �x, lie on the same side of the interface x = α, the 
central finite difference in Eq. (8) can be applied normally. Otherwise, one should not directly apply function values on the 
4
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Fig. 2. A one-dimensional example.

opposite side due to the jumps in φ or 
dφ

dx
at x = α. For example, in Fig. 2, one should not use the value φ(x + �x) = φ(x3)

to approximate 
d2φ

dx2
(x2) as in Eq. (8). Instead, a fictitious value f2 can be used to replace φ(x3) in Eq. (8), i.e.

d2φ

dx2
(x2) ≈ φ(x1) − 2φ(x2) + f2

�x2
. (9)

Similarly, a fictitious value f1 can be used to replace φ(x2) in the discretization of 
d2φ

dx2
(x3). The fictitious values f1 and 

f2 are the smooth extensions of φ from one side of x = α to the other side in the way such that the jump conditions are 
satisfied. To calculate the coupled fictitious values f1 and f2, a polynomial interpolation is applied to discretize the jump 
conditions{[φ]� = φ+(α) − φ−(α) = β[

ε dφ
dx

]
�

= ε+ dφ+
dx (α) − ε− dφ−

dx (α) = γ ,
(10)

in terms of 
{
φ(x j)

}
j=1,4 and the fictitious values f1, f2. For example, φ+(α) can be approximated by

φ+(α) ≈ w1φ(x1) + w2φ(x2) + w3 f2, (11)

where {wi}i=1,3 are the weights obtained from polynomial interpolation. One can find similar approximations for 
φ−(α), ε+ dφ+

dx (α), ε− dφ−
dx (α). It then follows from Eq. (10) such that

{
(v1 f1 + v2φ(x3) + v3φ(x4)) − (w1φ(x1) + w2φ(x2) + w3 f2) = [φ]�
ε+ (v̄1 f1 + v̄2φ(x2) + v̄3φ(x3)) − ε− (w̄1φ(x1) + w̄2φ(x2) + w̄3 f2) =

[
ε dφ

dx

]
�

.
(12)

Notice that the weights {wi, vi, w̄i, v̄ i}i=1,3 depend only on the interface position and mesh size. From the linear system 
(12), one can solve for fictitious values f1 and f2 as a linear combination of the solution {φ(xi)}i=1,4, and the jump condi-
tions [φ]� , and 

[
ε dφ

dx

]
�
:

f i =
4∑

j=1

cijφ(x j) + ci5[φ]� + ci6

[
ε
dφ

dx

]
�

, i = 1,2. (13)

Here 
{
cij

}
are the weights that depend on the interface position and the mesh size. Replacing φ(x3) by f2 in (9), we have

d2φ

dx2
(x2) ≈

φ(x1) − 2φ(x2) +
4∑

j=1
c2jφ(x j) + c25[φ]� + c26

[
ε dφ

dx

]
�

�x2
, (14)

or in a simplified form using the modified weights c̄ j, j = 1, · · · , 6

d2φ

dx2
(x2) ≈

4∑
j=1

c̄ jφ(x j) + c̄5[φ]� + c̄6

[
ε
dφ

dx

]
�

. (15)

Similarly, f1 is required to approximate 
d2φ

dx2
(x3). By using the discretization as in Eq. (15), the discretized Eq. (6) at x2 has 

the form
5
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Fig. 3. A 2-d illustration of 3-d MIB scheme: (a) In the z = zk cross section, the irregular points (the blue and red grid points near the interface) have both 
function values and fictitious values; (b) Fictitious values at node (i, j, k) and (i + 1, j, k) are the linear combinations of the jump conditions at (io, j, k)
and the values of φ at the neighboring nodes in x–y plane (shown as orange grids) and in x–z or y–z plane (not shown). (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

4∑
j=1

c̄ jφ(x j) ≈ g1(x2) − c̄5[φ]� − c̄6

[
ε
dφ

dx

]
�

. (16)

Combining this special discretization for irregular points involving jump conditions with the standard finite difference dis-
cretization for regular points, we form the linear algebraic system for φ(x j), j = 1, · · · , n with n mesh points.

For PDEs in 2-d and 3-d, the MIB scheme utilizes the similar ideas but requires much more complicated treatment in 
jump conditions [45,46], geometric singularities [40–42], and charge singularities [17,18] and we only summarize the key 
ingredients of the algorithms using Figs. 3a-3b, which are 2-d illustration of the 3-d MIB scheme.

In 2-d and 3-d MIB schemes, the jump conditions are imposed as the normal derivatives and tangential derivatives 
transferred to partial derivatives in directions of the Cartesian coordinates. Each pair of irregular points as shown in Fig. 3a 
have both solution values and fictitious values. The fictitious values are linear combination of solution values and jump 
conditions expressed as

f i, j,k =
∑

(
xI ,y J ,zK

)∈Si, j,k

W I, J ,Kφ
(
xI , y J , zK

) + W0[φ]� + W1

[
ε

∂φ

∂n

]
�

, (17)

where Si, j,k represents the set of neighboring points of 
(
xi, y j, zk

)
with index (i, j, k) involved in the polynomial interpo-

lation and WI, J ,K , W0, W1 are the weights from interpolation and transformation. The size of Si, j,k is normally 10 for 2-d 
as seen in Fig. 3b and 16 for 3-d for the interpolation in multiple dimension [45,46]. However, when geometric singularities 
are present, larger number of neighboring points will be involved [40–42].

3.2. Singular source regularization

For treating the charge singularities involved in the PBE, Green’s function based regularization methods decompose the 
potential solution into several components, with one of them being Green’s function,

G(r) =
Nc∑
i=1

qi
ε−|r − ri | ,

which solves the free space Poisson’s equation⎧⎨
⎩

−ε−�φc = ρ(r)

lim|r|→∞φc(r) = 0. (18)
6
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The remaining terms in φ thus solve a regularized PBE without the singular delta distributions. We next introduce several 
schemes from the literature which use this essential decomposition idea. An interesting phenomenon we have found is that 
although these schemes are analytically equivalent, their numerical results show different accuracy. We will demonstrate 
the differences, identify the reason behind it, and design numerical schemes to recover the accuracy. We start with a brief 
summary of the four above-mentioned schemes.

Scheme 1 [19,47]: In this method, the PBE solution is decomposed into the singular and regular component throughout the 
computational domain, i.e.

φ = G + φRF , on �, (19)

where φRF is the reaction field component.
The substitution of this φ into Eq. (1) leads to⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε−�φRF (r) − ε−�G(r) = ρ(r), r ∈ �−

−ε+�φRF (r) − ε+�G(r) + κ̄2 sinh(G + φRF ) = 0, r ∈ �+

[φRF ]� = −[G]�, r ∈ �[
ε ∂φRF

∂n

]
�

= − [
ε ∂G

∂n

]
�

, r ∈ �

φRF (r) + G(r) = φb(r), r ∈ ∂�.

(20)

Since ε−�G = ρ(r) in �− , �G = 0 in �+ , and G and ∂G
∂n are continuous across the interface �, Eq. (20) with this 

decomposition is reduced to a regularized problem for reaction potential φRF⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε−�φRF = 0, r ∈ �−

−ε+�φRF + κ̄2 sinh(G + φRF ) = 0, r ∈ �+

[φRF ]� = 0, r ∈ �[
ε ∂φRF

∂n

]
�

= (
ε− − ε+)

∂G
∂n , r ∈ �

φRF = φb − G, r ∈ ∂�.

(21)

Scheme 2 [6,18]: The second scheme is similar to the first scheme with the difference that the PBE solution is decom-
posed in the solute region only, i.e.

φ = φRF + G, in �−.

The substitution of this φ into Eq. (1) leads to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε−�φRF (r) − ε−�G(r) = ρ(r), r ∈ �−

−ε+�φ(r) + κ̄2 sinh(φ(r)) = 0, r ∈ �+

φ(r+) − φRF (r−) − G(r−) = 0, r ∈ �

ε+ ∂φ
∂n (r+) − ε− ∂φRF

∂n (r−) − ε− ∂G
∂n (r−) = 0, r ∈ �

φ(r) = φb(r), r ∈ ∂�.

(22)

Using the fact that ε−�G = ρ(r), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε−�φ̃ = 0, r ∈ �−

−ε+�φ̃ + κ̄2 sinh(φ̃) = 0, r ∈ �+

[φ̃]� = φ(r+) − φRF (r−) = G, r ∈ �[
ε ∂φ̃

∂n

]
�

= ε+ ∂φ
∂n (r+) − ε− ∂φRF

∂n (r−) = ε− ∂G
∂n , r ∈ �

φ̃ = φb, r ∈ ∂�,

(23)

which is a regularized equation with unknown φ̃ defined as

φ̃ =
{

φRF in �−

φ in �+.
(24)

Note: φ̃ in Scheme 2 is discontinuous across the interface � while φRF in Scheme 1 is continuous. For the MIB method, 
the discontinuity of the solution does not introduce additional numerical difficulties. For the finite element method, a 
discontinuous Galerkin FEM [11] shall be used.
7
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Scheme 3 [38]: In this method, the PBE solution is split into three components on the whole domain i.e.

φ(r) = G(r) + �(r) + �̄(r),

for r ∈ �. In this decomposition, � satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��(r) = 0, r ∈ �+ ∪ �−

�(r+) = �(r−), r ∈ �

ε+ ∂�(r+)
∂n = ε− ∂�(r−)

∂n + (ε− − ε+)
∂G(r+)

∂n r ∈ �

�(r) = φb(r) − G(r), r ∈ ∂�,

(25)

and �̄ is the remaining correction term.
The substitution of this φ into Eq. (1) leads to⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε− (
��̄(r) + ��(r) + �G(r)

) = ρ(r), r ∈ �−

−ε+ (
��̄(r) + ��(r) + �G(r)

) + κ̄2 sinh
(
�̄(r) + �(r) + G(r)

) = 0, r ∈ �+

[�̄]� + [�]� + [G]� = 0, r ∈ �[
ε ∂�̄

∂n

]
�

+ [
ε ∂�

∂n

]
�

+ [
ε ∂G

∂n

]
�

= 0, r ∈ �

�̄(r) + �(r) + G(r) = φb(r), r ∈ ∂�.

(26)

By using the facts that ε+�G = 0 in �+ , ε−�G = ρ(r) in �− and ��(r) = 0 on �+ ∪ �− , we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε−��̄ = 0, r ∈ �−

−ε+��̄(r) + κ̄2 sinh
(
�̄(r) + �(r) + G(r)

) = 0, r ∈ �+

�̄(r+) = �̄(r−), r ∈ �

ε+ ∂�̃(r+)
∂n = ε− ∂�̄(r−)

∂n , r ∈ �

�̄(r) = 0, r ∈ ∂�.

(27)

This scheme requires solving Eqs. (25) and (27) for � and �̄ respectively.

Scheme 4 [9,17]: Instead of splitting the PBE solution on the whole domain, in this method, φ is only split in the solute 
region �− , i.e.

φ(r) = φ̂(r) + G(r) + φ0(r), for r ∈ �−. (28)

Here, φ0 is the harmonic component and is defined only on �− ∪ � and satisfies the equation{
�φ0(r) = 0, in �−

φ0(r) = −G(r), on �,
(29)

and φ̂ is thus the remaining correction term.
The substitution of this φ into Eq. (1) leads to⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε−�φ̂(r) − ε−�(G(r) + φ0(r)) = ρ(r), r ∈ �−

−ε+�φ̂(r) + κ̄2 sinh φ̂(r) = 0, r ∈ �+

[φ̂]� + [G + φ0]� = 0, r ∈ �[
ε ∂φ̂

∂n

]
�

+
[
ε ∂(G+φ0)

∂n

]
�

= 0, r ∈ �

φ̂(r) = φb(r), r ∈ ∂�.

(30)

By using the facts that ε−�G = ρ(r) and �φ0(r) = 0 in �− , G and φ0 are only defined in �− ∪ �, and G + φ0 = 0 on �, 
we have⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε−�φ̂(r) = 0, r ∈ �−

−ε+�φ̂(r) + κ̄2 sinh φ̂(r) = 0, r ∈ �+

[φ̂]� = 0, r ∈ �[
ε ∂φ̂

∂n

]
�

= ε− ∂G
∂n (r−) + ε− ∂φ0

∂n (r−), r ∈ �

φ̂(r) = φb(r), r ∈ ∂�.

(31)

In this method, Eqs. (29) and (31) need to be solved for φ0 and φ̂ respectively.
8
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Table 1
Solving the Poisson equation and the PBE on a spherical cavity of radius 2 with a unit charge ec centered at (0,0,0), ε+ = 80, ε− = 1, κ = 0 for the Poisson 
equation and κ = 0.1257 for the PBE.
h The Poisson equation The PBE

Scheme 1 & 3 Scheme 2 & 4 Scheme 1 & 3 Scheme 2 & 4

eφ ord. Esol eφ ord. Esol eφ ord. Esol eφ ord. Esol

1 6.6E-02 -88.08 8.4E-04 -81.94 5.3E-02 -86.21 6.7E-04 -81.96
1/2 1.2E-02 2.45 -83.35 1.5E-04 2.45 -81.96 9.1E-03 2.54 -82.86 1.2E-04 2.54 -81.97
1/4 3.3E-03 1.88 -82.21 4.2E-05 1.88 -81.98 2.5E-03 1.84 -82.12 3.2E-05 1.84 -81.98
1/8 6.7E-04 2.29 -82.02 8.5E-06 2.29 -81.98 5.3E-04 2.27 -82.01 6.7E-06 2.27 -81.98
1/16 1.2E-04 2.54 -81.99 1.5E-06 2.54 -81.98 9.4E-05 2.48 -81.98 1.5E-06 2.14 -81.98

3.3. Numerical comparison

In this section, we provide the numerical results of solving the PBE on some benchmark problems and on a set of 24 dif-
ferent proteins using the four regularization schemes discussed above. In addition to Scheme 2 and Scheme 4 implemented 
by Geng et al. [17,18] under the MIB framework, we newly implemented Scheme 1 and Scheme 3 with the MIB method for 
comparison purpose.

The benchmark problems are defined with �− as a ball with radius R = 2Å and a positive unit charge at the center/ori-
gin. The Poisson equation is given as

−∇ · (ε(r)∇φ(r)) = 4πδ(r), (32)

and the PBE is given as

−∇ · (ε(r)∇φ) + κ̄2(r) sinh(φ(r)) = f (r), (33)

where

f (r) =
⎧⎨
⎩
4πδ(r), if ‖r‖ < R

κ̄2 sinh

(
1

ε+‖r‖
)

if ‖r‖ > R.

Here the ionic strength I = 0.15 mol/L, κ = 8.430325455I/ε+ = 0.1257, and κ̄2 = ε+κ2.
With these configurations, the analytical solution to both Eqs. (32) and (33) is

φ(r) =

⎧⎪⎨
⎪⎩

1

ε+R
− 1

ε−R
+ 1

ε−‖r‖ , if ‖r‖ < R

1

ε+‖r‖ , if ‖r‖ > R.
(34)

We use the analytical solution to calibrate the numerical solutions and impose the boundary conditions. For treating non-
linearity of the PBE, we applied inexact Newton’s method as implemented in [18,7,22]. In all of our numerical tests, we set 
the relative tolerance for the biconjugate iterative solver as 10−6. The electrostatic potential has the unit kcal/mol/ec . The 
solvation free energy with the unit kcal/mol is evaluated as

Esol =
Nc∑
i=1

qiφRF (ri),

where the reaction potential φRF is defined in Eq. (19).
The errors are reported in the form

eφ = Ni
max
i=1

∣∣φtrue(xi) − φnum(xi)
∣∣ ,

where xi are the irregular grid points near the interface in which at least one point in the seven-point finite difference 
stencil is on the opposite side of the interface. Here Ni is the total number of irregular grid points, and φtrue(xi) and 
φnum(xi) are values of φ(xi) obtained from the analytical solution and the numerical solution respectively.

Table 1 reports the solvation free energy Esol , the electrostatic potential error eφ and its convergence order with respect 
to the mesh refinement by solving the Poisson equation (32) and the PBE (33). For this spherical example, the numerical 
results of Scheme 1 and 3 are identical, and those of Scheme 2 and 4 are also the same. Thus, only half of original data is 
reported in Table 1 to save the space. From the results, we can see all four methods demonstrate the 2nd order convergence 
pattern. However, Schemes 1 and 3 present larger relative surface potential errors as compared with Schemes 2 and 4. We 
will investigate these numerical artifacts the next.
9
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Table 2
Selected ratios between the errors eφ from the four schemes reported in Table 1. An explanation of such error ratios will be given in Section 4.

h The Poisson equation The Poisson-Boltzmann equation

1 1/2 1/4 1/8 1/16 1 1/2 1/4 1/8 1/16

Sch.1/Sch.2 78.57 80.00 78.57 78.82 80.00 79.00 79.00 79.00 79.00 79.00
Sch.3/Sch.4 78.57 80.00 78.57 78.82 66.67 79.00 79.00 79.06 78.99 62.45

Table 3
Solving the nonlinear PBE (1) on 24 proteins using the four schemes under the MIB frame at different mesh size h. The differences between some energies 
listed in this table are shown in Fig. 4.
Protein Schemes 1 & 3 Scheme 2 Scheme 4

h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25

1ajj -1215.31 -1158.57 -1144.51 -1137.74 -1139.74 -1140.84 -1145.27 -1140.81 -1141.09
2erl -1037.81 -968.68 -956.27 -966.07 -952.54 -953.24 -968.11 -952.98 -953.41
1cbn -343.29 -312.67 -306.06 -307.77 -303.38 -304.05 -310.00 -303.94 -304.15
1vii -1010.19 -923.74 -908.34 -910.99 -902.58 -903.88 -915.87 -903.38 -904.76
1fca -1300.95 -1224.75 -1209.19 -1217.07 -1204.66 -1205.72 -1220.11 -1205.25 -1205.90
1bbl -1089.69 -1013.57 -994.72 -994.44 -988.64 -989.35 -998.59 -988.81 -989.57
2pde -869.97 -834.73 -825.39 -818.30 -821.21 -823.10 -826.87 -823.14 -823.42
1sh1 -835.22 -774.34 -759.13 -749.89 -754.20 -754.72 -757.60 -755.31 -755.01
1vjw -1361.52 -1267.03 -1246.77 -1251.24 -1241.28 -1242.26 -1254.98 -1241.88 -1242.47
1uxc -1291.49 -1170.23 -1147.38 -1154.48 -1139.50 -1141.66 -1159.26 -1140.79 -1141.99
1ptq -1006.64 -897.39 -879.44 -894.04 -873.50 -874.88 -898.17 -874.55 -875.14
1bor -940.52 -873.05 -858.85 -854.34 -853.65 -855.19 -859.66 -854.59 -855.41
1fxd -3458.41 -3354.86 -3329.36 -3327.40 -3321.94 -3322.97 -3332.34 -3322.73 -3323.22
1r69 -1210.97 -1113.31 -1095.15 -1107.15 -1088.84 -1090.65 -1111.97 -1089.74 -1090.92
1mbg -1491.37 -1379.41 -1360.05 -1370.45 -1353.60 -1354.95 -1373.12 -1354.31 -1355.18
1bpi -1446.91 -1336.96 -1313.61 -1322.61 -1304.61 -1306.54 -1326.67 -1305.37 -1306.79
1hpt -918.19 -837.44 -819.49 -825.13 -811.71 -814.52 -827.33 -812.64 -814.77
451c -1141.25 -1055.74 -1034.04 -1024.48 -1026.06 -1027.86 -1031.33 -1027.59 -1028.20
1svr -1932.94 -1752.30 -1721.70 -1734.47 -1711.50 -1713.67 -1743.57 -1712.93 -1714.10
1frd -3081.05 -2905.01 -2874.81 -2887.75 -2863.26 -2867.03 -2892.96 -2864.99 -2867.50
1a2s -2072.11 -1954.00 -1929.64 -1930.10 -1921.65 -1923.66 -1934.38 -1922.68 -1923.56
1neq -1984.20 -1778.67 -1744.72 -1759.59 -1732.17 -1735.20 -1767.50 -1733.34 -1735.63
1a63 -2694.42 -2436.70 -2391.65 -2407.65 -2375.10 -2378.94 -2419.82 -2378.04 -2379.62
1a7m -2403.14 -2214.41 -2174.58 -2182.78 -2160.92 -2164.17 -2197.34 -2163.26 -2164.75

Table 2 reports some selected ratios between the errors eφ from the four schemes as reported in Table 1. Due to the sim-
ilarities of the schemes, we compare Scheme 1 with Scheme 2 and Scheme 3 with Scheme 4. The ratios are approximately 
78-80 except when h is too small (e.g. h = 1/16). Similar ratios are observed in [23] for the Poisson equation.

Table 3 reports the results in terms of electrostatic solvation free energy after solving the nonlinear PBE in Eq. (1) on 
a collection of 24 proteins using the same parameter configuration. It can be seen from this table that for all 24 proteins, 
the solvation energies in Scheme 2 and Scheme 4 converge faster than in Scheme 1 and Scheme 3 when the mesh size h is 
reduced. Note results from Schemes 1 and 3 are different only after 10−6 thus we listed them together for saving space.

To better present the information embedded in Table 3, we plot the data in a reorganized way in Fig. 4. Here we choose 
the solvation energies produced by Scheme 2 with mesh size h = 0.25 as the reference and calculate the difference �Esol
compared with different schemes at different mesh sizes. Since we find that Schemes 1 and 3 are almost numerically 
equivalent, we only present results from Scheme 1. Fig. 4(a) compares results from Scheme 2 at h = 1.0 and h = 0.5 and 
from Scheme 1 at h = 1.0, 0.5, 0.25 using results from Scheme 2 at h = 0.25 as the reference. Fig. 4(b) compare results 
from Scheme 2 at h = 1.0 and h = 0.5 (shown at different scale) and from Scheme 4 at h = 1.0, 0.5, 0.25 using results from 
Scheme 2 at h = 0.25 as the reference. These plots clearly showed when the meshes are refined all schemes converge and 
Scheme 4 converges much faster than Scheme 1.

The final linear algebraic systems Ax = b to be solved for all four schemes have the identical matrix A but different 
vectors b. The differences in b, which are caused by the different source terms and interface conditions as seen from 
these four schemes in Eqs (21), (23), (27), (31), lead to different iteration numbers in solving the linear PBE and different 
numbers in which the linear solver is called by the inexact Newton’s method. As an example, we show in Fig. 5, compared 
with Scheme 1, Scheme 2 calls the linear solver LINBCG fewer times and uses less CPU time.

4. Numerical analysis and accuracy recovery

In this section, we first point out the source of accuracy reduction from numerical analysis on Schemes 1 and 2. Based on 
this source, we provide numerical techniques to recover the accuracy, followed by an additional note about the numerical 
equivalence between Schemes 1 and 3. Finally we numerically validate the accuracy recovery techniques.
10
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Fig. 4. Graphic presentation of selected data from Table 3: (a) �Esol from Scheme 1 (red) at h = 1, 0.5, 0.25 and Scheme 2 (blue) at h = 1, 0.5 compared 
with results from Scheme 2 at h = 0.25; (b) �Esol from Scheme 4 (red) at h = 1, 0.5, 0.25 and Scheme 2 (blue) at h = 1, 0.5 compared with results from 
Scheme 2 at h = 0.25.

Fig. 5. (a) Number of iterations and (b) CPU time of Scheme 1 (red) and Scheme 2 (blue) for 24 proteins.

4.1. Source of accuracy reduction

The essential source of accuracy reduction is due to omitting ε+�G in �+ . While this term is analytically vanishing, its 
numerical negligence introduces an error in estimating the reaction field component φRF . Unfortunately, a solution upscaling 
is associated with the decomposition in singular source regularization. We observed that the solution φ to the PBE is in a 
much smaller scale compared to φRF or the Green’s function G . Consequently, the error in φRF is greatly amplified into a 
big error in φ. Here we use Schemes 1 and 2 to illustrate the idea, which is further supported by rigorous proofs.

In discretizing φRF in Scheme 1, ε+�G is omitted in

−ε+�φRF + κ̄2 sinh(G + φRF ) = 0, (35)

while in Scheme 2, ε+�G is actually contained in ε+�φ̃

−ε+�φ̃ + κ̄2 sinh(φ̃) = 0. (36)

Let x0 be a regular grid point in �+ and Df (x0) be the 7-point centered difference stencil for � f at x0. Let e1 and e2
denote the discretization errors in Scheme 1 and Scheme 2 at x0 as

e1 = ε+�φRF (x0) − ε+DφRF (x0), (37)

e2 = ε+�φ(x0) − ε+Dφ(x0). (38)
11
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Using the fact that for Scheme 1

φ = φRF + G,

in �+ and the linearity of Df and � f , we have

e2 = e1 + ε+�G(x0) − ε+DG(x0). (39)

Thus, e1 and e2 differ by ε+�G(x0) − ε+DG(x0), which is the discretization error of ε+�G(x0) using centered difference. 
This difference is in the same scale as e1, but is much larger than e2.

Quantitatively we use the Poisson equation (32) and its analytical solution (34) as an example to illustrate the idea. The 

singular component in this case is G(r) = 1

ε−‖r‖ and the regular component is

φRF (r) = φ(r) − G(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
1

ε+ − 1

ε−

)
1

R
if r ∈ �−

1

ε+‖r‖ − 1

ε−‖r‖ if r ∈ �+.

(40)

Using φ(r) = 1

ε+||r|| in the solvent region �+ , we have in �+

φRF (r) =
(

1

ε+ − 1

ε−

)
ε+φ(r) =

(
1

ε+ − 1

ε−

)
ε−G(r). (41)

Let ε− = 1 in �− and ε+ = 80 in �+ , then on �+

φRF = −79φ = −79

80
G. (42)

Furthermore, since in �− , φRF and φ̃ equal to the same constant, we have on �+ ∪ �− ,

DφRF = −79Dφ̃ = −79

80
DG. (43)

From the linearity of the operators, the discretization error e1, e2 and e3 = ε+(�G(x0) − DG(x0)) have the same relationship 

as e1 = −79e2 = −79

80
e3. A similar error analysis can be done for grid points that lie in �− and near the interface �. The 

ratios between the discretization errors of Eqs. (21) and (23) are all about 79 from Eq. (42) for the same reason. This 
explains why we observed that e1 is about 79 times of e2 in magnitude in Table 2.

4.2. Recovery techniques

Since removing G away from φRF is the source of accuracy reduction, we propose to modify equation (21) in Scheme 1 
by keeping the term −ε+�G in �+:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ε−�φRF = 0 r ∈ �+

−ε+�φRF − ε+�G + sinh (φRF + G) = 0 r ∈ �−

[φRF ]� = 0, r ∈ �[
ε ∂φRF

∂n

]
�

= (
ε− − ε+)

∂G
∂n , r ∈ �

φRF = φb − G r ∈ ∂�,

(44)

and approximate the term −ε+�G using the same finite difference discretization applied to −ε+�φRF and −ε+�φ̃. In 
other words, we would like to add a finite difference approximation of

−∇ · (ε(r)∇G̃(r)) =
{
0, r ∈ �−

−ε+�G(r), r ∈ �+,
(45)

where

G̃(r) =
{
0, r ∈ �−

G(r), r ∈ �+,
(46)

solves
12
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε−�G̃(r) = 0, r ∈ �−

−ε+�G̃(r) = 0, r ∈ �+

[G̃]� = G, r ∈ �[
ε ∂G̃

∂n

]
�

= ε+ ∂G
∂n , r ∈ �

G̃ = G, r ∈ ∂�.

(47)

Equation (47) is another interface problem with interface jump conditions, thus it must be solved using the MIB scheme for 
discretization in the same fashion as discretizing Eqs. (21) and (23).

In order to prove the recovery scheme, we use MIB(u) to denote the MIB discretization of the following operator with 
the interface conditions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−ε−�u, if r ∈ �−

−ε+�u, if r ∈ �+

[u]� = α, r ∈ �[
ε ∂u

∂n

]
�

= β, r ∈ �.

(48)

Consider a uniform mesh with spacing size h, and denote the evaluation of function u on this mesh as u|h , which has been 
relabeled as a vector. We also use (Au, Su) to denote the pair of matrix-vector in the MIB discretization of u, i.e.,

MIB(u) = Auu|h + Su .

Note the Su here is not the discretization of the right hand side of the PDE but the linear combination of the interface 
conditions involved in MIB discretization. The MIB operator is linear thus for u = av + bw , we have

MIB(u) = aMIB(v) + bMIB(w).

Under this configuration, adding the correction term MIB(G̃) = AG̃ G̃|h + SG̃ to the discretization of PDE (21) to recover 
the accuracy is in fact solving

MIB(φRF ) +MIB(G̃) + κ̄2(r) sinh(φRF + G) = 0, (49)

instead of solving

MIB(φRF ) + κ̄2 sinh(φRF + G) = 0. (50)

Below is a proposition for the accuracy recovery of Scheme 1, followed by its proof.

Proposition 1: Let the MIB discretization errors of Eqs. (21) and (23) be

E1 = [−∇ · (ε∇φRF )]h + κ̄2 [sinh(φRF + G)]h −MIB(φRF ) − κ̄2 sinh
(
[φRF ]h + G̃|h

)
, (51)

E2 =
[
−∇ · (ε∇φ̃)

]
h
+ κ̄2

[
sinh(φ̃)

]
h
−MIB(φ̃) − κ̄2 sinh(φ̃|h). (52)

The difference between the MIB discretization errors in Scheme 1 and Scheme 2 is the MIB discretization of Eq. (47): 
MIB(G̃) = AG̃ G̃|h + SG̃ , that is

E1 − E2 = MIB(G̃).

Proof. Since the difference between [sinh(φ̃)]h and sinh(φ̃|h) is on the order of the double precision limit, the MIB dis-
cretization errors are essentially determined by the approximations for elliptic operators

E1 = [−∇ · (ε∇φRF )]h −MIB(φRF ), (53)

E2 =
[
−∇ · (ε∇φ̃)

]
h
−MIB(φ̃). (54)

From Eq. (24), we know

φ̃ =
{

φRF in �−

φ = φRF + G in �+.
(55)

By Eq. (46), we thus have the identity
13
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φ̃ = φRF + G̃. (56)

By the linearity of elliptic operators and MIB operators, we have

E2 =
[
−∇ · (ε∇φ̃)

]
h
−MIB(φ̃)

= [−∇ · (ε∇φRF )]h +
[
−∇ · (ε∇G̃)

]
h
−MIB(φRF ) −MIB(G̃)

= E1 +
[
−∇ · (ε∇G̃)

]
h
−MIB(G̃).

Recall that −ε−�G̃ and −ε+�G̃ are vanishing in �− and �+ , respectively. Thus, the grid values 
[
−∇ · (ε∇G̃)

]
h
are all 

zeros. This gives rise to

E2 = E1 −MIB(G̃). � (57)

This shows that the difference in discretization error of Scheme 1 and Scheme 2 is MIB(G̃). Therefore, adding the cor-
rection MIB(G̃) as in Eq. (49) reduces the discretization error of Scheme 1 from E1 down to E2.

4.3. An additional note on numerical equivalence

We notice that in the MIB framework, Schemes 1 and 3 have almost the same accuracy. This is because ε+�G has also 
been dropped in Scheme 3. For a more detailed analysis, let us use the same notation above. We will prove the following 
claim:

Proposition 2: Using the MIB, the discretization error of Scheme 1 given by (51) equals the total discretization errors of 
equation (25) and (27)

E3 = [−∇ · (ε∇�̄)
]
h + κ̄2 [

sinh(G + �̄ + �)
]
h −MIB(�̄) − κ̄2 sinh

(
G̃|h + �̄|h + �|h

)
+ [−∇ · (ε∇�)]h −MIB(�). (58)

Proof. We first note that equation (25) can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε−�� = 0, r ∈ �−

−ε+�� = 0, r ∈ �+

[�]� = 0, r ∈ �[
ε ∂�

∂n

]
�

= (ε− − ε+) ∂G
∂n r ∈ �

�(r) = φb(r) − G(r), r ∈ ∂�.

(59)

That is why the discretization error of � in (58) is expressed as [−∇ · (ε∇�)]h −MIB(�). Similarly, the error E3 is primarily 
due to the difference between elliptic operators and their MIB discretizations,

E3 = [−∇ · (ε∇�)]h −MIB(�) + [−∇ · (ε∇�̄)
]
h −MIB(�̄).

Using the fact that φRF = � + �̄ and the linearity, we have

E3 − E1 =
(
[−∇ · (ε∇�)]h −MIB(�) + [−∇ · (ε∇�̄)

]
h −MIB(�̄)

)
−

(
[−∇ · (ε∇φRF )]h −MIB(φRF )

)
= [−∇ · (ε∇�) − ∇ · (ε∇�̄) + ∇ · (ε∇φRF )

]
h +

(
MIB(φRF ) −MIB(�) −MIB(�̄)

)
=0. �

This shows E3 and E1 are equivalent. Therefore, similar to Scheme 1, to improve the accuracy of Scheme 3, we propose 
adding MIB(G̃) to the discretization of Eq. (25) or (27), that is for keeping ε+�G in the equation (27) instead of dropping 
it. Notice that doing this might not improve the accuracy in finding � or �̄ separately but it reduces the total error in 
discretizing Eqs. (25) and (27) down to E2 (see Eq. (54)) and thus receives a higher accuracy in calculating the sum � + �̄.
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Table 4
Solving the Poisson equation and the PBE using the original Schemes 1 and 3 and the improved Schemes 1 and 3 on a spherical cavity with a unit charge 
ec centered at (0,0,0): spherical radius R = 2, ε+ = 80, ε− = 1, κ = 0 for the Poisson equation and κ = 0.1257 for the PBE.
h The Poisson equation The PBE

Schemes 1 & 3 Improved Schemes 1 & 3 Schemes 1 & 3 Improved Schemes 1 & 3

eφ ord. Esol eφ ord. Esol eφ ord. Esol eφ ord. Esol

1 6.6E-02 -88.08 8.4E-04 -81.94 5.3E-02 -86.21 6.7E-04 -81.96

1/2 1.2E-02 2.45 -83.35 1.5E-04 2.45 -81.96 9.1E-03 2.54 -82.86 1.2E-04 2.54 -81.97
1/4 3.3E-03 1.88 -82.21 4.2E-05 1.88 -81.98 2.5E-03 1.84 -82.12 3.2E-05 1.85 -81.98
1/8 6.7E-04 2.29 -82.02 8.5E-06 2.29 -81.98 5.3E-04 2.27 -82.01 6.7E-06 2.27 -81.98
1/16 1.2E-04 2.54 -81.99 1.5E-06 2.54 -81.98 9.4E-05 2.48 -81.98 1.5E-06 2.14 -81.98

Table 5
Comparison on solvation energies produced between improved Schemes 1 and 3 and the original Schemes 1 and 3 for solving the nonlinear PBE on a 
collection of 24 proteins. Results from Scheme 2 as in Table 3 are also listed for reference.
Protein Schemes 1 & 3 Improved Schemes 1 & 3 Scheme 2

h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25

1ajj -1215.31 -1158.57 -1144.51 -1137.74 -1139.74 -1140.84 -1137.74 -1139.74 -1140.84
2erl -1037.81 -968.68 -956.27 -966.07 -952.54 -953.24 -966.07 -952.54 -953.24
1cbn -343.29 -312.67 -306.06 -307.77 -303.38 -304.05 -307.77 -303.38 -304.05
1vii -1010.19 -923.74 -908.34 -910.99 -902.58 -903.88 -910.99 -902.58 -903.88
1fca -1300.95 -1224.75 -1209.19 -1217.07 -1204.66 -1205.72 -1217.07 -1204.66 -1205.72
1bbl -1089.69 -1013.57 -994.72 -994.44 -988.64 -989.35 -994.44 -988.64 -989.35
2pde -869.97 -834.73 -825.39 -818.30 -821.21 -823.10 -818.30 -821.21 -823.10
1sh1 -835.22 -774.34 -759.13 -749.89 -754.20 -754.72 -749.89 -754.20 -754.72
1vjw -1361.52 -1267.03 -1246.77 -1251.24 -1241.28 -1242.26 -1251.24 -1241.28 -1242.26
1uxc -1291.49 -1170.23 -1147.38 -1154.48 -1139.50 -1141.66 -1154.48 -1139.50 -1141.66
1ptq -1006.64 -897.39 -879.44 -894.04 -873.50 -874.88 -894.04 -873.50 -874.88
1bor -940.52 -873.05 -858.85 -854.34 -853.65 -855.19 -854.34 -853.65 -855.19
1fxd -3458.41 -3354.86 -3329.36 -3327.40 -3321.94 -3322.97 -3327.40 -3321.94 -3322.97
1r69 -1210.97 -1113.31 -1095.15 -1107.15 -1088.84 -1090.65 -1107.15 -1088.84 -1090.65
1mbg -1491.37 -1379.41 -1360.05 -1370.45 -1353.60 -1354.95 -1370.45 -1353.60 -1354.95
1bpi -1446.91 -1336.96 -1313.61 -1322.61 -1304.61 -1306.54 -1322.61 -1304.61 -1306.54
1hpt -918.19 -837.44 -819.49 -825.13 -811.71 -814.52 -825.13 -811.71 -814.52
451c -1141.25 -1055.74 -1034.04 -1024.48 -1026.06 -1027.86 -1024.48 -1026.06 -1027.86
1svr -1932.94 -1752.30 -1721.70 -1734.47 -1711.50 -1713.67 -1734.47 -1711.50 -1713.67
1frd -3081.05 -2905.01 -2874.81 -2887.75 -2863.26 -2867.03 -2887.75 -2863.26 -2867.03
1a2s -2072.11 -1954.00 -1929.64 -1930.10 -1921.65 -1923.66 -1930.10 -1921.65 -1923.66
1neq -1984.20 -1778.67 -1744.72 -1759.59 -1732.17 -1735.20 -1759.59 -1732.17 -1735.20
1a63 -2694.42 -2436.70 -2391.65 -2407.65 -2375.10 -2378.94 -2407.65 -2375.10 -2378.94
1a7m -2403.14 -2214.41 -2174.58 -2182.78 -2160.92 -2164.17 -2182.78 -2160.92 -2164.17

4.4. Numerical verification

In this section, we improve Schemes 1 and 3 using the recovery techniques as described above and test these improved 
schemes on the same benchmark problems studied in Section 3.3.

The improvements can be clearly observed in Table 4, which reports the results of solving the Poisson equation (32) and 
the nonlinear PBE (33) with the improved schemes as compared with the original results from Table 1. The errors produced 
by improved Schemes 1 and 3 now are as accurate as those from Schemes 2 and 4 in Table 1.

Following the same fashion, we also solve the nonlinear PBE using the improved Schemes 1 and 3 on the set of 24 
proteins and report the solvation energies in Table 5 as compared with the results in Table 3 using the original Schemes 1 
and 3.

To better present the information embedded in Table 5, we plot the data in a reorganized way in Fig. 6. Here we choose 
the solvation energies produced by Scheme 2 with different step size h = 1, 0.5, 0.25 as the reference and calculate the 
difference �Esol between the reference and the solvation energies produced by the improved Schemes 1 and 3 with different 
step sizes. The difference between these energies is equal to C × 10−6 where C is a positive constant with magnitude less 
than 10 and 10−6 is the tolerance chosen for the inexact Newton method and the biconjugate solver. This shows that the 
results produced by the improved Schemes 1 and 3 are as accurate as that from Scheme 2 as opposed to large difference 
using the original Schemes 1 and 3 in Fig. 4(a). These results verify our analysis in section 4 and show that the recovery 
technique successfully restores the accuracy of Scheme 1 and Scheme 3.

Furthermore, we plot the number of iterations and CPU time using Scheme 1 and its improved version in Fig. 7 and we 
can see that the improvement does not significantly affect the efficiency of the scheme.
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Fig. 6. Differences between solvation energies calculated with (a) Improved Scheme 1 and Scheme 2 and (b) Improved Scheme 3 and Scheme 2 for 24 
proteins.

Fig. 7. (a) CPU time and (b) number of iterations of Scheme 1 (red) and Improved Scheme 1 (blue) for 24 proteins.

5. Conclusion

In this paper, we investigate the regularization methods for treating the charge singularities involved in the Poisson-
Boltzmann equation. We implement four regularization schemes under the matched interface and boundary (MIB) frame-
work and discover that although these schemes are analytically equivalent, their numerical implementations demonstrate 
different accuracy. In particular, our numerical experiments on several benchmark problems show that Scheme 2 [6,18] and 
Scheme 4 [9] produce better accuracy than Scheme 1 [19,47] and Scheme 3 [38]. Inspired by the error analysis in [23], 
we found that in Schemes 1 and 3, the subtraction of the Green’s function term from the decomposition of the solution φ
scales up the regularized solution thus causes accuracy reduction. In terms of the regularized PDEs to solve, we found that 
schemes that drop �G show lower accuracy. Based on these findings, we propose a recovery technique to compensate for 
the accuracy reduction. The numerical results show that this technique can perfectly recover the accuracy, thus verifying 
our proposed explanation to the problems and the effectiveness of the recovery technique. Based on these works, all reg-
ularization schemes are well understood and connected in a unified framework, which is an important contribution to the 
development of the Green’s function based decomposition schemes for treating source singularities.
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