
J
H
E
P
0
8
(
2
0
2
0
)
1
3
5

Published for SISSA by Springer

Received: July 6, 2020

Accepted: July 26, 2020

Published: August 26, 2020

Two-loop superstring five-point amplitudes. Part I.

Construction via chiral splitting and pure spinors

Eric D’Hoker,a Carlos R. Mafra,b Boris Piolinec and Oliver Schlottererd

aMani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,

University of California,

Los Angeles, CA 90095, U.S.A.
bSTAG Research Centre and Mathematical Sciences, University of Southampton,

Highfield, Southampton SO17 1BJ, U.K.
cLaboratoire de Physique Théorique et Hautes Energies,
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1 Introduction

The perturbative evaluation of superstring amplitudes in the Ramond-Neveu-Schwarz

(RNS) formulation proceeds systematically from first principles (see for example [1–4] and

references therein). Space-time supersymmetry is achieved in the RNS formulation by as-

sembling the separate contributions from the NS and R sectors and integrating over super

moduli which includes a sum over spin structures. By contrast, the pure spinor formula-

tion [5–7] requires only an integral over bosonic moduli and is manifestly supersymmetric.

It provides a streamlined approach to the evaluation of multi-particle superstring ampli-

tudes with arbitrary external massless states (see for example [8, 9] and references therein).

However, for genus three and greater, the pure spinor formulation faces the complication

of a composite b-ghost whose presence is required to produce a suitable measure on moduli

space. Various problems associated with the b-ghost and with the integration over pure

spinor zero modes remain incompletely resolved to date.

While the explicit calculation of higher-genus amplitudes in superstring theory is of

interest in its own right, it is also mainly motivated by the systematic study of the low

energy effective interactions induced by string theory and the derivation of associated

non-renormalization theorems, as well as by the exploration of the hidden structures of

scattering amplitudes in quantum field theory through the α′ → 0 limit, such as the per-

turbative relations between gauge theories and supergravity. Another, more mathematical

motivation is to gain a better understanding of the higher-genus modular forms that enter

multi-loop string amplitudes.

The focus of this paper will be on genus-two amplitudes. In the RNS formulation,

amplitudes receive contributions from even and odd spin structure sectors. The measure

for the even spin structure sector was evaluated in [10–13] with the help of the canonical

holomorphic projection of the genus-two even spin structure super moduli space onto mod-

uli space. An alternative derivation of the measure using algebraic geometry methods was

given more recently in [14, 15]. The genus-two amplitude for four external NS bosons was

evaluated for both the Type II and Heterotic strings and is given by convergent integrals

over the moduli space of genus-two compact Riemann surfaces, and integrals over each

surface of combinations of Green functions in [16, 17]. The absolute normalization of the

Type IIB amplitude and a comparison of its low energy expansion with the implications

from S-duality were obtained in [18] with further results derived in [19, 20]. A general

formulation for the even spin structure part of the genus-two amplitude for an arbitrary

number of NS states was given using Dolbeault cohomology in [21], but no explicit for-

mulas for amplitudes with more than 4 external states have been obtained in the RNS

formulation yet.

The genus-two results for four massless states in Type II were reproduced soon after the

RNS calculations using the pure spinor formulation, and extended to obtain the amplitudes

involving external R states and thus external fermions [22]. Agreement with the results

from RNS was verified in [23], including the precise normalization of the amplitude [24].

The pure spinor prescription was also applied to genus-two amplitudes with five external

states in [25] and to genus-three amplitudes with four external states in [26]. In both
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cases, finite expressions consistent with S-duality were obtained for the leading terms in

the low energy expansion of these amplitudes. While for the genus-two amplitude with

five external states the full expression will be derived below, the divergences in the zero-

mode integrals of the bosonic ghosts pose difficulties when attempting the same for the

genus-three amplitude.

In the present paper, we shall construct the genus-two amplitudes for five massless

external states of the supergravity multiplet for Type II superstrings, and the supergravity

or the super Yang-Mills multiplet for Heterotic strings. The extension to Type I super-

strings is expected to follow from our construction as well but will not be considered in any

detail here. We shall follow the prescription neither of the RNS formulation nor of the pure

spinor formulation. Instead we shall combine ingredients of both formulations with prop-

erties of the corresponding maximal supergravity amplitudes. Specifically, we shall use the

vertex operator BRST cohomology (see [27] and references therein) from the pure spinor

formulation, and import the chiral splitting procedure and homology invariance properties

of chiral amplitudes which were developed in the context of the RNS formulation [2, 28].

It will turn out that the construction via a combination of these ingredients produces

unique amplitudes in the above theories in terms of integrals over the moduli space of com-

pact Riemann surfaces and, for each surface, integrals over combinations of Green functions

and meromorphic Abelian differentials. The integrals are convergent after analytic contin-

uation in the external momenta, as is familiar from genus-one amplitudes [29].

Our key result is the construction of the chiral amplitude K(5) which is a function of

external momenta, chiral polarization vectors and spinors, loop momenta, and a complex

analytic dependence on vertex operator points and moduli of the underlying compact Rie-

mann surface Σ. The integration of the pairing of left and right chiral amplitudes over loop

momenta, vertex operator points, and moduli gives the physical amplitude for five external

states in the supergravity multiplet. For example, the Type II amplitudes take the form,

A(5) =

∫
〈K(5)K̃(5)〉0 |I(5)|2 (1.1)

The integral encompasses moduli, vertex points, and loop momenta and includes the chiral

Koba-Nielsen factor I(5), as will be explained in detail in the sequel. Furthermore, the

bracket 〈. . .〉0 denotes the prescription of the pure spinor formalism [5] to integrate over

spinor zero modes, which extracts the power of θ5θ̃5 from the enclosed superfields. The

chiral amplitude K(5) in (1.1) will be determined in a basis of holomorphic five-forms on Σ5,

K(5) = ∆(3, 4)∆(5, 1)ωI(2)KI1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (1.2)

where ∆(i, j) is the bi-holomorphic combination of holomorphic one-forms ω1,2,

∆(i, j) = ω1(zi)ω2(zj)− ω2(zi)ω1(zj) (1.3)

familiar from [16, 17]. All the dependence on the external polarization vectors and spinors
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is captured by the coefficients KI1,2,3|4,5 which are scalar functions on Σ5,

KI1,2,3|4,5 = 2πpImT
m
1,2,3|4,5 − g

I
2,3 T23,1|4,5 − gI2,1 T21,3|4,5 − gI3,1 T31,2|4,5

− gI2,4 S2;4|5|1,2 − gI3,4 S3;4|5|2,1 − gI1,4 S1;4|5|2,3 (1.4)

− gI2,5 S2;5|4|3,1 − gI3,5 S3;5|4|2,1 − gI1,5 S1;5|4|2,1

The dependence on the loop momenta pIm is explicit in (1.4), while the dependence on

vertex positions and moduli enters through the following combinations of theta functions,

gIi,j =
∂

∂ζI
lnϑ[ν](ζ|Ω) for ζI =

∫ zi

zj

ωI (1.5)

The choice of odd spin structure ν is immaterial as long as it is the same for all terms

in (1.4). The kinematic factors Tm1,2,3|4,5, T23,1|4,5, S2;4|5|1,2 in pure spinor superspace will

be developed below, giving access to arbitrary combinations of external states from the

massless supersymmetry multiplets. These kinematic factors are independent of moduli,

vertex points, and loop momenta.

Our construction of the chiral amplitude K(5) in this paper does not proceed directly

from first principles, and it is therefore important to carry out consistency checks to con-

firm its validity. A first check consists in showing that those terms of the chiral amplitude

which have singularities at coincident vertex points agree with the OPEs derived from

first principles in [25]. A second check consists of comparing the α′ → 0 limit of the

Type II superstring amplitudes with the predictions from the corresponding maximal su-

pergravity calculations. Both checks will be carried out in this paper and demonstrate

perfect agreement.

As further checks, the investigation of the low energy expansion of the amplitude for

five external states in Type II string theory and the comparison with predictions from

S-duality, carried out in [25] to lowest order, will be extended to higher orders in a com-

panion paper [30]. Finally, the genus-two amplitude for five external NS bosons will be

evaluated through the RNS formalism in another companion paper [31], where its form

will be compared with the amplitude obtained here.

Organization. The remainder of this paper is organized as follows. In section 2 we

review and summarize the required key ingredients of the non-minimal pure spinor formu-

lation, its BRST cohomology, its zero-mode counting, and its vertex operators, as well as

the chiral splitting procedure applied to pure spinors. Section 3 briefly reviews selected

aspects of multi-loop computations in the pure spinor formalism and the derivation of the

amplitude with four external massless states. In section 4, we make use of BRST cohomol-

ogy and chiral splitting to construct a chiral amplitude with five external massless states.

In section 5 we shall recast this result in various alternative representations which make

manifest Bose and Fermi symmetry, homology invariance, BRST invariance, and short dis-

tance singularities. In section 6 we continue to use the results of chiral splitting to assemble

left and right moving chiral blocks into the full amplitudes for five external states in the

Type II and Heterotic strings. In section 7 we check the worldline limit of our results
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to reproduce the loop integrand of the two-loop five-point amplitude in supergravity. In

section 8 we conclude and offer a perspective on some future directions of investigation.

Various identities for the Clifford-Dirac algebra and pure spinors are collected in ap-

pendix A; basics ingredients of Riemann surfaces and their function theory are summarized

in appendix B; a detailed derivation of the chiral splitting procedure suitable for the pure

spinor formulation is presented in appendix C; and the operator product expansions of the

pure spinor worldsheet fields are gathered in appendix D.
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2 Pure spinors and chiral splitting

In this section we derive the basic building blocks for the five-point amplitude in terms of

the BRST cohomology of the pure spinor superstring and the chiral splitting procedure.

The source of these building blocks may be found in the non-minimal pure spinor super-

string, whose formulation is suited to two-loop calculations in view of the presence of its

b-ghost. Salient features of the non-minimal pure spinor superstring may be found in [7].

Throughout, we assume Euclidean signature both on the worldsheet and in target space.

2.1 Worldsheet fields, action, and symmetries

The fields of the non-minimal pure spinor superstring on the worldsheet Σ are the world-

sheet scalar xm with m = 1, · · · , 10; the left-moving worldsheet scalars θα, λα, λ̄α, rα with

α = 1, · · · , 16; the left-moving worldsheet (1, 0)-forms pα, wα, w̄
α, sα; and their right-

moving counterparts suitable either for the Type II or Heterotic strings. Despite the

notation, the fields λα, λ̄α and wα, w̄
α are not complex conjugates of one another, but in-

dependent fields transforming under conjugate representations of the Lorentz group. Under

the SO(10) Lorentz group, the field xm transforms as a vector; θα, λα, w̄α, sα transform as

Weyl spinors in the 16 of SO(10); and pα, wα, λ̄α, rα transform as Weyl spinors in the

16’. The fields θα, pα are anti-commuting matter fields while λα, λ̄α, wα, w̄
α are commut-

ing ghosts, and sα, rα are anti-commuting spinor ghosts. The pure spinor constraints on

the ghost fields are,

λγmλ = λ̄γmλ̄ = λ̄γmr = 0 (2.1)

These identities are invariant under SO(10) and reduce the number of independent com-

ponents of each field λα, λ̄α, rα from 16 to 11 in an SO(10)-invariant way.1

1This counting may be seen explicitly by decomposing the fields under the U(5) maximal subgroup of

SO(10) under which the spinor representation 16 decomposes into the representations 1⊕5∗⊕10 of SU(5).
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The action for xm and the left-moving worldsheet fields is given by,2

I =
1

2π

∫
Σ

(
1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λα − w̄α∂̄λ̄α + sα∂̄rα

)
(2.2)

The action I is invariant under global Lorentz transformations of SO(10). It is also invariant

under global supersymmetry transformations which are generated by a constant spinor εα,

δxm = −1

2
εγmθ δθα = εα (2.3)

The corresponding translation and supersymmetry currents are given by,

Πm = ∂xm +
1

2
θγm∂θ

dα = pα −
1

2
∂xm(γmθ)α −

1

8
(θγm∂θ)(γmθ)α (2.4)

Both currents are invariant under supersymmetry. The stress tensor is given by,

Ttot = −1

2
∂xm∂xm − pα∂θα + wα∂λ

α + w̄α∂λ̄α − sα∂rα (2.5)

The matter fields xm, θα, pα are unconstrained free fields while the ghost fields are subject

to the pure spinor constraints (2.1). It will often be convenient to use the field dα instead

of pα by carrying out the field-dependent shift in (2.4). The 16 components of the spinor

dα are unconstrained. The operator product relations are given in appendix D.

2.1.1 Gauge symmetry of the ghost fields and gauge invariant composites

In view of the pure spinor constraints (2.1) on λα, λ̄α, rα, their respective conjugates

wα, w̄
α, sα are subject to gauge transformations,

δwα = Λm(γmλ)α

δw̄α = Λ̄m(γmλ̄)α − φm(γmr)α

δsα = φm(γmλ̄)α (2.6)

which leave the action I invariant for arbitrary commuting Λm, Λ̄m and anti-commuting φm
functions on Σ. As a result, the number of fields wα, w̄

α, sα modulo gauge transformations

is reduced from 16 to 11 for each field. Linear combinations of wα, w̄
α, sα (with λ and

The constraints (2.1) are responsible for projecting out the representation 5∗ from each field, leaving 11

independent components for each one of the fields λα, λ̄α and rα. Basic identities for the 16 × 16 Clifford-

Dirac γ-matrices and pure spinor identities are given in appendix A.
2Throughout, we shall set α′ = 2 and use local complex coordinates z, z̄ on Σ with ∂ = ∂/∂z, ∂̄ = ∂/∂z̄.

The fields pα, wα, w̄
α, sα will denote the coefficients of the differential dz of their corresponding (1, 0) form

fields expressed in local coordinates. The coordinate volume form on Σ is d2z = i
2
dz ∧ dz̄. When no

confusion is expected to arise, the integral of a (1, 1)-form v d2z on Σ will be denoted in shorthand by∫
Σ
v d2z →

∫
Σ
v, while the integral of a (1, 0) form ω dz along a curve C will be denoted

∫
C ω dz →

∫
C ω.

– 5 –
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λ̄-valued coefficients) that are invariant under these gauge transformations are given by,

Nmn =
1

2
wγmnλ J = wλ

N̄mn =
1

2
(w̄γmnλ̄− sγmnr) J̄ = w̄λ̄− sr

Smn =
1

2
sγmnλ̄ S = sλ̄ (2.7)

The composites Nmn, N̄mn are the SO(10) currents of the ghost fields λα, wα, λ̄α, w̄
α, sα, rα,

while J, J̄ are U(1) currents. The ghost number current is defined by,

Jgh = wλ− w̄λ̄ (2.8)

so that λ, w̄ have ghost number +1 and w, λ̄ have ghost number −1 while all other fields,

including the composites Πm, dα, and Ttot, have zero ghost number. The partial stress

tensors Tλ = w∂λ and Tλ̄ = w̄∂λ̄− s∂r are also invariant but will not be needed here.

In view of the pure spinor constraints (2.1), only 11 amongst the fields (Nmn, J) are lin-

early independent of one another (with λ-valued coefficients), and similarly only 11 amongst

(N̄mn, J̄) and 11 amongst (Smn, S) are linearly independent (with λ̄-valued coefficients).

2.2 Chiral splitting

The spinor-valued fields in the non-minimal pure spinor formulation, θα, pα, λ
α, wα, λ̄α, w̄

α,

rα, and sα, are conformal primary fields whose correlators on a Riemann surface Σ of

arbitrary genus h are complex analytic on Σ and on moduli. The vector-valued field xm,

however, is not a conformal primary due to the presence of translational zero modes. As a

result the inverse of the scalar Laplacian on the space orthogonal to the zero mode depends

on certain choices, including the volume form on Σ. Choosing the volume form to be the

canonical Kähler form of unit volume (with Y IJ denoting the entries of the inverse of

Y = Im Ω),3

κ(z) =
i

4
Y IJωI(z) ∧ ω̄J(z) =

i

2
κzz̄dz ∧ dz̄ (2.9)

the inverse of the scalar Laplacian on the space orthogonal to the zero mode gives the

Arakelov Green function G which satisfies,

∂z∂̄z̄G(z, w|Ω) = −πδ(2)(z, w) + πκzz̄(z)

∫
Σ
G(z, w|Ω)κ(w) = 0 (2.10)

The Arakelov Green function is globally well-defined, symmetric in z, w, invariant

under conformal transformations, and gives the two-point function of xm as follows

〈xm(z)xn(w)〉 = ηmnG(z, w|Ω). The Arakelov Green function is related to the more fa-

miliar “string Green function”,

G (z, w|Ω) = − ln |E (z, w|Ω) |2 + 2πY IJ

(
Im

∫ z

w
ωI

)(
Im

∫ z

w
ωJ

)
(2.11)

3A summary of function theory on compact Riemann surfaces, including the definitions of meromorphic

differentials, Jacobi theta-functions, and the prime form, is given in appendix B. Throughout, we shall use

the Einstein convention for the summation over pairs of repeated upper and lower indices I, J = 1, · · · , h,

where h is the genus, which we keep general in this section.

– 6 –
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via a shift

G(z, w|Ω) = G(z, w|Ω)− γ(z|Ω)− γ(w|Ω) (2.12)

where

γ(z|Ω) =

∫
Σ
G(z, w|Ω)κ(w)− 1

2

∫
Σ×Σ

κ(w)G(w,w′|Ω)κ(w′) (2.13)

Unlike G(z, w|Ω), the string Green function G(z, w|Ω) depends on a choice of local coor-

dinates, due to the fact that E(z, w|Ω) is a form of weight (−1
2 , 0) in z and w, and is not

globally well-defined on Σ. However, the difference G(z, w|Ω) − G(z, w|Ω) cancels from

correlators upon imposing momentum conservation, so we may equally well use the two-

point function 〈xm(z)xn(w)〉 = ηmnG(z, w|Ω) in computing correlators of xm. The use of

the Arakelov Green function will be especially important when carrying out a low-energy

expansion of the amplitudes and guarantees that individual terms are properly conformal

invariant [32, 33].

By contrast, the field ∂xm(z) is a (1, 0) form and conformal primary field. Its correla-

tors are meromorphic on Σ, as may be seen from the two-point function 〈∂xm(z)∂xn(w)〉 =

ηmn∂z∂wG(z, w|Ω) = ηmn∂z∂wG(z, w|Ω) with,

∂z∂wG(z, w|Ω) = −∂z∂w lnE(z, w|Ω) + πY IJωI(z)ωJ(w) (2.14)

Note that neither the Green functions G, G nor their derivatives ∂z∂wG are complex analytic

in the moduli Ω, as evident from the presence of Y IJ in (2.14).

The chiral splitting procedure [2, 28, 34] introduces loop momenta to re-express confor-

mal correlators of the xm-field in terms of an integral over loop momenta whose integrand

is a product of left and right chiral blocks. Each chiral conformal block is complex analytic

in the vertex points on Σ and in the moduli of Σ. Chiral conformal blocks have a universal

monodromy behavior as the points are moved around one another and/or moved around the

homology cycles of Σ. The chiral splitting procedure is a key ingredient in the evaluation

of the genus-two measure and four-point amplitudes in the RNS formulation [3, 10, 16].

The momentum flowing through a simple closed cycle C on Σ is given by the integral

along C of the space-time translation current ∂xm(z) and is dubbed the loop momentum

through C. On a surface of genus h, there are h independent loop momenta, which we shall

denote by (pI)m with I = 1, · · · , h (not to be confused with the spinor field pα of (2.2)).

The choice of their routing is not unique but may be fixed canonically to the cycles AI
given a choice of canonical homology basis AI ,BI ,

(pI)m =
1

2π

∮
AI

∂xm I = 1, · · · , h (2.15)

The normalization is fixed to reproduce the momentum flowing through a cylinder.

The construction of the chiral blocks for the correlators of the field ∂xm and the

exponential eik·x is formulated in terms of a set of effective rules, starting from a generating

function for N -point xm correlators (see appendix C for a detailed derivation),

J =

∫
Dx exp

− 1

4π

∫
Σ
∂x · ∂̄x+

N∑
j=1

(
ikj · x(zj) + εj · ∂x(zj) + η̄j · ∂̄x(zj)

) (2.16)
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Throughout we shall assume that the incoming momenta kj and the polarization vectors

εj and ηj are complex-valued and satisfy k2
j = kj · εj = kj · ηj = 0 for all j = 1, · · · , N

and that the total momentum
∑N

j=1 kj vanishes. We shall also assume that the coefficients

εj and ηj are independent of one another so that, at a given point zj , either εj or ηj or

both may vanish independently. The functional integral will be understood as a generating

function for correlators which are linear in each εj · ∂x(zj) and η̄j · ∂̄x(zj) so that terms of

quadratic order and higher in a given εj or ηj will never be needed.

It is shown in appendix C that J may be obtained as an integral over loop momenta

pmI of a pairing of chiral conformal blocks,

J = δ

 N∑
j=1

kj

∫
R10h

dpB(zi, εi, ki, p
I |Ω)B(zi, ηi,−k∗i ,−pI |Ω) (2.17)

where the chiral block is given by,

B(zi, εi, ki, p
I |Ω) = B0(zi, ki, p

I |Ω)

〈
exp

N∑
j=1

{
εj ·

(
∂zx+ + 2πpIωI

)
+ ikj · x+

}
(zj)

〉

B0(zi, ki, p
I |Ω) = Z(Ω)−10 exp

iπΩIJp
I · pJ +

N∑
j=1

2πipI · kj
∫ zj

z0

ωI

 (2.18)

Note that the dependence on the base point z0 drops out by momentum conservation.

The chiral scalar partition function Z(Ω) is holomorphic in Ω. It may be evaluated using

chiral bosonization [35] and is given explicitly in terms of ϑ-functions for genus two in [13],

however its form will not be needed in this work. The field xm+ is an effective chiral scalar

field whose Wick contraction rule is given by,

〈xm+ (z)xn+(w)〉 = −ηmn lnE(z, w|Ω) (2.19)

Recall that the field xm+ is not a conformal primary field, a property which is reflected in

the non-trivial monodromy of the above correlator as z and w are swapped and as they

are moved around non-trivial homology cycles.

2.2.1 Homology invariance

The chiral field xm+ (z) and, as a result, the chiral blocks B have non-trivial monodromy as a

point zi is taken around a homology cycle of the surface. The corresponding transformations

are familiar from the chiral splitting procedure [28],

B(zi + δijAJ , εi, ki, p
I |Ω) = e2πipJ ·kjB(zi, εi, ki, p

I |Ω)

B(zi + δijBJ , εi, ki, p
I |Ω) = B(zi, εi, ki, p

I + δIJ kj |Ω) (2.20)

These monodromy transformations are universal in the sense that they are the same for

the chiral blocks of the bosonic string, the Type II string, and the Heterotic strings. In the

RNS formulation, they hold for each spin structure separately [28].
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Alternatively, we may interpret the monodromy relations of (2.20) as an invariance

under a suitable action of the homology group of Σ on the chiral blocks, to which we shall

refer as “homology invariance” for short. To do so, we consider a representation R of the

homology group H1(Σ,Z) acting on both the vertex points zj and the loop momenta pI ,

defined by the following transformations on the chiral block B,

R(zj ,AJ)B(zi, εi, ki, p
I |Ω) = e−2πipJ ·kj B(zi + δijAJ , εi, ki, p

I |Ω)

R(zj ,BJ)B(zi, εi, ki, p
I |Ω) = B(zi + δijBJ , εi, ki, p

I − δIJ kj |Ω) (2.21)

These transformations mutually commute for arbitrary pairs of (j, J), in agreement with

the Abelian nature of the homology group. The transformation laws of (2.20) are then

equivalent to the invariance of B under the action of R,

R(zj ,AJ)B = R(zj ,BJ)B = B (2.22)

The full generating function J of (2.16), obtained by assembling the factors of left and

right chirality is, of course, invariant under these transformations. Upon integration over

loop momenta the resulting correlator is single-valued in the vertex points zi thanks to the

translation invariance of the loop momentum integration measure dp and its domain R10h.

2.2.2 Summary of the chiral splitting procedure

The chiral splitting procedure may be summarized by the following prescriptions,

1. Carrying out the following replacements,

eik·x → eik·x+ ∂xm(z)→ ∂xm+ (z) + 2π(pI)mωI(z) (2.23)

2. Wick contracting the chiral field xm+ using (2.19);

3. Including the factor B0(zi, ki, p
I |Ω) defined in (2.18);

4. Integrating over all loop momenta of the paired chiral blocks in (2.17).

Henceforth, we shall assume that these effective rules are used whenever the fields ∂xm

or eik·x occur. For example, to construct a chiral block involving the composite field Πm

defined in (2.4) we shall perform the following substitution,4

Πm → ∂xm+ +
1

2
θγm∂θ + 2π(pI)mωI (2.24)

and then carry out the Wick contractions of the field xm+ using (2.19). To simplify notations

until the evaluation of the chiral block is needed, however, we shall retain the notations

∂xm and eik·x at intermediate stages of the evaluations. Henceforth the dependence on

moduli through Ω will be understood but no longer exhibited.

4Note that the field ∂xm also enters in the relation between the fields pα and dα in (2.4). Since throughout

we will work exclusively in terms of the field dα, this occurrence of ∂xm will be immaterial.

– 9 –



J
H
E
P
0
8
(
2
0
2
0
)
1
3
5

2.3 BRST transformations

The BRST charge Q of the non-minimal pure spinor formalism has ghost number 1 and is

given by [7],

Q =

∮ (
λαdα + w̄αrα

)
(2.25)

The operator product expansion of the worldsheet fields, given in appendix D, may be used

to evaluate their BRST transformation, and we have,5

Qxm =
1

2
λγmθ Qλα = 0

Qθα = λα Q λ̄α = rα

Qdα = −(λγm)αΠm Qrα = 0

QΠm = λγm∂θ QNmn = −1

2
(dγmnλ) (2.26)

With the help of the pure spinor constraints (2.1) it may be verified that the relation,

Q2 = 0 (2.27)

is properly realized on all fields. The BRST transformations of wα, w̄
α, and sα are not

invariant under the gauge transformations (2.6) and will not be needed, other than in the

gauge invariant combination Nmn. Throughout, the field pα will be traded for the super-

symmetry current dα, which is simply related to it by a shift given in (2.4). A convenient

unified expression may be derived from (2.26) for the BRST transformation of any local

function f(x, θ), which depends only on x and θ but not on their worldsheet derivatives,

Qf(x, θ) = λαDαf(x, θ) (2.28)

where Dα is the super derivative defined by,

Dα =
∂

∂θα
+

1

2
γmαβθ

β ∂

∂xm
{Dα, Dβ} = γmαβ∂m (2.29)

where we use the standard notation ∂m = ∂/∂xm.

2.4 Vertex operators

Vertex operators for massless physical states are constructed from the plane wave solutions

to the linearized 10-dimensional super-Yang-Mills and supergravity equations. The spinor

part of the vertex operators is chirally split as it stands, and the chiral splitting for the

xm field will be carried out in the subsequent section. The chiral vertex operators involve

chiral spinor fields and the 10-dimensional super Yang-Mills multiplet and are governed by

the linearized 10-dimensional super Yang-Mills equations. The fields of the super-multiplet

5Throughout, we shall use standard CFT notation and write Qf instead of [Q, f ] or {Q, f} for the BRST

transformation of a bosonic or fermionic field f , respectively.

– 10 –



J
H
E
P
0
8
(
2
0
2
0
)
1
3
5

(Aα, Am,W
α, Fmn) satisfy the following equations,6

DαAβ +DβAα = γmαβAm DαW
β =

1

4
(γmn)α

βFmn

DαAm − ∂mAα = (γm)αβW
β DαFmn = (∂mγn − ∂nγm)αβW

β (2.30)

For later use, we record the field equation and Bianchi identity for Wα,

γm∂mW
α = 0 DαW

α = 0 (2.31)

The fields Am, Wα, and Fmn may be expressed in terms of the field Aα which has odd grad-

ing. A plane wave solution with momentum k is given in the gauge θαAα = 0 by [37–39],

Aα (x, θ) =

(
1

2
εm(γmθ)α −

1

3
(χγmθ)(γmθ)α + · · ·

)
eik·x (2.32)

where the ellipses stand for terms with higher powers of θ. The parameters ε and χ

are the polarization vector and spinor, respectively. For massless external states we have

k2 = 0 and k · ε = k · γχ = 0. The dependence of the SYM fields on k, ε, χ will be

suppressed throughout.

Vertex operators for physical massless states are built out of chiral vertex operators

times their conjugates. A chiral vertex operator is a (1, 0) form on the worldsheet which is

BRST invariant up to an exact differential. To construct such vertex operators, we begin

by obtaining the BRST variations of the linearized SYM fields,

QAα = λβDβAα

QWα =
1

4
(λγmn)αFmn

QAm = (λγmW ) + λβ∂mAβ

QFmn = (λγn∂mW )− (λγm∂nW ) (2.33)

Some immediate consequences for composites, to be of later use, are as follows,

Q (λγmW ) = 0

Q (λγmnγrW ) = −1

4
(λγmnpqrλ)Fpq

Q (λγmnpqrλ)Fmn = 0 (2.34)

The un-integrated vertex operator V is a worldsheet (0, 0) form of ghost number 1 given by,

V = λαAα(x, θ) (2.35)

It satisfies QV = 0 in view of the pure spinor constraint on λ. The integrated vertex

operator U is a worldsheet (1, 0)-form of ghost number 0 which is built out of the basic

6The field equations of linearized 10-dimensional super Yang-Mills theory [36] may be expressed in terms

of the covariant derivatives Dα = Dα+Aα andDm = ∂m+Am subject to gauge transformations δAα = DαA,

δAm = ∂mA, the Jacobi identities, and the superspace torsion constraint Fαβ = {Dα,Dβ} − γmαβDm = 0.

The field strengths Fαm = [Dα,Dm] and Fmn = ∂mAn − ∂nAm satisfy (2.30) with Fαm = (γm)αβW
β .
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(1, 0)-forms ∂θα,Πm, dα, Nmn times the corresponding linearized on-shell SYM field and is

given by,

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαW
α(x, θ) +

1

2
NmnF

mn(x, θ) (2.36)

Its BRST variation is a total derivative of the un-integrated vertex V ,

QU = ∂V (2.37)

so that the integrals of UŪ over a closed worldsheet and U over a worldsheet boundary are

BRST invariant.

2.5 The b-ghost

The RNS superstring naturally has a (b, c) anti-commuting ghost system which results

from gauge fixing worldsheet diffeomorphism symmetry, and a (β, γ) commuting ghost

system resulting from gauge fixing worldsheet local supersymmetry. The existence of an

un-gauged-fixed formulation for the pure spinor superstring with a canonical (b, c) ghost

system is currently still under investigation [40, 41]. The non-minimal formulation of the

pure spinor string was developed to produce a composite b-ghost [7], without requiring

a c-ghost companion. It is this formulation that we shall use here as a guide for the

construction of the amplitude for five external states.

The key principle for the construction of the b-ghost is that it must be an anti-

commuting Lorentz scalar, and a (2, 0)-form on the worldsheet Σ whose BRST transform

is the chiral stress tensor Ttot which was given in (2.5),

Qb = Ttot (2.38)

Since Q and Ttot have ghost number 1 and 0, respectively, b must have ghost number −1.

There is no canonical gauge-invariant field satisfying these conditions. However, there is a

ghost number 0 composite spinor Gα given by,

Gα =
1

2
Πm(γmd)α − 1

4
Nmn(γmn∂θ)α − 1

4
Jλ∂θ

α − 1

4
∂2θα (2.39)

whose BRST transform is proportional to the stress tensor,

QGα = λαTtot (2.40)

The ghost field λ̄α of the non-minimal pure spinor string allows one to formally solve (2.38)

for the b-ghost using the descent equations of BRST cohomology. The resulting b-ghost

field is unique, up to BRST closed contributions, and given by [7],

b = sα∂λ̄α +
λ̄αG

α

(λλ̄)
+

(λ̄γmnpr)

192(λλ̄)2

(
(dγmnpd) + 24NmnΠp

)
− (rγmnpr)

16(λλ̄)3
(λ̄γmd)Nnp +

(rγmnpr)

128(λλ̄)4
(λ̄γpqrr)NmnNqr (2.41)
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The solution is formal because the denominators in the holomorphic field (λλ̄) produce

singularities. A variety of regulators have been proposed in [42–44]. For the genus-two

amplitude with five external states, positive powers of (λλ̄) arise from the measure of the

ghost fields, thereby regularizing the singularities in the b-ghost (see section 3.3 below

and [7] for more details). The resulting expressions were used to evaluate the genus-two

four-point amplitude [24] as well as the leading low energy limits of the genus-two five-

amplitude [25] and the genus-three four-point amplitude [26].

3 Basics of genus-two amplitudes

In this section, we shall review and further develop those computations in the non-minimal

pure spinor formalism on genus-two Riemann surfaces that are needed for our construction

of the genus-two chiral amplitude with five external states. We re-iterate the strategy of

our construction, as already outlined in the Introduction: we shall combine ingredients

from the BRST cohomology of the pure spinor formulation and from the chiral splitting

procedure to conjecture the genus-two chiral amplitude for five external states. We shall

perform computations in the pure spinor formulation only to the extent that their outcome

guides us towards a compelling structure of the amplitude, which will turn out to be unique.

The final formula of the chiral amplitude will be derived in section 4, and different

representations will be explored in section 5. The physical amplitudes for Type II and

Heterotic strings, obtained by assembling the contributions from the left and right moving

chiral parts and integrating over loop momenta, will be presented in section 6. Along the

way, the amplitude for four external states will be re-derived in subsection 3.4.

3.1 Genus-two correlators in the pure spinor formalism

The ingredients needed to evaluate the correlators on genus-two Riemann surfaces that

arise in the non-minimal pure spinor formalism are the partition functions, the zero mode

counting, and the correlators of the non-zero mode parts of the canonical worldsheet fields.

A regulator of the ghost zero mode integration is required to resolve indeterminacy issues

in the pure spinor formulation. The discussion will be geared towards deriving the main

target of this work at the end of section 4: the chiral genus-two amplitude for five external

massless states, formulated as an integral over pure spinor superspace zero modes of a

function of the external kinematics and the zero modes of the spinor variables λα and θα.

This formulation economically contains the amplitudes with five external states belonging

to the gauge or supergravity multiplets which may be either bosons or fermions.

3.1.1 Partition functions

All canonical chiral spinor fields in the non-minimal pure spinor formalism occur in conju-

gate pairs of a (1, 0)-form on Σ and a (0, 0)-form. Since the central charges of the spinor

fields along with that of the chiral boson field x+ add up to zero, the holomorphic anomaly

cancels, and each field contributes an effective chiral partition function. For the chiral

bosons xm+ , as derived from chiral splitting, this contribution is Z(Ω)−10 while for the
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pair of anti-commuting fields (pα, θ
α) (or equivalently the pair (dα, θ

α)) the contribution

is Z(Ω)32.

The commuting pair of fields (λα, wα) is subject to the pure spinor constraint (2.1)

and gauge-invariance (2.6) reducing their effective number of spinor degrees of freedom

from 16 to 11 for both fields and producing a partition function Z(Ω)−22. Therefore, in

combination with the contribution Z(Ω)−10+32 from the matter variables, the combined

partition function for the minimal pure spinor string is 1 [6].

Finally, the pair of commuting fields (λ̄α, w̄
α) and anti-commuting fields (rα, s

α) are

subject to the pure spinor constraints (2.1) and gauge-invariances (2.6) reducing their

effective number of spinor degrees of freedom from 16 to 11 for each field. Hence, the

fields that are specific to the non-minimal pure spinor formalism produce a combined

partition function of 1, consistent with the interpretation of this system as a topological

field theory [7].7

3.1.2 Zero modes of (1, 0)-form spinor fields

In this subsection, we shall discuss the zero modes of meromorphic (1, 0)-form spinor

fields on a compact worldsheet Σ of genus h. It will be convenient to use the fields

dα, Nmn, J, N̄mn, J̄ instead of pα, wα, w̄
α as discussed at the end of subsection 2.1. These

meromorphic (1, 0)-form fields, on world-sheets of genus h ≥ 1, have zero modes which are

linear combinations of the holomorphic (1, 0)-forms ωI whose definition and properties are

reviewed in appendix B. An explicit parametrization is obtained as follows,

dα(z) = d̂α(z) + dIα ωI(z)

∮
AI

d̂α = 0 (3.1)

and similarly for the fields Nmn, J, N̄mn, J̄ , whose zero-mode coefficients will be denoted

by N I
mn, J

I , N̄ I
mn, J̄

I , respectively. The number of independent zero modes of these fields

on a compact surface of genus h is as follows,

16× h zero modes dα

10× h zero modes Nmn, N̄mn, Smn (3.2)

h zero modes J, J̄ , S

The zero modes of dα, Smn, S are anti-commuting and those of Nmn, N̄mn, J, J̄ commuting.

3.1.3 Zero modes of (0, 0)-form spinor fields and pure spinor superspace

On a surface Σ of arbitrary genus, the (0, 0)-form fields θα, λα, λ̄α and rα have a single

zero mode for each value of α. Thus, the field θα may be decomposed as follows,

θα(z) = θ̂α(z) + θα0 (3.3)

7Due to the pure spinor constraints, the ghost fields are actually not free fields on Σ. However, decom-

position of the SO(10) spinors under the subgroup U(5) allows one to change variables to a free field plus

a (β, γ) system both of which may be handled with standard methods [5].
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where θα0 is independent of z, and θ̂α(z) represents the non-zero mode contributions. The

fields λα, λ̄α and rα admit analogous decompositions. The integration over the zero modes

of the fields will guarantee that full correlators are independent of the prescription used to

define θ̂α(z) from θα(z), for example by requiring that the integral of θ̂α(z) over Σ vanish.

An ubiquitous ingredient in the pure spinor formulation is the following λ-dependent

tensor with ghost number 3 (see section 3.2 for its further use),

Tα1···α5(λ) = (λγm)α1(λγn)α2(λγp)α3(γmnp)α4α5 (3.4)

which is manifestly anti-symmetric in α1, α2, α3 as well as in α4, α5. Actually, T is totally

anti-symmetric in all five spinor indices as may be established by showing that the contrac-

tions of T with (γa)α1α4 and (γabcde)α1α4 vanish with the help of (A.4), (A.5), and (A.10).

The tensor T projects the anti-symmetric tensor product of five spinors in the 16 of SO(10)

onto the symmetric γ-traceless tensor product of three spinors λ in the 16 of SO(10).

By spacetime supersymmetry and BRST-cohomology arguments, the zero-mode in-

tegrals of the fields θα and λα only receive contributions from the cohomology at ghost

number 3, specifically from the combination Tθθθθθ [5], or more explicitly,8

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉0 = 1 (3.5)

The above normalization (sometimes chosen to be 2880 in the literature) affects the full

chiral amplitude only by an overall multiplicative factor, which is not being sought after

here, and may thus be chosen at will without loss of generality. The prescription (3.5)

annihilates BRST-exact superfields,

〈Q(· · · )〉0 = 0 (3.6)

a property which guarantees space-time gauge-invariance and supersymmetry of the expec-

tation value of BRST-closed operators and allows us to carry out simplifications by adding

Q-exact terms.

The goal of this paper is to derive the genus-two chiral amplitude for five external

massless states from the correlators of five BRST-closed vertex operators. More specifically,

the amplitude will be presented as an integral over the zero modes of θα and λα of a BRST-

closed integrand in pure spinor superspace that contains all the external kinematic data

of five arbitrary states in the supergravity multiplet [45]. BRST-exact contributions may

be discarded to simplify the form of the amplitude. As we shall see in section 4.4, the

quest for BRST-closed integrands will lead us to the unique construction of the genus-two

five-point amplitude.

3.1.4 The zero-mode regulator

The above ingredients for the evaluation of higher-genus correlators in the non-minimal

pure spinor formalism usually lead to an indeterminacy in the integrals over the ghost zero

8Throughout, the integration over the zero mode part of the fields in the expectation value of an arbitrary

operator O will be denoted by 〈O〉0. It will be understood that the fields which enter into O are to be

evaluated on their zero-mode part only.
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modes of the type 0/0. On the one hand, the singularities that arise when (λλ̄) vanishes

in the expression (2.41) for the b-ghost, or tends to ∞, cause the functional integrals over

bosonic ghosts to diverge. On the other hand, the fermionic zero modes would cause the

functional integrals to vanish for sufficiently low genus and/or small number of external

states, as is the case for instance in the two-loop five-point amplitude under investigation.

The vanishing of the fermion zero mode integrations may be resolved by the insertion

of the following “regulator” which was introduced in [7],

Nh = exp

{
−(λλ̄)− (rθ) +

h∑
I=1

(wIw̄I + sIdI)

}
(3.7)

where λ, λ̄, r, θ are restricted to their zero mode contributions, as explained in footnote 8.

The argument of the exponential has been engineered to be BRST-exact, so that Nh =

1 + Q(· · · ) does not have any effect in the cohomology as long as the functional integrals

converge.9 It has been argued in [7] that for genus two no singularities arise when (λλ̄)→ 0

thanks to the λ, λ̄-dependence of the measure, and the insertion of the regulator N2 leads

to convergent zero-mode integrals. Note that the summation symbol over the index I has

been kept explicitly because both factors in the summand have upper I-indices, for which

no natural modular-invariant pairing exists.

3.1.5 Wick contractions of non-zero-mode fields

The Wick contractions for the vector field xm were already discussed in section 2.2 on the

chiral splitting procedure. The Wick contractions of the non zero-mode part of the field

θα with itself vanishes,

θ̂α(z)θ̂β(y) ∼ 0 (3.8)

while the Wick contractions of the non-zero mode part of the (1, 0)-form spinor fields

generally produce meromorphic (1, 0) forms. For example, the Wick contractions of the

fields p̂α(z), d̂α(z) and Π̂m = Πm − 2πpImωI from (3.1) and (2.24) are given as follows,

p̂α(z) θβ(y) ∼ ∂z lnE(z, y) δβα

d̂α(z) f
(
x(y), θ(y)

)
∼ ∂z lnE(z, y)Dαf

(
x(y), θ(y)

)
(3.9)

Π̂m(z) f
(
x(y), θ(y)

)
∼ −∂z lnE(z, y) ∂mf

(
x(y), θ(y)

)
where f(x, θ) is an arbitrary function which depends on x and θ, but not on the worldsheet

derivatives of these fields. The meromorphic differential ∂z lnE(z, w) fails to be single-

valued in its variables by itself, but the associated integrations over the zero modes of

these fields will render the full correlators, into which they are inserted, properly single-

valued. This is familiar for the case of the correlators of the fields ∂xm+ with xm+ thanks to

momentum conservation, but also holds true for the Wick contractions of field pα with θα.

As should be expected, in the short distance limit z → y, the Wick contractions of (3.9)

reproduce the OPE singularities of the corresponding fields given in (D.1) and (D.2). While

9For the same reason, the usage of gauge-variant quantities in the exponential of (3.7) instead of the

original gauge-invariant formulation in [7] has no effect in the amplitudes [46].
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for genus zero, the knowledge of the OPE suffices to evaluate any conformal correlator,

this is no longer true for higher genus. For the fields of the pure spinor string, the missing

information is provided by the contributions from the zero modes of the (1, 0)-form fields.

One manifestation of this is that for genus two and above, one has to distinguish the

forms ∂z lnE(z, y)ωI(y) from −∂y lnE(z, y)ωI(z), whose short-distance behaviors agree

and which coincide for the sphere (genus zero) and for the torus (genus one). Fortunately,

we shall not need the detailed evaluation of the full correlator for the genus-two five-

point amplitude as in [25], since it will suffice to extract all relevant information from the

singularities at coinciding vertex points (see section 4.5).

3.1.6 The chiral correlator in pure spinor superspace

The chiral amplitude for N massless states at genus two is given by the correlator,

F(N) =

〈
N2

3∏
a=1

(µa, b)
N∏
i=1

Ui(zi)

〉
(µa, b) =

∫
Σ
µab (3.10)

provided this correlator is convergent. The Beltrami differentials are denoted by µa for

a = 1, 2, 3, and will be specified later with the help of (3.20). The bracket notation 〈· · · 〉
in (3.10) is used for the complete functional integral for the zero modes and non-zero modes

of all the fields in the worldsheet action (2.2). The subscript of 〈. . .〉0 in (3.5), by contrast,

refers to the zero-mode integrals for the (0, 0)-form fields λα and θα. The integrations over

the positions zi and the loop momenta pIm will be carried out after the chiral blocks and

their conjugates have been paired.

The chiral correlator is evaluated by integrating over the chiral spinor fields and over

the effective chiral scalar field xm+ of chiral splitting, considered at fixed loop momenta pmI .

Since each of the vertex operators include a plane wave factor, the correlator of the effective

chiral scalar field xm+ produces the chiral Koba-Nielsen factor I(N) given by (cf. (2.18)),

I(N) = exp

iπΩIJp
I · pJ +

N∑
i=1

2πipI · ki
∫ zi

z0

ωI −
N∑
i<j

sij lnE(zi, zj)

 (3.11)

The dimensionless kinematic invariants sij are given by,

sij = −α
′

4
(ki + kj)

2 = −ki · kj (3.12)

The second equality arises from our choice α′ = 2 and the mass-shell condition k2
i = k2

j = 0.

Since the Koba-Nielsen factor (3.11) is an ubiquitous constituent of the chiral ampli-

tude (3.10), the main goal of this work will be to evaluate the remaining factor K(N),

F(N) = I(N) 〈K(N)〉0 (3.13)

In order to obtain an amplitude representation in pure spinor superspace and keep any

combination of external bosons and fermions accessible, the zero-mode integral (3.5) is left

to be performed. The desired superspace expression K(N) will be referred to as a chiral
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correlator and encodes the dependence on the polarization vectors and spinors of bosons

and fermions, respectively, in a supersymmetric manner. Since the factor I(N) already

transforms according to (2.21) under homology shifts, the reduced amplitude K(N) must

be strictly invariant under these shifts, without any phase factor.

In fact, chiral correlators K(N) fall into equivalence classes in two respects: First,

Q-exact terms do not contribute within the bracket 〈. . .〉0, and second, total derivatives

∂zi(I(N)K(N)) integrate to zero after assembling the overall amplitudes. Hence, it suffices

to construct a particularly convenient representative of K(N) as we will do in the two-loop

five-point case.

3.2 Zero mode counting

The large number of zero modes of the spinor fields greatly simplifies the calculations and

makes the evaluation of the correlator (3.10) with a small number N of external states

possible. We begin by observing that the vertex operators Ui(zi) do not involve the fields

λ̄α, w̄
α, sα, rα. Since the b-ghost is also independent of the field w̄α the zero modes of w̄α

must be paired with those of wα via the regulator N2 of (3.7). Equivalently, the zero

modes of N̄mn and Jλ̄ must be paired with the zero modes of Nmn and Jλ. This leaves

no room for zero modes of the fields Nmn to occur either in the vertex operators or in the

b-ghost insertions.

Next, we concentrate on the zero modes of the fields sα and dα, which add up to 22

and 32 zero modes, respectively. The vertex operators Ui do not involve the field sα and

the b-ghost involves sα only through its first term in (2.41). Let us denote by σ the number

of zero modes of the field sα absorbed by the 3 b-ghosts. Each b-ghost may absorb at most

1 zero mode of sα, so that 0 ≤ σ ≤ 3. The regulator N2 will absorb exactly as many sα

zero modes as it absorbs dα zero modes. Therefore, the number of dα zero modes absorbed

by the integration over the sα zero modes, the regulator, and the sα-dependent part of the

b-ghosts equals 22− σ.

Further dα zero modes may be absorbed by the remaining terms in the b-ghost, but

this number is bounded from above by 6 − 2σ. Tallying all contributions, we conclude

that the maximal number of dα zero modes absorbed by the measure and the b-ghosts is

22 − σ + 6 − 2σ = 28 − 3σ, leaving at least 4 + 3σ zero modes to be absorbed by the

vertex operators. Since each vertex operator is at most linear in dα, any amplitude whose

number of external states is 6 or fewer must have σ = 0, leaving at least 4 zero modes of

the dα field to be absorbed by the vertex operators Ui. For amplitudes with 4 or 5 external

massless states of interest in this paper, we thus have σ = 0, and the integration over the

zero modes of sα produces the following measure for the integration over the zero modes

of the field dα(z) = d̂α(z) + dIα ωI(z),

2∏
I=1

∫
[d dI ](ε · T · dI) (3.14)

Here the combination (ε · T · dI) for each I is given by,

(ε · T · dI) = εα1···α16Tα1···α5d
I
α6
· · · dIα16

(3.15)
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where the λ-dependent tensor T was introduced in (3.4), and [d dI ] stands for the integration

measure for the zero modes dI . Since (ε · T · dI) involves 11 zero modes for each value of

the index I, a non-vanishing integral requires a further integrand with five dI factors and,

for a given value of I, we have,∫
[d dI ](ε · T · dI) dIα1

dIα2
dIα3

dIα4
dIα5

= cTα1α2α3α4α5∫
[d dI ](ε · T · dI) dIα1

dIα2
dIα3

(dIγmnpdI) = 96c(λγ[m)α1(λγn)α2(λγp])α3 (3.16)

where on the right side of the second equation the indices mnp are anti-symmetrized.

The normalization c can be found in [26] but is of no concern to us here, as the absolute

normalization of the amplitude may be fixed by other methods such as unitarity.

3.3 Zero modes absorbed by the b-ghosts

The non-vanishing of the genus-two amplitude for N massless states given in (3.10) requires

that all the 32 zero modes dIα of the field dα(z) be absorbed by a conspiracy of the b-ghost

and the vertex operators. As shown in the previous subsection, for N ≤ 5, the s∂λ̄ term

of the b-ghost does not contribute and the vertex operators can absorb at most 5 d-zero

modes. As a result, the b-ghosts must contribute either 5 or 6 d-zero modes, which can

arise only from the terms bilinear in d or the term linear in dα in the composite spinor Gα

defined by (2.39). (Note that the term linear in d and linear in the field Nmn in (2.41)

involves a zero mode of the field Nmn, but this cannot contribute as argued in the preceding

subsection). In summary, the effective ghost field for N ≤ 5 takes the form,

b =
(λ̄γmd)

2(λλ̄)
Πm +

(λ̄γmnpr)

192(λλ̄)2
(dγmnpd) + · · · (3.17)

where the ellipses stand for terms that do not contribute for N ≤ 5.

Parametrizing the insertion points of the b-ghosts by the variables va for a = 1, 2, 3,

we use the fact that only the zero modes of the fields λ, λ̄, r, d contribute to the b-ghost

insertions to render the va dependence of the b-ghost explicit,

b(va) =
∑
I

(λ̄γmdI)

2(λλ̄)
ωI(va)Πm(va) +

∑
I,J

(λ̄rdIdJ)

192(λλ̄)2
ωI(va)ωJ(va) + · · · (3.18)

where we have introduced the following convenient shorthand,

(λ̄rdIdJ) = (λ̄γmnpr)(dIγmnpd
J) (3.19)

We shall choose a system of local complex coordinates, τa with a = 1, 2, 3, on moduli space

and associated Beltrami differentials µa so that,

∂ΩIJ

∂τa
=

∫
Σ
µaωIωJ (3.20)

The chiral volume form on moduli space is given by,

d3Ω = dΩ11 ∧ dΩ12 ∧ dΩ22 =
∑
a,b,c

∂Ω11

∂τa

∂Ω12

∂τb

∂Ω22

∂τc
dτa ∧ dτb ∧ dτc (3.21)
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Non-vanishing contributions from the b-ghost insertions therefore require specific arrange-

ments of the d-zero modes. Contributions from the b-ghosts with 6 and 5 d-zero modes,

respectively, are given by the arrangements,

6 zero modes (λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)

5 zero modes (λ̄rd1d1)
(

2(λ̄γmd2)(λ̄rd1d2)− (λ̄γmd1)(λ̄rd2d2)
)

(λ̄rd2d2)
(

2(λ̄γmd1)(λ̄rd1d2)− (λ̄γmd2)(λ̄rd1d1)
)

(3.22)

The contribution for 6 zero modes directly produces the measure on moduli space, as the

coefficient of this term is a holomorphic quadratic differential in each insertion point of the

b-ghost. The contribution with 5 zero modes is contracted with the (1, 0)-form field Πm(va)

and, in view of the results of the chiral splitting procedure (2.24), receives two different

types of contributions. The term linear in loop momentum pIm provides a holomorphic (1, 0)

form, so that its contribution directly generates the measure on moduli space. The other

two terms of Πm exhibited in (2.24) are generally meromorphic rather than holomorphic;

it is unclear at present how to evaluate their contribution directly, but we shall infer it by

imposing various consistency conditions.

3.4 The chiral amplitude for four external states

For four external states, the above counting shows that each b-ghost must contribute exactly

2 d-zero modes, resulting in the pattern of the first line of (3.22), and each vertex must

contribute exactly 1 d-zero mode. Omitting the overall λλ̄-dependent normalization, the

structure of the remaining integration is as follows,

2∏
I=1

∫
[ddI ](ε · T · dI)(λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)

4∏
i=1

(dWi) (3.23)

where only the zero modes of the field d contribute in its pairing against the SYM fields Wi,

(dWi)→
2∑
I=1

(dIWi)(zi)ωI(zi) (3.24)

By construction, the amplitude is Bose symmetric in the indices labeling the external states.

All dependence on the d-zero modes has now been made explicit, and its integral may

be carried out using (3.16). The contributions vanish unless two of the four factors (dWi)

carry the zero mode d1 while the other two carry the zero mode d2. To evaluate these con-

tributions we shall single out one specific assignment and then sum over all permutations.

Carrying out the integral over d-zero modes, we find [24],

2∏
I=1

∫
[ddI ](ε · T · dI)(λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2)(d1W1)(d1W2)(d2W3)(d2W4)

= (λγabcptλ)(λ̄γmnpr)(λ̄γqstr)(λ̄γabcr)(λγmW1)(λγnW2)(λγqW3)(λγsW4) (3.25)
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Carrying out the integration over the zero mode of the field r converts each r into a super

derivative acting on the vertex operators, and we obtain,

(λγabcptλ)(λ̄γmnpD)(λ̄γqstD)(λ̄γabcD)(λγmW1)(λγnW2)(λγqW3)(λγsW4) (3.26)

Given the choice of the zero mode assignments made here, this expression is manifestly

invariant under the permutations 1↔ 2 and 3↔ 4 as well as under (1, 2)↔ (3, 4).

Applying a single super derivative to a field Wi produces the field strength Fi, while

applying more than one super derivative to the same field Wi introduces bosonic derivatives

kiWi and kiFi. Still, the latter contributions are BRST equivalent to the terms of schematic

form WFFF from applying each super derivative to a single one of the W fields. See

appendix A of [24] for further details. More specifically, carrying out the integration over

λ̄ produces a sum of four distinct terms,

T1,2|3,4 =
1

4

(
t1,2|3;4 + t1,2|4;3 + t3,4|1;2 + t3,4|2;1

)
(3.27)

where each term is given by,

t1,2|3;4 = (λγmnpqrλ)Fmn1 F pq2 F rs3 (λγsW4) (3.28)

The manifest symmetry properties are t1,2|3;4 = t2,1|3;4 and T1,2|3,4 = T2,1|3,4 = T3,4|1,2 while,

as a consequence of (A.12), we also have the following cyclic symmetries,

t1,2|3;4 + t2,3|1;4 + t3,1|2;4 = 0

T1,2|3,4 + T1,3|4,2 + T1,4|2,3 = 0 (3.29)

To verify BRST closure of t, we use the results of (2.34) that (λγsW4) and (λmnpqrλ)Fmn1 F pq2

are BRST closed, so that it remains only to apply Q to F3 which gives,

Q t1,2|3;4 = (λγmnpqrλ)Fmn1 F pq2

(
(λγs∂rW3)− (λγr∂sW3)

)
(λγsW4) = 0 (3.30)

The contribution from the first and second terms in the parentheses vanishes in view

of (A.7) for pure spinors and (A.10), respectively. As a result, t1,2|3;4 and T1,2|3,4 are

BRST closed.

The worldsheet dependence of the amplitude for four external states involves the chiral

Koba-Nielsen factor (3.11), multiplied by a combination of holomorphic (1, 0)-forms. We

define the bi-holomorphic (1, 0)-form,

∆(z1, z2) = ω1(z1)ω2(z2)− ω2(z1)ω1(z2) (3.31)

Recall that, following our notations and conventions spelled out in footnote 2, ωI(z) is the

coefficient function of the (1, 0)-form ωI(z)dz in local complex coordinates, and ∆(z1, z2)

is similarly the coefficient function of the differential ∆(z1, z2)dz1 ∧ dz2. With these con-

ventions, ∆(z1, z2) is manifestly antisymmetric in z1, z2, and satisfies the following cyclic
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permutation sum identities,10

ωI(1)∆(2, 3) + ωI(2)∆(3, 1) + ωI(3)∆(1, 2) = 0

∆(1, 2)∆(3, 4) + ∆(1, 3)∆(4, 2) + ∆(1, 4)∆(2, 3) = 0 (3.32)

The chiral amplitude is given by [22],

K(4) = T1,2|3,4 ∆(1, 3)∆(2, 4) + T1,3|2,4 ∆(1, 2)∆(3, 4) (3.33)

Symmetries under the permutations (2 ↔ 3) and (1 ↔ 4) are manifest from the above

expression, while symmetry under the permutation (1 ↔ 2) may be established using

both the symmetries of T in (3.29) and of ∆ in (3.32). After performing the zero-mode

integral (3.5) for λ and θ, the bosonic components of 〈K(4)〉0 were shown in [23] to reproduce

the result of the RNS computation [16]. A proof of this equivalence using pure spinor

superspace cohomology techniques can be found in [47].

4 Genus-two amplitudes for five massless states

In this section, we shall obtain the main result of this paper by carrying out the construction

of the genus-two chiral amplitude for five massless states. To do so, we use chiral splitting,

zero mode counting and BRST cohomology of the pure spinor formulation.

4.1 Structure of the chiral amplitude for five external states

The starting point is the genus-two chiral amplitude for five external massless states, given

by the correlator of (3.10) and (3.13) for the case N = 5,

F(5) = I(5) 〈K(5)〉0 =

〈
N2

3∏
a=1

(b, µa)

5∏
i=1

Ui(zi)

〉
(4.1)

The vertex operators Ui are given by,

Ui = ∂θαAiα(x, θ) + ΠmA
m
i (x, θ) + dαW

α
i (x, θ) +

1

2
NmnF

mn
i (x, θ) (4.2)

where each superfield multiplet (Aiα, A
m
i ,W

α
i , F

mn
i ) encodes the polarization vector and

spinor of the state i, as made explicit in (2.32). Following the pattern for the distribution

of d-zero modes for five external states of (3.22) derived in subsection 3.3, the b-ghosts can

absorb either five or six d-zero modes, leaving the vertex operators to absorb either five or

four d-zero modes, respectively. We shall now discuss each part in turn.

10Henceforth, when no confusion is expected to arise, we shall denote the points zi as arguments of

functions and forms, simply by their label i, and the derivative with respect to zi by ∂i, so that for example

ωI(i) = ωI(zi), ∆(i, j) = ∆(zi, zj), and ∂i lnE(i, j) = ∂zi lnE(zi, zj).
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4.1.1 Four d-zero modes and one loop momentum from vertex operators

The contribution from the b-ghost that contains six d-zero modes is of the form,

3∏
a=1

(b, µa)→ (λ̄rd1d1)(λ̄rd1d2)(λ̄rd2d2) (4.3)

so that the product of five vertex operators needs to supply four d zero modes. The

corresponding contribution to K(5) is given by,〈
(λ̄γD)3

(
U1(d1W2)(d1W3)(d2W4)(d2W5)

)〉
+ 14 permutations (4.4)

where we recall that D stands for the super derivative in (2.29) and we have carried out

the usual integration over r which leads to (λ̄γr) → (λ̄γD). The permutations consist of

all 120 permutations modulo those which swap 2 ↔ 3 as well as those which swap 4 ↔ 5

and finally those which swap the pair (2, 3) ↔ (4, 5), in view of the symmetries of the

distribution of d zero modes.

We start by considering the contributions to (4.4) that are linear in loop momentum:

Decomposing the operator Πm in U1 according to the rules of chiral splitting in (2.24), we

find a loop-momentum dependent term

2πpImωI(z1)
〈

(λ̄γD)3
(
Am1 (d1W2)(d1W3)(d2W4)(d2W5)

)〉
+ 14 permutations (4.5)

and leave the leftover contributions ∂xm+ (z1)+ 1
2(θγm∂θ)(z1) from (2.24) for the next section.

Applying the three super derivatives D in (4.5) produces two types of terms. Applying

all three D to Wi vertex operators produces terms of the form Am1 times the building block

of the four-point amplitude T1,2|3,4 plus permutations thereof. However, in addition to

these contributions, which are schematically of the form AFFFW , terms involving DA1

and terms in which several D act on the same Wi are also produced. At four points,

different partitions of the super derivatives to the superfields WWWW turn out to be

BRST equivalent [24]. We expect that also at five points, the chiral correlator admits a

cohomology representative where the contributions of (4.5) are captured by permutations

of Am1 T2,3|4,5. They will produce a contribution to the “vector block”, as we will see in

section 4.2. An explicit evaluation of (4.5) may be found in section 5 of [25].

4.1.2 Four d-zero modes and one Wick contraction from vertex operators

It remains to carry out the Wick contractions of U1 with the fields Wi. Using the vanishing

of the Wick contractions of the non-zero modes of θα given in (3.8), we see that the

contraction of the term proportional to ∂θα on the right side of U1 in (4.2) with the

remaining Wi operators vanishes identically, so that this term in U1 may be omitted. The

contribution of the zero mode of Nmn in U1 similarly cancels as a factor of N̄mn would

be needed to give a non-zero contribution. The Wick contractions of the non-zero mode

of Nmn with the other fields similarly cancel. The remaining contribution is thus given

by [25],〈
(λ̄γD)3

(
Π̂mA

m
1 (x, θ) + d̂αW

α
1 (x, θ)

)
(z1)(d1W2)(d1W3)(d2W4)(d2W5)

〉
(4.6)
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where Π̂m(z1) = ∂xm+ (z1)+ 1
2(θγm∂θ)(z1) is obtained by removing the loop momentum from

the chiral-splitting prescription in (2.24). Wick contractions of Π̂m give rise to contributions

linear in external momenta which arise from four vertex operators of the form (dWi), two

of which carry a d1 zero mode with the other two carrying a d2 zero mode.

Π̂m(z1)W β
i (zi) ∼ −i∂z1 lnE(z1, zi)k

m
i W

β
i (4.7)

Finally, the Wick contractions of d̂α(z1) with W β
i for i = 2, 3, 4, 5 is given by the last

formula of (3.9), and in this case simplifies as follows,

d̂α(z1)W β
i (zi) ∼ ∂z1 lnE(z1, zi)DαW

β
i =

1

4
(γmn)α

βFmni ∂z1 lnE(z1, zi) (4.8)

The two contributions (4.7) and (4.8) will produce terms in the “scalar block”, as we will

see in section 4.5.2.

4.1.3 Contributions with five d-zero modes from vertex operators

The contribution from the b-ghost that contains five d-zero modes is of the form,

3∏
a=1

(b, µa)→ (λ̄rd2d2)Πm

(
2(λ̄γmd1)(λ̄rd1d2)− (λ̄γmd2)(λ̄rd1d1)

)
(4.9)

plus the same term with d1 and d2 zero modes swapped. As a result, the product of the

vertex operators needs to supply five d zero modes, more specifically three d1 zero modes

and two d2 zero modes for the term written down above. The corresponding contribution

of the above term to K(5) is given by [25],〈
Πm(d2γd2)

(
2(λ̄γmd1)(d1γd2)− (λ̄γmd2)(d1γd1)

)
× (λ̄γD)2(d1W1)(d1W2)(d1W3)(d2W4)(d2W5)

〉
(4.10)

plus the same contribution with the zero modes d1 and d2 swapped. Expanding Πm as

in (2.24), evaluated this time at one of the b-ghost insertions, produces terms linear in

loop momenta and terms which are linear in external momenta. The terms linear in loop

momenta are accompanied by a holomorphic (1, 0)-form at the b-ghost insertion point and

will directly lead to the measure on moduli space. Terms linear in external momenta will

not be computed directly but rather inferred by consistency.

For the contributions linear in loop momenta we construct an expression of the

schematic form FFWWW from cohomology arguments in the next section: Carrying

out the integration over d-zero modes and r-zero modes in (4.10), we see that we now have

two super derivatives acting on the vertex operators (in contrast with the contribution with

four d zero modes from the vertex operators, where we had three super derivatives). When

the super derivatives act on two different vertex operators, the respective superfields Wi

will be converted to Fi, leaving expressions of the schematic form FFWWW . Contribu-

tions of the form WWWWD2W are expected to be BRST equivalent to those of the form

FFWWW by analogy with the fate of the four-point contributions D3(WWWW ) [24].
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4.2 The vector block for the amplitude of five external states

Summarizing the structural information gathered in the previous subsection, we have two

distinct types of contributions to the chiral amplitude for five external states. The first

contribution is linear in the loop momenta and will be referred to as the vector block,

while the second contribution is independent of loop momenta and will be referred to as

the scalar block. Our strategy will be to determine first the vector block, in part from

information obtained through its structural analysis in the previous section, and in part

from enforcing BRST invariance. The scalar block will not be computed directly, but will

be determined uniquely from the monodromy behavior of the vector block (recall that,

according to (2.20), loop momenta behave non-trivially under moving a vertex operator

point zi around a B-cycle on the surface) combined with BRST invariance.

The vector block receives two different types of contributions, symbolically of the form

AFFFW and FFWWW , as was derived in the previous section. It will be convenient

to label the contributions to the vector block with vertex operator indices corresponding

to the distribution of d1 and d2 zero modes in the contribution with five d-zero modes on

the vertex operators. Thus, a contribution with three d1 zero modes on vertex operators

1, 2, 3 and two d2 zero modes on vertex operators 4, 5 will contribute to Tm1,2,3|4,5. We will

also include in Tm1,2,3|4,5 the contributions with four d-zero modes on the vertex operators,

specifically two d2-zero modes on vertex operators 4, 5 with two d1 zero modes and one

Am vertex distributed amongst the points 1, 2, 3. Thus, the vector block Tm1,2,3|4,5 takes the

form [48],

Tm1,2,3|4,5 = Am1 T2,3|4,5 +Am2 T3,1|4,5 +Am3 T1,2|4,5 +Wm
1,2,3|4,5 (4.11)

where T2,3|4,5 and its permutations are the four-state blocks defined in (3.27), andW collects

all the contributions of the structural form FFWWW . The first three terms on the right

side of (4.11) are invariant under all permutations of 1, 2, 3 as well as under swapping 4, 5.

Our goal will be to construct Wm
1,2,3|4,5 and thus Tm1,2,3|4,5 which are invariant under these

symmetries as well.

A crucial ingredient in our construction will be the BRST transformation property

of the vector block. Using the BRST invariance of T2,3|4,5 and its permutations, and the

BRST transform of Am given in (2.33), the BRST transformation of the vector block is

given by,

QTm1,2,3|4,5 = ikm1 V1 T2,3|4,5 + ikm2 V2 T3,1|4,5 + ikm3 V3 T1,2|4,5 (4.12)

provided the BRST transform of Wm
1,2,3|4,5 satisfies,

QWm
1,2,3|4,5 = −(λγmW1)T2,3|4,5 − (λγmW2)T3,1|4,5 − (λγmW3)T1,2|4,5 (4.13)

We shall now show that this equation may be solved for Wm
1,2,3|4,5, up to BRST exact

contributions, by a sum of terms each of which is of the structural form FFWWW , as
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predicted in the previous subsection. Three distinct types of contributions arise,

(w1)m3,4;5|1,2 = −1

8
(λγmW5) {(λγpqγrW1)F pq2 + (1↔ 2)}

{
(λγstγrW3)F st4 + (3↔ 4)

}
(w2)m3,4;5|1,2 =

1

6
(λγtW5)(λγnpqrsλ)Fnp1 F qr2 (W3γ

mstW4)

(w3)m3,4;5|1,2 = −1

3
(λγrW5) {(λγpqγmW1)F pq2 + (1↔ 2)} {(λγsW3)F rs4 + (3↔ 4)} (4.14)

The overall coefficients have been chosen for later convenience. To make a connection with

the structural analysis, the first term arises from four d-zero modes coming from the vertex

operators, and one super derivative applied to Am5 . The second and third terms arise from

five d-zero modes coming from the vertex operators. Specifically, the second term arises

from the first term in the large parentheses of (4.10) while the third term arises from the

second term in the parentheses of (4.10).

The BRST transformations of these partial contributions are readily obtained using

the results of (2.33) and (2.34), as well as the following identities,

Q{(λγpqγrWi)F
pq
j }+ (i↔ j) = −1

2
(λγstpqrλ)F sti F

pq
j

Q(Wiγ
mstWj) =

1

4
(λγpqγ

mstWj)F
pq
i + (i↔ j) (4.15)

The resulting BRST transformations are then given by,

Q(w1)m3,4;5|1,2 =
1

4
(λγmW5)

(
t1,2|3;4 + t1,2|4;3 − t3,4|1;2 − t3,4|2;1

)
Q(w2)m3,4;5|1,2 = −1

6
(λγmW5)t1,2|4;3 −

1

6
(λγmW5)t1,2|3;4

− 1

3
(λγmW3)t1,2|4;5 −

1

3
(λγmW4)t1,2|3;5

+
1

6
(λγmnpqrλ)Fnp1 F qr2

[
F st4 (λγsW3)(λγtW5) + (3↔ 4)

]
Q(w3)m3,4;5|1,2 = −1

6
(λmnpqrλ)Fnp1 F qr2 F st4 (λγsW3)(λγtW5) + (3↔ 4) (4.16)

where t1,2|3;4 was defined in (3.28). An immediate simplification is obtained by adding

Q(w2) and Q(w3). The sum of all three,

wm
3,4,5|1,2 = (w1)m3,4;5|1,2 + (w2)m3,4;5|1,2 + (w3)m3,4;5|1,2 + (5↔ 3, 4) (4.17)

has the following BRST transform,

Qw3,4,5|1,2 = −(λγmW3)T1,2|4;5 − (λγmW4)T1,2|5,3 − (λγmW5)T1,2|3,4 (4.18)

Thus, wm
1,2,3|4,5 appears to provide a suitable candidate for Wm

1,2,3|4,5, except for the fact

that it does not make the symmetries of Tm1,2,3|4,5 manifest.

Indeed, the symmetry of T1,2|3,4 in (3.29) implies that QTm1,2,3|4,5 satisfies the symmetry,

QTm1,2,3|4,5 = QTm3,4,5|1,2 +QTm2,4,5|1,3 +QTm1,4,5|2,3 (4.19)
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The first three terms of Tm1,2,3|4,5 in (4.11) satisfy this same relation before applying Q.

Therefore, Tm1,2,3|4,5 itself satisfies the following symmetry relation,

Tm1,2,3|4,5 = Tm3,4,5|1,2 + Tm2,4,5|1,3 + Tm1,4,5|2,3 (4.20)

provided Wm
1,2,3|4,5 also satisfies this relation. The candidate wm

1,2,3|4,5 we had obtained for

Wm
1,2,3|4,5 satisfies the appropriate BRST relation (4.18) but fails to satisfy (4.20). The

following symmetrization of wm
1,2,3|4,5,

Wm
1,2,3|4,5 =

1

2
wm

1,2,3|4,5 +
1

6
(wm

3,4,5|1,2 + wm
2,4,5|1,3 + wm

1,4,5|3,2) (4.21)

− 1

6
(wm

1,2,4|3,5 + wm
1,2,5|3,4 + wm

1,3,4|2,5 + wm
1,3,5|2,4 + wm

3,2,4|1,5 + wm
3,2,5|1,4)

produces the desired expression for Wm
1,2,3|4,5 which satisfies both the BRST condition (4.13)

and the cyclic symmetry (4.20).

4.3 Worldsheet dependence of the vector block

At fixed loop momenta the correlator of the field xm+ produces the chiral Koba-Nielsen

factor I(N) of (3.11) for N = 5, along with contributions from the insertions of the op-

erator Πm. In view of the substitution rule (2.24) of the chiral splitting procedure, the

latter decomposes into the operator ∂xm+ + 1
2θγ

m∂θ and the part linear in loop momenta

pIm which is holomorphic in z. The contributions to the chiral correlator K(5) linear in pIm
is captured by,

Kp(5) = 2πpImT
m
1,2,3|4,5ωI(2)∆(3, 4)∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.22)

where the cyclic sum renders (4.22) invariant under all permutations of the zi and external

states.11 This combination has been chosen because it gives an economical expression for a

fully Bose symmetric amplitude contribution in terms of cyclic permutations only, without

the need to include all 120 permutations of five points. However, (4.22) fails to obey the

homology invariance properties (2.20) and (2.21).

To obtain homology invariance of (4.22), we shall now promote the dependence on the

loop momenta to combinations which are homology invariant. As a first step, note that

the insertion of a single operator ∂xm multiplies the chiral Koba-Nielsen factor (3.11) by,

Pm(zi) = 2πi(pI)mωI(zi) +
∑
j 6=i

kmj ∂i lnE(zi, zj) (4.23)

Thanks to overall momentum conservation, the transformation law of the loop momenta

given in (2.21), and the AI and BI -cycle monodromies (B.17) of the prime form, the one-

form Pm(zi) is homology invariant. Hence, any loop momentum contracting the vector

11In the superfield formalism for the external vertex operators used here, invariance of the amplitude for

N external states under all N ! permutations of the external states provides the superfield implementation of

Bose symmetry for external bosons and Fermi symmetry for external fermions. Full permutation invariance

may be verified by repeatedly using the symmetries (3.32) and (4.20) of the forms ωI(2)∆(3, 4) and the

kinematic factor Tm1,2,3|4,5, respectively.
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block Tm1,2,3|4,5 in (4.22) will be promoted to the combination (4.23). Since (4.22) addition-

ally features bi-holomorphic (1, 0)-forms ∆(i, j) defined in (3.31), it is convenient to define

the following vector-valued meromorphic (1, 0)-form in five variables zi,

Zm1|2,3|4,5 = Pm(1)∆(2, 3)∆(4, 5) (4.24)

An immediate property which will be crucial soon is as follows,

km1 Zm1|2,3|4,5I(5) = ∂1

(
I(5) ∆(2, 3)∆(4, 5)

)
(4.25)

On these grounds, the homology-invariant completion of (4.22) is given by,

KV(5) = −i Tm1,2,3|4,5Z
m
2|3,4|5,1 + cycl(1, 2, 3, 4, 5) (4.26)

However, the terms proportional to kmj T
m
1,2,3|4,5∂2 lnE(z2, zj)∆(3, 4)∆(5, 1), which are

present in (4.26) in addition to the contributions of (4.22), do not preserve the Bose per-

mutation invariance of (4.22). At the same time, neither (4.22) nor (4.26) are BRST

closed. In the next subsection, we shall show that both shortcomings are cured by adding

a loop-momentum independent scalar block.

4.3.1 BRST transformation of KV
(5)

In preparation for the construction of the scalar block in the next subsection, we begin by

calculating and then simplifying the BRST transform of the vector block KV(5). The BRST

transform is obtained by using (4.12) and is given by,

QKV(5) =
(
km1 V1 T2,3|4,5 + km2 V2 T3,1|4,5 + km3 V3 T1,2|4,5

)
Zm2|3,4|5,1

+ cycl(1, 2, 3, 4, 5) (4.27)

Using the cyclic permutations to expose a single vertex operator V3, we have equivalently,

QKV(5) = T1,2|4,5 V3 k
m
3 (Zm2|3,4|5,1 + Zm4|2,3|5,1) + T2,4|5,1 V3 k

m
3 Zm3|4,5|1,2

+ cycl(1, 2, 3, 4, 5) (4.28)

Using the property (4.25) and the fact that by now only zero mode integrations remain

for the vertex operator V3 which depends only on λ and θ, we see that the third term in

QKV(5)I(5) is a total derivative in z3 which vanishes upon integration over z3.

The remaining terms may be simplified as follows. We begin by focussing on the loop

momentum dependent part, which is given by,

km3 (Zm2|3,4|5,1 + Zm4|2,3|5,1)I(5)

∣∣∣
p

= 2πik3 · pI
(
ωI(2)∆(3, 4) + ωI(4)∆(2, 3)

)
∆(5, 1)I(5)

= ∂3

(
∆(2, 4)∆(5, 1)I(5)

)
−
∑
j 6=3

k3 · kj ∂3 lnE(3, j)∆(2, 4)∆(5, 1) I(5) (4.29)
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where the second line has been obtained from the first by using the first identity in (3.32),

and regrouping terms under the total derivative in z3. Upon including the terms without

loop momenta in the Z-functions, and omitting the total derivative contributions, we find,

km3 (Zm2|3,4|5,1 + Zm4|2,3|5,1)I(5) = −L0
3 ∆(5, 1) I(5) (4.30)

where L0
3 is given by (recall that sij = −ki · kj),

L0
3 = s35

[
∂2 lnE(2, 5)∆(3, 4) + ∂4 lnE(4, 5)∆(2, 3) + ∂3 lnE(3, 5)∆(4, 2)

]
+ s31

[
∂2 lnE(2, 1)∆(3, 4) + ∂4 lnE(4, 1)∆(2, 3) + ∂3 lnE(3, 1)∆(4, 2)

]
+ s32

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

]
+ s34

[
∂2 lnE(2, 4)∆(3, 4) + ∂3 lnE(3, 4)∆(4, 2)

]
(4.31)

The form L0
3 is invariant upon homology shifts of the points zi around A and B cycles, as

may be shown using (B.17) and with the help of momentum conservation, which implies

the relation s35 +s31 +s32 +s34 = 0. To render (4.31) manifestly invariant under homology

shifts without the need to invoke momentum conservation, it is convenient to add the

following combination which vanishes in view of momentum conservation,

L1
3 = −1

2
(s35 + s31 + s32 + s34)

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

+ ∂2 lnE(2, 4)∆(3, 4) + ∂3 lnE(3, 4)∆(4, 2)
]

(4.32)

In summary, we have established that, up to total differentials in the vertex operator

position points zi, the contribution from the vector chiral block KV(5) has BRST transform,

QKV(5) = T1,2|4,5 V3 L3 ∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.33)

where L3 = L0
3 + L1

3. In particular, it is independent of loop momenta.

4.4 Construction of the scalar block

By definition, the scalar block KS(5) is the part of the chiral amplitude which is independent

of loop momenta, and the full chiral amplitude is the sum of both contributions,

K(5) = KV(5) +KS(5) (4.34)

BRST invariance of the full amplitude imposes the following constraint on the BRST

variation of the scalar block,

QKS(5) = −T1,2|4,5 V3 L3 ∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.35)

To render K(5) BRST invariant, a solution must be found for KS(5), which is independent

of the loop momenta, without discarding total derivative terms (which would be allowed

for the total chiral amplitude K(5)I(5) but not for KS(5)). In the next subsection, we shall

construct the so-called BRST ancestors, such as S3;1|2|4,5, which satisfy,

QS3;1|2|4,5 = s31V3T1,2|4,5 (4.36)
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and obey symmetry properties analogous to T1,2|4,5, see (3.29),

S3;1|2|4,5 = S3;1|2|5,4 S3;1|2|4,5 + S3;1|5|2,4 + S3;1|4|5,2 = 0 (4.37)

With these ancestors at hand, the BRST variation of KS(5) may now be solved as follows,

KS(5) = L∆(5, 1) + cycl(1, 2, 3, 4, 5) (4.38)

where

L =
1

2
(S3;2|1|4,5 − S3;4|5|1,2)

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2)

− ∂2 lnE(2, 4)∆(3, 4)− ∂3 lnE(3, 4)∆(4, 2)
]

− 1

2
S3;1|2|4,5

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2) + ∂2 lnE(2, 4)∆(3, 4)

+ ∂3 lnE(3, 4)∆(4, 2)− 2∂2 lnE(2, 1)∆(3, 4)

− 2∂4 lnE(4, 1)∆(2, 3)− 2∂3 lnE(3, 1)∆(4, 2)
]

− 1

2
S3;5|4|1,2

[
∂4 lnE(4, 2)∆(2, 3) + ∂3 lnE(3, 2)∆(4, 2) + ∂2 lnE(2, 4)∆(3, 4)

+ ∂3 lnE(3, 4)∆(4, 2)− 2∂2 lnE(2, 5)∆(3, 4)

− 2∂4 lnE(4, 5)∆(2, 3)− 2∂3 lnE(3, 5)∆(4, 2)
]

(4.39)

Note that L is obtained from V3T1,2|4,5L3 by formally substituting s31V3T1,2|4,5 → S3;1|2|4,5
and permutations thereof, in keeping with the structure of (4.36).

4.5 Scalar block in terms of two-particle superfields

The construction of the scalar block KS(5) in the previous section relies on the availability of a

local scalar superfield S3;1|2|4,5 subject to the BRST variation (4.36). To prove the existence

of viable solutions to the BRST condition and obtain their explicit construction, we shall

use the multi-particle superfield formalism, which was developed for genus-zero applications

in string theory in [27] (see [8] for precursors) and tree-level applications in quantum field

theory in [49, 50] (see [51] for precursors). Moreover, multi-particle superfields recursively

capture the short-distance singularities of higher-genus correlators [25, 26, 52] and tree-level

subdiagrams of loop amplitudes in quantum field theory [48, 53].

4.5.1 Preamble

Chiral conformal field theory correlators of conformal primary operators of dimension (1, 0)

on a Riemann surface of genus zero are determined by the positions and residues of their

poles and their monodromy. In the absence of monodromy, this statement is equivalent

to the well-known result that a meromorphic (1, 0) form on a sphere is completely deter-

mined by the positions and residues of its poles. In particular, the positions of its zeros are

completely determined. In a conformal field theory, the singularity structure is determined

uniquely by the OPEs of the fields in the correlator, so that on genus-zero surfaces the corre-

lators may be recovered completely from the OPEs. The chiral amplitudes F(N) of interest
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here are derived from the insertion of chiral vertex operators Ui of conformal dimension

(1, 0) and b-ghosts of conformal dimension (2, 0) whose monodromy is entirely contained

in the chiral Koba-Nielsen factor I(N). The reduced amplitudes K(N) are monodromy-free.

By contrast, on a surface of higher genus, there exist holomorphic forms of dimension

(1, 0), so that specifying the positions and the residues of the poles no longer suffices to

determine the correlator, and additional information on the contribution of the holomorphic

forms is required. Thus, the OPE is generally insufficient to reconstruct the correlators.

4.5.2 Two-particle superfield formalism

The two-particle superfield formalism is based on exploiting the OPE structure of chiral

vertex operators Ui. Controlling the singularities in the OPE (and its multi-particle general-

ization) allows for a complete determination of the corresponding correlators at genus zero.

The operator product of two chiral vertex operators enjoys the following structure [27, 54],

U1(z1)U2(z2)→ −z−s12−1
12

(
∂θαA12α + ΠmA

m
12 + dαW

α
12 +

1

2
NmnF

mn
12

)
(4.40)

up to total derivatives ∂1 and ∂2 of the product of z−s12
12 times a single-valued function of

z2 plus non-singular terms. Upon integration of the vertex operators over their positions,

the total derivative contributions are expected to cancel.

The prefactor z−s12
12 arises from the contractions of the exponentials eik1·x+ with eik2·x+

and is contained in the chiral Koba-Nielsen factor, where k1 and k2 are the momenta of the

external states. The extra factor of z−1
12 arises from the Wick contractions of the operator

∂xm+ in Πm with the exponentials eik1·x+ with eik2·x+ as well as from the pairwise Wick

contractions of the spinor fields. Double poles arise as well, but it was shown [27, 54] that

they may all be included in the total derivatives which are being omitted. The composite

fields A12α, A
m
12,W

α
12, F

mn
12 are referred to as two-particle superfields. Their expressions in

terms of the one-particle superfields are given as follows,

(A12)α =
1

2

[
A2α(ik2 ·A1) +Am2 (γmW1)α − (1↔ 2)

]
(A12)m =

1

2

[
A1pF

pm
2 +Am2 (ik2 ·A1) + (W1γ

mW2)− (1↔ 2)
]

(W12)α =
1

4
(γmnW2)αFmn1 +Wα

2 (ik2 ·A1)− (1↔ 2) (4.41)

(F12)mn = Fmn2 (ik2 ·A1) + F
[m
2 pF

n]p
1 + ik

[m
12 (W1γ

n]W2)− (1↔ 2)

where km12 = km1 + km2 . The BRST transforms of the two-particle superfields which will be

needed here are given as follows [27],

QWα
12 =

1

4
(λγmn)αFmn12 + s12(V1W

α
2 − V2W

α
1 )

QFmn12 = ikm12(λγnW12)− ikn12(λγmW12) + s12(V1F
mn
2 − V2F

mn
1 )

+ s12

(
An1 (λγmW2)−An2 (λγmW1)−Am1 (λγnW2) +Am2 (λγnW1)

)
(4.42)
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Using the pure spinor constraint, we also deduce the following BRST transforms, which

generalize the relations of (2.34) to the case of two-particle superfields,

Q(λγsW12) = s12V1(λγsW2)− s12V2(λγsW1)

Q(λγmnpqrλ)Fmn12 = s12(λγmnpqrλ)(V1F
mn
2 − V2F

mn
1 ) (4.43)

Also at higher genus, the two-particle superfield formalism can be applied to determine the

singular parts of the correlators. However, since singularities of the OPE do not uniquely

determine correlators beyond genus zero, the regular parts of the correlator generically

require additional input beyond the multi-particle superfield formalism. In the next sub-

section, the scalar block S3;1|2|4,5 in the regular parts of the correlator will be obtained

by solving (4.36), i.e. taking BRST invariance and monodromies into account. Our solu-

tion for S3;1|2|4,5 turns out to be expressible in terms of the vector (4.11) and two-particle

superfields, irrespectively of their OPE origin.

4.5.3 Two-particle superfields for the five-point function

To construct the scalar block S3;1|2|4,5 solving (4.36), we begin by defining the following

composites of ghost number three, built out of two-particle superfields in analogy with the

construction of (3.28) in the four-point case,

t12,3|4;5 = (λγmnpqrλ)Fmn12 F pq3 F rs4 (λγsW5)

t4,5|3;12 = (λγmnpqrλ)Fmn4 F pq5 F rs3 (λγsW12) (4.44)

t4,5|12;3 = (λγmnpqrλ)Fmn4 F pq5 F rs12 (λγsW3)

The three composites are obtained from t1,2|3;4 in (3.28) by substituting the corresponding

two-particle superfield for each single-particle field encountered in turn in (3.28). Note that

the substitution of F12 for F1 and F2 in (3.28) lead to the same expression t12,3|4;5. Their

BRST transforms are readily obtained from (4.43) and (2.34), and we find,

Q t12,3|4;5 = s12V1 t2,3|4;5 − s12V2 t1,3|4;5

Q t4,5|3;12 = s12V1 t4,5|3;2 − s12V2 t4,5|3;1 (4.45)

Q t4,5|12;3 = s12V1 t4,5|2;3 − s12V2t4,5|1;3

Upon defining the following combination by analogy with (3.27),

T12,3|4,5 =
1

4

(
t12,3|4;5 + t12,3|5;4 + t4,5|12;3 + t4,5|3;12

)
(4.46)

we verify that its BRST transform is given by,

QT12,3|4,5 = s12(V1T2,3|4,5 − V2T1,3|4,5) (4.47)

The composite T12,3|4,5 by itself does not yet solve (4.36), but it does exhibit a desired

kinematic factor s12, vertex operators V2, and the characteristic building block T1,3|4,5, all

of which are key ingredients on the right side of (4.36).
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4.5.4 The scalar block in terms of two-particle superfields

The BRST variation of T12,3|4,5 in (4.47), together with the expression (4.12) for QTm1,2,3|4,5,

imply the central result of this subsection, namely that the combination,

S1;2|3|4,5 =
1

2

(
i(km1 +km2 −km3 )Tm1,2,3|4,5 + T12,3|4,5 + T13,2|4,5 + T23,1|4,5

)
(4.48)

yields the desired BRST variation (4.36). We note here, for later use in section 6, that the

expressions for Tm1,2,3|4,5 in (4.11) and T12,3|4,5 in (4.46) have been used in [48] to propose

a BRST-invariant and manifestly local representation for the integrands of two-loop five-

point amplitudes in SYM and maximal supergravity.

The steps in deriving the symmetries (3.29) of the chiral blocks for four external states

carry over in identical form to the following relations [48],

T12,3|4,5 = T12,3|5,4 T12,3|4,5 + T12,4|5,3 + T12,5|3,4 = 0 (4.49)

As a consequence, the symmetry,

S1;2|3|4,5 = S1;2|3|5,4 (4.50)

is manifest from the definition (4.48), whereas the relation,

S1;2|3|4,5 + S1;2|4|5,3 + S1;2|5|3,4 ∼= 0 (4.51)

holds in the BRST cohomology, namely up to a Q-exact superfield (an equivalence which

is denoted here and below by the symbol ∼=). Similarly, the vector and scalar superfields

are related via [48],

ikm3 (Tm1,2,3|4,5 + Tm3,4,5|1,2)− T13,2|4,5 − T23,1|4,5 + T34,5|1,2 + T35,4|1,2 ∼= 0 (4.52)

up to a Q-exact quantity, and it would be interesting to identify its BRST ancestor. It is

easy to show via momentum conservation s13 + s23 + s34 + s35 = 0 that the left-hand side

of (4.52) is BRST-closed, and exactness follows from an explicit check that its components

〈. . .〉0 vanish [55].

More generally, any BRST-closed and local combination of permutations of kmj T
m
1,2,3|4,5,

and T12,3|4,5 is checked to be BRST exact as well. Only non-local expressions such as

s−1
12 S1;2|3|4,5−s−1

13 S1;3|2|4,5 can be in the BRST cohomology. The absence of local cohomology

within our alphabet of kinematic building blocks Tm1,2,3|4,5 and T12,3|4,5 is crucial for the

viability of our approach.12

We will later on exploit that any contraction kmj T
m
1,2,3|4,5 of the vector with external

momenta is expressible via permutations of the scalar building block,

ikm1 T
m
1,2,3|4,5 = S2;1|3|4,5 + S3;1|2|4,5 (4.53)

ikm5 T
m
1,2,3|4,5

∼= S1;5|4|2,3 + S2;5|4|1,3 + S3;5|4|1,2

12For instance, for four external states it is possible to construct local pure spinor superfield expressions

in the cohomology of the BRST charge. This fact causes complications when applying the same ideas in

an attempt to obtain the non-singular completion of the three-loop four-point correlator from [26].
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The first identity is an immediate consequence of the definition (4.48) while the second one

is based on (4.52), i.e. only valid up to BRST-exact terms. One can similarly show that

S1;2|3|4,5 − S2;1|3|4,5 = T12,3|4,5 (4.54)

and, via momentum conservation and repeated application of (4.52), that,

S5;1|2|3,4 + S5;2|1|3,4 + S5;3|4|1,2 + S5;4|3|1,2 ∼= 0 (4.55)

the last equality again holding up to BRST exact terms.

5 Structure of the chiral amplitude

In this section, we shall simplify the expression for the genus-two chiral amplitude for five

external states and further explore its structure. Various re-organizations between the

vector block (4.26) and the scalar block (4.38) lead to new representations that in turn

expose manifest homology invariance, BRST invariance, or locality.

5.1 Theta functions and symmetry on the Jacobian variety

The chiral amplitude obtained in section 4 depends on the positions of the vertex operators

and the b-ghost entirely through the holomorphic Abelian differentials ωI , the prime form

E(zi, zj), and single derivatives of its logarithm ∂i lnE(zi, zj). At genus zero and one,

the meromorphic form ∂i lnE(zi, zj) is odd under swapping the points zi and zj , but this

property can no longer hold at higher genus since it is a (1, 0) form in zi but a (0, 0) form in

zj . Under certain conditions, which will turn out to be met for the 5-point amplitude, the

meromorphic form above can be recast directly in terms of ωI and genus-two ϑ-functions

and their first order derivatives, and in this form a higher-genus version of the swapping

symmetry will be recovered. The present subsection is devoted to exhibiting the associated

simplifications of the chiral amplitude.

To express the prime form in terms of genus-two ϑ-functions we use the Abel-Jacobi

map which sends a point zi in Σ to a point ζi in the Jacobian variety J(Σ) (see appendix B),

(ζi)I =

∫ zi

z0

ωI (5.1)

Since only differences ζi−ζj will be needed throughout, all dependence on the choice of the

base point z0 will cancel out. By the definition of the prime form in (B.15), its logarithmic

derivative may be decomposed as follows,

∂i lnE(zi, zj |Ω) = ωI(zi)g
I
i,j − ∂i lnhν(zi) (5.2)

where ν is an arbitrary odd spin structure, hν is the corresponding holomorphic ( 1
2 , 0) form,

and gIi,j is given by the derivative of the logarithm of the ϑ-function for spin structure ν,

gIi,j =
∂

∂ζI
lnϑ[ν](ζ|Ω)

∣∣∣∣
ζ=ζi−ζj

(5.3)
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While each term separately on the right side of (5.2) depends on ν, their sum is independent

of the choice of ν. The key advantage of the combination gIi,j is the symmetry property,

gIj,i = −gIi,j (5.4)

while the derivative of the prime form ∂i lnE(zi, zj) exhibits no such symmetry.

Upon substituting the decomposition (5.2) of the derivative of the prime form into the

five-point amplitude, all dependence on the holomorphic (1/2, 0)-forms hν cancels between

the vector and scalar blocks, provided we choose one and the same odd spin structure for

all substitutions. This cancellation is guaranteed by the fact that the full chiral amplitude

is a well-defined (1, 0) form in each vertex point zi whose monodromy is given solely by

the monodromy of the chiral Koba-Nielsen factor. It may also be verified directly on our

final expressions for the vector and scalar blocks.

The contributions involving hν in the vector block are easy to track from (4.26),

KV(5)

∣∣∣
hν

= −i∂2 lnhν(z2)∆(3, 4)∆(5, 1)km2 T
m
1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (5.5)

where we have used momentum conservation to simplify. A slightly longer calculation is

required to isolate the hν-dependence of the quantity (4.38) in the scalar block,

L
∣∣∣
hν

=
1

2
(S3;2|1|4,5 − S3;4|5|1,2)

[
∂2 lnhν(z2)∆(3, 4)− ∂4 lnhν(z4)∆(2, 3)

]
− 1

2
(S3;1|2|4,5 + S3;5|4|1,2)

[
∂2 lnhν(z2)∆(3, 4) + ∂4 lnhν(z4)∆(2, 3)

]
∼= S3;2|1|4,5 ∂2 lnhν(z2) ∆(3, 4) + S3;4|5|1,2 ∂4 lnhν(z4) ∆(2, 3) (5.6)

The last line has been obtained from the kinematic identity (4.55) in the BRST cohomology.

On these grounds, the sum of all contributions ∂i lnhν(zi) to the overall amplitude can be

obtained by combining (4.26) and (4.38),

K(5)

∣∣∣
hν

= ∂2 lnhν(z2)∆(3, 4)∆(5, 1)
(
−ikm2 Tm1,2,3|4,5 + S3;2|1|4,5 + S1;2|3|4,5

)
+ cycl(1, 2, 3, 4, 5) (5.7)

The sum of the terms in the parentheses on the first line cancels in view of the first kinematic

identity in (4.53) so that K(5)|hν = 0, and all dependence on hν for all points zi cancels.

5.2 Partition into sub-correlators

In view of the results of the previous subsection, we may freely make the following substi-

tutions of all partial derivatives of the logarithm of the prime form within K5,

∂i lnE(zi, zj)→ ωI(zi) g
I
i,j (5.8)

It follows by inspection that both the contributions from the scalar and the vector blocks

may be expressed as linear combinations of holomorphic differential forms of the type

ωI(i)∆(j, k)∆(`,m) with coefficients given by the functions gIp,q, where (i, j, k, `,m) is a
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permutation of (1, 2, 3, 4, 5). In view of the identities (3.32), the vector space spanned by

all such forms ωI(i)∆(j, k)∆(`,m) is five-dimensional and a basis is given by,13

ωI(1)∆(2, 3)∆(4, 5) and its 4 cyclic permutations of (1, 2, 3, 4, 5) (5.9)

Decomposing the correlator in the basis (5.9) we have,

K(5) = ωI(1)∆(2, 3)∆(4, 5)KI5,1,2|3,4 + cycl(1, 2, 3, 4, 5) (5.10)

We shall refer to the quantity KI5,1,2|3,4 and its permutations as sub-correlators.

The sub-correlators comprise all the kinematic dependence, and the free index I is

carried by the loop momentum pIm or by a function gIi,j in (5.3). The explicit form of

KI5,1,2|3,4 resulting from (4.26), (4.38), (4.39), even after reduction to the basis of the five-

forms, produces a large number of terms, but it drastically simplifies after use of the

kinematic identities in section 4.5.4: In terms of the scalar building block S1;2|3|4,5 in (4.48)

and their anti-symmetrized combination T12,3|4,5 in (4.54), the coefficient of each function

gIi,j reduces to just a single term,

KI5,1,2|3,4 = 2πpImT
m
5,1,2|3,4 − g

I
1,2T12,5|3,4 − gI1,5T15,2|3,4 − gI2,5T25,1|3,4

− gI1,3S1;3|4|2,5 − gI2,3S2;3|4|1,5 − gI5,3S5;3|4|1,2

− gI1,4S1;4|3|2,5 − gI2,4S2;4|3|1,5 − gI5,4S5;4|3|1,2 (5.11)

while the coefficient of gI3,4 vanishes.

As reflected by the notation for its subscripts, the sub-correlator KI5,1,2|3,4 exhibits the

same symmetries as the vector building block Tm5,1,2|3,4 in (4.11). It is manifest from (5.11)

that KI5,1,2|3,4 is symmetric with respect to labels that are separated by a comma,

KI5,1,2|3,4 = KI1,5,2|3,4 = KI5,2,1|3,4 KI5,1,2|3,4 = KI5,1,2|4,3 (5.12)

Moreover, the symmetry relation (4.20) of Tm5,1,2|3,4 carries over to

KI5,1,2|3,4 +KI4,1,2|3,5 +KI3,1,2|4,5 ∼= K
I
3,4,5|1,2 (5.13)

as can be verified from (4.54) as well as the symmetries (4.50) and (4.51) of S1;2|3|4,5.

Based on (5.12) and (5.13), one can explain from a simple analogy why the correla-

tor (5.10) is not only cyclically invariant but in fact Bose symmetric in the five external

legs: We have shown that Tm5,1,2|3,4 and KI5,1,2|3,4 have identical symmetry properties, and

the correlator (5.10) is related to its loop-momentum dependent part Kp(5) in (4.22) via

13The number of independent such forms follows from group theory. Each ωI(j) is an SL(2) doublet and

the number of doublets occurring in the five-fold tensor product of doublets is five. To see concretely that all

the forms ωI(i)∆(j, k)∆(`,m) are linear combinations of the forms in (5.9), we first use cyclic permutations

to set i = 1. There are three such forms, ωI(1)∆(2, 3)∆(4, 5), ωI(1)∆(2, 4)∆(3, 5) and ωI(1)∆(2, 5)∆(3, 4).

The second form is a linear combination of the first and third by the second identity in (3.32) while the third

form may be decomposed using the first identity of (3.32), ωI(1)∆(2, 5)∆(3, 4) = −ωI(2)∆(3, 4)∆(5, 1) −
ωI(5)∆(1, 2)∆(3, 4). This cyclic basis was already tacitly used for the loop-momentum dependent part (4.22)

in the opening line for the vector correlator.
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pImT
m
5,1,2|3,4 ↔ K

I
5,1,2|3,4. Hence, permutation invariance of Kp(5) carries over to the full

correlator in (5.10).

Note that (4.48) together with (5.11) reduce the superspace components 〈KI5,1,2|3,4〉0
to permutations of 〈Tm5,1,2|3,4〉0 and 〈T51,2|3,4〉0. The bosonic components of 〈Tm5,1,2|3,4〉0 and

〈T51,2|3,4〉0 can be found in the files available for download from [56].

5.3 Manifesting homology invariance

We shall now verify that the sub-correlator KI5,1,2|3,4 in (5.11) by itself is homology invariant

as defined in (2.21), so that the full amplitude is single-valued on Σ after integration over

the loop momenta. This statement is stronger than the statement that the sum K(5) of all

sub-correlators is homology invariant. The result will imply that, upon multiplication by

the chiral Koba-Nielsen factor I(5), the contribution of each sub-correlator KI5,1,2|3,4 I(5) to

the chiral amplitude gives rise to the expected monodromies (2.20) all by itself.

The result is non-trivial because each function gIi,j has non-trivial monodromy as a

point z` is shifted by a BL-cycle (but is invariant under an AL shift),

zi → zi + δi`BL gIi,j → gIi,j + 2πiδIL(δj` − δi`)
pI → pI − δILk` (5.14)

which is readily established using the transformation laws of the prime form in (B.17).

Implementing the full homology transformations of (2.21) on the loop momenta as well, we

see that KI5,1,2|3,4 is invariant provided the following identities hold,

2πi
(
T12,5|3,4 + T15,2|3,4 + S1;3|4|2,5 + S1;4|3|2,5

)
− 2π(k1)mT

m
5,1,2|3,4

∼= 0 (5.15)

−2πi
(
S1;3|4|2,5 + S2;3|4|1,5 + S5;3|4|1,2

)
− 2π(k3)mT

m
5,1,2|3,4

∼= 0

The validity of these identities can be easily checked in the BRST cohomology by means

of (4.53), (4.54), and (4.55). As a consequence, the integral over loop momenta of the chiral

amplitude will be a single-valued function on Σ (see section 6).

Actually, an even stronger property may be obtained by decomposing KI5,1,2|3,4 into

smaller blocks, each of which will by itself be homology invariant. The key to this re-

organization of KI5,1,2|3,4 is the following combination of gIi,j functions,

GIi,j,k = gIi,j + gIj,k + gIk,i (5.16)

for three distinct points zi, zj , zk. The functions GIi,j,k are single-valued in view of the

definition of gIi,j and (5.14), but they do depend on the spin structure ν involved in defining

gIi,j . We note that the combination ωI(zi)G
I
i,j,k is the unique Abelian differential of the

third kind in zi having simple poles at zj and zk with residues ±1, whose AJ period is

∂J lnϑ[ν](ζj−ζk).
The same kinematic identities (5.15) also allow us to decompose KI5,1,2|3,4 into smaller

blocks each of which is homology invariant. To see this we recast KI5,1,2|3,4 as follows,

KI5,1,2|3,4 ∼= (2πpIm − ik2mg
I
1,2 − ik3mg

I
1,3 − ik4mg

I
1,4 − ik5mg

I
1,5)Tm5,1,2|3,4 −G

I
1,2,5T25,1|3,4

−GI1,2,3S2;3|4|1,5 −GI1,5,3S5;3|4|1,2 −GI1,2,4S2;4|3|1,5 −GI1,5,4S5;4|3|1,2 (5.17)
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The expressions (5.11) and (5.17) agree in the BRST cohomology. To see this, we note

that the coefficients of gI2,5, gI2,3, gI5,3, gI2,4, gI5,4 and pIm are manifestly the same, while the

differences of the coefficients of gI1,2, g
I
1,3, g

I
1,4 and gI1,5 are BRST exact by permutations

of (5.15). Inspection of (5.17) reveals that the combination of pIm and kjmg
I
1,j in the first

line is homology invariant by itself thanks to momentum conservation. Indeed, it can be

viewed as the genus-two uplift of the generalized elliptic integrand Em1|2,3,4,5 in the genus-

one five-point function [9, 57]. Furthermore, each remaining term in (5.17) is single-valued

by itself since its world-sheet dependence is through the single-valued functions GIi,j,k.

5.4 Manifesting BRST invariance

Though the correlator K(5) is BRST invariant by construction, it is instructive to see how

this is realized in the decomposition (5.10) into sub-correlators. Combining the BRST

transformations of the ingredients of KI5,1,2|3,4 from (4.12), (4.36), and (4.47), we find,

QKI5,1,2|3,4 = T1,2|3,4V5

(
2πipI · k5 −

∑
j 6=5

s5j g
I
5,j

)
+ T2,5|3,4V1

(
2πipI · k1 −

∑
j 6=1

s1j g
I
1,j

)
+ T1,5|3,4V2

(
2πipI · k2 −

∑
j 6=2

s2j g
I
2,j

)
(5.18)

Multiplying this result by ωI(1)∆(2, 3)∆(4, 5) and summing over all cyclic permutations

gives the BRST variation of K(5) in the following form,

QK(5) =
(

∆(2, 3)∆(4, 5)T2,5|3,4 + ∆(2, 5)∆(4, 3)T2,3|4,5

)
V1

× ωI(1)
(

2πipI · k1 −
∑
j 6=1

gI1,j s1j

)
+ cycl(1, 2, 3, 4, 5) (5.19)

where we have used cyclic permutations and the first identity in (3.32) to regroup all terms

in ωI(1). The factor on the second line is readily recognized as the logarithmic derivative

∂z1 ln I(5) of the chiral Koba-Nielsen factor (3.11)

∂1 ln I(5) = ωI(1)
(

2πipI · k1 − s12 g
I
1,2 − s13 g

I
1,3 − s14 g

I
1,4 − s15 g

I
1,5

)
(5.20)

so that we find,

Q(K(5)I(5)) =
(

∆(2, 3)∆(4, 5)T2,5|3,4 + ∆(2, 5)∆(4, 3)T2,3|4,5

)
V1∂1I(5)

+ cycl(1, 2, 3, 4, 5) (5.21)

Thus, the effect of acting by the BRST charge is to produce a total derivative in the vertex

points (recall that only the z1-independent zero mode parts of V1 and Ti,j|k,` remain).

The above steps in checking BRST invariance serve as guidance to find a manifestly

BRST invariant representation of K(5)I(5) by adding suitable total derivatives. In the same

way as the manifestly homology-invariant representation (5.17) was constructed by adding
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BRST exact terms to (5.11), we shall now add the following total derivatives,

K̂(5)I(5) =K(5)I(5)−
1

4

{(
S1;2|3|4,5

s12
+
S1;3|2|4,5

s13
+
S1;4|5|2,3

s14
+
S1;5|4|2,3

s15

)
∆(5,2)∆(3,4)∂z1I(5)

+

(
S1;2|5|3,4

s12
+
S1;5|2|3,4

s15
+
S1;3|4|2,5

s13
+
S1;4|3|2,5

s14

)
∆(2,3)∆(4,5)∂z1I(5)

+cycl(1,2,3,4,5)

}
(5.22)

to express each sub-correlator in terms of BRST invariants superfield combinations. The

factor of 1
4 arises from averaging over the four possible ancestors S1;2|3|4,5/s12, S1;3|2|4,5/s13,

S1;4|5|2,3/s14 and S1;5|4|2,3/s15 of the BRST variation V1T2,3|4,5. By expanding the deriva-

tives of the chiral Koba-Nielsen factor and expanding the five-forms in K̂(5) in terms of the

five-element basis in (5.10),

K̂(5) = ωI(1)∆(2, 3)∆(4, 5) K̂I5,1,2|3,4 + cycl(1, 2, 3, 4, 5) (5.23)

we find that the coefficients of the sub-correlator associated with (5.22) are given by,

K̂I5,1,2|3,4 = 2πpImC
m
5,1,2|3,4 − s12 g

I
1,2 (C1;2|5|3,4 − C2;1|5|3,4)

− s15 g
I
1,5 (C1;5|2|3,4 − C5;1|2|3,4)− s25 g

I
2,5 (C2;5|1|3,4 − C5;2|1|3,4)

− s13 g
I
1,3C1;3|4|2,5 − s23 g

I
2,3C2;3|4|1,5 − s35 g

I
5,3C5;3|4|1,2

− s14 g
I
1,4C1;4|3|2,5 − s24 g

I
2,4C2;4|3|1,5 − s45 g

I
5,4C5;4|3|1,2 (5.24)

The superfields now enter through the following non-local combinations,

C1;3|4|2,5 =
1

4

(
3S1;3|4|2,5

s13
−
S1;4|3|2,5

s14
−
S1;2|5|3,4

s12
−
S1;5|2|3,4

s15

)
(5.25)

and

Cm5,1,2|3,4 = Tm5,1,2|3,4 −
i

4
km1

(
S1;2|5|3,4

s12
+
S1;5|2|3,4

s15
+
S1;3|4|2,5

s13
+
S1;4|3|2,5

s14

)
− i

4
km2

(
S2;1|5|3,4

s12
+
S2;5|1|3,4

s25
+
S2;3|4|1,5

s23
+
S2;4|3|1,5

s24

)
− i

4
km5

(
S5;1|2|3,4

s15
+
S5;2|1|3,4

s25
+
S5;3|4|1,2

s35
+
S5;4|3|1,2

s45

)
(5.26)

Using (4.12) and (4.36), it is straightforward to verify that both the scalar and the vector

building block are BRST invariant,

QCm5,1,2|3,4 = 0 QC1;2|5|3,4 = 0 (5.27)

The BRST invariants (5.25) and (5.26) can be viewed as the analogues of the homology-

invariant building blocks in (5.17) — in both cases, the respective invariance of the sub-

correlator is made manifest term by term. As another virtue of these BRST invariants,

their superspace components 〈C1;2|5|3,4〉0 and 〈Cm5,1,2|3,4〉0 confirm the equivalence of the
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present approach in the minimal pure spinor formalism with the non-minimal one: The

bosonic components are unchanged (up to identical normalization factors) when trading

the building blocks T12,3|4,5 and Tm1,2,3|4,5 [48] in the minimal pure spinor variables for their

counterparts in the non-minimal formalism (denoted by T12,3|4,5 and Tm1,2,3|4,5 in [25]).14

The expansion of the two-loop BRST invariants (5.25) and (5.26) in terms of gluon

polarizations is related to the one-loop invariants Cm1|2,3,4,5 and C1|23,4,5 from [59] that com-

pletely determine the five-point correlator [57]. Using the files for the bosonic components

of 〈Cm1|2,3,4,5〉0 and 〈C1|23,4,5〉0 available to download from [56] one can verify,

Cm1,2,3|4,5
∼= −

1

180
s45C

m
1|2,3,4,5 +

1

360
(km4 − km5 )s45C1|45,2,3

+
1

720
km2
(
s45(C1|24,3,5 + C1|25,3,4) + (s13 + s23)C1|23,4,5

)
+

1

720
km3
(
s45(C1|34,2,5 + C1|35,2,4)− (s12 + s23)C1|23,4,5)

)
− 1

720
(km1 + km2 + km3 )

(
s24C1|24,3,5 + s25C1|25,3,4 + (2↔ 3)

)
(5.28)

and

C1;3|4|2,5 ∼=
1

720

(
s35C1|35,2,4 + s45C1|45,2,3 − 2s34C1|34,2,5 − s23C1|23,4,5 − s24C1|24,3,5

)
(5.29)

These identities reduce the components 〈K̂I5,1,2|3,4〉0 to one-loop building blocks and will

play an important role in the discussion of S-duality in a companion paper [30]. The

identities (5.28) and (5.29) generalize the pure spinor superspace relation between the

four-point kinematic factors at one and two loops, and it would be similarly interesting to

find a superspace proof analogous to [47].

We emphasize that the individual sub-correlators KI5,1,2|3,4I(5) and K̂I5,1,2|3,4I(5) can-

not be identified since total derivatives only arise from the interplay between different

permutations.

5.5 Simultaneous homology invariance and BRST invariance

One can repeat the steps of subsection 5.3 to obtain manifestly homology invariant and

manifestly BRST invariant sub-correlators (5.24). For this purpose, we rewrite the kine-

matic identities of section 4.5.4 in terms of the BRST invariants (5.26) and (5.25),

ikm2 C
m
5,1,2|3,4 = s12C1;2|5|3,4 + s25C5;2|1|3,4

ikm3 C
m
5,1,2|3,4

∼= s13C1;3|4|2,5 + s23C2;3|4|1,5 + s35C5;3|4|1,2

0 ∼= s12C2;1|5|3,4 + s25C2;5|1|3,4 + s23C2;3|4|1,5 + s24C2;4|3|1,5

0 ∼= C2;1|5|3,4 + C2;1|4|5,3 + C2;1|3|4,5

0 = C2;1|5|3,4 − C2;1|5|4,3 (5.30)

14For the genus-three four-point amplitude, the building blocks in the minimal pure spinor formalism [58]

and the non-minimal one [26] turn out to be inequivalent, due to the existence of non-trivial, local expressions

in the BRST cohomology.
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These identities can be obtained formally by promoting Tm5,1,2|3,4 → Cm5,1,2|3,4 and S1;3|4|2,5 →
s13C1;3|4|2,5 in the relations among local building blocks in section 4.5.4. Moreover, the

same operations formally map the manifestly local correlator representation (5.11) to

the manifestly BRST invariant one in (5.24). There is an additional identity among

BRST invariants,

0 = C2;1|5|3,4 + C2;5|1|3,4 + C2;3|4|1,5 + C2;4|3|1,5 (5.31)

which directly follows from the definition (5.25) and does not seem to have any counterpart

for the local superfields.

It is easy to show using the identities of (5.30) that the manifestly BRST-invariant

sub-correlator (5.24) is cohomologically equivalent to,

K̂I5,1,2|3,4 ∼=

2πpIm − i
5∑
j=2

(kj)mg
I
1,j

Cm5,1,2|3,4 − s25G
I
1,2,5(C2;5|1|3,4 − C5;2|1|3,4) (5.32)

− s23G
I
1,2,3C2;3|4|1,5 − s35G

I
1,5,3C5;3|4|1,2 − s24G

I
1,2,4C2;4|3|1,5 − s45G

I
1,5,4C5;4|3|1,2

This representation of the sub-correlator manifests both BRST invariance and homology

invariance in each term, see (5.16) for the definition of the functions GIa,b,c. Moreover, one

can verify that the symmetry property (4.20) of KI5,1,2|3,4 carries over,

K̂I5,1,2|3,4 + K̂I4,1,2|3,5 + K̂I3,1,2|4,5 ∼= K̂
I
3,4,5|1,2 (5.33)

This is most conveniently shown by repeating the steps that led to (5.13) with the above

relations between BRST invariants and using (5.30). Note that (5.32) also follows from

the formal replacements Tm5,1,2|3,4 → Cm5,1,2|3,4 and S1;3|4|2,5 → s13C1;3|4|2,5 in the manifestly

local and homology-invariant correlator representation (5.17).

Similar representations with manifest homology invariance and BRST invariance have

been studied for multi-particle correlators at one loop. The one-loop analogues of the

representation (5.30) of K(5) were the starting point to unravel double-copy structures in

one-loop open-string amplitudes [9, 57]. The combinatorial structure of the one-loop corre-

lators in the reference is identical to those of gravitational matrix elements with an insertion

of the supersymmetrized curvature invariant R4. Accordingly, it would be interesting if

the two-loop five-point correlators based on (5.32) could be related to matrix elements of

a similar gravitational counterterm of type D4R4 and D2R5.

5.6 The simplified correlator in terms of prime forms

One can also rewrite the simplified representations of the five-point correlator in terms

of prime forms ∂i lnE(zi, zj) instead of the function gIi,j of the Abel maps. Given the

permutation symmetric contribution Kp(5) in (4.22) linear in the loop momentum and the

scalar quantity,

R12 = ∂1 lnE(1, 2)
[
S1;2|3|4,5∆(2, 4)∆(3, 5) + S1;2|4|3,5∆(2, 3)∆(4, 5)

]
+ (1↔ 2) (5.34)
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we claim that a BRST equivalent representation of the five-point correlator is given by,

K(5) = Kp(5) +

5∑
1≤i<j

Rij (5.35)

The expression (5.34) for R12 = R21 is permutation symmetric in 3, 4, 5 up to BRST-

exact terms by the relations (3.32) and (4.37) of the forms and the superfields. The

(1
2 , 0)-forms in the decomposition (5.2) of the prime form can be easily checked to cancel

from the permutation sum in (5.35) by repeated use of the identity (4.55) in the BRST

cohomology. Hence, one can effectively substitute ∂i lnE(zi, zj)→ ωI(zi)g
I
i,j within (5.35)

and expand the correlator in terms of five-forms ωI(1)∆(2, 3)∆(4, 5). By matching the

resulting expression with the basis of five-forms in (5.10), we reproduce the sub-correlator

in (5.11), validating (5.35) as an alternative representation of the five-point correlator.

The building blocks Rij in (5.34) conveniently track the short-distance singularities of

the correlator as pairs of punctures collide: the simple pole as z1 → z2 stems solely from

setting ∂1 lnE(1, 2)→ z−1
12 as well as ∂2 lnE(2, 1)→ −z−1

12 and ∆(1, j)→ ∆(2, j) in (5.34).

This leads to a simple form of the residues

Resz1→z2K(5) = Resz1→z2R12

= (S1;2|3|4,5 − S2;1|3|4,5)∆(2, 4)∆(3, 5)

+ (S1;2|4|3,5 − S2;1|4|3,5)∆(2, 3)∆(4, 5)

= T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5) (5.36)

where (4.54) has been used in passing to the last line. On the kinematic pole (k1+k2)−2

resulting from integration over z1 − z2, the two-particle superfields factorize correctly on

the single particle superfields of Tx,3|4,5 with a cubic vertex of the gauge-multiplet peeled

off, see for instance appendix A.4 of [25].

5.6.1 Comparison with the OPE correlator from [25]

The non-minimal pure spinor prescription was used in [25] to determine the genus-two five-

point correlator up to holomorphic terms, namely terms with no worldsheet singularities.

These holomorphic terms are of course essential to obtain the full amplitude and for ex-

tracting the effective interactions in the low energy expansion beyond the lowest order [30];

indeed for four-point scattering they are responsible for the entire correlator.

The result of the OPE analysis can be written as15

KOPE
(5) =

[
2πpImT

m
1,2,3|4,5∆(5, 1)ωI(z2)∆(3, 4) + cycl(1, 2, 3, 4, 5)

]
(5.37)

+
[
∂1 lnE(1, 2)(T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5)) + (1, 2|1, 2, 3, 4, 5)

]
where the notation +(i, j|1, 2, 3, 4, 5) means a sum over all ordered choices of i and j from

the set {1, 2, 3, 4, 5} for a total of
(

5
2

)
terms.

15In quoting equation (5.40) from [25] we used the notation ΠI
m → 2πpIm and replaced η12 → ∂1 lnE(1, 2).

This last replacement rectifies the definition used in that reference in which ηij was the derivative of the

full Green function without stripping the zero modes.
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In order to relate (5.37) to the full correlator (5.35) which includes regular terms we

first observe that the first line of (5.37) is equal to Kp(5) in (4.22). To relate the scalar terms

we rewrite R12 using (4.54)

R12 = ∂1 lnE(1, 2)
(
T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5)

)
(5.38)

+ S2;1|3|4,5
(
∂1 lnE(1, 2)∆(2, 4)∆(3, 5) + ∂2 lnE(2, 1)∆(1, 4)∆(3, 5)

)
+ S2;1|4|3,5

(
∂1 lnE(1, 2)∆(2, 3)∆(4, 5) + ∂2 lnE(2, 1)∆(1, 3)∆(4, 5)

)
The first line of (5.38) contains singularities in the worldsheet and reproduces the corre-

sponding terms in (5.37). The second and third lines are non-singular on Σ and therefore

could not be determined in the OPE analysis of [25].

Using (5.38), the full five-point correlator at two loops (5.35) can be written as,

K(5) = KOPE
(5) +

[
Kreg

(12),3,4,5 + (1, 2|1, 2, 3, 4, 5)
]

(5.39)

where KOPE
(5) is the result (5.37) from [25] while

Kreg
(12),3,4,5 ≡ S2;1|3|4,5

(
∂1 lnE(1, 2)∆(2, 4)∆(3, 5) + ∂2 lnE(2, 1)∆(1, 4)∆(3, 5)

)
+ S2;1|4|3,5

(
∂1 lnE(1, 2)∆(2, 3)∆(4, 5) + ∂2 lnE(2, 1)∆(1, 3)∆(4, 5)

)
(5.40)

is a non-singular function on the worldsheet.

It is interesting to observe that the regular functions in (5.40) are natural from an OPE

perspective as they correspond to the difference in performing the OPEs as z1 → z2 or as

z2 → z1, a distinction which is absent at genus zero or one. Together with the existence of

the building block S1;2|3|4,5, this observation suggests a way to find the regular completion

of singular correlators such as (5.37). The relative coefficient between the singular and

regular pieces can then be fixed by imposing overall BRST invariance. In hindsight, applied

to the correlator (5.37), this procedure yields the full five-point correlator derived in the

previous sections.

5.7 An alternative correlator in terms of prime forms

A downside of the correlator representation (5.35) in terms of prime forms is that the loop

momentum dependence occurs via Kp(5) in (4.22) instead of the homology-invariant combi-

nations Zm1|2,3|4,5 in (4.24). As an alternative to (5.35) with more transparent monodromy

properties, the correlator can be rewritten as,

K(5) =−iηmnTm5,1,2|3,4Z
n
1|2,3|4,5

+∂1 lnE(1,2)
(
S1;2|3|4,5∆(2,5)∆(3,4)+S5;2|1|3,4∆(2,3)∆(4,5)

)
+∂1 lnE(1,3)

(
S1;3|2|4,5∆(2,5)∆(3,4)+S2;3|4|1,5∆(2,3)∆(4,5)+S5;3|4|1,2∆(2,3)∆(4,5)

)
+∂1 lnE(1,4)

(
S1;4|5|2,3∆(2,5)∆(3,4)+S2;4|3|1,5∆(2,3)∆(4,5)+S5;4|3|1,2∆(2,3)∆(4,5)

)
+∂1 lnE(1,5)

(
S1;5|4|2,3∆(2,5)∆(3,4)+S2;5|1|3,4∆(2,3)∆(4,5)

)
+cycl(1,2, . . . ,5) (5.41)
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Once again, the dependence on the half-differentials cancels16 between the contributions

(k1)mT
m
5,1,2|3,4∂1 lnhν(1) from Zn1|2,3|4,5 and the remaining terms in (5.41), so one can again

replace ∂i lnE(i, j)→ ωI(i)g
I
i,j . Under this rule, Zn1|2,3|4,5 directly reproduces the coefficient

of Tm5,1,2|3,4 in the manifestly homology-invariant representation (5.17) of the sub-correlator.

The contributions proportional to GIi,j,k to (5.17) in turn can be recovered from the ex-

plicit prime forms in (5.41). For the latter class of terms, the symmetries (3.32) of the

forms and kinematic identities including (4.55) need to be used, and different terms in the

cyclic orbit of (5.41) contribute to the sub-correlator KI5,1,2|3,4 multiplying the basis form

ωI(1)∆(2, 3)∆(4, 5).

6 Type II and Heterotic 5-point amplitudes

In this section, we shall use the chiral amplitude F(5), derived in the previous section, to

construct the genus-two amplitude for five external states for the Type II and Heterotic

strings. We begin by recalling the structure of the chiral amplitude,

F(5) =
〈
K(5)

〉
0
I(5) (6.1)

where I(5) is the chiral Koba-Nielsen factor (3.11) and
〈
K(5)

〉
0

is the integral (3.5) of

the chiral correlator K(5) over the zero modes of λ and θ. The chiral correlator K(5) =

KV(5)+KS(5) was initially constructed in section 4 from two terms KV(5) and KS(5) each of which

individually is a single-valued function of the vertex points zi upon integration over loop

momenta, and whose sum is BRST closed even though neither term individually is BRST

closed. Section 5 then presents various simplified forms of K(5) where different subsets of

its properties are made manifest. For the purpose of integrating over loop momenta, it is

the forms (5.35) and (5.41) that will be particularly convenient.

6.1 Assembling both chiralities for closed string amplitudes

Scattering amplitudes of closed strings are obtained by pairing left-moving and right-

moving chiral blocks and integrating over loop momenta pI in R10, over vertex opera-

tor positions zi in Σ, and over the moduli space M2 of compact genus-two Riemann

surfaces, which we parametrize locally by the period matrix ΩIJ in the Siegel upper half-

plane [2, 3, 28]. As a result, the amplitude takes the following form, up to an overall

numerical normalization factor that remains to be determined by unitarity,

A(5) = δ

(
5∑
i=1

ki

)∫
M2

|d3Ω|2
∫

Σ5

∫
R20

dpF(5)(zi, ki, p
I) F̃(5)(zi,−k∗i ,−pI) (6.2)

where d3Ω = dΩ11dΩ12dΩ22 produces the holomorphic top form on M2. For each of the

closed superstring theories, F(5) is the supersymmetric chiral amplitude given in (6.1), while

the second chiral amplitude F̃(5) depends on the type of superstrings under consideration.

In either case, the combined integrals will be absolutely convergent for purely imaginary

16This cancellation is based on the kinematic identities (4.53), (4.55) and occurs separately for all five

terms in the cyclic orbit.
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values of the kinematic variables sij . The amplitude obtained this way may be analytically

continued to values of sij throughout the complex plane thereby producing the expected

physical poles and branch cuts, as was shown explicitly for the genus-one amplitude in [29].

The dependence on the polarization vectors, polarization spinors, or internal degrees

of freedom for the Heterotic string of both F(5) and F̃(5) will be suppressed throughout. In

all cases, the product F(5)F̃(5) includes the absolute value of the chiral Koba-Nielsen factor

I(5) as a universal factor. This factor is conveniently rearranged as follows,

∣∣I(5)

∣∣2 = exp

−2πYIJ p̂
I · p̂J +

∑
i<j

sij G(zi, zj)


p̂I = pI + Y IJ

∑
i

ki Im

∫ zi

z0

ωJ (6.3)

where G is the Arakelov Green function of (2.12), which may be replaced by the string Green

function (2.11) since the total momentum is conserved. In addition to the exponential

factor, both F(5) and F̃(5) generically also have explicit dependence on the momenta pI

through a polynomial prefactor, which it will be convenient to trade for a dependence on

the shifted momentum p̂I . Note that the measure dp is unaffected by this shift.

In preparation for integrating over the loop momenta, we shall recast the dependence of

the supersymmetric chiral correlator (6.1) on the loop momentum in a form that exhibits

the single-valued Arakelov Green function G. To do so, we eliminate ∂i lnE(i, j) from

Zm1|2,3|4,5 in favor of −∂iG(i, j) plus Abelian differentials, Abel-Jacobi integrals and the

shifts γ(zi) in (2.13). The Abelian differentials and integrals precisely combine with the

loop momenta into their shifted versions p̂ in (6.3), and we obtain,

Zm1|2,3|4,5 =

2πi(p̂I)mωI(1)−
5∑
j=2

kmj ∂1G(1, j) + km1 ∂1γ(z1)

 ∆(2, 3)∆(4, 5) (6.4)

The remaining terms in the correlator representation (5.41) are independent of loop mo-

menta and cancel all instances of ∂iγ(zi). We now rearrange K(5) as follows,

K(5) =W + 2πip̂ImVmI (6.5)

where the combinations VmI are similar to (6.4) and W collects the scalar leftover terms,

VmI =Tm1,2,3|4,5ωI(2)∆(3,4)∆(5,1)+ cycl(1,2,3,4,5) (6.6)

W = iTm5,1,2|3,4

5∑
j=2

kmj ∂1G(1, j)∆(2,3)∆(4,5) (6.7)

−∂1G(1,2)
(
S1;2|3|4,5∆(2,5)∆(3,4)+S5;2|1|3,4∆(2,3)∆(4,5)

)
−∂1G(1,3)

(
S1;3|2|4,5∆(2,5)∆(3,4)+S2;3|4|1,5∆(2,3)∆(4,5)+S5;3|4|1,2∆(2,3)∆(4,5)

)
−∂1G(1,4)

(
S1;4|5|2,3∆(2,5)∆(3,4)+S2;4|3|1,5∆(2,3)∆(4,5)+S5;4|3|1,2∆(2,3)∆(4,5)

)
−∂1G(1,5)

(
S1;5|4|2,3∆(2,5)∆(3,4)+S2;5|1|3,4∆(2,3)∆(4,5)

)
+cycl(1,2,3,4,5)
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and the cyclic sum in the expression for W is to be applied to all five lines. To obtain

the expression (6.7) for W, we have substituted (6.4) into (5.41) and replaced everywhere

∂i lnE(i, j) by −∂iG(i, j) − 2πiωI(i)Y
IJ Im

∫ zi
zj
ωJ . One can then observe that all such

terms proportional to Y IJ cancel in the cyclic sum between W and 2πip̂ImVmI . This can-

cellation follows from the same manipulations that were described in section 5.7 to re-

late (5.41) to (5.17). Finally, we have replaced all derivatives ∂iG(i, j) of the string Green

function (2.11) by derivatives ∂iG(i, j) of the Arakelov Green function (2.12), since the

difference ∂iγ(zi) between the two cancels in the complete chiral correlator, by the same

mechanism which ensures the cancellation of the derivatives of the half-forms ∂i lnhν(zi)

in section 5.1. In the new representation (6.7), both VmI and W are now manifestly single-

valued in zi.

While the expression (6.7) for the scalar correlator is adapted to the representa-

tion (5.41) of K(5), we can bring the loop-momentum-independent part W into an al-

ternative form that is more reminiscent of representation (5.35). For this purpose, the

manipulations of the forms and kinematic factors that relate (5.35) to (5.41) can be readily

repeated with p̂I and −∂iG(i, j) in place of pI and ∂i lnE(i, j). Hence, we can immediately

rewrite (6.7) by performing the appropriate replacements in (5.35),

W =

5∑
1≤i<j

Qij (6.8)

where Qij is given by the following simple combinations,

Q12 =− ∂1G(1, 2)
[
S1;2|3|4,5∆(2, 4)∆(3, 5) + S1;2|4|3,5∆(2, 3)∆(4, 5)

]
− ∂2G(2, 1)

[
S2;1|3|4,5∆(1, 4)∆(3, 5) + S2;1|4|3,5∆(1, 3)∆(4, 5)

]
(6.9)

To proceed further, we distinguish between the different string theories.

6.2 Type II amplitudes

The complete amplitudes are simplest to organize for the Type II superstrings, since the

massless sectors of these theories consist only of the unique Type IIA or Type IIB su-

pergravity multiplet. Type IIA and Type IIB amplitudes involve the chiral amplitude

F̃(5) = 〈K̃(5)〉0I(5), where K̃(5) is obtained from K(5) by substituting the left-moving vector

and spinor polarizations by the right-moving vector and spinor polarizations of opposite

(Type IIA) or same space-time chirality (Type IIB), respectively. In either case, the struc-

ture of K̃(5) is as follows,

K̃(5) = W̃ + 2πi p̂ImṼmI (6.10)

With the help of this expression, the loop momentum integrations may now be carried out,∫
R20

dpK(5) K̃(5)

∣∣I(5)

∣∣2 =
1

det (2Y )5

(
W W̃ − πY IJ VmI ṼmJ

) ∏
i<j

esijG(i,j) (6.11)

The full amplitude therefore becomes,

A(5) = δ
( 5∑
i=1

ki

)∫
M2

dµ
1

det (2Y )2

∫
Σ5

〈
W W̃ − πY IJ VmI ṼmJ

〉
0

∏
i<j

esijG(i,j) (6.12)
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where 〈. . .〉0 collects the zero-mode integrals (3.5) of the θα and λα in both chiral halves.

Three of the powers of det (2Y ) have been regrouped to produce the modular invariant

measure on M2, given by,

dµ =
|d3Ω|2

det (2Y )3
(6.13)

The remaining two factors of det (2Y ) combine with the products of bi-holomorphic forms

∆ of (3.31) and their complex conjugates so that the combinations,

∆(i, j) ∆(k, `)

det (2Y )
(6.14)

are modular invariant. In summary, after integration over loop momenta, the resulting

integrand for the scattering amplitude is invariant under the full modular group Sp(4,Z).

Scattering amplitudes for Type II strings compactified on a torus T d are obtained as

usual by restricting the polarizations of the external particles and inserting a sum over soli-

tonic configurations of the compact coordinates [60], namely the Siegel-Narain theta series

Γd,d,2(g,B|Ω) = det (2Y )d/2
∑

mIα∈Z2d

nI,α∈Z2d

e−πL
IJYIJ+2πimIαn

J,αXIJ , (6.15)

where X = Re Ω and mI
α, n

I,α are the momenta and windings along the α-th direction of

the torus, and

LIJ = (mI
α +Bαγn

I,γ)gαβ(mJ
β +Bβδn

J,δ) + nI,αgαβn
J,β (6.16)

where gαβ and Bαβ are the constant metric and B-field along the torus, and gαβ is the

inverse metric, measured in units of α′. The Siegel-Narain theta series (6.15) is invariant

under modular transformations in Sp(4,Z) and T-duality transformations in O(d, d,Z)

acting on the usual way on (g,B). The prefactor det (2Y )d/2 cancels the part of factor

det (2Y )5 in (6.11) which would have come from integrating over the loop momenta pαI .

6.3 Heterotic string amplitudes

We shall now construct the five-point genus-two amplitude for Heterotic strings. In this

case, the massless sector in ten dimensions consists of two types of multiplets, namely the

N = 1 supergravity (SG) multiplet and the N = 1 super Yang-Mills (SYM) multiplet with

gauge group E8 × E8 (for the HE string) or Spin(32)/Z2 (for the HO string) [61, 62].

Similar to the Type II superstring, the five-point amplitude for Heterotic strings is

given as an integral (6.2) of the product of the chiral amplitude F(5) in (6.1) for the super-

string, and the (conjugate of) the chiral amplitude F̃(5) for the bosonic string, compactified

on the tori associated with the root lattice of E8 × E8 or Spin(32)/Z2, respectively. The

latter is given by the product of the chiral measure for the bosonic string at genus two,

given by the inverse of the Igusa cusp form17 Ψ10 [63, 64], times the correlator of the

17Recall that Ψ10 =
∏
κ ϑ

2[κ](0) where the product runs over all even spin structures.
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right-moving vertex operators, given by either,

VSYM
i (zi) =

∑
a

tai j
a(zi) e

iki·x+(zi)

VSG
i (zi) = ε̃∗i ·

(
∂x+(zi) + 2πpIωI(zi)

)
eiki·x+(zi) (6.17)

where tai is the gauge field polarization, ja(zi) is the corresponding holomorphic current,

and ε̃∗i is the polarization vector for the right movers. For the five-point amplitude, each

external state may belong either to the SYM or the SG multiplet, thereby giving rise

to six different types of amplitudes. Schematically representing the states in the SYM

multiplet by F (the field strength), and the states in the SG multiplet by R (including

the Riemann tensor, the anti-symmetric tensor field, and the dilaton), the six possible

structures correspond to R5, R4F,R3F 2, R2F 3, RF 4, and F 5. Since the gauge groups for

both Heterotic theories are simple, it is immediate that the amplitude corresponding to

R4F vanishes.

Correlators of the chiral vertex operators VSG
i for the supergravity multiplet may be

computed straightforwardly using the Wick contractions (2.19). Although gauge invariance

under ε̃mi → ε̃mi +αkmi is not immediately manifest, it is possible to recast the result in terms

of the gauge invariant combinations fmni = ε̃mi k
n
i − ε̃ni kmi by discarding exact differentials

which do not contribute to the integrated amplitude. This process was carried out for the

four-point amplitude in sections 12.4 and 12.5 of [16] and may be generalized to the five-

point amplitude in a straightforward, if tedious, manner which is beyond the scope of this

paper. Decomposing the resulting chiral correlator in the same way as in (6.10), in terms

of the shifted loop momenta p̂Im in (6.3), the integral over loop momenta (6.12) produces

a term proportional to Y IJ(ε̃∗i · VJ), which has no analogue for the four-point amplitude.

For scattering amplitudes of SYM multiplets, it is convenient to fermionize the 16

chiral compact bosons into 32 chiral worldsheet fermions λI(z) for I = 1, · · · , 32 (not to be

confused with the pure spinor ghost field λα). For the case of HO, all 32 fermions transform

in the defining representation of SO(32) and have the same spin structure κ (independent,

and to be distinguished from the spin structure on the supersymmetric side). For the case

of HE, the 32 fermions are split into two groups of 16 transforming under the defining

representation of SO(16)1 × SO(16)2, the maximal orthogonal subgroup of E8 × E8, and

κ = (κ1, κ2) labels the corresponding independent spin structures κ1 and κ2. In absence

of fermionic insertions, the partition functions for the internal fermions are given by

ZHO =
∑
κ

ϑ[κ](0)16 ZHE =
∑
κ1,κ2

ϑ[κ1](0)8ϑ[κ2](0)8 (6.18)

where the sum runs over all even spin structures.

The current ja(z) appearing in the vertex operator (6.17) for either of the two Heterotic

strings is given in terms of λI(z) by,

ja(z) =
1

2

32∑
I,J=1

T aIJ λ
I(z)λJ(z) (6.19)
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Here, T aIJ are the anti-symmetric generators in the defining representations of the Lie

algebras of SO(32) and SO(16)1 × SO(16)2, respectively. The remaining generators of

E8×E8 are accounted for by spin fields, which will not be needed here. The correlators of

the holomorphic fields λI(z) are given by,

〈λI(z)λJ(w)〉κ = −δIJ Sκ(z, w) (6.20)

where Sκ is the Szegö kernel for the spin structure κ for the HO theory, and κ equals κ1

or κ2 for the HE theory, depending on whether both I, J belong to SO(16)1 or SO(16)2.

Self-contractions on the current are absent so that 〈ja(z)〉κ = 0. The current correlators

required for the case of the four-point amplitude [16] are,18

〈ja1(z1)ja2(z2)〉κ =
1

2
tr(T a1T a2)Sκ(z1, z2)2 (6.21)

〈ja1(z1)ja2(z2)ja3(z3)〉κ = tr(T a1T a2T a3)Sκ(1, 2)Sκ(2, 3)Sκ(3, 1)

〈ja1(z1)ja2(z2)ja3(z3)ja4(z4)〉κ = −tr(T a1T a2T a3T a4)Sκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 1)

+
1

4
tr(T a1T a2)tr(T a3T a4)Sκ(1, 2)2Sκ(3, 4)2 + (2↔ 3, 4)

where we denote as usual Sκ(i, j) = Sκ(zi, zj). For the five-point amplitude, we require the

correlators of (6.21) as well as the following five-point correlators,

〈 5∏
i=1

jai(zi)
〉
κ

=
1

2

∑
(i,j|k,`,m)

tr(T aiT aj )tr(T akT a`T am)Sκ(i, j)2Sκ(k, `)Sκ(`,m)Sκ(m, k)

+
∑

(i,j,k,`)

tr(T a1T aiT ajT akT a`)Sκ(1, i)Sκ(i, j)Sκ(j, k)Sκ(k, `)Sκ(`, 1)

(6.22)

where the first sum is over all 10 inequivalent partitions of five into 2+3, and the second

sum is over all 12 permutations of 2,3,4,5 modulo reversal (i, j, k, `)→ (`, k, j, i).

The spin structure sums required for amplitudes with up to five SYM states can be

expressed in terms of the Siegel modular forms Ψ4k of weight 4k,

Ψ4k =
∑
κ

ϑ[κ](0)8k (6.23)

and the following correlators,

F
(2)
4k (z1, z2) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)2 (6.24)

F
(3)
4k (z1, z2, z3) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 1)

F
(2,2)
4k (z1, z2; z3, z4) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)2Sκ(3, 4)2

F
(4)
4k (z1, z2, z3, z4) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 1)

18Note that tr(T a1 · · ·T an) = 0 whenever generators of both SO(16)1 and SO(16)2 occur under the trace.
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F
(2,3)
4k (z1, z2; z3, z4, z5) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)2Sκ(3, 4)Sκ(4, 5)Sκ(5, 3)

F
(5)
4k (z1, z2, z3, z4, z5) =

∑
κ

ϑ[κ](0)8kSκ(1, 2)Sκ(2, 3)Sκ(3, 4)Sκ(4, 5)Sκ(5, 1)

The first sum F
(2)
4k can be computed in terms of Ψ4k through [16, eq. 12.7],

F
(2)
4k (z, w) = Ψ4k∂z∂w lnE(z, w) +

πi

2
ωI(z)ωJ(w)∂IJΨ4k (6.25)

where ∂IJ is the derivative with respect to ΩIJ for I ≤ J . The product of three Szegö

kernels may be decomposed onto a sum of squares of Szegö kernels times functions that

are independent of spin structures [31], so that F
(3)
4k may be similarly decomposed onto a

sum of F
(2)
4k functions. Similarly, it will be shown in [31] that the products of four and five

Szegö kernels may all be decomposed onto sums of the product of two squares of Szegö

kernels, so that F
(4)
4k , F

(2,3)
4k , and F

(5)
4k may all be decomposed onto sums of F

(2,2)
4k with

known coefficients.

We end with perhaps the simplest example of a Heterotic amplitude for five external

SYM states, two belonging to the first E8, and three belonging to the second E8. The

corresponding chiral amplitude may be read off from the ingredients presented above, and

is given by,

F̃(5) =
1

4Ψ10(Ω)
tr(T a1T a2)tr(T a3T a4T a5)F

(2)
4 (z1, z2)F

(3)
4 (z3, z4, z5) (6.26)

where a1, a2 refer to SO(16)1 while a3, a4, a5 refer to SO(16)2.

As usual, the HE and HO Heterotic strings become indistinguishable after compactify-

ing on a torus Td. The chiral integrand F(5) is obtained by replacing the partition function

ZHO or ZHE in (6.18) by the Siegel-Narain theta series Γd+16,d,2, with suitable insertions

of lattice momenta for each current as in the four-point amplitude discussed in [65].

7 The supergravity limit

In this section we shall study the field theory limit of the string amplitudes for five ex-

ternal massless states derived in the earlier sections of this paper. In the limit α′ → 0,

keeping the external momenta ki fixed, the Type II superstring amplitudes are expected

to reduce to the two-loop field theory amplitudes of N = 2 supergravity, while in the

Heterotic strings the amplitudes are expected to reduce to those of N = 1 supergrav-

ity plus super-Yang-Mills [66]. For four-dimensional external states, the loop integrand

for two-loop supergravity was determined in [67] using the spinor-helicity formalism and

color-kinematics duality [68, 69] (see [70] for a review). This result was later extended to

external states in ten dimensions in [48] by making use of pure spinor superspace.

Whether the external states of the superstring amplitude are in a supergravity or

super-Yang-Mills multiplet, the corresponding field theory amplitudes involve a sum over

the six Feynman graph topologies depicted in figure 1. As we shall demonstrate below for

Type II superstrings (and sketch for the Heterotic and Type I cases), the field theory limit
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of the integrand over loop momenta, moduli, and vertex points of the superstring ampli-

tude for five external massless states, derived in earlier sections, reduces, at leading order

in α′, to the integrand over loop momenta and Feynman parameters of the correspond-

ing supergravity amplitude [48, 67]. The precise matching of these integrands provides a

strong consistency check on the validity of our construction. Higher-order terms in the

α′ expansion of the integrated amplitude produce higher-derivative effective interactions

to the supergravity and/or super-Yang-Mills Lagrangian which will be investigated in a

companion paper [30].

To leading order in the α′ expansion, the amplitude is dominated by the contribu-

tion from maximally degenerate Riemann surfaces. In order to study these degenerations

systematically, it will be useful to interpret the vertex operator positions as punctures on

the Riemann surface, and use the Deligne-Mumford compactification of the moduli space

of punctured Riemann surfaces, in the present case of genus two with five punctures. All

degenerations are then obtained by a finite sequence of the following two elementary de-

generations,

1. the separating degeneration, in which a trivial homology cycle shrinks, thereby de-

generating the surface into two disconnected surfaces;

2. the non-separating degeneration, in which a non-trivial homology cycle shrinks,

thereby degenerating the dual cycle into a long and thin funnel.

The degeneration by which two or more punctures collide is equivalent, in the Deligne-

Mumford compactification, to a separating degeneration in which a sphere with three or

more punctures separates from the remaining surface. The maximal degeneration of the

Riemann surface is obtained by a maximal sequence of separating and non-separating de-

generations in which for example all the A-cycles of the surface shrink, and the B-cycles

become long thin funnels. These funnels are effectively connected by internal interac-

tion vertices, just as in field theory Feynman diagrams. A maximal degeneration may be

described by a trivalent graph Γ, sometimes known as a tropical Riemann surface (see

e.g. [71, 72]), which reproduces the on-shell Feynman graphs of quantum field theory. The

vertices of the graph correspond to genus zero components with three punctures, while the

edges ea correspond to the long thin funnels. The lengths La ∈ R+ and twists σa ∈ [0, 2π[

of the funnels provide an appropriate set of coordinates on the moduli space near the

maximal degeneration locus.

In the limit where all La are scaled to infinity at the same rate, the string integrand is

expected to reduce to the field theory integrand in the world-line formalism [73–75], where

La is the Schwinger parameter for the propagator on edge ea. Upon using the chiral splitting

procedure in string theory, the momentum pI is identified with the loop momentum in field

theory [76]. For the pure spinor superstring, the string integrand is expected to reduce to

the field theory integrand in pure spinor world-line formalism [77, 78] and the double-copy

structure of the loop integrand in supergravity should be manifest [53, 79, 80].
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Figure 1. The six graphs contributing to two-loop five-point amplitudes in maximally super-

symmetric Yang-Mills and supergravity [67]. The reducible diagrams a′, b′, c′ were denoted d, e, f

respectively in [48].

1PI 1PR

Figure 2. 1PI versus 1PR two-loop skeletons.

7.1 Maximal degeneration of a genus-two Riemann surface

For a compact genus-two Riemann surface without punctures, there are two possible max-

imal degenerations, corresponding to the one-particle irreducible (1PI) or one-particle re-

ducible (1PR) two-loop skeletons depicted in figure 2. In principle, there can also be contact

terms supported on “figure-eight” diagrams where the length of the middle edge in either

of the two skeletons shrinks to zero.19

For a genus-two Riemann surface with punctures, the various different maximal de-

generations correspond to the various different ways of attaching external legs to either

skeleton of the case without punctures, possibly by forming trees, such that the resulting

graph is still connected. For five punctures, many different connected graphs may be drawn.

It will be convenient to arrange the graphs into two classes (1) graphs which contain no

triangle or bubble subgraphs; and (2) all other graphs. All graphs obtained from the 1PR

vacuum graph fall in class (2).

All the graphs in class (1) are represented in figure 3 and, by inspection, are seen to be

in one-to-one correspondence with the field theory graphs of figure 1. The graphs in class (2)

correspond to field theory graphs that vanish in view of the extended supersymmetry of

19Such contact terms are known to arise in the field theory limit of Heterotic amplitudes [65] and Type

I partition functions in a magnetic background [81].
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(a) (b) (c)

(a′) (b′) (c′)

Figure 3. All maximal degeneration graphs of class (1), namely containing no subgraphs with one,

two, or three external edges..

Figure 4. Some of the maximal degeneration graphs of class (2), namely containing one or several

subgraphs with one, two, or three external edges, whose contributions to the genus-two amplitude

with five massless external states vanish.

the corresponding supergravity or super-Yang-Mills theory, a property that is sometimes

referred to as “no bubble or triangles” [82]. In both Type II and Heterotic superstring

theories, on-shell amplitudes with one, two, or three external massless states are expected

to vanish. General arguments to this effect have been given in [83, 84] while the result

was proven by explicit calculation in the genus-two case in [16] for both Type II and

Heterotic strings. Our proof here that the genus-two five-point amplitude reduces to the

corresponding supergravity amplitude in the α′ → 0 limit, will be based on showing that the

diagrams of class (1) precisely match those of field theory and that those of class (2) vanish.

The Schwinger parameters L1, L2, L3 for the two-loop 1PI skeleton may be identified

with the imaginary part Y = Im Ω of the period matrix Ω via the relation [85, 86],

Y =
1

α′

(
L1 + L3 −L3

−L3 L2 + L3

)
(7.1)

in the limit α′ → 0 holding the Li’s fixed. The location of the external legs along the

two loops gives five additional parameters t1, . . . , t5 lying in one of the intervals [0, La],

depending on the topology of the diagram. The topologies a′, b′, c′ where two external

legs form a tree before attaching to the skeleton are included by allowing two of these

parameters to coincide.

7.2 Tropical limit of the Abelian differentials and prime form

Before analyzing the tropical limit of the string integrand, we review some basic results

about the tropical limit of Abelian differentials and Green functions [32, 33, 72]. We choose

a canonical homology basis of cycles AI and BI and conjugate normalized holomorphic
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b1 b2

ti ∈ [0, L1] ti ∈ [0, L2]

ti∈[0, L3]

•
P Γ

•t2

•
t1γ(t1, t2)

•
t3

•t4 γ(t3, t4)

•t5
•P3

•
P2

•
P1

Γ′

Figure 5. The left panel exhibits the two-loop 1PI skeleton graph Γ with a choice of homology

basis and parametrization. The right panel exhibits the simply connected graph Γ′ = Γ\P obtained

by removing one vertex P from Γ, and labeling Pa the endpoint of the edge ea. On Γ′ each pair

of points ti, tj is connected by a unique path γ(ti, tj). When ti, tj are on the same edge we have

∂iL(ti, tj) = sgn(ti − tj) dti, while when ti, tj are on different edges we have ∂iL(ti, tj) = −dti. For

the purpose of illustration, we have displayed vertices corresponding to (a permutation of) graph (c)

in figure 1, the other graphs being analogous.

Abelian differentials ωI on the Riemann surface Σ (see appendix B for a summary). First,

let bI be a homology basis on the skeleton graph Γ arising by degenerating the homology

basis (AI ,BI)→ (0, bI) on Σ (see figure 5). In the tropical limit, the Abelian differentials

scale as follows,

ωI(zj)→
i ωtr

I (tj)

α′
(7.2)

where ωtr
I is equal to ±dtj on the edge ea if ea belongs to the cycle bI , and 0 otherwise.

The sign is fixed by the orientation of ea with respect to the cycle bI . For the choice of

parametrization and homology basis for the skeleton graph in figure 5, we have,

ωtr
1 (zj) =


+dtj : on left edge

−dtj : on middle edge ,

0 : on right edge

ωtr
2 (zj) =


0 : on left edge

+dtj : on middle edge

−dtj : on right edge

(7.3)

The imaginary part of the period matrix YIJ ∼
∫
bI
ωtr
J /α

′ reproduces (7.1) above.

In order to discuss the tropical limit of the prime form, careful account must be taken of

the fact that the prime form is a multi-valued form on Σ×Σ. A single-valued representation

may be obtained by considering the prime form on the simply connected domain obtained

by fixing a base point P on Σ and then cutting Σ along four canonical homology basis

cycles AI , BI chosen to pass through P (see e.g. figure 12 in [2]). In the tropical limit of

a genus-two Riemann surface, the point P will lie at one of the vertices of the skeleton Γ

such that the graph Γ′ = Γ \P becomes simply connected [76], as shown in the right panel

of figure 5 where the vertex P has been replaced by endpoints Pa for the open edges ea.

Between any two points ti, tj ∈ Γ′, corresponding to the tropical limit of zi, zj on Σ, there
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is now a single path γ(ti, tj) lying inside Γ′,20 such that the Abel-Jacobi map scales like,

(ζi − ζj)I →
i

α′
ζtr
i,j,I ζtr

i,j,I = −
∫
γ(ti,tj)

ωtr
I (7.4)

in the tropical limit. As explained in [72], the logarithm of the prime form then scales as

the length of the path,

lnE(zi, zj |Ω)→ π

α′
L(ti, tj) (7.5)

To establish this21 one shows that, for an adapted choice of the odd spin structure ν =

[κ′, κ′′], the theta series in (B.14) and (B.15) are dominated by a single vector n in the

sum (B.9), such that,

lnE(zi, zj |Ω)→ 2π

α′
|ζtr
i,j · κ′| −

1

2
ln |ωtr(ti) · κ′| −

1

2
ln |ωtr(tj) · κ′| (7.6)

Here, “adapted” means that the two arguments of the logarithms, coming from the tropical

limit of the half-differentials, are non-zero. Whether a given spin structure is adapted or

not strongly depend on the positions ti, tj : e.g for the two paths in the right panel of

figure 5, we have (omitting a factor dti in the first three columns),

κ′ σ1, σ2 σ3 σ4 2ζtr
1,2 · κ′ 2ζtr

2,3 · κ′ 2ζtr
3,4 · κ′

(1
2 , 0) 1 0 −1 t1 − t2 t2 − L1 L2 − t4

(0, 1
2) 0 −1 1 0 t3 − L3 t3 + t4 − L2 − L3

(1
2 ,

1
2) −1 1 0 t1 − t2 t2 + t3 − L1 − L3 t3 − L3

(7.7)

where we have used the following abbreviations for i = 1, 2, 3, 4 in the table,

σi = 2ωtr(ti) · κ′ (7.8)

For the path γ(t1, t2), the spin structures ( 1
2 , 0) and (1

2 ,
1
2) are both adapted, and the first

term in (7.6) is proportional to the length L(ti, tj). For the path γ(t2, t3), only the spin

structure (1
2 ,

1
2) is adapted, and the same conclusion holds.

For other spin structures, deemed “not adapted”, one of the combinations ωtr(ti) · κ′

or ωtr(tj) · κ′ or both in the arguments of the logarithms of (7.6) may vanish in taking the

tropical limit naively. Instead, one must retain sub-leading corrections near the tropical

limit. Since the prime form E(zi, zj |Ω) is independent of the choice of odd spin structure ν,

these sub-leading corrections must conspire to reproduce the behavior (7.5).

It follows from (7.5) that the one-form ∂i lnE(zi, zj) reduces to ±πdti/α′ in the tropical

limit, where the sign depends whether the variation dti increases or decreases the length

L(ti, tj). With the conventions of figure 5, the sign is always negative if the two points are

on different edges (e.g. for the path γ(t3, t4)), while it depends on the sign of ti−tj if the

two points are on the same edge (e.g. for the path γ(t1, t2)).

20The path γ(ti, tj) is not to be confused with the functions γ(z|Ω) which relate the string to the Arakelov

Green functions in (2.12).
21We are grateful to Piotr Tourkine for helpful discussions on this matter.
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As a first application, the tropical limit of the homology-invariant one-form (4.23) is

given by,

Pm(zi) −→
2π

α′

−`m +
1

2

∑
j∈J

sgn(ti − tj)kmj −
1

2

∑
j /∈J

kmj

 dti (7.9)

where J is the set of external legs on the same edge as i (we include i in the set J , but

set sgn(0) = 0), and `m is the loop momentum flowing through the point i on the skeleton

diagram (in absence of other external vertices). By momentum conservation, this can be

rewritten as,

2π

α′

−`m +
1

2

∑
j∈J

(1 + sgn(ti − tj))kmj

 dti (7.10)

which is recognized as the average of the momenta flowing into and out of the vertex point

ti along the graph Γ′.

As a second application, we consider the tropical limit of the function gIi,j defined

in (5.3),

gIi,j =
∂

∂ζI
lnϑ[ν](ζ|Ω)

∣∣∣
ζ=ζi−ζj

(ζi − ζj)I =

∫ zi

zj

ωI (7.11)

Unlike the derivative of the prime form it has the antisymmetry property gIj,i = −gIi,j . For

a choice of odd spin structure ν = [κ′, κ′′] such that ζtr
i,j · κ′ 6= 0, the tropical limit of the

theta series lnϑ[ν](ζ|Ω) is given by the first term in (7.6), whose derivative with respect to

ζIi,j gives,

gIi,j → −2iπ sgn(ζtr
i,j · κ′)κ′I (7.12)

One may check that this result is consistent with the relation (5.2) in the tropical limit.

For the specific choice of spin structure ( 1
2 ,

1
2) and any pair of points in the right panel of

figure 5, we conclude that the tropical limit of gIi,j is independent on I and given by,

gIi,j →


+iπ : ti, tj on distinct edges (L1, L2), (L1, L3) or (L3, L2)

−iπ : ti, tj on distinct edges (L2, L1), (L3, L1) or (L2, L3)

iπ sgn(tj − ti) : ti, tj both on edge L1

iπ sgn(ti − tj) : ti, tj both on edge L2

(7.13)

This conclusion would not hold for pairs of points on the middle edge of figure 5, as the

contraction ζtr
i,j · κ′ would vanish in that case. The fact that (7.13) is independent on I

makes the spin structure ( 1
2 ,

1
2) particularly convenient, although one could in principle use

any other odd spin structure.

7.3 Tropical limit of the chiral integrand: pentaboxes

We shall now analyze the behavior of the chiral integrand in the regime where the Abel-

Jacobi map between the vertex points scales to infinity at the same rate ζi − ζj ∼ iζtr
i,j/α

′

as the period matrix Ω ∼ Y/α′. This degeneration will turn out to reproduce precisely the

pentabox diagrams (a, b, c) which occur both in supergravity and SYM theory. Contact
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terms responsible for the double-box diagrams (a′, b′, c′) require a discussion of the full

integrand, which is deferred to the next subsection.

Recall that the chiral integrand is given by (5.10), which we copy for convenience after

cyclically permuting the legs,

K(5) = ωI(2)∆(3, 4)∆(5, 1)KI1,2,3|4,5 + cycl(1, 2, 3, 4, 5) (7.14)

where KI1,2,3|4,5 is the sub-correlator (5.11), cyclically permuted,

KI1,2,3|4,5 = 2πpImT
m
1,2,3|4,5 − g

I
2,3T23,1|4,5 − gI2,1T21,3|4,5 − gI3,1T31,2|4,5

− gI2,4S2;4|5|1,3 − gI3,4S3;4|5|2,1 − gI1,4S1;4|5|2,3

− gI2,5S2;5|4|3,1 − gI3,5S3;5|4|2,1 − gI1,5S1;5|4|2,3 (7.15)

where we recall that ∆(i, j) is the bi-holomorphic (1, 0) form (3.31).

In the tropical limit, ∆(i, j) vanishes by antisymmetry if the vertices ti, tj lie on

the same edge of the skeleton diagram, and reduces to ±dti dtj otherwise with the sign

determined by (7.3). This implies that the three edges of the graph can carry (3,2,0), (3,1,1)

or (2, 2, 1) external legs and therefore rules out the first two graphs in figure 4 with bubble

and triangle subdiagrams. The third and fourth graph of figure 4 in turn involve bubble and

triangle subdiagrams within a 1PR skeleton and drop out from the field theory limit for a

different reason: Graphs obtained from the 1PR vacuum graph in the right panel of figure 2

cannot contribute by unitarity as a consequence of the non-renormalization theorems for

three-point functions of on-shell massless states at one loop [66] and two loops [16].

We shall assign the external legs such that, for the odd spin structure κ′ = (1
2 ,

1
2),

the inner product ζtr
i,j · κ′ in (7.6) is non-zero for all pairs of points, so that (7.13) applies.

This is for convenience only, since the result cannot depend on the choice of κ′ since

the correlator (7.14) is expressible in terms of prime forms, see (5.35) or (5.41), which

are independent of the spin structure. At the same time, the tropical limit of (7.14) is

unaffected by the vanishing of certain ω(tj) · κ′ in (7.7) since they descend from the ( 1
2 , 0)-

forms hν(zj) that were shown to cancel from K(5) in section 5.1.

Consider first the case where the external legs are distributed as in the planar

pentabox (a) of figure 1. By (7.3), the Abelian differentials ωI(zj) reduce to

(a) :
•t1
•t2
•t3 •t4

•t5
=⇒

(
ω1(zj)

ω2(zj)

)
(a)−→

(
1 1 1 0 0

0 0 0 −1 −1

)
× i dtj

α′
(7.16)

Thus the only non-vanishing term in the sum over cyclic permutations in (7.14) is the first

one proportional to ωI(2)∆(3, 4)∆(5, 1) with ωI(2)→ iδI,1dt2/α
′, namely

K(5)
(a)→ − i

(α′)5
K1

1,2,3|4,5 dt1 . . . dt5
(a)→ − 2π

(α′)5
N (a)

1,2,3|4,5(`) dt1 . . . dt5 (7.17)
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with

N (a)
1,2,3|4,5(`) = ip1

mT
m
1,2,3|4,5+

1

2

(
T23,1|4,5+T12,3|4,5+T13,2|4,5

)
+

1

2

(
S2;4|5|1,3+S3;4|5|2,1+S1;4|5|2,3+S2;5|4|3,1+S3;5|4|2,1+S1;5|4|2,1

)
(7.18)

= i
(
p1
m−

1

2
(k1+k2+k3)m

)
Tm1,2,3|4,5+

1

2

(
T23,1|4,5+T12,3|4,5+T13,2|4,5

)
One can identify p1

m with the loop momentum ` in figure 1 (a) which is in the lower end of

the edge supporting the external particles 1, 2, 3. The combination (k1+k2+k3)mT
m
1,2,3|4,5

is obtained from the six permutations of S2;4|5|1,3 via (4.53). Up to a global rescaling of

internal and external momenta by a factor of i which was left implicit in [48], this is in

precise agreement with the numerator for the diagram (a) computed in that reference.

Next, consider the case where the external legs are distributed as in the non-planar

pentabox (b) of figure 1. By (7.3), the Abelian differentials ωI(zj) now reduce to

(b) :
•t1
•t2
•t3

•t5•t4 =⇒
(
ω1(zj)

ω2(zj)

)
(b)→

(
1 1 1 −1 0

0 0 0 1 −1

)
× i dtj

α′
(7.19)

The only non-vanishing term in the sum over cyclic permutations in (7.14) is again the

first one proportional to ωI(2)∆(3, 4)∆(5, 1) with ωI(2)→ iδI,1dt2/α
′, leading to the same

integrand as in (7.18) up to an overall sign from the fourth column,

K(5)
(b)→ i

(α′)5
K1

1,2,3|4,5 dt1 . . . dt5
(b)→ − 2π

(α′)5
N (b)

1,2,3|4,5(`) dt1 . . . dt5 (7.20)

with

N (b)
1,2,3|4,5(`) = −N (a)

1,2,3|4,5(`) (7.21)

The tropical limit of K1
1,2,3|4,5 is identical in the cases of (a) and (b) since gI4,5 does not

occur in (7.15). The non-planar pentabox numerator (7.21) is again in precise agreement

with the numerator for the diagram (b) computed in [48].

Finally, let consider the case where the external legs are distributed as in the non-planar

pentabox (c) of figure 1 (also see the right panel of figure 5). The Abelian differentials ωI(zj)

now reduce to,

(c) :
•t2
•t1

•t4
•t3

•t5 =⇒
(
ω1(zj)

ω2(zj)

)
(c)→

(
1 1 0 0 −1

0 0 −1 −1 1

)
× i dtj

α′
(7.22)

There are now two non-vanishing terms in the sum over cyclic permutations in (7.14),

namely ωI(1)∆(2, 3) ∆(4, 5) and ωI(4)∆(5, 1) ∆(2, 3),

K(5)
(c)→ i

(α′)5
(K1

5,1,2|3,4 −K
2
3,4,5|1,2) dt1 . . . dt5

(c)→ 2π

(α′)5
N (c)

1,2|4,3|5(`, r) dt1 . . . dt5 (7.23)

with loop momenta p1 = ` as well as p2 = −r in figure 1 (c) and

N (c)
1,2|4,3|5(`, r) = N (a)

1,2,5|3,4(p1) +N (a)
3,4,5|1,2(−p2) = N (a)

1,2,5|3,4(`) +N (a)
3,4,5|1,2(r) (7.24)
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again in precise agreement with the numerator for the diagram (c) computed in [48]. The

degenerations K1
5,1,2|3,4 → −2πiN (a)

1,2,5|3,4(`) and K2
3,4,5|1,2 → 2πiN (a)

3,4,5|1,2(r) are obtained by

repeating the steps of (7.18) which are now sensitive to all the five cases of gIi,j covered

in (7.13). The change of orientation in p2 = −r stems from the fact that the definition (2.15)

of loop momenta via AI -cycle integrals leads to both of p1 and p2 pointing to the left in

figure 1 (c), whereas r is drawn to point to the right. Moreover, note the relative sign

between the right-hand sides of (7.23) and (7.17), (7.20) in identifying the numerators:

This sign reflects the orientation of leg 5 in figure 1 (c) whether its external edge points to

the left or right and drops out from the gravity numerator N (c)
1,2|4,3|5(`, r)Ñ (c)

1,2|4,3|5(`, r) that

we are deriving from the tropical limit.

Note that the relations (7.21) and (7.24) among pentabox numerators are the kinematic

Jacobi identities which are consequences of color-kinematics duality [67]. In our setup, the

kinematic Jacobi identities among N (a), N (b), N (c) follow from the degenerations of the

five-forms in the correlator (7.14) and the tropical limit (7.13) of gIi,j .

7.4 Tropical limit of the Type II string integrand: double boxes

Scattering amplitudes in Type II strings involve an integral (6.2) of the product

K(5)K̃(5)|I(5)|2 over the loop momentum, vertex points zi and complex structure mod-

uli parametrized by Ω. As we review in subsection 7.5 below, the tropical limit of the

chiral integrand discussed in the previous subsection reproduces exactly the contribution

of the pentabox diagrams (a, b, c) in figure 1. However, there are additional contributions

from maximal degenerations of the genus-two Riemann surface where two punctures collide,

which are responsible for the double-box diagrams (a′, b′, c′), as we now show.

Due to short-distance singularities in the chiral integrand arising from derivatives of

the prime form,

∂zi lnE(zi, zj) =
1

zi−zj
+O(zi−zj) (7.25)

the integral of the product K(5)K̃(5)|I(5)|2 over vertex points zi is not finite in the low

energy expansion, but rather has kinematical poles of the form∫
|z|<R

d2z |z|−2s−2 f(z) = −πf(0)

s
+O(s0) (7.26)

where we assume that the function f(z) is continuous at the origin. The O(s0) term depends

on the radius R > 0 used to excise the singularity at z = 0, but does not contribute to the

field theory limit at leading order and can be ignored.

The coefficients of the kinematic poles can be computed by collecting the four possible

sources of poles of the form 1/|zi−zj |2, and performing the replacement,

|∂zi lnE(zi, zj)|2

− ∂zi lnE(zi, zj)∂zj lnE(zj , zi)

 ∼ 1

|zi−zj |2
→ −πδ

2(zi, zj)

sij
(7.27)

Note that products of prime forms with different arguments ∂zi lnE(zi, zj)∂zi lnE(zi, zk)

with k 6= j do not lead to any kinematical pole since the resulting singularity (zi−zj)−1(z̄i−
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z̄k)
−1 integrates to zero after integration over the phase of zi−zj . Moreover, maximal de-

generations with three of more punctures colliding do not contribute to the field theory limit

at five points since they would require more than one prime form in the chiral correlators

such that the integration rule (7.26) can be used multiple times.

The singularities (z1−z2)−1 of the chiral correlator were already extracted in (5.36)

based on the representation (5.35). The residue at s12 = 0 of the relevant chiral contribu-

tions is given by,

K12
(5) = Resz1→z2K(5) = T12,3|4,5∆(2, 4)∆(3, 5) + T12,4|3,5∆(2, 3)∆(4, 5) (7.28)

which is permutation symmetric in 3, 4, 5, by virtue of the symmetries (3.29) and (3.32).

Hence, the graphs where the vertices 1 and 2 collide are captured by applying the replace-

ment (7.27) to,

K(5)K̃(5) →
K12

(5)K̃
12
(5)

|z1−z2|2
→ −πδ

2(z1, z2)

s12
K12

(5)K̃
12
(5) (7.29)

We will now extract the chiral contributions to double-box numerators for diagrams

(a′), (b′), (c′) in figure 1. Given that the chiral contribution (7.28) shares the structure of

the four-point correlator (3.33), the computations below closely follow the tropical limit of

the two-loop four-point amplitude in [72].

In the planar case (a′), the abelian differentials ωI(zj) with j = 2, 3, 4, 5 reduce to

(see (7.3))

(a′) :
•t3
•t1,t2

•t4
•t5

=⇒
(
ω1(zj)

ω2(zj)

)
(a′)→

(
1 1 0 0

0 0 −1 −1

)
× i dtj

α′
(7.30)

and (7.28) reduces to the first term ∆(2, 4)∆(3, 5) → dt2 . . . dt5/(α
′)4. The resulting nu-

merator agrees with the result of [48] (denoted by N (d)
12,3|4,5(`) in the reference)

(α′)4K12
(5)

(a′)→ T12,3|4,5 dt2 . . . dt5
(a′)→ N (a′)

12,3|4,5(`) dt2 . . . dt5 (7.31)

Moreover, this expression for planar double-box numerators matches antisymmetric com-

binations of planar pentabox numerators N (a) in (7.18)

N (a′)
12,3|4,5(`) = T12,3|4,5 = N (a)

1,2,3|4,5(`)−N (a)
2,1,3|4,5(`) (7.32)

and therefore realizes another kinematic Jacobi identity required by the color-kinematics

duality [67].

The above steps can be repeated to determine the non-planar double-box numerators

for diagrams (b′) and (c′) in figure 1. The degeneration of the Abelian differentials,

(b′) :
•t3
•t1,t2

•t5•t4 =⇒
(
ω1(zj)

ω2(zj)

)
(b′)→

(
1 1 −1 0

0 0 1 −1

)
× i dtj

α′

(c′) : •t1,t2
•t4
•t5

•t3 =⇒
(
ω1(zj)

ω2(zj)

)
(c′)→

(
1 −1 0 0

0 1 −1 −1

)
× i dtj

α′
(7.33)
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again suppresses the second term ∼ ∆(2, 3)∆(4, 5) in (7.28), and we obtain an extra minus

sign in ∆(2, 4)∆(3, 5) → −dt2 . . . dt5/(α′)4 as compared to the planar case (7.30). Hence,

the tropical limit of the correlator for diagrams (b′), (c′) is

(α′)4K12
(5)

(b′)→ −T12,3|4,5 dt2 . . . dt5 , (α′)4K12
(5)

(c′)→ −T12,3|4,5 dt2 . . . dt5 (7.34)

and one can read off the non-planar double-box numerators

N (b′)
12,3|4,5(`) = N (c′)

12,3|4,5(`) = −T12,3|4,5 = −N (a′)
12,3|4,5(`) (7.35)

They reproduce the numerators of [48] (denoted by N (e)
12,3|4,5(`), N (f)

12,3|4,5(`) in the reference)

and obey the color-kinematics duality when comparing with non-planar pentabox numer-

ators. Also note that the symmetry of N (a′)
12,3|4,5(`), N (b′)

12,3|4,5(`), N (c′)
12,3|4,5(`) under 4 ↔ 5 is

consistent with the vanishing of numerators associated with triangle-subgraphs.

7.5 Assembling the supergravity amplitude

Collecting the results in the previous two subsections, we find that the field theory limit

of the genus-two scattering amplitude in Type II strings precisely produces the complete

two-loop five-point amplitude in maximal supergravity in D dimensions, in the double-copy

representation of [48] (with the structure of [67]),

ASG
5 = δ

 5∑
j=1

kj

∫
R2D

〈1

2
N (a)

1,2,3|4,5(`)Ñ (a)
1,2,3|4,5(`)I

(a)
1,2,3,4,5+

1

4
N (b)

1,2,3|4,5(`)Ñ (b)
1,2,3|4,5(`)I

(b)
1,2,3,4,5

+
1

4
N (c)

1,2|4,3|5(`,r)Ñ (c)
1,2|4,3|5(`,r)I

(c)
1,2,3,4,5+

1

2
N (a′)

12,3|4,5Ñ
(a′)
12,3|4,5I

(a′)
1,2,3,4,5 (7.36)

+
1

4
N (b′)

12,3|4,5Ñ
(b′)
12,3|4,5I

(b′)
1,2,3,4,5+

1

4
N (c′)

12,3|4,5Ñ
(c′)
12,3|4,5I

(c′)
1,2,3,4,5+sym(1,2,3,4,5)

〉
0
d`dr

Here, the symmetry factors 1
2 and 1

4 ensure that the sum over 5! permutations of the

external legs does not overcount individual diagrams. The factors I
(x)
1,2,3,4,5 are the usual

products of Feynman propagators for the diagrams in figure 1,

I
(a)
1,2,3,4,5 ≡

1

`2r2(`+ r)2(`− k1)2(`− k12)2(`− k123)2 (r − k5)2(r − k45)2

I
(b)
1,2,3,4,5 ≡

1

`2r2(`+ r)2(`− k1)2(`− k12)2(`− k123)2 (r − k5)2(`+ r + k4)2

I
(c)
1,2,3,4,5 ≡

1

`2r2(`+ r)2(`− k1)2(`− k12)2 (r − k3)2(r − k34)2(`+ r + k5)2
(7.37)

I
(a′)
1,2,3,4,5 ≡

1

k2
12`

2r2(`+ r)2(`− k12)2(`− k123)2 (r − k5)2(r − k45)2

I
(b′)
1,2,3,4,5 ≡

1

k2
12`

2r2(`+ r)2(`− k12)2(`− k123)2 (r − k5)2(r + `+ k4)2

I
(c′)
1,2,3,4,5 ≡

1

k2
12`

2r2(`+ r)2(`− k12)2(`+ r + k3)2 (r − k5)2(r − k45)2
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The zero-mode integral 〈. . .〉0 in (3.5) yields the components of the superspace numerators

for arbitrary external states of the ten-dimensional Type-II multiplets, see [56] for the

bosonic components of Tm1,2,3|4,5 and T12,3|4,5.

The supergravity amplitude (7.36) has been given for general spacetime dimension D

by considering a compactification on a T 10−D-torus and retaining only the zero-momentum

and -winding modes in the Siegel-Narain theta series (6.15). The superspace components of

the kinematic factors in (7.36) can be dimensionally reduced to any D ≤ 10 and integrated

over the loop momenta in D < 7, where the integrals are UV-finite. Dimensional reduction

to D = 4 does not directly reproduce the BCJ numerators of [67] in spinor-helicity variables

since their building blocks γij involve certain inverse Levi-Civita invariants that are specific

to four dimensions. Still, the symmetry properties of the combinations of γij in [67] match

those of the superspace building blocks in (7.36), see appendix D of [48] for details. The

difference between the amplitude representation in [67] and the dimensionally reduced

superspace numerators of (7.36) should cancel when integrating the sum over all diagrams,

for instance using the recent progress on the relevant integrals in [87–90].

7.6 Comments on the Heterotic and Type I strings

Having correctly reproduced the two-loop integrand in maximal supergravity, one would

like to also match the two-loop integrand in N = 4 super-Yang-Mills theory, which is closely

related to the supergravity amplitude by the double-copy prescription [67]. One possible

strategy is to extract the field theory limit of the scattering amplitude of five gauge bosons in

the Heterotic strings, but this would produce the integrand for half-maximal supergravity,

where both vector multiplets and the gravitational multiplet propagate in the loops. While

the four-point two-loop amplitude in half-maximal supergravity is known [91], this is not

the case to our knowledge for the five-point amplitude. Moreover, extracting the field

theory limit of Heterotic string amplitudes is bound to be subtle, as contributions from the

separating degeneration due to the pole of 1/Ψ10 (where Ψ10 is the genus-two Igusa cusp

form of weight 10) are known to contribute at four points [65], and are expected for five

points as well.

A more direct approach is to consider the oriented, open-string sector of Type I super-

strings, which precisely reduces to SYM theory at low energy, without contamination from

gravitational exchange. For open superstrings, scattering amplitudes of massless gauge

bosons are given by an integral over the moduli space of Riemann surfaces with bound-

aries, over the positions zi of the vertex operators along the boundaries [92], and over loop

momenta. Riemann surfaces with boundaries are constructed as a quotient of a closed

Riemann surface under an anti-holomorphic involution [93]. As a result, the period matrix

is purely imaginary, and can be parametrized by (7.1) for a genus-two Riemann surface

with three boundaries. The integrand is given by the product K(5)I(5)C(5) where C(5) is

the Chan-Paton factor, which depends only on the color indices of the external particles.

For a five-point amplitude with gauge group SU(Nc), possible choices of C(5) include a

single-trace N2
c Tr(T a1T a2T a3T a4T a5) if all 5 external particles are attached to the same

boundary and a double-trace NcTr(T a1T a2T a3)Tr(T a4T a5) if three particles are attached

on one boundary and two on another (recall that Tr(T a) = 0 for a simple gauge group; the
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overall factors of N2
c and Nc arise from Tr(1) on the boundaries which do not support any

external particle).

At low energies, scattering amplitudes are again dominated by degenerate Riemann

surfaces, with long tubes replaced by strips and closed-string vertices replaced by disks.22

At two-loop, five points, they can be represented by fattened versions of the graphs in

figure 1, where the fattening keeps track of the position of the vertex operators. For

the pentabox diagrams (a, b, c), the same computations as in subsection 7.3 apply, and

reproduce the field theory integrands in color-kinematics dual form. Double-box diagrams,

however, arise in a different fashion than for closed strings, since the rules (7.26), (7.27)

for contact diagrams no longer apply. Instead, kinematic poles only arise from prime forms

involving pairs of neighbouring punctures on the same boundary,

∂zi lnE(zi, zi±1) ∼ 1

zi−zi±1
→ ∓δ(zi, zi±1)

si(i±1)
(7.38)

Therefore, the coefficient of a single-trace Chan-Paton factor ∼ N2
c tr(T a1T a2T a3T a4T a5)

exhibits kinematical poles of the form 1/s12, 1/s23, 1/s34, 1/s45, 1/s51, while a double-

trace Chan-Paton factor ∼ Nctr(T
a1T a2T a3)tr(T a4T a5) is accompanied by poles of the

form 1/s12, 1/s23, 1/s31. The numerators can be extracted in the same way as before, and

turn out to match with the prescription of [67], after converting color-ordered traces into

the color factors associated to the cubic graphs in figure 1. All cubic graphs are accessible

from the partial amplitudes ∼ N2
c tr(T a1T a2T a3T a4T a5) and ∼ Nctr(T

a1T a2T a3)tr(T a4T a5)

since the N−2
c -suppressed single-trace contribution ∼ Tr(T a1T a2T a3T a4T a5) is expressible

in terms of permutations of the former [96] (see [97] for the N−2
c -suppressed four-point

single-trace amplitude).

8 Conclusion and future directions

In this work, we have proposed a spacetime supersymmetric expression for the chiral two-

loop five-point amplitude relevant to massless states of Type II, Heterotic, and Type I

superstring theories. The construction of the chiral amplitude is driven by the BRST

cohomology of vertex operators in the pure spinor formalism and the constraints from

homology invariance in the chiral splitting procedure. The main result in (5.10) and (5.11)

is written in pure spinor superspace and therefore allows to address arbitrary combinations

of massless external states in the gauge and gravity supermultiplets.

The key result of this work is to obtain the full α′ dependence of the two-loop five-point

amplitudes, including the contributions to the correlators beyond the OPE analysis and

the low energy limit of Type I and Type II amplitudes in [25]. In doing so we provide

the starting point for a systematic study of the low energy expansion of Type II string

amplitudes beyond leading order, and comparison with predictions from string dualities,

22The field theory limit of the genus-two open-superstring partition function in a magnetic field was inves-

tigated in [81, 94, 95] using the Schottky representation, reproducing the Feynman diagrams contributing

to the Euler-Heisenberg Lagrangian of pure Yang-Mills theory. Our interest is in scattering amplitudes in

SYM theory in Minkowski background.
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which will be the subject of a companion paper [30]. Our result will be further validated by

a derivation from first principles in the RNS formalism of the chiral amplitude for external

NS bosons and even spin structure to be given in another companion paper [31].

We have also extracted the loop integrands for two-loop five-point amplitudes of super-

Yang-Mills and maximal supergravity in D ≤ 10 dimensions: The worldline limit of the

string amplitudes in this work reproduce the representation of the field theory amplitudes

proposed in [48]. This form of the super-Yang-Mills and supergravity amplitudes features

the color-kinematics duality and double-copy structure [68–70]. Therefore, our work is

yet another showcase that hidden relations between gauge and gravity amplitudes may be

conveniently studied from a string-theory perspective.

Our methods should be useful to determine and organize chiral two-loop amplitudes for

higher numbers of massless states. The explicit construction of the kinematic factors will

require further cohomology studies in pure spinor superspace as for instance done at genus

one [52, 59]. The decomposition (5.10) of the chiral amplitude into a basis of differential

forms is easily extended to higher multiplicity: At six points for instance, the problem

reduces to constructing 14 sub-correlators along with the basis forms that are individually

homology-invariant functions of the punctures related by permutations of the external legs.

Given that the chiral correlators in (5.11) have no explicit α′ dependence, our results

may also be exported to the pure spinor incarnation of the ambi-twistor string [98, 99], and

should pave the way towards obtaining five-point supergravity amplitudes from correlators

on the bi-nodal sphere using the techniques of [100, 101].

A Clifford-Dirac algebra and pure spinor identities

Weyl spinors in the 16 and 16’ representations of the Lorentz group SO(10) in ten-

dimensional space-time R10 will be denoted with an upper and a lower index, respectively,

such as ξα and χα where α = 1, · · · , 16. The Clifford-Dirac matrices (γm)αβ and (γm)αβ

acting on Weyl spinors in the 16 and 16’ respectively satisfy the Clifford algebra,

(γm)αβ (γn)βγ + (γn)αβ (γm)βγ = 2ηmnδα
γ (A.1)

where ηmn is the flat Minkowski metric on R10 and m,n = 1, · · · , 10. The summation

convention over pairs of repeated upper and lower vectorial or spinorial indices is adopted

throughout. We shall often be led to complexifying the momenta and polarization data of

the fields, in which case space-time is C10, the Lorentz group is SO(10;C), and the metric

ηmn is the Kronecker δmn, and all formulas in this section continue to hold as stated.

A.1 Basic identities

The anti-symmetric tensor γ-matrices are defined by,

(γmn)α
β =

1

2!
(γm)αγ(γn)γβ − 1 permutation of m,n

(γmnp)αβ =
1

3!
(γm)αγ(γn)γδ(γp)δβ ± 5 permutation of m,n, p (A.2)
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and so on for γmnpq, γmnpqr, and similarly for the γ-matrices with reversed spinor indices

such as (γmn)αβ . We shall not need γ-matrices of rank 6 or higher which are related to

γ-matrices of lower rank by Poincaré duality. The γ-matrices have the following symme-

try properties,

(γm)αβ = +(γm)βα (γmn)αβ = −(γmn)β
α

(γmnp)αβ = −(γmnp)βα (γmnpq)αβ = +(γmnpq)β
α

(γmnpqr)αβ = +(γmnpqr)βα (A.3)

satisfy the following product identities,

γmnγs = γmns + γmηns − γnηms
γmnpγs = γmnps + γmnηps − γmpηns + γnpηms

γmnpqγs = γmnpqs + γmnpηqs − γmnqηps + γmpqηns − γnpqηms (A.4)

as well as the following contraction identities,

γmγmn1 ···np = (10− p)γn1 ···np

γmγn1···npγm = (10− 2p)(−)pγn1···np (A.5)

As an immediate consequence for arbitrary commuting or anti-commuting spinors ξα, ψα,

we have the following decomposition formulas,

ξαψβ + ξβψα =
1

8
(ξγmψ)(γm)αβ +

1

16 · 5!
(ξγmnpqrψ)(γmnpqr)αβ

ξαψβ − ξβψα =
1

8 · 3!
(ξγmnpψ)(γmnp)αβ (A.6)

For an arbitrary commuting Weyl spinor ξ, combining the first equation of (A.6) with the

second equation of (A.5) we obtain,

(γmξ)α(γmξ)β = −1

2
(γm)αβ(ξγmξ) (A.7)

Finally, we have the following Fierz identity,

8δβ
γδα

δ = 4(γm)αβ(γm)γδ − (γmn)α
γ(γmn)β

δ − 2δα
γδβ

δ (A.8)

and the famous supersymmetry Fierz identity,

0 = (γm)αβ(γm)γδ + (γm)βγ(γm)αδ + (γm)γα(γm)βδ (A.9)

A.2 Identities involving pure spinors

A commuting pure Weyl spinor λ is defined to satisfy (2.1), namely (λγmλ) = 0. Com-

bining (2.1) with (A.7) and with the last equation of (A.4) respectively, we see that an

arbitrary commuting pure spinor satisfies the following fundamental identities,

(λγm)α(λγm)β = 0

(λγmnpqrλ)(λγm)α = 0 (A.10)
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The tensor product of two identical pure Weyl spinors has the following decomposition,

λαλβ =
1

32 · 5!
(λγmnpqrλ)(γmnpqr)αβ (A.11)

The following identity holds for the tensor product of three identical pure Weyl spinors,

(λγ[mnpqrλ)(λγs])α = 0 (A.12)

where the anti-symmetrization bracket is applied to all six indices. The identity may be

proven as follows. The symmetric tensor product of three arbitrary Weyl spinors in the

16 is reducible by contracting two of the Weyl spinors with a γ-matrix. However, this

contraction vanishes for pure spinors by (2.1) and hence the symmetrized tensor product

of three pure Weyl spinors is irreducible. Its further tensor product with a 16 is readily

shown not to contain an anti-symmetric rank 6 tensor, which is Poincaré dual to an anti-

symmetric rank 4 tensor, which proves the identity.

B Functions and differentials on Riemann surfaces

In this appendix, we review the basic holomorphic and meromorphic functions, differentials,

and Green functions on a compact Riemann surface Σ of genus h from which all string

correlators needed here can be constructed. Standard references are [2, 35, 102].

B.1 Homology and modular transformations

A canonical basis for the homology group H1(Σ,Z) consists of 1-cycles AI and BI with

I = 1, · · · , h and canonical intersection pairing J,

J(AI ,AJ) = J(BI ,BJ) = 0

J(AI ,BJ) = −J(BI ,AJ) = δIJ (B.1)

Different canonical bases (AI ,BI) and (ÃI , B̃I) are related by linear transformations rep-

resented by a matrix M with integer entries,(
B̃

Ã

)
= M

(
B

A

)
(B.2)

Here, A and B stand for the column matrices with entries AI and BI , respectively, and

M is an element of the group Sp(2h,Z) of modular transformations, which preserve the

canonical intersection matrix J,

M tJM = J J =

(
0 −Ih
Ih 0

)
M =

(
A B

C D

)
(B.3)

where A,B,C,D are h × h matrices with integer entries. An important subgroup of

Sp(2h,Z) is the group Gl(h,Z) which consists of those modular transformations M which

transform A-cycles into linear combinations of A-cycles and B-cycles into linear combina-

tions of B-cycles. It is obtained by setting B = C = 0 and D = (At)−1.
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B.2 Holomorphic 1-forms and the period matrix

A canonical basis of the cohomology group H(1,0)(Σ,Z) consists of holomorphic (1, 0)-forms

ωI with I = 1, · · · , h whose periods on the homology basis (AI ,BI) are given by,23∮
AI

ωJ = δIJ

∮
BI

ωJ = ΩIJ (B.4)

The A-periods fix the canonical normalization of ωI , while the B-periods give the period

matrix Ω, which is symmetric by the Riemann bilinear relations, and for which the matrix,

Y = Im Ω (B.5)

is positive definite. Under modular transformations M ∈ Sp(2h,Z), whose parametrization

in terms of h× h matrices A,B,C,D is given in (B.3), the matrix of holomorphic Abelian

differentials ω, the period matrix Ω, its imaginary part Y , and the determinant thereof

detY transform as follows,

ω̃ = ω(CΩ +D)−1

Ω̃ = (AΩ +B)(CΩ +D)−1

Ỹ = (ΩCt +Dt)−1Y (CΩ∗ +D)

det Ỹ = |det (CΩ +D)|2 detY (B.6)

B.3 The Abel map and Jacobi ϑ-functions

The Jacobian of the surface Σ is the Abelian variety defined by,

J(Σ) = Ch/{Zh + ΩZh} (B.7)

Given a base point z0 ∈ Σ, the Abel map sends a divisor D of n points zi ∈ Σ with weights

qi ∈ Z for i = 1, · · · , n, formally denoted by D = q1z1 + · · · qnzn, into Ch by,

q1z1 + · · ·+ qnzn ≡
n∑
i=1

qi

∫ zi

z0

(ω1, · · · , ωh) (B.8)

where the h-tuple (ω1, · · · , ωh) stands for the vector of holomorphic (1, 0)-forms ωI . The

Abel map into Ch is multiple valued, but it is single valued as a map into J(Σ).

The Jacobi ϑ-functions with characteristics κ are defined on ζ = (ζ1, · · · , ζh)t ∈ Ch by,

ϑ[κ](ζ|Ω) ≡
∑
n∈Zh

exp
(
iπ(n+ κ′)tΩ(n+ κ′) + 2πi(n+ κ′)t(ζ + κ′′)

)
(B.9)

Here, κ = (κ′|κ′′) is a general characteristic, where κ′, κ′′ ∈ Ch are both written as a

column vector. Henceforth, we shall assume that κ corresponds to a spin structure, and

thus be valued in κ′, κ′′ ∈ (Z/2Z)h. The parity of the spin structure is determined by the

parity of the ϑ-functions which satisfy,

ϑ[κ](−ζ|Ω) = (−1)4κ′·κ′′ϑ[κ](ζ|Ω) (B.10)

23For our conventions and notations for integrals of (1, 0) forms see footnote 2.
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According to whether 4κ′ ·κ′′ is even or odd, κ is referred to as an even or odd spin structure.

Upon shifting by full periods M, N ∈ Zh,

ϑ[κ](ζ +M + ΩN |Ω) = exp
(
− iπN tΩN − 2πiN t(ζ + κ′) + 2πiM tκ′′

)
ϑ[κ](ζ|Ω) (B.11)

Under a modular transformation M ∈ Sp(2h,Z) as given in (B.3), the characteristic κ =

(κ′|κ′′) transforms as (see for example [102, 103])(
κ̃′

κ̃′′

)
=

(
D −C
−B A

)(
κ′

κ′′

)
+

1

2
diag

(
C Dt

ABt

)
(B.12)

The ϑ-function transforms as follows,

ϑ[κ̃]
(

(ΩCt +Dt)−1ζ
∣∣(AΩ +B)(CΩ +D)−1

)
= ε(κ,M)

(
det (CΩ +D)

) 1
2
ϑ[κ](ζ|Ω) (B.13)

where ε(κ,M) is an eighth root of unity satisfying ε8 = 1. Its explicit form is given

in [102, 103] but will not be needed here.

B.4 The prime form

The prime form is constructed as follows [102]. For any odd spin structure ν, the 2h − 2

zeros of the holomorphic (1, 0)-form,

h2
ν(z) =

∑
I

∂Iϑ[ν](0|Ω)ωI(z) ∂I =
∂

∂ζI
(B.14)

are double and the form admits a unique (up to an overall sign) square root hν(z) which

is a holomorphic (1/2, 0) form. The prime form is a (−1/2, 0) form in z, w, living in the

covering space of Σ, defined by

E(z, w|Ω) =
ϑ[ν](z − w|Ω)

hν(z)hν(w)
(B.15)

where the argument z−w of the ϑ-functions stands for the Abel map of (B.8) with z1 = z,

z2 = w and q1 = −q2 = 1. The form E(z, w|Ω) defined in (B.15) is independent of ν,

holomorphic in z and w, odd under swapping z and w, and has a unique simple zero at

z = w. It is single valued when z is moved around AI cycles, but has non-trivial monodromy

around a BI cycle,

E(z + BI , w|Ω) = − exp

(
−iπΩII − 2πi

∫ z

w
ωI

)
E(z, w|Ω) (B.16)

In terms of the first derivatives, we have,

∂z lnE(z + BI , w) = ∂z lnE(z, w)− 2πiωI(z)

∂z lnE(z, w + BI) = ∂z lnE(z, w) + 2πiωI(z) (B.17)
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The combination ∂z∂w lnE(z, w|Ω) is a single valued meromorphic differential with one

double pole at z = w and no single poles. Its integrals around homology cycles are given by,∮
AI

dz∂z∂w lnE(z, w|Ω) = 0∮
BI

dz∂z∂w lnE(z, w|Ω) = 2πiωI(w) (B.18)

and will be of use throughout.

C Chiral splitting and loop momenta

In this appendix, we review chiral splitting for the xm-field in 10-dimensional space-time

on a compact Riemann surface of arbitrary genus h. The functional integrals of interest

may be obtained through a generating functional which includes both the contributions

from the Koba-Nielsen factor and from multi-linear insertions of the current ∂xm required

in the vertex operators, and is given by (2.16).

The worldsheet field contents of the pure spinor string has been arranged so that their

combined Weyl and holomorphic anomalies cancel. Omitting the contribution to these

anomalies from the x-field by itself, its Gaussian functional integral evaluates to,

J = (2π)10 δ(k)
|Z|−20

(det 2Y )5
exp


N∑

i,j=1

Eij

 k =

N∑
i=1

ki (C.1)

Here, the determinant is taken of the matrix Y with components YIJ = Im ΩIJ , while Z is

the chiral scalar partition function which is holomorphic in moduli, and Eij is given by,

Eij = −1

2
ki · kj G(zi, zj) + iki · εj ∂zjG(zi, zj) + iki · η̄j ∂z̄jG(zi, zj)

+
1

2
εi · εj ∂zi∂zjG(zi, zj) +

1

2
η̄i · η̄j ∂z̄i∂z̄jG(zi, zj) + η̄i · εj ∂z̄i∂zjG(zi, zj) (C.2)

The Green function G is given in (2.11), but may equivalently be replaced by the Arakelov

Green function of (2.12). We split Eij into a part which involves only the holomorphic

prime form E(zi, zj), another part which involves its complex conjugate, and a part which

involves the holomorphic Abelian differentials and Y IJ ,

Eij = E+
ij + E−ij + E0

ij (C.3)

The individual contributions are given as follows,

E+
ij =

1

2
ki · kj lnE(zi, zj)− iki · εj ∂zj lnE(zi, zj)−

1

2
εi · εj∂zi ∂zj lnE(zi, zj)

E−ij =
1

2
ki · kj lnE(zi, zj)− iki · η̄j ∂z̄j lnE(zi, zj)−

1

2
η̄i · η̄j ∂z̄i∂z̄j lnE(zi, zj) (C.4)

and the sum of E0
ij is given by,

N∑
i,j=1

E0
ij =

π

2
Y IJ

(
ζI − ζ̃I

)
·
(
ζJ − ζ̃J

)
(C.5)
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where we have defined,

ζmI =

N∑
j=1

(
εmj ωI(zj) + ikmj

∫ zj

z0

ωI

)

ζ̃mI =
N∑
j=1

(
η̄mj ωI(zj) + ikmj

∫ zj

z0

ωI

)
(C.6)

Next, we shall represent the combination of the (det Y )-denominator and the exponential

of the sum of E0
ij by an integral over loop momenta pmI ∈ R,

exp
{∑

i,j E0
ij

}
(det 2Y )5

=

∫
R10h

dp exp
{
−2πYIJ p

I · pJ + 2πpI · (ζI − ζ̃I)
}

(C.7)

The full generating function is then given as follows,

J = δ(k)

∫
R10h

dpB(zi, εi, ki, p
I |Ω)B(zi, ηi,−k∗i ,−pI |Ω) (C.8)

where the chiral amplitude is given by,

B(zi, εi, ki, p
I |Ω) = Z−10 exp

{
iπΩIJ p

I · pJ +
∑
i

2πpI ·
(
εi ωI(zi) + iki

∫ zi

z0

ωI

)
− 1

2

∑
i 6=j

(
iki + εi∂zi

)(
ikj + εj∂zj

)
lnE(zi, zj)

}
(C.9)

and similarly for its conjugate chiral amplitude. The chiral amplitude may be recast in the

form of a chiral correlator,

B(zi, εi, ki, p
I |Ω) = Z−10 exp

{
iπΩIJp

I · pJ +
∑
i

2πipI · ki
∫ zi

z0

ωI

}
(C.10)

×

〈
exp

∑
i

{
εi ·
(
∂zx+(zi) + 2πpIωI(zi)

)
+ iki · x+(zi)

}〉

The effective rule for the Wick contraction of the chiral bosonic field x+ is given by (2.19).

We have grouped together the various terms involving the polarization vectors, which make

it clear that the effective rule for the insertion of the derivatives in the formulation with

loop momenta is given by the following substitution,

∂xm(z) −→ ∂xm+ (z) + 2π(pI)mωI(z) (C.11)

It is this effective rule of which we shall make use here when applying chiral splitting.
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D Operator product expansions

The short-distance behavior of the physical canonical fields is given by the following OPEs,

xm(z)xn(y) ∼ −ηmn ln(z − y)

pα(z)θβ(y) ∼ δα
β

z − y
(D.1)

As a result, the OPEs of the composite matter fields dα,Π
m defined in (2.4) may be deduced

from the OPEs of the physical canonical fields,

dα(z) f
(
x(y), θ(y)

)
∼ Dαf

z − y
dα(z) dβ(y) ∼ −

γmαβ Πm

z − y

Πm(z) f
(
x(y), θ(y)

)
∼ − ∂mf

z − y
dα(z) Πm(y) ∼

γmαβ ∂θ
β

z − y
(D.2)

where Dα is the superspace derivative defined in (2.29), from which the BRST transfor-

mations of the matter fields in (2.26) may be evaluated. The OPEs of the ghost fields are

given by,

wα(z)λβ(y) ∼ δα
β + (γmλ)αΛβm

z − y

w̄α(z) λ̄β(y) ∼
δαβ + (γmλ̄)αΛ̄mβ − (γmr)

αφmβ
z − y

sα(z) rβ(y) ∼
δαβ + (γmλ̄)αψmβ

z − y
(D.3)

The presence of the functions Λβ
m, Λ̄mβ , φ

m
β , ψ

m
β is required in order for the OPEs to be

compatible with the pure spinor constraints (2.1), and specifically to cancel the singularities

in the OPE of the fields wα, w̄α, s
α with the pure spinor constraints of (2.1). To do so, Λβm

and ψβm must satisfy,

(γnλ)α(Λnγ
mλ) + (γmλ)α = 0

(γnλ̄)α(ψnγ
mλ̄) + (γmλ̄)α = 0 (D.4)

while Λ̄mβ and φmβ must satisfy the following set of coupled equations,

(γmλ̄)α + (γnλ̄)α(Λ̄nγmλ̄)− (γnr)α(φnγmλ̄) = 0

(γnr)α + (γpλ̄)α(Λ̄pγ
nr)− (γpr)α(φpγ

nr) = 0 (D.5)

Note that the functions Λβ
m, Λ̄mβ , ψ

m
β are commuting, while φmβ is anti-commuting. The

solutions to these equations are not unique as there are non-trivial kernels. For example,

we cannot solve them simply by setting (Λnγ
mλ) = −δnm since this would be inconsistent

with the constraint λγmλ = 0. Similarly for the other equations and their solutions.

– 71 –



J
H
E
P
0
8
(
2
0
2
0
)
1
3
5

The contributions from Λm, Λ̄m, φm, ψ
m
β will cancel out of the OPEs of the composites

Nmn, J, Tλ, and their analogues for the ghosts w̄α and sα. Their OPEs with λα are given

by the corresponding linear transformations on λα,

Nmn(z)λα(y) ∼ 1

2

(γmnλ)α

z − y

Jλ(z)λα(y) ∼ λα

z − y

Tλ(z)λα(y) ∼ ∂λα

z − y
(D.6)

while their OPEs with wα are subject to extra terms due to the constraints (2.1) and

will not be needed here. The OPEs of the currents are more complicated because of the

constraints, and we quote here only the relevant results,

Nmn(z)Npq(y) ∼ ηnpNmq − ηmpNnq − ηnqNmp + ηmqNnp

z − y

− 3
ηmqηnp − ηmpηnq

(z − y)2
(D.7)
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