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1 Introduction

The perturbative evaluation of superstring amplitudes in the Ramond-Neveu-Schwarz
(RNS) formulation proceeds systematically from first principles (see for example [1-4] and
references therein). Space-time supersymmetry is achieved in the RNS formulation by as-
sembling the separate contributions from the NS and R sectors and integrating over super
moduli which includes a sum over spin structures. By contrast, the pure spinor formula-
tion [5—7] requires only an integral over bosonic moduli and is manifestly supersymmetric.
It provides a streamlined approach to the evaluation of multi-particle superstring ampli-
tudes with arbitrary external massless states (see for example [8, 9] and references therein).
However, for genus three and greater, the pure spinor formulation faces the complication
of a composite b-ghost whose presence is required to produce a suitable measure on moduli
space. Various problems associated with the b-ghost and with the integration over pure
spinor zero modes remain incompletely resolved to date.

While the explicit calculation of higher-genus amplitudes in superstring theory is of
interest in its own right, it is also mainly motivated by the systematic study of the low
energy effective interactions induced by string theory and the derivation of associated
non-renormalization theorems, as well as by the exploration of the hidden structures of
scattering amplitudes in quantum field theory through the o/ — 0 limit, such as the per-
turbative relations between gauge theories and supergravity. Another, more mathematical
motivation is to gain a better understanding of the higher-genus modular forms that enter
multi-loop string amplitudes.

The focus of this paper will be on genus-two amplitudes. In the RNS formulation,
amplitudes receive contributions from even and odd spin structure sectors. The measure
for the even spin structure sector was evaluated in [10-13] with the help of the canonical
holomorphic projection of the genus-two even spin structure super moduli space onto mod-
uli space. An alternative derivation of the measure using algebraic geometry methods was
given more recently in [14, 15]. The genus-two amplitude for four external NS bosons was
evaluated for both the Type II and Heterotic strings and is given by convergent integrals
over the moduli space of genus-two compact Riemann surfaces, and integrals over each
surface of combinations of Green functions in [16, 17]. The absolute normalization of the
Type IIB amplitude and a comparison of its low energy expansion with the implications
from S-duality were obtained in [18] with further results derived in [19, 20]. A general
formulation for the even spin structure part of the genus-two amplitude for an arbitrary
number of NS states was given using Dolbeault cohomology in [21], but no explicit for-
mulas for amplitudes with more than 4 external states have been obtained in the RNS
formulation yet.

The genus-two results for four massless states in Type II were reproduced soon after the
RNS calculations using the pure spinor formulation, and extended to obtain the amplitudes
involving external R states and thus external fermions [22]. Agreement with the results
from RNS was verified in [23], including the precise normalization of the amplitude [24].
The pure spinor prescription was also applied to genus-two amplitudes with five external
states in [25] and to genus-three amplitudes with four external states in [26]. In both



cases, finite expressions consistent with S-duality were obtained for the leading terms in
the low energy expansion of these amplitudes. While for the genus-two amplitude with
five external states the full expression will be derived below, the divergences in the zero-
mode integrals of the bosonic ghosts pose difficulties when attempting the same for the
genus-three amplitude.

In the present paper, we shall construct the genus-two amplitudes for five massless
external states of the supergravity multiplet for Type II superstrings, and the supergravity
or the super Yang-Mills multiplet for Heterotic strings. The extension to Type I super-
strings is expected to follow from our construction as well but will not be considered in any
detail here. We shall follow the prescription neither of the RNS formulation nor of the pure
spinor formulation. Instead we shall combine ingredients of both formulations with prop-
erties of the corresponding maximal supergravity amplitudes. Specifically, we shall use the
vertex operator BRST cohomology (see [27] and references therein) from the pure spinor
formulation, and import the chiral splitting procedure and homology invariance properties
of chiral amplitudes which were developed in the context of the RNS formulation [2, 28].

It will turn out that the construction via a combination of these ingredients produces
unique amplitudes in the above theories in terms of integrals over the moduli space of com-
pact Riemann surfaces and, for each surface, integrals over combinations of Green functions
and meromorphic Abelian differentials. The integrals are convergent after analytic contin-
uation in the external momenta, as is familiar from genus-one amplitudes [29].

Our key result is the construction of the chiral amplitude KX(5) which is a function of
external momenta, chiral polarization vectors and spinors, loop momenta, and a complex
analytic dependence on vertex operator points and moduli of the underlying compact Rie-
mann surface 3. The integration of the pairing of left and right chiral amplitudes over loop
momenta, vertex operator points, and moduli gives the physical amplitude for five external
states in the supergravity multiplet. For example, the Type II amplitudes take the form,

Ae) = /<’C(5)’€(5)>0 IZ(s1? (1.1)

The integral encompasses moduli, vertex points, and loop momenta and includes the chiral
Koba-Nielsen factor Z(5), as will be explained in detail in the sequel. Furthermore, the
bracket (...)o denotes the prescription of the pure spinor formalism [5] to integrate over
spinor zero modes, which extracts the power of #°6° from the enclosed superfields. The
chiral amplitude K5 in (1.1) will be determined in a basis of holomorphic five-forms on 3°,

K = A(3,4)A(5, 1)w1(2)IC{7273|475 + cycl(1,2,3,4,5) (1.2)
where A(3, j) is the bi-holomorphic combination of holomorphic one-forms wy 2,
A(i, §) = wi(zi)wa(z)) — walzi)wi(z)) (1.3)

familiar from [16, 17]. All the dependence on the external polarization vectors and spinors



is captured by the coefficients IC{ 2.314,5 which are scalar functions on 3,

I _ I m I I I
’C1,2,3|4,5 = 27TPmT1,2,3\4,5 — 923 T23,1\4,5 — 921 T21,3|4,5 — 931 T31,2|4,5
I I I
— 924 52;4\5|1,2 — 934 S3;4|5\2,1 — 914 51;4|5|2,3 (1.4)

I I I
— 925 52;5\4|3,1 — 935 53;5|4\2,1 — 915 51;5|4|2,1

The dependence on the loop momenta p! is explicit in (1.4), while the dependence on
vertex positions and moduli enters through the following combinations of theta functions,

2
9l = aaglnﬁ[z/}(dﬁ) for (s :/ wr (1.5)
zj
The choice of odd spin structure v is immaterial as long as it is the same for all terms
in (1.4). The kinematic factors T 31450 T23,114,55 Sa.45/1,2 in pure spinor superspace will
be developed below, giving access to arbitrary combinations of external states from the
massless supersymmetry multiplets. These kinematic factors are independent of moduli,
vertex points, and loop momenta.

Our construction of the chiral amplitude K(5) in this paper does not proceed directly
from first principles, and it is therefore important to carry out consistency checks to con-
firm its validity. A first check consists in showing that those terms of the chiral amplitude
which have singularities at coincident vertex points agree with the OPEs derived from
first principles in [25]. A second check consists of comparing the o/ — 0 limit of the
Type II superstring amplitudes with the predictions from the corresponding maximal su-
pergravity calculations. Both checks will be carried out in this paper and demonstrate
perfect agreement.

As further checks, the investigation of the low energy expansion of the amplitude for
five external states in Type II string theory and the comparison with predictions from
S-duality, carried out in [25] to lowest order, will be extended to higher orders in a com-
panion paper [30]. Finally, the genus-two amplitude for five external NS bosons will be
evaluated through the RNS formalism in another companion paper [31], where its form
will be compared with the amplitude obtained here.

Organization. The remainder of this paper is organized as follows. In section 2 we
review and summarize the required key ingredients of the non-minimal pure spinor formu-
lation, its BRST cohomology, its zero-mode counting, and its vertex operators, as well as
the chiral splitting procedure applied to pure spinors. Section 3 briefly reviews selected
aspects of multi-loop computations in the pure spinor formalism and the derivation of the
amplitude with four external massless states. In section 4, we make use of BRST cohomol-
ogy and chiral splitting to construct a chiral amplitude with five external massless states.
In section 5 we shall recast this result in various alternative representations which make
manifest Bose and Fermi symmetry, homology invariance, BRST invariance, and short dis-
tance singularities. In section 6 we continue to use the results of chiral splitting to assemble
left and right moving chiral blocks into the full amplitudes for five external states in the
Type II and Heterotic strings. In section 7 we check the worldline limit of our results



to reproduce the loop integrand of the two-loop five-point amplitude in supergravity. In
section 8 we conclude and offer a perspective on some future directions of investigation.

Various identities for the Clifford-Dirac algebra and pure spinors are collected in ap-
pendix A; basics ingredients of Riemann surfaces and their function theory are summarized
in appendix B; a detailed derivation of the chiral splitting procedure suitable for the pure
spinor formulation is presented in appendix C; and the operator product expansions of the
pure spinor worldsheet fields are gathered in appendix D.
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2 Pure spinors and chiral splitting

In this section we derive the basic building blocks for the five-point amplitude in terms of
the BRST cohomology of the pure spinor superstring and the chiral splitting procedure.
The source of these building blocks may be found in the non-minimal pure spinor super-
string, whose formulation is suited to two-loop calculations in view of the presence of its
b-ghost. Salient features of the non-minimal pure spinor superstring may be found in [7].
Throughout, we assume Euclidean signature both on the worldsheet and in target space.

2.1 Worldsheet fields, action, and symmetries

The fields of the non-minimal pure spinor superstring on the worldsheet . are the world-
sheet scalar ™ with m = 1,--- , 10; the left-moving worldsheet scalars 6%, A%, Ay, ro with
a = 1,---,16; the left-moving worldsheet (1,0)-forms pg,wq,w®, s%; and their right-
moving counterparts suitable either for the Type II or Heterotic strings. Despite the
notation, the fields A*, Ao, and w,, W* are not complex conjugates of one another, but in-
dependent fields transforming under conjugate representations of the Lorentz group. Under
the SO(10) Lorentz group, the field 2™ transforms as a vector; 0% A\, w®, s* transform as
Weyl spinors in the 16 of SO(10); and pa, Wa, Aa; 7o transform as Weyl spinors in the
16’. The fields 6%, p, are anti-commuting matter fields while A, Ay, wq, W* are commut-
ing ghosts, and s®,r, are anti-commuting spinor ghosts. The pure spinor constraints on
the ghost fields are,

AYA = MY = \"r =0 (2.1)

These identities are invariant under SO(10) and reduce the number of independent com-
ponents of each field A\Y, Ay, 7 from 16 to 11 in an SO(10)-invariant way."

!This counting may be seen explicitly by decomposing the fields under the U(5) maximal subgroup of
SO(10) under which the spinor representation 16 decomposes into the representations 1®5* @10 of SU(5).



The action for ™ and the left-moving worldsheet fields is given by,?

1

I=—
2T »

1 _ _ _ __ _
(28xmaxm + Pa00% — W, XY — WYON, + saara> (2.2)
The action I is invariant under global Lorentz transformations of SO(10). It is also invariant
under global supersymmetry transformations which are generated by a constant spinor €“,

1
ox™ = —567m0 90 = € (2.3)

The corresponding translation and supersymmetry currents are given by,

m m 1 m

" = 0z™ + —6+™06
2
1 1

do = Pa — §a$m(7m9)a - §(97m89)('}’m9)a (2.4)

Both currents are invariant under supersymmetry. The stress tensor is given by,
1 -
Tiot = _iaxmaxm — Pa00% + W, O + WO, — $¥0T, (2.5)

The matter fields ™, 8%, p,, are unconstrained free fields while the ghost fields are subject
to the pure spinor constraints (2.1). It will often be convenient to use the field d, instead
of po by carrying out the field-dependent shift in (2.4). The 16 components of the spinor
dq, are unconstrained. The operator product relations are given in appendix D.

2.1.1 Gauge symmetry of the ghost fields and gauge invariant composites

In view of the pure spinor constraints (2.1) on A% A, 7., their respective conjugates
We, WY, 8¢ are subject to gauge transformations,

dwe = Ay (Y™ N
S0 = A (V"N = (Y1)
55% = (7™ A" (2.6)

which leave the action I invariant for arbitrary commuting A,,, A,, and anti-commuting ¢,,
functions on X. As a result, the number of fields wq, W%, s* modulo gauge transformations
is reduced from 16 to 11 for each field. Linear combinations of w,,w®, s (with A\ and

The constraints (2.1) are responsible for projecting out the representation 5* from each field, leaving 11
independent components for each one of the fields A*, Ao and ro. Basic identities for the 16 x 16 Clifford-
Dirac «y-matrices and pure spinor identities are given in appendix A.

2Throughout, we shall set o’ = 2 and use local complex coordinates z, Z on ¥ with & = 8/9z, d = 8/0z.
The fields pa, wa, W™, s* will denote the coefficients of the differential dz of their corresponding (1,0) form
fields expressed in local coordinates. The coordinate volume form on ¥ is d% = %dz A dzZ. When no
confusion is expected to arise, the integral of a (1,1)-form vd?z on ¥ will be denoted in shorthand by
Jvd®* — [, v, while the integral of a (1,0) form wdz along a curve C will be denoted Jowdz = [, w.



A-valued coefficients) that are invariant under these gauge transformations are given by,

1
Npyn = iwvmn)\ J =wA
_ 1 _ _ _
Npypn = i(w'ymn)\ — $YmnT) J =w\ — sr
1 - _
Son = §3fymn)\ S = s\ (2.7)

The composites Ny, Nyp are the SO(10) currents of the ghost fields A%, wq, Ao, W%, 8%, T,
while J, J are U(1) currents. The ghost number current is defined by,

Jgh = WA — WA (2.8)

so that A, w have ghost number +1 and w, A have ghost number —1 while all other fields,
including the composites 11", d,, and Ti., have zero ghost number. The partial stress
tensors Ty = wOA and T; = WO — sOr are also invariant but will not be needed here.

In view of the pure spinor constraints (2.1), only 11 amongst the fields (N, J) are lin-
early independent of one another (with A-valued coefficients), and similarly only 11 amongst
(Npn, J) and 11 amongst (Sy,,, S) are linearly independent (with A-valued coefficients).

2.2 Chiral splitting

The spinor-valued fields in the non-minimal pure spinor formulation, 8%, pa, A%, Wa, Aa, W%,
ro, and s%, are conformal primary fields whose correlators on a Riemann surface ¥ of
arbitrary genus h are complex analytic on ¥ and on moduli. The vector-valued field ™,
however, is not a conformal primary due to the presence of translational zero modes. As a
result the inverse of the scalar Laplacian on the space orthogonal to the zero mode depends
on certain choices, including the volume form on 3. Choosing the volume form to be the
canonical Kéhler form of unit volume (with Y7/ denoting the entries of the inverse of
Y =ImQ),}? ‘ ‘

K(z) = iY”wI(z) Aag(z) = %Hzgdz Adz (2.9)

the inverse of the scalar Laplacian on the space orthogonal to the zero mode gives the
Arakelov Green function G which satisfies,

9.0:G(z,w|Q) = —16@ (2, w) + Th2z(2) /Eg(z,wm)/f(w) =0 (2.10)

The Arakelov Green function is globally well-defined, symmetric in z,w, invariant
under conformal transformations, and gives the two-point function of z™ as follows
(x™(2)x™(w)) = "™ G(z,w|Q). The Arakelov Green function is related to the more fa-

miliar “string Green function”,

G (z,w|Q) = —In|E (z,w|Q) |> + 27Y T/ <Im /Zuq) (Im /sz> (2.11)

w w

3 A summary of function theory on compact Riemann surfaces, including the definitions of meromorphic
differentials, Jacobi theta-functions, and the prime form, is given in appendix B. Throughout, we shall use
the Einstein convention for the summation over pairs of repeated upper and lower indices I,J = 1,--- ,h,
where h is the genus, which we keep general in this section.



via a shift

9(z,w|) = G(z,w|Q) —v(2[2) — 7(w[2) (2.12)

where

v(2|2) = /EG(z,w|Q) K(w) — ;/EXE k(w) G(w,w'|Q) k(w') (2.13)

Unlike G(z,w|Q?), the string Green function G(z,w|{2) depends on a choice of local coor-
dinates, due to the fact that E(z,w|Q) is a form of weight (—3,0) in z and w, and is not
globally well-defined on 3. However, the difference G(z,w|Q) — G(z,w|Q?) cancels from
correlators upon imposing momentum conservation, so we may equally well use the two-
point function (z™(2)z™(w)) = ™" G(z, w|?) in computing correlators of ™. The use of
the Arakelov Green function will be especially important when carrying out a low-energy
expansion of the amplitudes and guarantees that individual terms are properly conformal
invariant [32, 33].

By contrast, the field 02™(z) is a (1,0) form and conformal primary field. Its correla-
tors are meromorphic on ¥, as may be seen from the two-point function (0z™(z)0z"(w)) =

n""0,0,G(z, w|Q) = N""0,0,G(z, w|Q) with,
0,0,G (2, w|Q) = —0,0,, In E(z,w|Q) + 7Y wi(2)ws(w) (2.14)

Note that neither the Green functions G, G nor their derivatives 0,9,,G are complex analytic
in the moduli , as evident from the presence of Y7 in (2.14).

The chiral splitting procedure [2, 28, 34] introduces loop momenta to re-express confor-
mal correlators of the x™-field in terms of an integral over loop momenta whose integrand
is a product of left and right chiral blocks. Each chiral conformal block is complex analytic
in the vertex points on X and in the moduli of 3. Chiral conformal blocks have a universal
monodromy behavior as the points are moved around one another and/or moved around the
homology cycles of 3. The chiral splitting procedure is a key ingredient in the evaluation
of the genus-two measure and four-point amplitudes in the RNS formulation [3, 10, 16].

The momentum flowing through a simple closed cycle C on 3 is given by the integral
along C of the space-time translation current dz™(z) and is dubbed the loop momentum
through C. On a surface of genus h, there are h independent loop momenta, which we shall
denote by (p!)™ with I = 1,--- ,h (not to be confused with the spinor field p, of (2.2)).
The choice of their routing is not unique but may be fixed canonically to the cycles 2A;
given a choice of canonical homology basis 2y, By,

1
I\m m
= — 0 I=1--- h 2.15
W =g §, 00 o (215)
The normalization is fixed to reproduce the momentum flowing through a cylinder.

The construction of the chiral blocks for the correlators of the field 0™ and the
ik-x

exponential e*¥'? is formulated in terms of a set of effective rules, starting from a generating

function for N-point ™ correlators (see appendix C for a detailed derivation),

N
J = /D:L‘ exp —;T/Eﬁx -0z + Z (ikj ~x(25) + €5 - 0x(z5) + 17 - 5:17(zj)) (2.16)
j=1



Throughout we shall assume that the incoming momenta k; and the polarization vectors
¢; and 7; are complex-valued and satisfy kJQ =kj-ej=kj-n=0forall j=1,--- N
and that the total momentum Zjvzl k; vanishes. We shall also assume that the coefficients
€; and n; are independent of one another so that, at a given point z;, either €; or n; or
both may vanish independently. The functional integral will be understood as a generating
function for correlators which are linear in each ;- z(2;) and 7, - 9z(z;) so that terms of
quadratic order and higher in a given ¢; or 7; will never be needed.

It is shown in appendix C that J may be obtained as an integral over loop momenta
p7* of a pairing of chiral conformal blocks,

N
T=6(>k / dp B(zi, i, ki, p'[Q) B(zi, mi, =k, —pT|Q) (2.17)
i R10A
where the chiral block is given by,

N
B(ziagia klapI|Q) = BO(ziv klapI’Q) <expz {5] ’ (821;4* + 27Tp[wf> + Zk] : .’,U+} (Z])>
i=1

N .
Bo(z, ki, p'|Q) = Z(Q) Vexp { inQpyp - p? + ZQm’pI . kj/ ’ wr (2.18)

j=1 20

Note that the dependence on the base point zy drops out by momentum conservation.
The chiral scalar partition function Z(2) is holomorphic in Q. It may be evaluated using
chiral bosonization [35] and is given explicitly in terms of J-functions for genus two in [13],
however its form will not be needed in this work. The field 277 is an effective chiral scalar
field whose Wick contraction rule is given by,

(xl'(2) 27 (w)) = =" In E(z, w|§2) (2.19)

Recall that the field 2! is not a conformal primary field, a property which is reflected in
the non-trivial monodromy of the above correlator as z and w are swapped and as they

are moved around non-trivial homology cycles.

2.2.1 Homology invariance

The chiral field 27" (2) and, as a result, the chiral blocks B have non-trivial monodromy as a
point z; is taken around a homology cycle of the surface. The corresponding transformations
are familiar from the chiral splitting procedure [28],

B(z + 65U, €5, ki, p' Q) = €™ PIRiB(z;, 64, ki, p' Q)
B(zi + 6B 5,80, ki, pT|Q) = B(zi, €4, ki, pT + 65 k5(Q) (2.20)
These monodromy transformations are universal in the sense that they are the same for

the chiral blocks of the bosonic string, the Type II string, and the Heterotic strings. In the
RNS formulation, they hold for each spin structure separately [28].



Alternatively, we may interpret the monodromy relations of (2.20) as an invariance
under a suitable action of the homology group of ¥ on the chiral blocks, to which we shall
refer as “homology invariance” for short. To do so, we consider a representation R of the
homology group Hi(X,Z) acting on both the vertex points z; and the loop momenta p?,
defined by the following transformations on the chiral block B,

Rz, 1) Bz, €1, ki, p'|Q) = e 2275 B(z; + 6,595, 4, ki, p' Q)
R(zj,B7) B(zi, i, ki, p'|Q) = B(z; + 6B 5, €1, ki, p — 67 k;1Q) (2.21)

These transformations mutually commute for arbitrary pairs of (j,J), in agreement with
the Abelian nature of the homology group. The transformation laws of (2.20) are then
equivalent to the invariance of B under the action of R,

R(zj,%5)B = R(z,Bs)B =B (2.22)

The full generating function J of (2.16), obtained by assembling the factors of left and
right chirality is, of course, invariant under these transformations. Upon integration over
loop momenta the resulting correlator is single-valued in the vertex points z; thanks to the
translation invariance of the loop momentum integration measure dp and its domain R

2.2.2 Summary of the chiral splitting procedure

The chiral splitting procedure may be summarized by the following prescriptions,
1. Carrying out the following replacements,
ke gikas Ax™(2) — 0x'7(2) + 2m(p") " wr (2) (2.23)

2. Wick contracting the chiral field 2’ using (2.19);
3. Including the factor By (z;, ki, p!|Q2) defined in (2.18);

4. Integrating over all loop momenta of the paired chiral blocks in (2.17).

Henceforth, we shall assume that these effective rules are used whenever the fields 0z™
or ¥ occur. For example, to construct a chiral block involving the composite field II™

defined in (2.4) we shall perform the following substitution,*
1
o — ozl + 5977”89 + 27 (p!)™wy (2.24)

and then carry out the Wick contractions of the field =7 using (2.19). To simplify notations
until the evaluation of the chiral block is needed, however, we shall retain the notations
dz™ and €7 at intermediate stages of the evaluations. Henceforth the dependence on
moduli through Q will be understood but no longer exhibited.

4Note that the field 2™ also enters in the relation between the fields Do and dq in (2.4). Since throughout
we will work exclusively in terms of the field dn, this occurrence of 9z™ will be immaterial.



2.3 BRST transformations

The BRST charge @ of the non-minimal pure spinor formalism has ghost number 1 and is
given by [7],

C?=:)£(A“da4w“ra) (2.25)

The operator product expansion of the worldsheet fields, given in appendix D, may be used
to evaluate their BRST transformation, and we have,’

me:%)\’yme QAN=0
Q0 = \° Qe = 7o
Qdo = —(M")alln Qra=0
QII™ = \y™00 QNWf:—%w%mA) (2.26)

With the help of the pure spinor constraints (2.1) it may be verified that the relation,
Q*=0 (2.27)

is properly realized on all fields. The BRST transformations of wq,w®, and s* are not
invariant under the gauge transformations (2.6) and will not be needed, other than in the
gauge invariant combination N,,,. Throughout, the field p, will be traded for the super-
symmetry current d,, which is simply related to it by a shift given in (2.4). A convenient
unified expression may be derived from (2.26) for the BRST transformation of any local
function f(z,0), which depends only on = and € but not on their worldsheet derivatives,

Qf(2,0) = AX*Dq f(x,0) (2.28)
where D,, is the super derivative defined by,

e O Ly 0

goa T 27080 Gum {Da, Dg} = Ya0m (2.29)

where we use the standard notation 9,, = 9/9z™.

2.4 Vertex operators

Vertex operators for massless physical states are constructed from the plane wave solutions
to the linearized 10-dimensional super-Yang-Mills and supergravity equations. The spinor
part of the vertex operators is chirally split as it stands, and the chiral splitting for the
2™ field will be carried out in the subsequent section. The chiral vertex operators involve
chiral spinor fields and the 10-dimensional super Yang-Mills multiplet and are governed by
the linearized 10-dimensional super Yang-Mills equations. The fields of the super-multiplet

"Throughout, we shall use standard CFT notation and write Qf instead of [Q, f] or {Q, f} for the BRST
transformation of a bosonic or fermionic field f, respectively.
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(Aw, A, W, Fyup) satisfy the following equations,®

1
DoApg + DgAa = 'YZLBAm DWW’ = Z(’Ymn)a/Ban
DaAm - 8onz - <7m)aBWB Daan = <8m'7n - 8n7m)aﬁWﬁ (2'30)

For later use, we record the field equation and Bianchi identity for W<,
YO W =0 D W =0 (2.31)

The fields A,,, W<, and F},,,, may be expressed in terms of the field A, which has odd grad-
ing. A plane wave solution with momentum k is given in the gauge 6“A, = 0 by [37-39],

Ao (0.0) = (3200 = J00" 0000+ ) (232

where the ellipses stand for terms with higher powers of #. The parameters € and Yy
are the polarization vector and spinor, respectively. For massless external states we have
k> =0and k- = k-vx = 0. The dependence of the SYM fields on k,¢e,x will be
suppressed throughout.

Vertex operators for physical massless states are built out of chiral vertex operators
times their conjugates. A chiral vertex operator is a (1,0) form on the worldsheet which is
BRST invariant up to an exact differential. To construct such vertex operators, we begin
by obtaining the BRST variations of the linearized SYM fields,

QAq=NDgA,
1

Q Ay = MmW) + N0, A4

Some immediate consequences for composites, to be of later use, are as follows,
QM"W)=0
Q (W™ TW) = — L (WP A g
Q (A" PTN) Fop = 0 (2.34)
The un-integrated vertex operator V' is a worldsheet (0, 0) form of ghost number 1 given by,
V =X"A4,(z,0) (2.35)

It satisfies QV = 0 in view of the pure spinor constraint on A. The integrated vertex
operator U is a worldsheet (1,0)-form of ghost number 0 which is built out of the basic

5The field equations of linearized 10-dimensional super Yang-Mills theory [36] may be expressed in terms
of the covariant derivatives Dy = Do+ Aq and Dy, = Om+An, subject to gauge transformations § Ao = Do 2,
dAm = Om®, the Jacobi identities, and the superspace torsion constraint Fog = {Da,Ds} — v45Dm = 0.
The field strengths Fam = [Da, Dm] and Fmpn = OmAn — On Ay, satisty (2.30) with Fom = (Wm)a[aWB.

- 11 -



(1,0)-forms 96, 11", dy, Ny, times the corresponding linearized on-shell SYM field and is
given by,

1
U=00A,(x,0) + I Ay, (2,0) + d W (x,0) + §Nmnan(£L', 0) (2.36)
Its BRST variation is a total derivative of the un-integrated vertex V,
QU =0V (2.37)

so that the integrals of UU over a closed worldsheet and U over a worldsheet boundary are
BRST invariant.

2.5 The b-ghost

The RNS superstring naturally has a (b,¢) anti-commuting ghost system which results
from gauge fixing worldsheet diffeomorphism symmetry, and a (3,7) commuting ghost
system resulting from gauge fixing worldsheet local supersymmetry. The existence of an
un-gauged-fixed formulation for the pure spinor superstring with a canonical (b, c) ghost
system is currently still under investigation [40, 41]. The non-minimal formulation of the
pure spinor string was developed to produce a composite b-ghost [7], without requiring
a c-ghost companion. It is this formulation that we shall use here as a guide for the
construction of the amplitude for five external states.

The key principle for the construction of the b-ghost is that it must be an anti-
commuting Lorentz scalar, and a (2,0)-form on the worldsheet ¥ whose BRST transform
is the chiral stress tensor Tiot which was given in (2.5),

Qb = Tiot (2.38)

Since @ and Tiot have ghost number 1 and 0, respectively, b must have ghost number —1.
There is no canonical gauge-invariant field satisfying these conditions. However, there is a
ghost number 0 composite spinor G given by,

1 1 1 1
G = STn(7"d)° = 7 Nun(y7"00)° = £ 1500% — 70°0° (2.39)

4

whose BRST transform is proportional to the stress tensor,
QG = \"Tiot (2.40)

The ghost field A* of the non-minimal pure spinor string allows one to formally solve (2.38)
for the b-ghost using the descent equations of BRST cohomology. The resulting b-ghost
field is unique, up to BRST closed contributions, and given by [7],

MG (AymmPr)

b= 5%\, _ _
ST N T 102002

((dmnpd) + 24N;nTL )

(rymnpT) 5 (rYmnpT) (5
— =2 (MYA)N™ + ———— L (AP P)NT" N, 2.41
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The solution is formal because the denominators in the holomorphic field (A\) produce
singularities. A variety of regulators have been proposed in [42—44]. For the genus-two
amplitude with five external states, positive powers of (A\) arise from the measure of the
ghost fields, thereby regularizing the singularities in the b-ghost (see section 3.3 below
and [7] for more details). The resulting expressions were used to evaluate the genus-two
four-point amplitude [24] as well as the leading low energy limits of the genus-two five-
amplitude [25] and the genus-three four-point amplitude [26].

3 Basics of genus-two amplitudes

In this section, we shall review and further develop those computations in the non-minimal
pure spinor formalism on genus-two Riemann surfaces that are needed for our construction
of the genus-two chiral amplitude with five external states. We re-iterate the strategy of
our construction, as already outlined in the Introduction: we shall combine ingredients
from the BRST cohomology of the pure spinor formulation and from the chiral splitting
procedure to conjecture the genus-two chiral amplitude for five external states. We shall
perform computations in the pure spinor formulation only to the extent that their outcome
guides us towards a compelling structure of the amplitude, which will turn out to be unique.

The final formula of the chiral amplitude will be derived in section 4, and different
representations will be explored in section 5. The physical amplitudes for Type II and
Heterotic strings, obtained by assembling the contributions from the left and right moving
chiral parts and integrating over loop momenta, will be presented in section 6. Along the
way, the amplitude for four external states will be re-derived in subsection 3.4.

3.1 Genus-two correlators in the pure spinor formalism

The ingredients needed to evaluate the correlators on genus-two Riemann surfaces that
arise in the non-minimal pure spinor formalism are the partition functions, the zero mode
counting, and the correlators of the non-zero mode parts of the canonical worldsheet fields.
A regulator of the ghost zero mode integration is required to resolve indeterminacy issues
in the pure spinor formulation. The discussion will be geared towards deriving the main
target of this work at the end of section 4: the chiral genus-two amplitude for five external
massless states, formulated as an integral over pure spinor superspace zero modes of a
function of the external kinematics and the zero modes of the spinor variables A® and 6¢.
This formulation economically contains the amplitudes with five external states belonging
to the gauge or supergravity multiplets which may be either bosons or fermions.

3.1.1 Partition functions

All canonical chiral spinor fields in the non-minimal pure spinor formalism occur in conju-
gate pairs of a (1,0)-form on ¥ and a (0,0)-form. Since the central charges of the spinor
fields along with that of the chiral boson field z add up to zero, the holomorphic anomaly
cancels, and each field contributes an effective chiral partition function. For the chiral
bosons z7', as derived from chiral splitting, this contribution is Z(0)7!° while for the
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pair of anti-commuting fields (p,, %) (or equivalently the pair (d,,6“)) the contribution
is Z(2)32.

The commuting pair of fields (A%, w,) is subject to the pure spinor constraint (2.1)
and gauge-invariance (2.6) reducing their effective number of spinor degrees of freedom

22 Therefore, in

from 16 to 11 for both fields and producing a partition function Z(£2)
combination with the contribution Z(Q)~'%*32 from the matter variables, the combined
partition function for the minimal pure spinor string is 1 [6].

Finally, the pair of commuting fields (A, w®) and anti-commuting fields (r,, s®) are
subject to the pure spinor constraints (2.1) and gauge-invariances (2.6) reducing their
effective number of spinor degrees of freedom from 16 to 11 for each field. Hence, the
fields that are specific to the non-minimal pure spinor formalism produce a combined
partition function of 1, consistent with the interpretation of this system as a topological

field theory [7].”

3.1.2 Zero modes of (1,0)-form spinor fields

In this subsection, we shall discuss the zero modes of meromorphic (1,0)-form spinor
fields on a compact worldsheet ¥ of genus h. It will be convenient to use the fields
dees Nowns o Nonm, J instead of pg, we, W as discussed at the end of subsection 2.1. These
meromorphic (1,0)-form fields, on world-sheets of genus h > 1, have zero modes which are
linear combinations of the holomorphic (1,0)-forms w; whose definition and properties are
reviewed in appendix B. An explicit parametrization is obtained as follows,

da(2) = du(2) + dL wi (=) 72 dy=0 (3.1)

and similarly for the fields Ny,n, J, Nyn, J, whose zero-mode coefficients will be denoted
by NI gl NI

_I . .
s s J -, respectively. The number of independent zero modes of these fields

on a compact surface of genus h is as follows,

16 x h zero modes dey,
10 x h zero modes Ny Ny S (3.2)
h zero modes J, J, S

The zero modes of dy, Syun, S are anti-commuting and those of Ny, Ny, J, J commuting.

3.1.3 Zero modes of (0,0)-form spinor fields and pure spinor superspace

On a surface ¥ of arbitrary genus, the (0,0)-form fields 6%, A%, A\, and r, have a single
zero mode for each value of a. Thus, the field 8% may be decomposed as follows,

0°(z) = 0°(2) + 69 (3.3)

"Due to the pure spinor constraints, the ghost fields are actually not free fields on . However, decom-
position of the SO(10) spinors under the subgroup U(5) allows one to change variables to a free field plus
a (B,7) system both of which may be handled with standard methods [5].
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where 0 is independent of z, and éa(z) represents the non-zero mode contributions. The
fields A%, A, and 7 admit analogous decompositions. The integration over the zero modes
of the fields will guarantee that full correlators are independent of the prescription used to
define 6%(z) from 6 (z), for example by requiring that the integral of #%(z) over ¥ vanish.

An ubiquitous ingredient in the pure spinor formulation is the following A-dependent
tensor with ghost number 3 (see section 3.2 for its further use),

Tapas(A) = (M) ar (M) az (M) ag (Ymnp) asas (3.4)

which is manifestly anti-symmetric in a1, as, ag as well as in ay4, as. Actually, T is totally
anti-symmetric in all five spinor indices as may be established by showing that the contrac-
tions of T with (V4)ay0y a0d (Yabede)aya, vanish with the help of (A.4), (A.5), and (A.10).
The tensor T projects the anti-symmetric tensor product of five spinors in the 16 of SO(10)
onto the symmetric -traceless tensor product of three spinors A in the 16 of SO(10).

By spacetime supersymmetry and BRST-cohomology arguments, the zero-mode in-
tegrals of the fields 8% and A® only receive contributions from the cohomology at ghost
number 3, specifically from the combination T00000 [5], or more explicitly,®

(M0 (A" 0) (MPO) (0Vimnpt) )o = 1 (3.5)

The above normalization (sometimes chosen to be 2880 in the literature) affects the full
chiral amplitude only by an overall multiplicative factor, which is not being sought after
here, and may thus be chosen at will without loss of generality. The prescription (3.5)
annihilates BRST-exact superfields,

Q- ))o=0 (3.6)

a property which guarantees space-time gauge-invariance and supersymmetry of the expec-
tation value of BRST-closed operators and allows us to carry out simplifications by adding
-exact terms.

The goal of this paper is to derive the genus-two chiral amplitude for five external
massless states from the correlators of five BRST-closed vertex operators. More specifically,
the amplitude will be presented as an integral over the zero modes of 6% and A\* of a BRST-
closed integrand in pure spinor superspace that contains all the external kinematic data
of five arbitrary states in the supergravity multiplet [45]. BRST-exact contributions may
be discarded to simplify the form of the amplitude. As we shall see in section 4.4, the
quest for BRST-closed integrands will lead us to the unique construction of the genus-two
five-point amplitude.

3.1.4 The zero-mode regulator

The above ingredients for the evaluation of higher-genus correlators in the non-minimal
pure spinor formalism usually lead to an indeterminacy in the integrals over the ghost zero

8 Throughout, the integration over the zero mode part of the fields in the expectation value of an arbitrary
operator O will be denoted by (O)o. It will be understood that the fields which enter into O are to be
evaluated on their zero-mode part only.
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modes of the type 0/0. On the one hand, the singularities that arise when (A)) vanishes
in the expression (2.41) for the b-ghost, or tends to oo, cause the functional integrals over
bosonic ghosts to diverge. On the other hand, the fermionic zero modes would cause the
functional integrals to vanish for sufficiently low genus and/or small number of external
states, as is the case for instance in the two-loop five-point amplitude under investigation.

The vanishing of the fermion zero mode integrations may be resolved by the insertion
of the following “regulator” which was introduced in [7],

h
N, = exp {—(/\5\) — (r0) + Z(wlu_)l + sldl)} (3.7)
I=1

where A\, \, r, 8 are restricted to their zero mode contributions, as explained in footnote 8.
The argument of the exponential has been engineered to be BRST-exact, so that N} =
14 Q(---) does not have any effect in the cohomology as long as the functional integrals
converge.” It has been argued in [7] that for genus two no singularities arise when (A\) — 0
thanks to the A\, \-dependence of the measure, and the insertion of the regulator N5 leads
to convergent zero-mode integrals. Note that the summation symbol over the index I has
been kept explicitly because both factors in the summand have upper I-indices, for which
no natural modular-invariant pairing exists.

3.1.5 Wick contractions of non-zero-mode fields

The Wick contractions for the vector field ™ were already discussed in section 2.2 on the
chiral splitting procedure. The Wick contractions of the non zero-mode part of the field
0 with itself vanishes,

0°(2)0°(y) ~ 0 (3.8)

while the Wick contractions of the non-zero mode part of the (1,0)-form spinor fields
generally produce meromorphic (1,0) forms. For example, the Wick contractions of the
fields P (2), do(z) and IL,, = I, — 27pl wr from (3.1) and (2.24) are given as follows,

Pa(2)0°(y) ~ 0.In B(z,y) 62
da(2) f(2(y).0(y)) ~ 8- 1n E(2,y) Do f(z(y), 0(y)) (3.9)
1L, (2) f(2(y),0(y)) ~ —0:1n E(2,y) On f (2(y), 0(y))

where f(z,0) is an arbitrary function which depends on z and 6, but not on the worldsheet
derivatives of these fields. The meromorphic differential 9, 1In E(z,w) fails to be single-
valued in its variables by itself, but the associated integrations over the zero modes of
these fields will render the full correlators, into which they are inserted, properly single-
valued. This is familiar for the case of the correlators of the fields 0x"}' with 2" thanks to
momentum conservation, but also holds true for the Wick contractions of field p, with 6¢.

As should be expected, in the short distance limit z — y, the Wick contractions of (3.9)
reproduce the OPE singularities of the corresponding fields given in (D.1) and (D.2). While

9For the same reason, the usage of gauge-variant quantities in the exponential of (3.7) instead of the
original gauge-invariant formulation in [7] has no effect in the amplitudes [46].
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for genus zero, the knowledge of the OPE suffices to evaluate any conformal correlator,
this is no longer true for higher genus. For the fields of the pure spinor string, the missing
information is provided by the contributions from the zero modes of the (1,0)-form fields.
One manifestation of this is that for genus two and above, one has to distinguish the
forms 0,In E(z,y)wr(y) from —0,In E(z,y)wr(z), whose short-distance behaviors agree
and which coincide for the sphere (genus zero) and for the torus (genus one). Fortunately,
we shall not need the detailed evaluation of the full correlator for the genus-two five-
point amplitude as in [25], since it will suffice to extract all relevant information from the
singularities at coinciding vertex points (see section 4.5).

3.1.6 The chiral correlator in pure spinor superspace

The chiral amplitude for N massless states at genus two is given by the correlator,

3 N
Finy = <N2 H(:U’avb) HUi(zi)> (fa,b) = /Euab (3.10)

a=1 =1

provided this correlator is convergent. The Beltrami differentials are denoted by u, for
a =1,2,3, and will be specified later with the help of (3.20). The bracket notation (---)
in (3.10) is used for the complete functional integral for the zero modes and non-zero modes
of all the fields in the worldsheet action (2.2). The subscript of (...)o in (3.5), by contrast,
refers to the zero-mode integrals for the (0,0)-form fields A* and #%. The integrations over
the positions z; and the loop momenta p,[n will be carried out after the chiral blocks and
their conjugates have been paired.

The chiral correlator is evaluated by integrating over the chiral spinor fields and over
the effective chiral scalar field 2"} of chiral splitting, considered at fixed loop momenta p7*.
Since each of the vertex operators include a plane wave factor, the correlator of the effective
chiral scalar field '} produces the chiral Koba-Nielsen factor Z yy given by (cf. (2.18)),

N 2 N
I(N) = exp iWQ[JpI‘pJ+ZQ7TipI'ki/ wI—ZsijlnE(zi,zj) (3.11)
i=1 %0 i<j
The dimensionless kinematic invariants s;; are given by,
/

Sij = _az(kz + k‘j)2 = —k;- kj (312)

The second equality arises from our choice o/ = 2 and the mass-shell condition k‘? = k:jz =0.
Since the Koba-Nielsen factor (3.11) is an ubiquitous constituent of the chiral ampli-
tude (3.10), the main goal of this work will be to evaluate the remaining factor Ky,

Fvy =Ly (Kvy)o (3.13)

In order to obtain an amplitude representation in pure spinor superspace and keep any
combination of external bosons and fermions accessible, the zero-mode integral (3.5) is left
to be performed. The desired superspace expression KC(y) will be referred to as a chiral
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correlator and encodes the dependence on the polarization vectors and spinors of bosons
and fermions, respectively, in a supersymmetric manner. Since the factor Z(y) already
transforms according to (2.21) under homology shifts, the reduced amplitude KC(y) must
be strictly invariant under these shifts, without any phase factor.

In fact, chiral correlators K(y) fall into equivalence classes in two respects: First,
Q-exact terms do not contribute within the bracket (...)p, and second, total derivatives
0z, (I( MK ~)) integrate to zero after assembling the overall amplitudes. Hence, it suffices
to construct a particularly convenient representative of Ky as we will do in the two-loop
five-point case.

3.2 Zero mode counting

The large number of zero modes of the spinor fields greatly simplifies the calculations and
makes the evaluation of the correlator (3.10) with a small number N of external states
possible. We begin by observing that the vertex operators U;(z;) do not involve the fields
Ao, WY, 5%, 7o. Since the b-ghost is also independent of the field w® the zero modes of w®
must be paired with those of w, via the regulator Ny of (3.7). Equivalently, the zero
modes of Ny, and J5 must be paired with the zero modes of N,,, and Jy. This leaves
no room for zero modes of the fields NV,,, to occur either in the vertex operators or in the
b-ghost insertions.

Next, we concentrate on the zero modes of the fields s* and d,, which add up to 22
and 32 zero modes, respectively. The vertex operators U; do not involve the field s* and
the b-ghost involves s® only through its first term in (2.41). Let us denote by o the number
of zero modes of the field s® absorbed by the 3 b-ghosts. Each b-ghost may absorb at most
1 zero mode of s, so that 0 < o < 3. The regulator Ny will absorb exactly as many s*
zero modes as it absorbs d, zero modes. Therefore, the number of d,, zero modes absorbed
by the integration over the s* zero modes, the regulator, and the s*-dependent part of the
b-ghosts equals 22 — o.

Further d, zero modes may be absorbed by the remaining terms in the b-ghost, but
this number is bounded from above by 6 — 2. Tallying all contributions, we conclude
that the maximal number of d, zero modes absorbed by the measure and the b-ghosts is
22 — 0 + 6 — 20 = 28 — 30, leaving at least 4 + 30 zero modes to be absorbed by the
vertex operators. Since each vertex operator is at most linear in d,, any amplitude whose
number of external states is 6 or fewer must have ¢ = 0, leaving at least 4 zero modes of
the d, field to be absorbed by the vertex operators U;. For amplitudes with 4 or 5 external
massless states of interest in this paper, we thus have ¢ = 0, and the integration over the
zero modes of s® produces the following measure for the integration over the zero modes
of the field do(2) = da(2) 4 dL wi(z),

2
11 /[ddf](s Tl (3.14)
I=1

Here the combination (¢ - T - d’) for each I is given by,

(e-T-d) =™ 6T, qpdl, - dl (3.15)

@16
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where the A-dependent tensor T was introduced in (3.4), and [d d’] stands for the integration
measure for the zero modes d!. Since (e - T - d’) involves 11 zero modes for each value of
the index I, a non-vanishing integral requires a further integrand with five d! factors and,
for a given value of I, we have,

/[ddf](s-s.df)df dl dl dl dl. = cTuiarasasas

a1 a2 a3 Ty T

/ [dd")(e-T-d)d dl dl (d'y""Pd") = 96¢(Ay™) oy (M) ey (A as (3.16)

Q1 a2 a3

where on the right side of the second equation the indices mnp are anti-symmetrized.
The normalization ¢ can be found in [26] but is of no concern to us here, as the absolute
normalization of the amplitude may be fixed by other methods such as unitarity.

3.3 Zero modes absorbed by the b-ghosts

The non-vanishing of the genus-two amplitude for N massless states given in (3.10) requires
that all the 32 zero modes dZ, of the field d,(z) be absorbed by a conspiracy of the b-ghost
and the vertex operators. As shown in the previous subsection, for N < 5, the s\ term
of the b-ghost does not contribute and the vertex operators can absorb at most 5 d-zero
modes. As a result, the b-ghosts must contribute either 5 or 6 d-zero modes, which can
arise only from the terms bilinear in d or the term linear in d, in the composite spinor G¢
defined by (2.39). (Note that the term linear in d and linear in the field N, in (2.41)
involves a zero mode of the field N,,,, but this cannot contribute as argued in the preceding
subsection). In summary, the effective ghost field for N <5 takes the form,

(vad)ﬂ (Ay™"Pr)
2000) T 192(AN)2

b= (d’)/mnpd) +-- (3.17)

where the ellipses stand for terms that do not contribute for N < 5.

Parametrizing the insertion points of the b-ghosts by the variables v, for a = 1,2, 3,
we use the fact that only the zero modes of the fields A\, A, 7, d contribute to the b-ghost
insertions to render the v, dependence of the b-ghost explicit,

(Aymdh) (Ardd”)

b(ve) = ZI: 200 wr (V) (vg) + IZ}: 1920012 wr(va)wy(vq) + - - - (3.18)

where we have introduced the following convenient shorthand,
(Ardld’) = (;\’ym"pr)(dlfymnpd‘]) (3.19)

We shall choose a system of local complex coordinates, 7, with a = 1, 2, 3, on moduli space
and associated Beltrami differentials p, so that,

oy /
= 3.20
o | Hares (3.20)
The chiral volume form on moduli space is given by,

0211 0012 0292
01 Oy 0T

d*Q = dQyy A dQys A dQoy = Z

a,b,c

dre N\ dmy A dre (3.21)
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Non-vanishing contributions from the b-ghost insertions therefore require specific arrange-
ments of the d-zero modes. Contributions from the b-ghosts with 6 and 5 d-zero modes,
respectively, are given by the arrangements,

6 zero modes (Ard*dY)(Ard d?) (Ard?d?)
5 zero modes (erldl)( (y™d?) (hrd d?) — (Mmdl)(xnﬁd?))
(er%z?)( Ory™dY) (rdd?) — (med2)(/_\rd1d1)> (3.22)

The contribution for 6 zero modes directly produces the measure on moduli space, as the
coefficient of this term is a holomorphic quadratic differential in each insertion point of the
b-ghost. The contribution with 5 zero modes is contracted with the (1, 0)-form field IL,,(v,)
and, in view of the results of the chiral splitting procedure (2.24), receives two different
types of contributions. The term linear in loop momentum pfn provides a holomorphic (1, 0)
form, so that its contribution directly generates the measure on moduli space. The other
two terms of II,, exhibited in (2.24) are generally meromorphic rather than holomorphic;
it is unclear at present how to evaluate their contribution directly, but we shall infer it by
imposing various consistency conditions.

3.4 The chiral amplitude for four external states

For four external states, the above counting shows that each b-ghost must contribute exactly
2 d-zero modes, resulting in the pattern of the first line of (3.22), and each vertex must
contribute exactly 1 d-zero mode. Omitting the overall A\-dependent normalization, the

structure of the remaining integration is as follows,
4
H / [dd")(e - T - d")(Ard'd")(Ard'd?)(Ard®d®) [ [ (dW, (3.23)
=1
where only the zero modes of the field d contribute in its pairing against the SYM fields W,

2
) — Z zi)wr(zi) (3.24)

I=1

By construction, the amplitude is Bose symmetric in the indices labeling the external states.

All dependence on the d-zero modes has now been made explicit, and its integral may
be carried out using (3.16). The contributions vanish unless two of the four factors (dW;)
carry the zero mode d' while the other two carry the zero mode d?. To evaluate these con-
tributions we shall single out one specific assignment and then sum over all permutations.
Carrying out the integral over d-zero modes, we find [24],

2
11 / [dd"](e - X - dV)(Ard dY) (Ardrd?) (Ard?d?) (d W) (d W) (P W) (d*Wy)

= (Mabept A) (AP Ay T ) (A ™Pr) (A W) (A Wa) (Mg Wa) (MysWa) — (3.25)
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Carrying out the integration over the zero mode of the field r converts each r into a super
derivative acting on the vertex operators, and we obtain,

(MabeptA) Y™ D) (Ay* D) (Ay ™ D) (A W) (M Wa) (Mg W) (Ays Wa) (3.26)

Given the choice of the zero mode assignments made here, this expression is manifestly
invariant under the permutations 1 <+ 2 and 3 <> 4 as well as under (1,2) < (3,4).

Applying a single super derivative to a field W; produces the field strength F;, while
applying more than one super derivative to the same field W; introduces bosonic derivatives
k;W; and k; F;. Still, the latter contributions are BRST equivalent to the terms of schematic
form WEFFF from applying each super derivative to a single one of the W fields. See
appendix A of [24] for further details. More specifically, carrying out the integration over
X produces a sum of four distinct terms,

1

Tho34 = 1 (t123:a + tgjas + tagz + t3aj21) (3.27)
where each term is given by,
t1,2134 = (Mimnpgr ) FT" Fy 1 F3* (Ays W) (3.28)

The manifest symmetry properties are t| gj3.4 = t3 1)3.4 and 11 34 = 15134 = T3 4/1,2 while,
as a consequence of (A.12), we also have the following cyclic symmetries,

t1 234 T 2314 T 13124 =0
Tio34+T1 3142+ T14p23=0 (3.29)

To verify BRST closure of t, we use the results of (2.34) that (AvsW4) and (ApnpgrA) FVEFY?
are BRST closed, so that it remains only to apply @ to F3 which gives,

Q 12151 = Mmnpar VET FF (00 Ws) — (0 0°Wa) ) W) =0 (3.30)

The contribution from the first and second terms in the parentheses vanishes in view
of (A.7) for pure spinors and (A.10), respectively. As a result, t; 23,4 and T} 934 are
BRST closed.

The worldsheet dependence of the amplitude for four external states involves the chiral
Koba-Nielsen factor (3.11), multiplied by a combination of holomorphic (1,0)-forms. We
define the bi-holomorphic (1, 0)-form,

A(Zl, 22) = wl(zl)wQ(zQ) — CU2(Zl)LU1(22> (3.31)

Recall that, following our notations and conventions spelled out in footnote 2, wy(z) is the
coefficient function of the (1,0)-form wy(z)dz in local complex coordinates, and A(z1, z2)
is similarly the coefficient function of the differential A(zy, 2z2)dz; A dze. With these con-
ventions, A(z1, z2) is manifestly antisymmetric in zj, z9, and satisfies the following cyclic
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permutation sum identities,'®
wr(1)A(2,3) + wr(2)A(3,1) + wr(3)A(1,2) =0
A(1,2)A(3,4) + A(1,3)A(4,2) + A(1,4)A(2,3) =0 (3.32)

The chiral amplitude is given by [22],
Ky = Ti 934 A(1,3)A(2,4) + T 32,4 A(1,2)A(3,4) (3.33)

Symmetries under the permutations (2 <> 3) and (1 <> 4) are manifest from the above
expression, while symmetry under the permutation (1 < 2) may be established using
both the symmetries of 7" in (3.29) and of A in (3.32). After performing the zero-mode
integral (3.5) for A and ¢, the bosonic components of (KC(4))o Were shown in [23] to reproduce
the result of the RNS computation [16]. A proof of this equivalence using pure spinor
superspace cohomology techniques can be found in [47].

4 Genus-two amplitudes for five massless states

In this section, we shall obtain the main result of this paper by carrying out the construction
of the genus-two chiral amplitude for five massless states. To do so, we use chiral splitting,
zero mode counting and BRST cohomology of the pure spinor formulation.

4.1 Structure of the chiral amplitude for five external states

The starting point is the genus-two chiral amplitude for five external massless states, given
by the correlator of (3.10) and (3.13) for the case N =5,

3 5
Fi5) = L) (Ks)do = <N2 10 ] Ui(zz')> (4.1)

a=1 i=1

The vertex operators U; are given by,

Ui = 00%A;(x,0) + 11, AT (2,0) + doa W (2, 0) + %NmnFim"(a;, 0) (4.2)
where each superfield multiplet (A;q, A", W, F/™) encodes the polarization vector and
spinor of the state i, as made explicit in (2.32). Following the pattern for the distribution
of d-zero modes for five external states of (3.22) derived in subsection 3.3, the b-ghosts can
absorb either five or six d-zero modes, leaving the vertex operators to absorb either five or
four d-zero modes, respectively. We shall now discuss each part in turn.

10Henceforth, when no confusion is expected to arise, we shall denote the points z; as arguments of
functions and forms, simply by their label i, and the derivative with respect to z; by 0;, so that for example
wr (i) = wr(zi), A4, J) = A(zi, 25), and 9; In E(i,j) = 02, In E(z, z5).
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4.1.1 Four d-zero modes and one loop momentum from vertex operators
The contribution from the b-ghost that contains six d-zero modes is of the form,

3
[1® 1a) = (rd*d")(Ard'd®) (Ard*d?) (4.3)
a=1
so that the product of five vertex operators needs to supply four d zero modes. The
corresponding contribution to K is given by,

<(5\7D)3(U1(d1W2)(leg)(d2W4)(d2W5))> + 14 permutations (4.4)

where we recall that D stands for the super derivative in (2.29) and we have carried out
the usual integration over r which leads to (Ayr) — (AyD). The permutations consist of
all 120 permutations modulo those which swap 2 <> 3 as well as those which swap 4 <+ 5
and finally those which swap the pair (2,3) < (4,5), in view of the symmetries of the
distribution of d zero modes.

We start by considering the contributions to (4.4) that are linear in loop momentum:
Decomposing the operator II,,, in U; according to the rules of chiral splitting in (2.24), we
find a loop-momentum dependent term

2mpl wr(z1) <(5\7D)3 (AT(leg)(d1W3)(d2W4)(d2W5))> + 14 permutations (4.5)

and leave the leftover contributions 9z (21)+3 (09™90)(z1) from (2.24) for the next section.

Applying the three super derivatives D in (4.5) produces two types of terms. Applying
all three D to W; vertex operators produces terms of the form A7" times the building block
of the four-point amplitude T o34 plus permutations thereof. However, in addition to
these contributions, which are schematically of the form AFFFW  terms involving DA;
and terms in which several D act on the same W, are also produced. At four points,
different partitions of the super derivatives to the superfields WWWW turn out to be
BRST equivalent [24]. We expect that also at five points, the chiral correlator admits a
cohomology representative where the contributions of (4.5) are captured by permutations
of AT'T3145- They will produce a contribution to the “vector block”, as we will see in
section 4.2. An explicit evaluation of (4.5) may be found in section 5 of [25].

4.1.2 Four d-zero modes and one Wick contraction from vertex operators

It remains to carry out the Wick contractions of U; with the fields W;. Using the vanishing
of the Wick contractions of the non-zero modes of 8% given in (3.8), we see that the
contraction of the term proportional to 96“ on the right side of U; in (4.2) with the
remaining W; operators vanishes identically, so that this term in U; may be omitted. The
contribution of the zero mode of N,,, in U; similarly cancels as a factor of N,,, would
be needed to give a non-zero contribution. The Wick contractions of the non-zero mode
of Ny, with the other fields similarly cancel. The remaining contribution is thus given
by [25],

(D) (L AT (2,0) + da Wi (w,0) ) (21)(d Wa) (d' W) (A2 W) (W) ) (4.6)
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where T1™ (1) = 02" (21)+ $(67™80)(z1) is obtained by removing the loop momentum from
the chiral-splitting prescription in (2.24). Wick contractions of I give rise to contributions
linear in external momenta which arise from four vertex operators of the form (dW;), two
of which carry a d' zero mode with the other two carrying a d? zero mode.

7 (20)WP (21) ~ —i0., In E(z1, ) kWP (4.7)

Finally, the Wick contractions of du(z1) with Wiﬁ for i = 2,3,4,5 is given by the last
formula of (3.9), and in this case simplifies as follows,

N 1
do(21)WP (2) ~ 8., I E(z1, 2) DaWP = Z(ymn)aﬁmmnazl In E(21, 2) (4.8)

The two contributions (4.7) and (4.8) will produce terms in the “scalar block”, as we will
see in section 4.5.2.

4.1.3 Contributions with five d-zero modes from vertex operators

The contribution from the b-ghost that contains five d-zero modes is of the form,

3
[[®: 1a) = (Ard®d®)L,, (2(;\7md1)(5\rd1d2) - (xymd%(xrdldl)) (4.9)
a=1
plus the same term with d' and d? zero modes swapped. As a result, the product of the
vertex operators needs to supply five d zero modes, more specifically three d' zero modes
and two d? zero modes for the term written down above. The corresponding contribution
of the above term to K5 is given by [25],

(T (@yd?) (200" d")(d"d?) = (W™ d?)(d' "))
X (XfyD)z(dlwl)(dlwz)(d1W3)(d2W4)(d2W5)> (4.10)

plus the same contribution with the zero modes d! and d? swapped. Expanding II,, as
in (2.24), evaluated this time at one of the b-ghost insertions, produces terms linear in
loop momenta and terms which are linear in external momenta. The terms linear in loop
momenta are accompanied by a holomorphic (1,0)-form at the b-ghost insertion point and
will directly lead to the measure on moduli space. Terms linear in external momenta will
not be computed directly but rather inferred by consistency.

For the contributions linear in loop momenta we construct an expression of the
schematic form FFWWW from cohomology arguments in the next section: Carrying
out the integration over d-zero modes and r-zero modes in (4.10), we see that we now have
two super derivatives acting on the vertex operators (in contrast with the contribution with
four d zero modes from the vertex operators, where we had three super derivatives). When
the super derivatives act on two different vertex operators, the respective superfields W;
will be converted to Fj;, leaving expressions of the schematic form FFWWW. Contribu-
tions of the form WWWW D?>W are expected to be BRST equivalent to those of the form
FFWWW by analogy with the fate of the four-point contributions D*(WWWW) [24].
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4.2 The vector block for the amplitude of five external states

Summarizing the structural information gathered in the previous subsection, we have two
distinct types of contributions to the chiral amplitude for five external states. The first
contribution is linear in the loop momenta and will be referred to as the vector block,
while the second contribution is independent of loop momenta and will be referred to as
the scalar block. Our strategy will be to determine first the vector block, in part from
information obtained through its structural analysis in the previous section, and in part
from enforcing BRST invariance. The scalar block will not be computed directly, but will
be determined uniquely from the monodromy behavior of the vector block (recall that,
according to (2.20), loop momenta behave non-trivially under moving a vertex operator
point z; around a B-cycle on the surface) combined with BRST invariance.

The vector block receives two different types of contributions, symbolically of the form
AFFFW and FFWWW , as was derived in the previous section. It will be convenient
to label the contributions to the vector block with vertex operator indices corresponding
to the distribution of d' and d? zero modes in the contribution with five d-zero modes on
the vertex operators. Thus, a contribution with three d' zero modes on vertex operators

1,2,3 and two d? zero modes on vertex operators 4,5 will contribute to T, 34,5° We will
also include in 77", 34,5 the contributions with four d-zero modes on the vertex operators,

specifically two d?-zero modes on vertex operators 4,5 with two d' zero modes and one
Ay, vertex distributed amongst the points 1,2, 3. Thus, the vector block T7", 34,5 takes the
form [48],

11 3105 = AT Togjas + A3 T3 1145 + A3 Tiojas + Wilh 305 (4.11)

where T 34 5 and its permutations are the four-state blocks defined in (3.27), and W collects
all the contributions of the structural form FFWWW. The first three terms on the right
side of (4.11) are invariant under all permutations of 1,2, 3 as well as under swapping 4, 5.
Our goal will be to construct Wlm’273‘ 45 and thus T: 1’”’273l 45 which are invariant under these
symmetries as well.

A crucial ingredient in our construction will be the BRST transformation property
of the vector block. Using the BRST invariance of Tj 345 and its permutations, and the
BRST transform of A,, given in (2.33), the BRST transformation of the vector block is
given by,

QT 3145 = k1" Vi Toga5 + thy Va Ty 115 + ik3"Va T o5 (4.12)

provided the BRST transform of 1’”’273‘ 45 satisfies,

QWS 3105 = —(MY"W1) Tagias — (M W) T 1145 — (A" W3) Th 245 (4.13)

We shall now show that this equation may be solved for W, 34,50 UP to BRST exact
contributions, by a sum of terms each of which is of the structural form FFWWW, as
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predicted in the previous subsection. Three distinct types of contributions arise,

1
(ml)g?4;5|1,2 = _g()\'YmWE)) {OpY W) FF? + (1 4 2)} {()\’Yst%WS)szt + (3 ¢ 4)}
1
(02)374501,0 = g(/\’YtWS)(anqrs)\)Fprzqr(W37m5tW4)
1
(03)54501,2 = =3 A Ws) {(Mpgy ™" W) Ey" + (1 2 2)H{(Ms W) Fi* + (3 > 4)} - (4.14)
The overall coefficients have been chosen for later convenience. To make a connection with
the structural analysis, the first term arises from four d-zero modes coming from the vertex
operators, and one super derivative applied to AZ*. The second and third terms arise from
five d-zero modes coming from the vertex operators. Specifically, the second term arises
from the first term in the large parentheses of (4.10) while the third term arises from the
second term in the parentheses of (4.10).
The BRST transformations of these partial contributions are readily obtained using
the results of (2.33) and (2.34), as well as the following identities,

o 1
Q{()‘qu'YTWi)Fqu} + (i) = *5()‘%@(17")‘)5“5?(1
1 . .
QUV™!Wi) = | vy ™ W) FP (i 65 ) (4.15)
The resulting BRST transformations are then given by,
1
Q(11)5 510 = E(Ayng,) (t1,20354 + 12143 — t3a;2 — t3.4211)

1 1
Q(2)5" 510 = *6()\’7mw5)t1,2|4;3 - 6()\’7mW5)f1,2\3;4

1 m 1 m
- g()\’Y W)t o5 — §(>\7 Wit 3.5
1 n T S
+ E(A’ymnpqr)\)Fl PESTES (A\ysW3) (A Ws) + (3 <> 4)
m 1 m n, T S
Q(w3)35451,2 = — (A npar ) FL T FSFF (Ays W) (A Ws) + (3 ¢ 4) (4.16)

where t; 3.4 was defined in (3.28). An immediate simplification is obtained by adding
Q(w2) and Q(r3). The sum of all three,

W5 5110 = (01)5'51.0 + (02)57511 2 + (03)5'4.51 0 + (54> 3,4) (4.17)

has the following BRST transform,

QW3 4512 = — (M W3) T ga5 — (MY Wa) Ty 253 — (A" Ws) T 23,4 (4.18)
Thus, t’o’&’s‘ 45 appears to provide a suitable candidate for W{”’Q’?)‘ 450 €xcept for the fact

that it does not make the symmetries of 77" manifest.

12,3/4,5
Indeed, the symmetry of T} g3 4 in (3.29) implies that QT7", 34,5 satisfies the symmetry,

QTV5 3145 = QT30 512 + QTo0 5113 + QT 5023 (4.19)
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The first three terms of 777, 34,5 in (4.11) satisfy this same relation before applying Q.
Therefore, T7", 3145 itself satisfies the following symmetry relation,

m _m m m
T1,2,3|4,5 = T3,4,5|1,2 + T2,4,5\1,3 + T1,4,5|2,3 (4.20)

provided WFQ,3| 45 also satisfies this relation. The candidate m%’:}‘ 45 We had obtained for

W&B\ 45 satisfies the appropriate BRST relation (4.18) but fails to satisfy (4.20). The

following symmetrization of 1"

1,2,3/4,5°

1 1
m _ m m m m
Wil 345 = 5'™1,2,3/4,5 + 6(m3,4,5\1,2 + 5 5113+ W 530) (4.21)
1 m m m m m m
- 6(m1,2,4|3,5 107" 5134 F W73 405 + 1075 510 4 + 1057 41 5+ 105 5 )
produces the desired expression for W, 34,5 which satisfies both the BRST condition (4.13)

and the cyclic symmetry (4.20).

4.3 Worldsheet dependence of the vector block

At fixed loop momenta the correlator of the field 2" produces the chiral Koba-Nielsen
factor Z(yy of (3.11) for N = 5, along with contributions from the insertions of the op-
erator II"™. In view of the substitution rule (2.24) of the chiral splitting procedure, the
latter decomposes into the operator 0z’ + %H'ym89 and the part linear in loop momenta
pl which is holomorphic in z. The contributions to the chiral correlator K(5) linear in pl
is captured by,

lcp

G5y = 270, TS 514 501 (2)A(3,4)A(5,1) + cycl(1,2,3,4,5) (4.22)

where the cyclic sum renders (4.22) invariant under all permutations of the z; and external
states.!’ This combination has been chosen because it gives an economical expression for a
fully Bose symmetric amplitude contribution in terms of cyclic permutations only, without
the need to include all 120 permutations of five points. However, (4.22) fails to obey the
homology invariance properties (2.20) and (2.21).

To obtain homology invariance of (4.22), we shall now promote the dependence on the
loop momenta to combinations which are homology invariant. As a first step, note that
the insertion of a single operator dz™ multiplies the chiral Koba-Nielsen factor (3.11) by,

P (i) = 2mi(p")"wr(z:) + > k0 In Bz, 25) (4.23)

J#i
Thanks to overall momentum conservation, the transformation law of the loop momenta
given in (2.21), and the 2A; and B;-cycle monodromies (B.17) of the prime form, the one-
form P™(z;) is homology invariant. Hence, any loop momentum contracting the vector

111 the superfield formalism for the external vertex operators used here, invariance of the amplitude for
N external states under all N! permutations of the external states provides the superfield implementation of
Bose symmetry for external bosons and Fermi symmetry for external fermions. Full permutation invariance
may be verified by repeatedly using the symmetries (3.32) and (4.20) of the forms w;(2)A(3,4) and the
kinematic factor 177 34 5, respectively.
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block 7% 5, 5 In (4.22) will be promoted to the combination (4.23). Since (4.22) addition-
ally features bi-holomorphic (1, 0)-forms A(%, j) defined in (3.31), it is convenient to define
the following vector-valued meromorphic (1,0)-form in five variables z;,

1,345 = P (1)A(2,3)A(4,5) (4.24)
An immediate property which will be crucial soon is as follows,
K2 45 L) = O (I(5) A(2,3)A(4, 5)) (4.25)
On these grounds, the homology-invariant completion of (4.22) is given by,
Kisy = =iT{" 345 2354551 + cyel(1,2,3,4,5) (4.26)

However, the terms proportional to k"I 5, 505 In E(22,2;)A(3,4)A(5,1), which are

present in (4.26) in addition to the contributions of (4.22), do not preserve the Bose per-
mutation invariance of (4.22). At the same time, neither (4.22) nor (4.26) are BRST
closed. In the next subsection, we shall show that both shortcomings are cured by adding
a loop-momentum independent scalar block.

4.3.1 BRST transformation of ICYS)

In preparation for the construction of the scalar block in the next subsection, we begin by
calculating and then simplifying the BRST transform of the vector block ICK,)). The BRST
transform is obtained by using (4.12) and is given by,

Q’Cé) = (K{"ViTo a5 + k5 Va T3 qja5 + k5 V3 T1 945) 2303 4151
+ cyel(1,2,3,4,5) (4.27)

Using the cyclic permutations to expose a single vertex operator V3, we have equivalently,

\%
QK G5y =T1 245 Va k3" (235451 + Za351) + Toai5,1 Va k' 254 510
+ cycl(1,2,3,4,5) (4.28)
Using the property (4.25) and the fact that by now only zero mode integrations remain
for the vertex operator V3 which depends only on A and 6, we see that the third term in
QICEE)I(E,) is a total derivative in z3 which vanishes upon integration over zs.

The remaining terms may be simplified as follows. We begin by focussing on the loop
momentum dependent part, which is given by,

KT (25 a0 + 24350 L) ’p = 2miky - p! (w1(2)A(3, 4) + wr(4)A(2, 3)>A(5, 1))

— (A(2, 4)A(5, 1)1(5)>

=) ks k; OsIn E(3,)A(2,4)A(5,1) s (4.29)
J#3

_ 98 —



where the second line has been obtained from the first by using the first identity in (3.32),
and regrouping terms under the total derivative in z3. Upon including the terms without
loop momenta in the Z-functions, and omitting the total derivative contributions, we find,

where £ is given by (recall that s;; = —k; - kj),

LY = s35[02In E(2,5)A(3,4) + 04 In E(4,5)A(2,3) + 93 In E(3,5)A(4,2)]
+ 531 [0 In B(2,1)A(3,4) + 04 In E(4, 1)A(2,3) + 83 1In E(3,1)A(4,2)]
+ s32[041In E(4,2)A(2,3) + 93 In E(3,2)A(4, 2)]
+ 534 (00 In B(2,4)A(3,4) + 03 In E(3,4)A(4,2)] (4.31)
The form L3 is invariant upon homology shifts of the points z; around 2 and 9B cycles, as
may be shown using (B.17) and with the help of momentum conservation, which implies
the relation sg5 4 s31 + s32 + s34 = 0. To render (4.31) manifestly invariant under homology

shifts without the need to invoke momentum conservation, it is convenient to add the
following combination which vanishes in view of momentum conservation,

|
£ = =5 (s35 + 531 + 532 + 531) [84 In E(4,2)A(2,3) + 05 In E(3,2)A(4,2)

+ 9 E(2,4)A(3,4) + 5 In B(3,4)A(4,2)|  (4.32)

In summary, we have established that, up to total differentials in the vertex operator

position points z;, the contribution from the vector chiral block ICX,)) has BRST transform,

QK5 = Tipjas Vs L3 A(5,1) + cycl(1,2,3,4,5) (4.33)
where L3 = Cg + Lé. In particular, it is independent of loop momenta.

4.4 Construction of the scalar block

By definition, the scalar block IC%) is the part of the chiral amplitude which is independent
of loop momenta, and the full chiral amplitude is the sum of both contributions,

K = Kl + Ky (4.34)

BRST invariance of the full amplitude imposes the following constraint on the BRST
variation of the scalar block,

QK = —Tijas V3 L3A(5, 1) + cyel(1,2,3,4,5) (4.35)

s
(5)’

of the loop momenta, without discarding total derivative terms (which would be allowed

To render K5y BRST invariant, a solution must be found for K¢, which is independent

for the total chiral amplitude K()Z5) but not for ICE%)). In the next subsection, we shall
construct the so-called BRST ancestors, such as 53,1945, which satisfy,

Q53112145 = $31V3T1 245 (4.36)
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and obey symmetry properties analogous to 77 o4 5, see (3.29),

S3:10214,5 = S3;112/5.4 S3:11214,5 T S3:11502,4 T S3;17455,2 = 0 (4.37)
With these ancestors at hand, the BRST variation of IC?E)) may now be solved as follows,
Ky = LA, 1)+ cycl(1,2,3,4,5) (4.38)
where
1
£ = 5(S3anjas — Sasn2) 0110 B(4,2)A(2,3) + 05 In B(3,2)A(4,2)
— 8 I B(2,4)A(3,4) — d3In E(3,4)A(4, 2)}

5 Safzis 03I B(4, 2)A(2,3) + 05 In B(3,2)A(4,2) + 8 0 B2, 4)A(3, 4)
05l B(3,9)A(4,2) — 20, 1n B(2,1)A(3, 4)
— 20,0 E(4,1)A(2,3) — 285 In B(3, 1)A(4, 2)]

- %sg;ww (041 (4,2)A(2,3) + 5 n £(3,2)A(4,2) + 85 n B(2, 4)A(3,4)
050 B(3,4)A(4,2) — 20, In B(2,5)A(3, 4)
— 20,10 B(4,5)A(2,3) — 205 In B(3,5)A(4,2)] (4.39)

Note that £ is obtained from V3T 54 5L3 by formally substituting s31 V577 9145 — S3;1)2)4,5
and permutations thereof, in keeping with the structure of (4.36).

4.5 Scalar block in terms of two-particle superfields

The construction of the scalar block IC%) in the previous section relies on the availability of a
local scalar superfield Ss.;2|4 5 subject to the BRST variation (4.36). To prove the existence
of viable solutions to the BRST condition and obtain their explicit construction, we shall
use the multi-particle superfield formalism, which was developed for genus-zero applications
in string theory in [27] (see [8] for precursors) and tree-level applications in quantum field
theory in [49, 50] (see [51] for precursors). Moreover, multi-particle superfields recursively
capture the short-distance singularities of higher-genus correlators [25, 26, 52] and tree-level
subdiagrams of loop amplitudes in quantum field theory [48, 53].

4.5.1 Preamble

Chiral conformal field theory correlators of conformal primary operators of dimension (1, 0)
on a Riemann surface of genus zero are determined by the positions and residues of their
poles and their monodromy. In the absence of monodromy, this statement is equivalent
to the well-known result that a meromorphic (1,0) form on a sphere is completely deter-
mined by the positions and residues of its poles. In particular, the positions of its zeros are
completely determined. In a conformal field theory, the singularity structure is determined
uniquely by the OPEs of the fields in the correlator, so that on genus-zero surfaces the corre-
lators may be recovered completely from the OPEs. The chiral amplitudes F of interest
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here are derived from the insertion of chiral vertex operators U; of conformal dimension
(1,0) and b-ghosts of conformal dimension (2,0) whose monodromy is entirely contained
in the chiral Koba-Nielsen factor Z(y). The reduced amplitudes Ky are monodromy-free.
By contrast, on a surface of higher genus, there exist holomorphic forms of dimension
(1,0), so that specifying the positions and the residues of the poles no longer suffices to
determine the correlator, and additional information on the contribution of the holomorphic
forms is required. Thus, the OPE is generally insufficient to reconstruct the correlators.

4.5.2 Two-particle superfield formalism

The two-particle superfield formalism is based on exploiting the OPE structure of chiral
vertex operators U;. Controlling the singularities in the OPE (and its multi-particle general-
ization) allows for a complete determination of the corresponding correlators at genus zero.
The operator product of two chiral vertex operators enjoys the following structure [27, 54],

1
U, (Zl)UQ(ZQ) — —21_2812_1 <89a1412a + HmA% + danlQ + 2NmnF1n2m> (4.40)

up to total derivatives 0y and 0, of the product of z;5*? times a single-valued function of
zo plus non-singular terms. Upon integration of the vertex operators over their positions,
the total derivative contributions are expected to cancel.

The prefactor z;,'? arises from the contractions of the exponentials eFrr+ with etk T+
and is contained in the chiral Koba-Nielsen factor, where ki and ks are the momenta of the
external states. The extra factor of zle arises from the Wick contractions of the operator
Oz’ in II"™ with the exponentials eFrTt with e*2%+ as well as from the pairwise Wick
contractions of the spinor fields. Double poles arise as well, but it was shown [27, 54] that
they may all be included in the total derivatives which are being omitted. The composite
fields Aiq, AT, Wi, 5™ are referred to as two-particle superfields. Their expressions in

terms of the one-particle superfields are given as follows,

(A1a)a = é[AQQ(z’kQ A AP (W) — (145 2)]
(Alg)m = %[Alngm + A;n(lk‘z . Al) =+ (Wl’ymWQ) — (1 — 2)]
(W)™ = i(ymnwz)a e (iky - Ay) — (16 2) (4.41)

(Fyo)™ = Fy™ (iky - Ay) + FY", M ikl (W) — (1 45 2)

where k7% = k7" + k3'. The BRST transforms of the two-particle superfields which will be
needed here are given as follows [27],

1
QW15 = Z()\’Ymn)angn + s12(ViWg — VoW7)
QF5" = ikT5(A\Y"Wha) — ikl (A" Wia) + si2(VIF™ — Vo F™™)
+ s12( AT 0" W2) = AFOY"W) = AT (A" Wa) + AT (\"W1)) (4.42)
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Using the pure spinor constraint, we also deduce the following BRST transforms, which
generalize the relations of (2.34) to the case of two-particle superfields,

Q(MsWi2) = s12Vi(MysWa) — s12Va(Ays W)
Q(AmenpqrA)Flngn = 812()\'}’mnpqr)\)(‘/1F2mn - ‘/QFlmn) (443)

Also at higher genus, the two-particle superfield formalism can be applied to determine the
singular parts of the correlators. However, since singularities of the OPE do not uniquely
determine correlators beyond genus zero, the regular parts of the correlator generically
require additional input beyond the multi-particle superfield formalism. In the next sub-
section, the scalar block S3.1j9)45 in the regular parts of the correlator will be obtained
by solving (4.36), i.e. taking BRST invariance and monodromies into account. Our solu-
tion for Ss.194,5 turns out to be expressible in terms of the vector (4.11) and two-particle
superfields, irrespectively of their OPE origin.

4.5.3 Two-particle superfields for the five-point function

To construct the scalar block Ss;1j45 solving (4.36), we begin by defining the following
composites of ghost number three, built out of two-particle superfields in analogy with the
construction of (3.28) in the four-point case,

J‘12,3\4;5 = ()"anpqr/\)FlrganqFZs(>‘75W5)
ty 5312 = (Mimnpgr \) FY FETF* (AysWha) (4.44)
ty5112:3 = (Mmnpgr N Fy 5 FT5 (Ays W)

The three composites are obtained from t; 93,4 in (3.28) by substituting the corresponding
two-particle superfield for each single-particle field encountered in turn in (3.28). Note that
the substitution of Fip for 1 and F3 in (3.28) lead to the same expression t;3/4,5. Their
BRST transforms are readily obtained from (4.43) and (2.34), and we find,

Q t12.345 = s12V1 ta 34,5 — s12V2 b1 31455
Qtys312 = s12Vity 532 — s12Va ty 531 (4.45)

Qty512;3 = s12Vi ty 52,3 — s12Vaty 50153

Upon defining the following combination by analogy with (3.27),

(ti2,314;5 + t12,35:4 T tas)12:3 + tas3:12) (4.46)

>~ =

Tio3145 =
we verify that its BRST transform is given by,
QT23145 = 512(ViTo 3145 — V2T 34,5) (4.47)

The composite Tj3 345 by itself does not yet solve (4.36), but it does exhibit a desired
kinematic factor sjo, vertex operators V3, and the characteristic building block 77 34 5, all
of which are key ingredients on the right side of (4.36).
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4.5.4 The scalar block in terms of two-particle superfields

The BRST variation of T} 3145 in (4.47), together with the expression (4.12) for Q
imply the central result of this subsection, namely that the combination,

m
T1,2,3\4,57

1/.
S1;234,5 = 5 (l(k?l+k72n_k§n)Tf?2,3|4,5 + T12345 + 1132145 T23,1\4,5) (4.48)

yields the desired BRST variation (4.36). We note here, for later use in section 6, that the
expressions for 17 5 5 in (4.11) and Ty 345 in (4.46) have been used in [48] to propose
a BRST-invariant and manifestly local representation for the integrands of two-loop five-
point amplitudes in SYM and maximal supergravity.

The steps in deriving the symmetries (3.29) of the chiral blocks for four external states
carry over in identical form to the following relations [48],

Ti2 3145 = 112,354 Ti2 3145 + T12,4p5,3 + 112,534 =0 (4.49)

As a consequence, the symmetry,

S1:2314,5 = S1;2/3]5,4 (4.50)

is manifest from the definition (4.48), whereas the relation,
S1:2314,5 T S1:2415,3 T S1:253.4 =0 (4.51)

holds in the BRST cohomology, namely up to a Q-exact superfield (an equivalence which
is denoted here and below by the symbol 22). Similarly, the vector and scalar superfields
are related via [48],

k3" (T 3105 + T3 51.2) — Tiz2ias — Toznjas + Taas2 + Ta5.412 =0 (4.52)

up to a Q-exact quantity, and it would be interesting to identify its BRST ancestor. It is
easy to show via momentum conservation si3 + so3 + s34 + S35 = 0 that the left-hand side
of (4.52) is BRST-closed, and exactness follows from an explicit check that its components
(...)o vanish [55].

More generally, any BRST-closed and local combination of permutations of k;”T{"’Z?)‘ 45
and Tip 345 is checked to be BRST exact as well. Only non-local expressions such as
31_2151;2‘3|4,5—31_31 S1.3)214,5 can be in the BRST cohomology. The absence of local cohomology
within our alphabet of kinematic building blocks TI":LQ??)' 45 and Tip 345 is crucial for the
viability of our approach.!?

We will later on exploit that any contraction k;nT1m,2,3| n
momenta is expressible via permutations of the scalar building block,

5 of the vector with external

ik{nTlm,273|4,5 = So.11314,5 T 53;1)2/4,5 (4.53)

-7, M m
ik5"T1") 3145 = St5/4j2,3 + S2;50411,3 + Szi5/401,2

12For instance, for four external states it is possible to construct local pure spinor superfield expressions
in the cohomology of the BRST charge. This fact causes complications when applying the same ideas in
an attempt to obtain the non-singular completion of the three-loop four-point correlator from [26].
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The first identity is an immediate consequence of the definition (4.48) while the second one
is based on (4.52), i.e. only valid up to BRST-exact terms. One can similarly show that

S1:21314,5 — 52113145 = 112,3)4,5 (4.54)
and, via momentum conservation and repeated application of (4.52), that,
Ss:10213,4 T S5:2/113,4 + S5:34)1,2 + Ss.4/3)1,2 = 0 (4.55)

the last equality again holding up to BRST exact terms.

5 Structure of the chiral amplitude

In this section, we shall simplify the expression for the genus-two chiral amplitude for five
external states and further explore its structure. Various re-organizations between the
vector block (4.26) and the scalar block (4.38) lead to new representations that in turn
expose manifest homology invariance, BRST invariance, or locality.

5.1 Theta functions and symmetry on the Jacobian variety

The chiral amplitude obtained in section 4 depends on the positions of the vertex operators
and the b-ghost entirely through the holomorphic Abelian differentials wy, the prime form
E(z,z;), and single derivatives of its logarithm 0;In E(z;, z;). At genus zero and one,
the meromorphic form 0; In E(z;, zj) is odd under swapping the points z; and z;, but this
property can no longer hold at higher genus since it is a (1,0) form in z; but a (0,0) form in
zj. Under certain conditions, which will turn out to be met for the 5-point amplitude, the
meromorphic form above can be recast directly in terms of w; and genus-two J-functions
and their first order derivatives, and in this form a higher-genus version of the swapping
symmetry will be recovered. The present subsection is devoted to exhibiting the associated
simplifications of the chiral amplitude.

To express the prime form in terms of genus-two ¥-functions we use the Abel-Jacobi
map which sends a point z; in ¥ to a point ¢; in the Jacobian variety J(X) (see appendix B),

(G)r = /Zl wr (5.1)

0

Since only differences ¢; — ¢; will be needed throughout, all dependence on the choice of the
base point zp will cancel out. By the definition of the prime form in (B.15), its logarithmic
derivative may be decomposed as follows,

0;In E(2;, 2j|Q?) = wl(zi)gz{j — 0;Inhy,(z) (5.2)

where v is an arbitrary odd spin structure, h, is the corresponding holomorphic (%, 0) form,
and gz{ ; 18 given by the derivative of the logarithm of the ¥-function for spin structure v,

0
I _
o= 5 MIMACD)| (5.3)
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While each term separately on the right side of (5.2) depends on v, their sum is independent
of the choice of v. The key advantage of the combination 91‘1, ; 1s the symmetry property,

g]Iz = _gi[,j (5.4)

while the derivative of the prime form 0;In E(z;, z;) exhibits no such symmetry.

Upon substituting the decomposition (5.2) of the derivative of the prime form into the
five-point amplitude, all dependence on the holomorphic (1/2,0)-forms h, cancels between
the vector and scalar blocks, provided we choose one and the same odd spin structure for
all substitutions. This cancellation is guaranteed by the fact that the full chiral amplitude
is a well-defined (1,0) form in each vertex point z; whose monodromy is given solely by
the monodromy of the chiral Koba-Nielsen factor. It may also be verified directly on our
final expressions for the vector and scalar blocks.

The contributions involving h, in the vector block are easy to track from (4.26),

,
K

= eIy (22) A3, A G, DES T 545+ cyel(1,2,3,4,5) (5.5)

where we have used momentum conservation to simplify. A slightly longer calculation is
required to isolate the h,-dependence of the quantity (4.38) in the scalar block,

1
L LT 5(53;2|1|4,5 — S3.ap51,2) [O2 In hyy (22) A(3,4) — 04 In hy (24)A(2, 3)]

v

1
- 5(53;”2‘475 + 53;5|4‘172) [82 In h,/(ZQ)A(?), 4) + 84 In hV(Z4)A(2, 3)]
= 53;2|1|475 82 In hV(ZQ) A(g, 4) + S3;4|5‘1’2 84 In hl,(Z4) A(2, 3) (56)
The last line has been obtained from the kinematic identity (4.55) in the BRST cohomology.

On these grounds, the sum of all contributions 0; In h,(z;) to the overall amplitude can be
obtained by combining (4.26) and (4.38),

Key| = 02Inhy(22)A(3,4)A(5,1)(—ik3 T1" 345 + Ss2)1ja5 + S1,2)3)4.5)

v

+ cycl(1,2,3,4,5) (5.7)

The sum of the terms in the parentheses on the first line cancels in view of the first kinematic
identity in (4.53) so that Ks)|n, = 0, and all dependence on h,, for all points z; cancels.

5.2 Partition into sub-correlators

In view of the results of the previous subsection, we may freely make the following substi-
tutions of all partial derivatives of the logarithm of the prime form within Ks,

0;In E(2, zj) — wr(z) gij’j (5.8)

It follows by inspection that both the contributions from the scalar and the vector blocks
may be expressed as linear combinations of holomorphic differential forms of the type
wr(i)A(g, k)A(L,m) with coefficients given by the functions gé’q, where (i,7,k,¢,m) is a
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permutation of (1,2,3,4,5). In view of the identities (3.32), the vector space spanned by
all such forms wy(i)A(4, k)A(¢, m) is five-dimensional and a basis is given by,

wr(1)A(2,3)A(4,5) and its 4 cyclic permutations of (1,2,3,4,5) (5.9)

Decomposing the correlator in the basis (5.9) we have,

Ky = wr(1)A(2,3)A(4,5)KL | 534 + cyel(1,2,3,4,5) (5.10)
We shall refer to the quantity ICEI) 1,234 and its permutations as sub-correlators.

The sub-correlators comprise all the kinematic dependence, and the free index I is
carried by the loop momentum p! or by a function gz{ ; in (5.3). The explicit form of
]Cé,172l3,4 resulting from (4.26), (4.38), (4.39), even after reduction to the basis of the five-
forms, produces a large number of terms, but it drastically simplifies after use of the
kinematic identities in section 4.5.4: In terms of the scalar building block Sy.934,5 in (4.48)
and their anti-symmetrized combination 79 345 in (4.54), the coefficient of each function
gl{ ; reduces to just a single term,

I _ I m I I I
K5 1034 = 20151 o134 — 91,212,534 — 9151152134 — 92,5T25,113,4
I I I
- 91,351;3\4|2,5 - 92,352;3|4\1,5 - 95,355;3|4\1,2

I I I
- 91,451;4\3|2,5 - 92,452;4|3\1,5 - 95,455;4|3\1,2 (5.11)

while the coefficient of g§74 vanishes.
As reflected by the notation for its subscripts, the sub-correlator ICEI) 1234 exhibits the
same symmetries as the vector building block T3 55, in (4.11). Tt is manifest from (5.11)

that ]CEI),I,2|3, 4 1s symmetric with respect to labels that are separated by a comma,

I _ ol _ 4l I _ 4l
IC5,1,2|3,4 = ’C1,5,2|3,4 = ’C5,2,1\3,4 ’C5,1,2\3,4 = K5,1,2|4,3 (5.12)

Moreover, the symmetry relation (4.20) of T} 53,4 CAITiES OVer to

I I I ~ ]
’C5,1,2|3,4 + ]C4,1,2|3,5 + ’C3,1,2\4,5 = ’C3,4,5|1,2 (5.13)

as can be verified from (4.54) as well as the symmetries (4.50) and (4.51) of Si./3)4,5-
Based on (5.12) and (5.13), one can explain from a simple analogy why the correla-

tor (5.10) is not only cyclically invariant but in fact Bose symmetric in the five external

legs: We have shown that Tg"m‘& 4 and Ké7172\3, 4 have identical symmetry properties, and

the correlator (5.10) is related to its loop-momentum dependent part IC}(75) in (4.22) via

13The number of independent such forms follows from group theory. Each wr () is an SL(2) doublet and

the number of doublets occurring in the five-fold tensor product of doublets is five. To see concretely that all
the forms wr(2)A(J, k) A(£, m) are linear combinations of the forms in (5.9), we first use cyclic permutations
to set ¢ = 1. There are three such forms, wr(1)A(2,3)A(4,5), wr(1)A(2,4)A(3,5) and wr(1)A(2,5)A(3,4).
The second form is a linear combination of the first and third by the second identity in (3.32) while the third
form may be decomposed using the first identity of (3.32), wr(1)A(2,5)A(3,4) = —wi(2)A(3,4)A(5,1) —
wr(5)A(1,2)A(3,4). This cyclic basis was already tacitly used for the loop-momentum dependent part (4.22)
in the opening line for the vector correlator.
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I m I
P T o34 € K5 q

correlator in (5.10).

2[3.4° Hence, permutation invariance of IC:E%) carries over to the full

Note that (4.48) together with (5.11) reduce the superspace components (K 23 1)0
to permutations of (77" 203 20 and (T5; o3 4)0. The bosonic components of (77"} 23 4)0 and
(T51,2/3,4)0 can be found in the files available for download from [56].

5.3 Manifesting homology invariance

I
5,1,2/3

as defined in (2.21), so that the full amplitude is single-valued on ¥ after integration over

We shall now verify that the sub-correlator 4n (5.11) by itself is homology invariant
the loop momenta. This statement is stronger than the statement that the sum K(5) of all
sub-correlators is homology invariant. The result will imply that, upon multiplication by
the chiral Koba-Nielsen factor Z5), the contribution of each sub-correlator Kél,2l3, 15 to
the chiral amplitude gives rise to the expected monodromies (2.20) all by itself.

The result is non-trivial because each function gi{ ; has non-trivial monodromy as a

point zy is shifted by a B-cycle (but is invariant under an 2, shift),
zi = 2z + 0iB, 91— 9t + 2mid] (650 — bir)
pl —pl — 61k, (5.14)

which is readily established using the transformation laws of the prime form in (B.17).
Implementing the full homology transformations of (2.21) on the loop momenta as well, we

see that ng 1234 is invariant provided the following identities hold,
2mi (T34 + Tis 234 + Stgaj2,5 + Stapizs) — 27 (k1) m 5 o34 =0 (5.15)
=271 (S 3jaj2,5 + Sa3jap,5 + Ssaja,2) — 27 (ks)mT5 054 =0

The validity of these identities can be easily checked in the BRST cohomology by means
of (4.53), (4.54), and (4.55). As a consequence, the integral over loop momenta of the chiral

amplitude will be a single-valued function on ¥ (see section 6).

I
5,1,2|3,4

smaller blocks, each of which will by itself be homology invariant. The key to this re-

Actually, an even stronger property may be obtained by decomposing K into

organization of lCé 1,234 is the following combination of gi{ ; functions,
I I I I
Gijk = 9ig T 9ik + In (5.16)

for three distinct points z;, 2j,z;. The functions Gi{j,k are single-valued in view of the
definition of gi{ ; and (5.14), but they do depend on the spin structure v involved in defining
92{ ;- We note that the combination wI(zi)Gi{ ;k is the unique Abelian differential of the
third kind in z; having simple poles at z; and z; with residues &1, whose 2(; period is
0y IV (G—Ge).

The same kinematic identities (5.15) also allow us to decompose lCé 1,234 into smaller

1

blocks each of which is homology invariant. To see this we recast K ; 913

4 as follows,

I I . I . I . I . I m I
’C5,1,2\3,4 = (27py, — Z16277191,2 - 2k3m91,3 - Zk4mgl,4 - Zk5m91,5)T5,1,2\3,4 - G1,2,5T25,1|3,4

I I I I
— G193%31415 — G15395:3141,2 — G1.24524311,5 — G1,5455.4)3/1,2 (5.17)
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The expressions (5.11) and (5.17) agree in the BRST cohomology. To see this, we note
that the coefficients of g§,5, 9573, gég, g§74, 95{,4 and p!  are manifestly the same, while the
differences of the coefficients of g{,Q, 9{73, 9{74 and g{,5 are BRST exact by permutations
of (5.15). Inspection of (5.17) reveals that the combination of p’ and kjmgij in the first
line is homology invariant by itself thanks to momentum conservation. Indeed, it can be
viewed as the genus-two uplift of the generalized elliptic integrand EWZ& 45 in the genus-
one five-point function [9, 57]. Furthermore, each remaining term in (5.17) is single-valued

by itself since its world-sheet dependence is through the single-valued functions Gi{ ik

5.4 Manifesting BRST invariance

Though the correlator K5) is BRST invariant by construction, it is instructive to see how
this is realized in the decomposition (5.10) into sub-correlators. Combining the BRST
transformations of the ingredients of K | 5j3,4 from (4.12), (4.36), and (4.47), we find,

Q’Cé,1,2|3,4 =T1234V5 (QTFiPI ks — Z S55 Qé,j) + 155341 (27”'1?[ k1 — Z 515 9{,j>
i#5 i#
+ T 534V2 (27”'29[ ko — Z 825 gé,]) (5.18)
72
Multiplying this result by wr(1)A(2,3)A(4,5) and summing over all cyclic permutations
gives the BRST variation of K(5) in the following form,
QL) = (A(2> 3)A(4,5)Ty 534 + A(2,5)A(4, 3)T2,3\4,5)V1

% wr(1) <2m'pf k=Y gl slj) + cyel(1,2,3,4,5) (5.19)
i

where we have used cyclic permutations and the first identity in (3.32) to regroup all terms
in wy(1). The factor on the second line is readily recognized as the logarithmic derivative
0, InZ5 of the chiral Koba-Nielsen factor (3.11)

I InZi) =wi(l) (27”'171 k1 — 512912 — 513913 — S14 914 — 515 9{,5) (5.20)
so that we find,

QU Z(s) = (A2 3)AM5) Ty sjs.a + A2 5)AM,3) T 3105 ) idh T
+ cycl(1,2,3,4,5) (5.21)

Thus, the effect of acting by the BRST charge is to produce a total derivative in the vertex
points (recall that only the z1-independent zero mode parts of V4 and T; ;1 » remain).
The above steps in checking BRST invariance serve as guidance to find a manifestly
BRST invariant representation of K)Z(5) by adding suitable total derivatives. In the same
way as the manifestly homology-invariant representation (5.17) was constructed by adding
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BRST exact terms to (5.11), we shall now add the following total derivatives,

1 S. Si. Si. . Sy
_4{( 128j45 | S132l4s | S1alsi23 | Sislaj2s

) A(5,2) A(3,4) 9., L5

512 513 S14 515

Sy S;. S;. Si.
+< 120584 S1slesa | S1saes 1’4|3|2’5>A(2,3)A(4,5)8Z12(5)

512 515 513 S14

+Cycl(1,2,3,4,5)} (5.22)

to express each sub-correlator in terms of BRST invariants superfield combinations. The
factor of % arises from averaging over the four possible ancestors Sy.2j314,5/512, S1;3)2/4,5/513
Si.ap52,3/514 and Sy;542,3/515 of the BRST variation V175 345. By ex;fmding the deriva-
tives of the chiral Koba-Nielsen factor and expanding the five-forms in K(5) in terms of the
five-element basis in (5.10),

Ky = wr(1)A(2,3)A(4,5) KL | 554+ cyel(1,2,3,4,5) (5.23)
we find that the coefficients of the sub-correlator associated with (5.22) are given by,
Ké,1,2|3,4 = 27rp£n Cg?1,2|3,4 — 512 9{,2 (01;2\5|3,4 - 02;1|5|3,4)
— S15 9{,5 (01;5|2\3,4 - C'5;1|2|3,4) — 825 95,5 (02;5|1|3,4 - 05;2|1|3,4)

I I I
— 513913 Cl;3\4|2,5 — 523923 C'2;3|4|1,5 — 835953 05;3|4\1,2

I I I
— 514914 Cl;4\3|2,5 — 824924 C'2;4|3|1,5 — 545954 C5;4|3\1,2 (5.24)

The superfields now enter through the following non-local combinations,

o 1 (3513125 Staps  O12534  S15234 5
153425 = - - - (5.25)
513 514 512 515
and
om _m ikm St2i534  Sts234 S35 S14312,5
51,2134 = 451234 ~ 471 + + +
512 515 513 514
P m (S21534  Sos134  S23141,5 524315
— Zky + + +
4 512 595 593 594
i Ssi(2134  S5:21134  O53141,2 . Os413)1,2
- k;ﬂ( B3 | Zo2t34  ZOSMIL2 ) T5AA (5.26)
4 515 595 535 545

Using (4.12) and (4.36), it is straightforward to verify that both the scalar and the vector
building block are BRST invariant,

Q3 9134 =0 QClys3.4 =0 (5.27)

The BRST invariants (5.25) and (5.26) can be viewed as the analogues of the homology-
invariant building blocks in (5.17) — in both cases, the respective invariance of the sub-
correlator is made manifest term by term. As another virtue of these BRST invariants,

their superspace components (Cpaj53.4)0 and (C7",

" o340 confirm the equivalence of the
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present approach in the minimal pure spinor formalism with the non-minimal one: The
bosonic components are unchanged (up to identical normalization factors) when trading
the building blocks T3 34,5 and 17" 345 [48] in the minimal pure spinor variables for their
counterparts in the non-minimal formalism (denoted by T'g 345 and 17" 3145 in [25]).1

The expansion of the two-loop BRST invariants (5.25) and (5.26) in terms of gluon
polarizations is related to the one-loop invariants Cﬁ‘2737475 and Cjp345 from [59] that com-
pletely determine the five-point correlator [57]. Using the files for the bosonic components
of <Cl|2 34,500 and (C1j23 45)0 available to download from [56] one can verify,

1 1
84501‘2 3,4,5 + 5qn 360

—=k5" (s45(Chppas 5 + Chjas 3,4) + (513 + 523)Chjo3,a,5)

~

19,3145 180 (kY — k5")545C 1 |45,2,3

720

+ 720k3 (545(Cij3a2,5 + Cipss.0.4) — (512 + 523)Chjaz4.5))
1 m
720(k7 + k5" 4+ k5") (524C1 124,35 + 525C1 125,34 + (2 ¢ 3)) (5.28)
and

1
Craa25 = 0 == (535C135,2,4 + 545C1 145,23 — 2534C1 3425 — 523C1 2345 — 524C1 24 3.5)
(5.29)

These identities reduce the components <ﬁ1 )o to one-loop building blocks and will

5,1,2|3,4
play an important role in the discussion of ’S—ld’uality in a companion paper [30]. The
identities (5.28) and (5.29) generalize the pure spinor superspace relation between the
four-point kinematic factors at one and two loops, and it would be similarly interesting to
find a superspace proof analogous to [47].

We emphasize that the individual sub-correlators ]Cé,l,2l3, 4ZL5) and Ieé,lﬂl& 1Ly can-
not be identified since total derivatives only arise from the interplay between different
permutations.

5.5 Simultaneous homology invariance and BRST invariance

One can repeat the steps of subsection 5.3 to obtain manifestly homology invariant and
manifestly BRST invariant sub-correlators (5.24). For this purpose, we rewrite the kine-
matic identities of section 4.5.4 in terms of the BRST invariants (5.26) and (5.25),

k3" C5Y 3.4 = $512C12053,4 + 525C5.2)113.4
iks' C'5 12034 = 513C134)2,5 + 523C234)1,5 + $35C5.3)4)1,2
0 = 5120911534 + 525C25/13,4 + 523C2:3)4)1,5 + 524C2.4531,5

0= o534 + Co1ja5,3 + Co113)4,5
0= Chi534 — C211504,3 (5.30)

For the genus-three four-point amplitude, the building blocks in the minimal pure spinor formalism [58]
and the non-minimal one [26] turn out to be inequivalent, due to the existence of non-trivial, local expressions
in the BRST cohomology.
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These identities can be obtained formally by promoting 77", 512034 C5 1,234 and Sy.342,5 —
513C1;314p2,5 in the relations among local building blocks in section 4.5.4. Moreover, the
same operations formally map the manifestly local correlator representation (5.11) to
the manifestly BRST invariant one in (5.24). There is an additional identity among
BRST invariants,

0= Cyi534 + Cos1134 + Co3141,5 + Co43)1,5 (5.31)

which directly follows from the definition (5.25) and does not seem to have any counterpart
for the local superfields.

It is easy to show using the identities of (5.30) that the manifestly BRST-invariant
sub-correlator (5.24) is cohomologically equivalent to,

5
i I
K5 19134 = 2mpy, — i E mat; | Ct 51,234 — 525G125(Cosp1p3.4 — Cs213,4) (5.32)

1 I
- 523G1,2,302;3|4|1,5 — 535G 5.3C5.3041.2 — 524G1 2.4C4301.5 — 545G 5 4C5.431.2

This representation of the sub-correlator manifests both BRST invariance and homology
invariance in each term, see (5.16) for the definition of the functions G, . Moreover, one

can verify that the symmetry property (4.20) of ! arries over,

51,234 €
oI oI oI ~ BT
Ks1034 T Ka1235 +K310145 = K3a5)1,2 (5.33)

This is most conveniently shown by repeating the steps that led to (5.13) with the above
relations between BRST invariants and using (5.30). Note that (5.32) also follows from
the formal replacements 77", 512034 Ct" 51,2034 and Sy;342,5 —> 513C1;3)42,5 in the manifestly
local and homology—invarlant correlator representation (5.17).

Similar representations with manifest homology invariance and BRST invariance have
been studied for multi-particle correlators at one loop. The one-loop analogues of the
representation (5.30) of K(5) were the starting point to unravel double-copy structures in
one-loop open-string amplitudes [9, 57]. The combinatorial structure of the one-loop corre-
lators in the reference is identical to those of gravitational matrix elements with an insertion
of the supersymmetrized curvature invariant R*. Accordingly, it would be interesting if
the two-loop five-point correlators based on (5.32) could be related to matrix elements of
a similar gravitational counterterm of type D*R* and D?*R?.

5.6 The simplified correlator in terms of prime forms

One can also rewrite the simplified representations of the five-point correlator in terms
of prime forms 0;1n E(z;, z;) instead of the function g{’ ; of the Abel maps. Given the
permutation symmetric contribution IC€5) in (4.22) linear in the loop momentum and the

scalar quantity,

Riz = 01 In E(1,2)[S1.2314,5A(2,4)A(3,5) + S1.0j4350(2,3)A(4,5)] + (1 > 2)  (5.34)
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we claim that a BRST equivalent representation of the five-point correlator is given by,

5
K =Kl + Y Rij (5.35)
1<i<j
The expression (5.34) for Ri2 = Ro; is permutation symmetric in 3,4,5 up to BRST-
exact terms by the relations (3.32) and (4.37) of the forms and the superfields. The
(3,0)-forms in the decomposition (5.2) of the prime form can be easily checked to cancel
from the permutation sum in (5.35) by repeated use of the identity (4.55) in the BRST
cohomology. Hence, one can effectively substitute 0;In E(z;, z;) — wr(2;) gl{ ; within (5.35)
and expand the correlator in terms of five-forms wr(1)A(2,3)A(4,5). By matching the
resulting expression with the basis of five-forms in (5.10), we reproduce the sub-correlator
in (5.11), validating (5.35) as an alternative representation of the five-point correlator.
The building blocks R;; in (5.34) conveniently track the short-distance singularities of
the correlator as pairs of punctures collide: the simple pole as z1 — 25 stems solely from
setting 9 In B(1,2) — 275" as well as 9y In E(2,1) — —z15 and A(1,5) — A(2,7) in (5.34).
This leads to a simple form of the residues

ReszlﬁzglC(g)) = Res,, 2, Ri2
= (S152314,5 — S2;11314,5)A(2,4)A(3,5)
+ (Si;21413,5 — S2;1143,5) A (2, 3)A(4, 5)
= T12,314,5A(2,4)A(3,5) + T12,435A(2,3)A(4,5) (5.36)

where (4.54) has been used in passing to the last line. On the kinematic pole (k1+k2)~2
resulting from integration over z; — zo, the two-particle superfields factorize correctly on
the single particle superfields of T}, 34 5 with a cubic vertex of the gauge-multiplet peeled
off, see for instance appendix A.4 of [25].

5.6.1 Comparison with the OPE correlator from [25]

The non-minimal pure spinor prescription was used in [25] to determine the genus-two five-
point correlator up to holomorphic terms, namely terms with no worldsheet singularities.
These holomorphic terms are of course essential to obtain the full amplitude and for ex-
tracting the effective interactions in the low energy expansion beyond the lowest order [30];
indeed for four-point scattering they are responsible for the entire correlator.

The result of the OPE analysis can be written as'®

KOY® = [27p),T1 514,50 (5, Dwr(22) A(3,4) + cycl(1,2,3,4,5)] (5.37)

+ [81 In B(1,2)(Th2,3145A(2,4)A(3,5) + Th2,435A(2,3)A(4,5)) + (1,2[1,2,3,4,5)

where the notation +(i, j|1,2,3,4,5) means a sum over all ordered choices of ¢ and j from
the set {1,2,3,4,5} for a total of (g) terms.

5In quoting equation (5.40) from [25] we used the notation IT%, — 27pf, and replaced 712 — 9 In E(1,2).
This last replacement rectifies the definition used in that reference in which 7;; was the derivative of the
full Green function without stripping the zero modes.

— 492 —



In order to relate (5.37) to the full correlator (5.35) which includes regular terms we
first observe that the first line of (5.37) is equal to IC’()E)) in (4.22). To relate the scalar terms
we rewrite R using (4.54)

Riz = 01 In B(1,2)(T12,345A(2,4)A(3,5) + Th2,435A(2,3)A(4,5)) (5.38)
+ So.1i314,5 (01 In E(1,2)A(2,4)A(3,5) + 92 In E(2,1)A(1,4)A(3,5))
+ So.1j435 (01 In E(1,2)A(2,3)A(4,5) + do In E(2,1)A(1,3)A(4,5))

The first line of (5.38) contains singularities in the worldsheet and reproduces the corre-
sponding terms in (5.37). The second and third lines are non-singular on ¥ and therefore
could not be determined in the OPE analysis of [25].

Using (5.38), the full five-point correlator at two loops (5.35) can be written as,

]C(5) = ,Cg)l)pE + [lczig),3,4’5 + (17 2|17 27 37 47 5)] (539)

where IC%)DE is the result (5.37) from [25] while

K5 345 = S2153145 (O In E(1,2)A(2,4)A(3,5) + 92 In E(2,1)A(1,4)A(3,5))
+ So.1j435 (01 In E(1,2)A(2,3)A(4,5) + 92 In E(2,1)A(1,3)A(4,5))  (5.40)

is a non-singular function on the worldsheet.

It is interesting to observe that the regular functions in (5.40) are natural from an OPE
perspective as they correspond to the difference in performing the OPEs as z; — z5 or as
zo — 21, a distinction which is absent at genus zero or one. Together with the existence of
the building block Si.93/4,5, this observation suggests a way to find the regular completion
of singular correlators such as (5.37). The relative coefficient between the singular and
regular pieces can then be fixed by imposing overall BRST invariance. In hindsight, applied
to the correlator (5.37), this procedure yields the full five-point correlator derived in the
previous sections.

5.7 An alternative correlator in terms of prime forms

A downside of the correlator representation (5.35) in terms of prime forms is that the loop
momentum dependence occurs via IC%) in (4.22) instead of the homology-invariant combi-

nations Z 4.24). As an alternative to (5.35) with more transparent monodromy

m .
1/2,3]4,5 1 (
properties, the correlator can be rewritten as,

_ - m n
K= —iNmn 51 913.421)2,3/4,5

+01In E(1,2) (S1:2/314,52(2,5) A(3,4) + S5.9134A(2,3) A(4,5))

+01In E(1,3) (S1;3/214,5A(2,5)A(3,4) +S2;341,5A(2,3) A(4,5) + S531411,2A(2,3) A(4,5))
+01 I E(1,4) (S141502,3(2,5)A(3,4) +S.4131,58(2,3) A(4,5) +S5.4131,24(2,3) A(4,5))
+1InE(1,5)(S1:5)412,3A(2,5) A(3,4) +So.513,4A(2,3) A(4,5))

+cycl(1,2,...,5) (5.41)
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Once again, the dependence on the half-differentials cancels'® between the contributions
(k1)mT2y 93,401 0 h, (1) from Z{i9.3a,5 and the remaining terms in (5.41), so one can again

replace 0; In E(i,j) — wr(7) gi{ ;- Under this rule, Z directly reproduces the coefficient

n

1]2,34,5
of TETl,Zli’), 4 in the manifestly homology-invariant relilr;as|e’ntation (5.17) of the sub-correlator.
The contributions proportional to Gi{ ik to (5.17) in turn can be recovered from the ex-
plicit prime forms in (5.41). For the latter class of terms, the symmetries (3.32) of the
forms and kinematic identities including (4.55) need to be used, and different terms in the
cyclic orbit of (5.41) contribute to the sub-correlator Ké,1,2|3, , multiplying the basis form

wi(1)A(2,3)A(4, 5).

6 Type Il and Heterotic 5-point amplitudes

In this section, we shall use the chiral amplitude F5), derived in the previous section, to
construct the genus-two amplitude for five external states for the Type II and Heterotic
strings. We begin by recalling the structure of the chiral amplitude,

Fis) = (K5))o Zis) (6.1)

where Z5) is the chiral Koba-Nielsen factor (3.11) and <IC(5)>0 is the integral (3.5) of
the chiral correlator K(5) over the zero modes of A and 6. The chiral correlator K ) =
ICX,]) —HCE%) was initially constructed in section 4 from two terms ICE/S) and IC%) each of which
individually is a single-valued function of the vertex points z; upon integration over loop
momenta, and whose sum is BRST closed even though neither term individually is BRST
closed. Section 5 then presents various simplified forms of K(5) where different subsets of
its properties are made manifest. For the purpose of integrating over loop momenta, it is

the forms (5.35) and (5.41) that will be particularly convenient.

6.1 Assembling both chiralities for closed string amplitudes

Scattering amplitudes of closed strings are obtained by pairing left-moving and right-
moving chiral blocks and integrating over loop momenta pr in R'Y, over vertex opera-
tor positions z; in X, and over the moduli space My of compact genus-two Riemann
surfaces, which we parametrize locally by the period matrix 27 in the Siegel upper half-
plane [2, 3, 28]. As a result, the amplitude takes the following form, up to an overall
numerical normalization factor that remains to be determined by unitarity,

5
30|12 I\ T *

=1

where d>Q = dQ11dQ12dss produces the holomorphic top form on Msy. For each of the
closed superstring theories, Fs) is the supersymmetric chiral amplitude given in (6.1), while
the second chiral amplitude F(5) depends on the type of superstrings under consideration.
In either case, the combined integrals will be absolutely convergent for purely imaginary

15This cancellation is based on the kinematic identities (4.53), (4.55) and occurs separately for all five
terms in the cyclic orbit.
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values of the kinematic variables s;;. The amplitude obtained this way may be analytically
continued to values of s;; throughout the complex plane thereby producing the expected
physical poles and branch cuts, as was shown explicitly for the genus-one amplitude in [29].

The dependence on the polarization vectors, polarization spinors, or internal degrees
of freedom for the Heterotic string of both F(5) and f'(5) will be suppressed throughout. In

all cases, the product F5)F(5) includes the absolute value of the chiral Koba-Nielsen factor
Z(5) as a universal factor. This factor is conveniently rearranged as follows,

2 ~ N
|Zi5)|” = exp ¢ =277, p" - p + > 51 Gz, 25)
i<y

z;
]3[ :pl —{—YIJZ]{Z' Im / wJ (6.3)
i 70

where G is the Arakelov Green function of (2.12), which may be replaced by the string Green
function (2.11) since the total momentum is conserved. In addition to the exponential
factor, both F(5) and ]:'(5) generically also have explicit dependence on the momenta p’
through a polynomial prefactor, which it will be convenient to trade for a dependence on
the shifted momentum p’. Note that the measure dp is unaffected by this shift.

In preparation for integrating over the loop momenta, we shall recast the dependence of
the supersymmetric chiral correlator (6.1) on the loop momentum in a form that exhibits
the single-valued Arakelov Green function G. To do so, we eliminate 0;ln E(7,j) from

Zm
1]2,3/4,5
shifts v(z;) in (2.13). The Abelian differentials and integrals precisely combine with the

in favor of —9;G(i,7) plus Abelian differentials, Abel-Jacobi integrals and the

loop momenta into their shifted versions p in (6.3), and we obtain,

5
Moaas = | 2mi) M wr(1) = Y kP 01G(1,5) + k'01v(21) | A(2,3)A(4,5)  (6.4)
j=2

The remaining terms in the correlator representation (5.41) are independent of loop mo-
menta and cancel all instances of 0;v(z;). We now rearrange K5 as follows,

K =W + 2mip), Vi (6.5)

where the combinations V" are similar to (6.4) and W collects the scalar leftover terms,

VP =T 0501 2)AG A1)+ eyel(1,2,3.4,5) (6.
5
W=iT3 50 k5 91G(1.7) A(2,3)A(4,5) (6.7)
=2

—01G(1,2)(S1.21314,5A(2,5)A(3,4) 4+ S5.001 1342 (2,3) A(4,5))
—01G(1,3) (51;3|2|4,5A<27 5)A(3,4)+52,341,52(2,3) A(4,5) +55:34.1,22(2,3) A(4, 5))
—01G(1,4) (S1.41512,30(2,5) A(3,4) 4+ Sa.41311,5A(2,3) A(4,5) + S5.41311 22 (2,3) A(4,5))
_alg(la 5) (Sl;5|4|2,3A(27 S)A(?’a 4)+52,5\1|3,4A(27 S)A(47 5))
+cycl(1,2,3,4,5)
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and the cyclic sum in the expression for W is to be applied to all five lines. To obtain
the expression (6.7) for W, we have substituted (6.4) into (5.41) and replaced everywhere
0;InE(i,7) by —0;G(i,j) — 2miwr (i)Y !/ Im f;’ wy. One can then observe that all such
terms proportional to Y!7 cancel in the cyclic sum between W and QWiﬁﬂlV}”. This can-
cellation follows from the same manipulations that were described in section 5.7 to re-
late (5.41) to (5.17). Finally, we have replaced all derivatives 9;G(i,j) of the string Green
function (2.11) by derivatives 9;G(i,j) of the Arakelov Green function (2.12), since the
difference 9;(z;) between the two cancels in the complete chiral correlator, by the same
mechanism which ensures the cancellation of the derivatives of the half-forms 0;Inh,(z;)
in section 5.1. In the new representation (6.7), both VJ* and W are now manifestly single-
valued in z;.

While the expression (6.7) for the scalar correlator is adapted to the representa-
tion (5.41) of K(5), we can bring the loop-momentum-independent part W into an al-
ternative form that is more reminiscent of representation (5.35). For this purpose, the
manipulations of the forms and kinematic factors that relate (5.35) to (5.41) can be readily
repeated with p’ and —9;G(4,7) in place of p! and 9;In E(i, 7). Hence, we can immediately
rewrite (6.7) by performing the appropriate replacements in (5.35),

5
W = Z Qij (6.8)

1<i<j

where Q;; is given by the following simple combinations,

Quz = — NG(1,2)[S1,9314,5A(2,4)A(3,5) + S1,9143,5A(2,3)A(4,5)]
— 32G(2,1)[S2.11314,5A(1,4)A(3,5) + So.1143,5A(1,3)A(4,5)] (6.9)

To proceed further, we distinguish between the different string theories.

6.2 Type II amplitudes

The complete amplitudes are simplest to organize for the Type II superstrings, since the
massless sectors of these theories consist only of the unique Type IIA or Type IIB su-
pergravity multiplet. Type IIA and Type IIB amplitudes involve the chiral amplitude
]:"(5) = (Ie(5)>0%, where 16(5) is obtained from K5y by substituting the left-moving vector
and spinor polarizations by the right-moving vector and spinor polarizations of opposite
(Type ITA) or same space-time chirality (Type IIB), respectively. In either case, the struc-
ture of 16(5) is as follows,

K =W + 2mi p}, Vi (6.10)
With the help of this expression, the loop momentum integrations may now be carried out,

~ 2 ]_
/R LK) K [Z6)|” = 5998 )

(WW —aylJym W) []es96 (6.11)
1<j
The full amplitude therefore becomes,

° 1 — — o
Ay = 5(;/’%) /M2 d”det(QY)Q/Zs <WW —xytyp Vj,”>0 [[eo9%)  (6.12)

1<j

— 46 —



where (...)o collects the zero-mode integrals (3.5) of the 6% and A\* in both chiral halves.
Three of the powers of det (2Y) have been regrouped to produce the modular invariant
measure on My, given by,

|d*Q)?

" det (2Y)3 (6.13)

dp
The remaining two factors of det (2Y") combine with the products of bi-holomorphic forms
A of (3.31) and their complex conjugates so that the combinations,

AL, J) Ak, 0)

det (21) (6.14)

are modular invariant. In summary, after integration over loop momenta, the resulting
integrand for the scattering amplitude is invariant under the full modular group Sp(4,Z).

Scattering amplitudes for Type II strings compactified on a torus 7' are obtained as
usual by restricting the polarizations of the external particles and inserting a sum over soli-
tonic configurations of the compact coordinates [60], namely the Siegel-Narain theta series

Tuaalg, BIQ) = det 2V)2 3 emne!Vist2mimin Xy, (6.15)

mé cz2d

nI,aesz
where X = Re{2 and mé, n!® are the momenta and windings along the a-th direction of
the torus, and

£ = (mé + Baynl’v)gaﬂ(mé + Bﬁ(gn‘]"s) + nI’aga/gnJ’B (6.16)

where g,5 and B,g are the constant metric and B-field along the torus, and g*? is the
inverse metric, measured in units of o/. The Siegel-Narain theta series (6.15) is invariant
under modular transformations in Sp(4,7Z) and T-duality transformations in O(d,d,Z)
acting on the usual way on (g, B). The prefactor det (2Y)%? cancels the part of factor
det (2Y)° in (6.11) which would have come from integrating over the loop momenta p?.

6.3 Heterotic string amplitudes

We shall now construct the five-point genus-two amplitude for Heterotic strings. In this
case, the massless sector in ten dimensions consists of two types of multiplets, namely the
N = 1 supergravity (SG) multiplet and the N' = 1 super Yang-Mills (SYM) multiplet with
gauge group Eg x Eg (for the HE string) or Spin(32)/Zs (for the HO string) [61, 62].
Similar to the Type II superstring, the five-point amplitude for Heterotic strings is
given as an integral (6.2) of the product of the chiral amplitude F(s) in (6.1) for the super-
string, and the (conjugate of) the chiral amplitude F 5 for the bosonic string, compactified
on the tori associated with the root lattice of Eg x Eg or Spin(32)/Zs, respectively. The
latter is given by the product of the chiral measure for the bosonic string at genus two,
given by the inverse of the Igusa cusp form!” Wyq [63, 64], times the correlator of the

""Recall that Wio = [, 9?[x](0) where the product runs over all even spin structures.
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right-moving vertex operators, given by either,
VI () = 37 a8 () e )
a
VEC (1) = &+ (D4 (20) + 2mpleor (1)) €0+ () (6.17)

where t¢ is the gauge field polarization, j%(z;) is the corresponding holomorphic current,
and €7 is the polarization vector for the right movers. For the five-point amplitude, each
external state may belong either to the SYM or the SG multiplet, thereby giving rise
to six different types of amplitudes. Schematically representing the states in the SYM
multiplet by F' (the field strength), and the states in the SG multiplet by R (including
the Riemann tensor, the anti-symmetric tensor field, and the dilaton), the six possible
structures correspond to R?, R*F, R®*F?, R?’F? RF* and F®. Since the gauge groups for
both Heterotic theories are simple, it is immediate that the amplitude corresponding to
R*F vanishes.

Correlators of the chiral vertex operators ViSG for the supergravity multiplet may be
computed straightforwardly using the Wick contractions (2.19). Although gauge invariance
under 7" — &' +ak]" is not immediately manifest, it is possible to recast the result in terms
of the gauge invariant combinations f;"" = "k* — 'k by discarding exact differentials
which do not contribute to the integrated amplitude. This process was carried out for the
four-point amplitude in sections 12.4 and 12.5 of [16] and may be generalized to the five-
point amplitude in a straightforward, if tedious, manner which is beyond the scope of this
paper. Decomposing the resulting chiral correlator in the same way as in (6.10), in terms
of the shifted loop momenta p! in (6.3), the integral over loop momenta (6.12) produces
a term proportional to Y//(£7 - V), which has no analogue for the four-point amplitude.

For scattering amplitudes of SYM multiplets, it is convenient to fermionize the 16
chiral compact bosons into 32 chiral worldsheet fermions A (z) for I = 1,---,32 (not to be
confused with the pure spinor ghost field A%*). For the case of HO, all 32 fermions transform
in the defining representation of SO(32) and have the same spin structure « (independent,
and to be distinguished from the spin structure on the supersymmetric side). For the case
of HE, the 32 fermions are split into two groups of 16 transforming under the defining
representation of SO(16); x SO(16)2, the maximal orthogonal subgroup of Eg x Eg, and
k = (K1, k2) labels the corresponding independent spin structures 1 and k2. In absence
of fermionic insertions, the partition functions for the internal fermions are given by

Zno = Y 9[](0)'° Zup = Y 9[s1](0)%9[r2] (0)® (6.18)

K1,R2

where the sum runs over all even spin structures.
The current j%(z) appearing in the vertex operator (6.17) for either of the two Heterotic
strings is given in terms of A (z) by,

32
G =5 O T AN () (6.19)
I,J=1
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Here, T}; are the anti-symmetric generators in the defining representations of the Lie
algebras of SO(32) and SO(16); x SO(16)2, respectively. The remaining generators of
FEg x Eg are accounted for by spin fields, which will not be needed here. The correlators of
the holomorphic fields A (z) are given by,

N (DM () = =617 S, (2, w) (6.20)

where S, is the Szego kernel for the spin structure x for the HO theory, and k equals k1
or kg for the HE theory, depending on whether both I,.J belong to SO(16); or SO(16)a.

Self-contractions on the current are absent so that (j*(z)), = 0. The current correlators

required for the case of the four-point amplitude [16] are,'®

(5 ()] () = HR(TT) Sy (21, 22)? (6.21)
(7 (21)5 (22)5% (28) ) = tr(TOT®T) So(1,2) S (2,3) Su(3, 1)
(191 (21)7% (22) 5% (23)3 " (24))w = =t (T T2TT) S, (1,2) S (2, 3) Sk(3,4) Sk (4, 1)
+ %tr(TalT@)tr(TasTM)SH(L 2)28,:(3,4)* + (2 > 3,4)

where we denote as usual Sk (i,j) = Sk(zi, ;). For the five-point amplitude, we require the
correlators of (6.21) as well as the following five-point correlators,

5
1
<Hj‘“(zi)> =3 D (@ T )T DTS, i, ) Sk, ) S (£ m) S (i, )
i=1 " T (iglkem)

+ Y (TNTETUSTwT) S, (1,) S (i, §) S (G, k) Sk, £)Sk(£, 1)
(i7j7k7€)
(6.22)

where the first sum is over all 10 inequivalent partitions of five into 243, and the second
sum is over all 12 permutations of 2,3,4,5 modulo reversal (i, j, k,¢) — (¢, k, j,1).

The spin structure sums required for amplitudes with up to five SYM states can be
expressed in terms of the Siegel modular forms Wy of weight 4k,

Uy = > I[x](0)% (6.23)

and the following correlators,

(21, 29) Zﬂ 0)%5,.(1,2)? (6.24)
Fik (21, 22, 23) 20 0)%5,(1,2)5,(2,3)Sx(3,1)
Féi’Q)(Z]_,ZQ;Z?,,ZAL Zz? 0)%%5,.(1,2)%5,(3,4)>

F{D (21, 29, 23, 24) = 219 0)%5.S,c(1,2) S, (2, 3) S, (3,4)S,(4,1)

18Note that tr(T% ---T%") = 0 whenever generators of both SO(16); and SO(16)s occur under the trace.
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P (21,293 28, 24, 25) = = 2 VA 0)"5:(1,2)°5(3, 9504, 5)5:(5,3)

F& (21, 29, 23, 24, 25) = 219 0)8%S,0(1,2) 5, (2, 3) S (3, 4) S (4, 5)S.(5,1)

The first sum Fi,? can be computed in terms of Wy through [16, eq. 12.7],
(2) _ i IJ
F(z,w) = V,0.0, In E(z,w) + 5 wr(2)wy(w)o " Wy (6.25)

where Jry is the derivative with respect to Q75 for I < J. The product of three Szego
kernels may be decomposed onto a sum of squares of Szegé kernels times functions that
are independent of spin structures [31], so that F 4(2) may be similarly decomposed onto a
sum of F, ) functions. Similarly, it will be shown in [31] that the products of four and five
Szego kernels may all be decomposed onto sums of the product of two squares of Szego
kernels, so that Fél(:), F4(z 3), and F(k) may all be decomposed onto sums of F4(2 ) with
known coefficients.

We end with perhaps the simplest example of a Heterotic amplitude for five external
SYM states, two belonging to the first Fg, and three belonging to the second Eg. The
corresponding chiral amplitude may be read off from the ingredients presented above, and
is given by,

1 (2
——tr(T Tt (T T*T) F
4T1(9) r( Jtr( JFy

Fis) = (21, 20)FP(28,20,25)  (6.26)
where a1, as refer to SO(16); while as, aq, as refer to SO(16)s.

As usual, the HE and HO Heterotic strings become indistinguishable after compactify-
ing on a torus Ty. The chiral integrand F(s) is obtained by replacing the partition function
Zno or Zug in (6.18) by the Siegel-Narain theta series I'g416 4,2, with suitable insertions

of lattice momenta for each current as in the four-point amplitude discussed in [65].

7 The supergravity limit

In this section we shall study the field theory limit of the string amplitudes for five ex-
ternal massless states derived in the earlier sections of this paper. In the limit o/ — 0,
keeping the external momenta k; fixed, the Type II superstring amplitudes are expected
to reduce to the two-loop field theory amplitudes of AN/ = 2 supergravity, while in the
Heterotic strings the amplitudes are expected to reduce to those of N' = 1 supergrav-
ity plus super-Yang-Mills [66]. For four-dimensional external states, the loop integrand
for two-loop supergravity was determined in [67] using the spinor-helicity formalism and
color-kinematics duality [68, 69] (see [70] for a review). This result was later extended to
external states in ten dimensions in [48] by making use of pure spinor superspace.
Whether the external states of the superstring amplitude are in a supergravity or
super-Yang-Mills multiplet, the corresponding field theory amplitudes involve a sum over
the six Feynman graph topologies depicted in figure 1. As we shall demonstrate below for
Type II superstrings (and sketch for the Heterotic and Type I cases), the field theory limit
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of the integrand over loop momenta, moduli, and vertex points of the superstring ampli-
tude for five external massless states, derived in earlier sections, reduces, at leading order
in o/, to the integrand over loop momenta and Feynman parameters of the correspond-
ing supergravity amplitude [48, 67]. The precise matching of these integrands provides a
strong consistency check on the validity of our construction. Higher-order terms in the
o' expansion of the integrated amplitude produce higher-derivative effective interactions
to the supergravity and/or super-Yang-Mills Lagrangian which will be investigated in a
companion paper [30].

To leading order in the o' expansion, the amplitude is dominated by the contribu-
tion from maximally degenerate Riemann surfaces. In order to study these degenerations
systematically, it will be useful to interpret the vertex operator positions as punctures on
the Riemann surface, and use the Deligne-Mumford compactification of the moduli space
of punctured Riemann surfaces, in the present case of genus two with five punctures. All
degenerations are then obtained by a finite sequence of the following two elementary de-
generations,

1. the separating degeneration, in which a trivial homology cycle shrinks, thereby de-
generating the surface into two disconnected surfaces;

2. the non-separating degeneration, in which a non-trivial homology cycle shrinks,
thereby degenerating the dual cycle into a long and thin funnel.

The degeneration by which two or more punctures collide is equivalent, in the Deligne-
Mumford compactification, to a separating degeneration in which a sphere with three or
more punctures separates from the remaining surface. The maximal degeneration of the
Riemann surface is obtained by a maximal sequence of separating and non-separating de-
generations in which for example all the A-cycles of the surface shrink, and the 2-cycles
become long thin funnels. These funnels are effectively connected by internal interac-
tion vertices, just as in field theory Feynman diagrams. A maximal degeneration may be
described by a trivalent graph T', sometimes known as a tropical Riemann surface (see
e.g. [71, 72]), which reproduces the on-shell Feynman graphs of quantum field theory. The
vertices of the graph correspond to genus zero components with three punctures, while the
edges e, correspond to the long thin funnels. The lengths L, € R and twists o, € [0, 27|
of the funnels provide an appropriate set of coordinates on the moduli space near the
maximal degeneration locus.

In the limit where all L, are scaled to infinity at the same rate, the string integrand is
expected to reduce to the field theory integrand in the world-line formalism [73-75], where
L, is the Schwinger parameter for the propagator on edge e,. Upon using the chiral splitting
procedure in string theory, the momentum p is identified with the loop momentum in field
theory [76]. For the pure spinor superstring, the string integrand is expected to reduce to
the field theory integrand in pure spinor world-line formalism [77, 78] and the double-copy
structure of the loop integrand in supergravity should be manifest [53, 79, 80].
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20 T\ 2~ ( T L= -
1 1

Figure 1. The six graphs contributing to two-loop five-point amplitudes in maximally super-
symmetric Yang-Mills and supergravity [67]. The reducible diagrams o', ¥, ¢’ were denoted d, e, f

respectively in [48].

1PI 1PR

Figure 2. 1PI versus 1PR two-loop skeletons.

7.1 Maximal degeneration of a genus-two Riemann surface

For a compact genus-two Riemann surface without punctures, there are two possible max-
imal degenerations, corresponding to the one-particle irreducible (1PI) or one-particle re-
ducible (1PR) two-loop skeletons depicted in figure 2. In principle, there can also be contact
terms supported on “figure-eight” diagrams where the length of the middle edge in either
of the two skeletons shrinks to zero.”

For a genus-two Riemann surface with punctures, the various different maximal de-
generations correspond to the various different ways of attaching external legs to either
skeleton of the case without punctures, possibly by forming trees, such that the resulting
graph is still connected. For five punctures, many different connected graphs may be drawn.
It will be convenient to arrange the graphs into two classes (1) graphs which contain no
triangle or bubble subgraphs; and (2) all other graphs. All graphs obtained from the 1PR
vacuum graph fall in class (2).

All the graphs in class (1) are represented in figure 3 and, by inspection, are seen to be
in one-to-one correspondence with the field theory graphs of figure 1. The graphs in class (2)
correspond to field theory graphs that vanish in view of the extended supersymmetry of

19Guch contact terms are known to arise in the field theory limit of Heterotic amplitudes [65] and Type
I partition functions in a magnetic background [81].
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Figure 3. All maximal degeneration graphs of class (1), namely containing no subgraphs with one,
two, or three external edges..

D D DA PO

Figure 4. Some of the maximal degeneration graphs of class (2), namely containing one or several
subgraphs with one, two, or three external edges, whose contributions to the genus-two amplitude
with five massless external states vanish.

the corresponding supergravity or super-Yang-Mills theory, a property that is sometimes
referred to as “no bubble or triangles” [82]. In both Type II and Heterotic superstring
theories, on-shell amplitudes with one, two, or three external massless states are expected
to vanish. General arguments to this effect have been given in [83, 84] while the result
was proven by explicit calculation in the genus-two case in [16] for both Type II and
Heterotic strings. Our proof here that the genus-two five-point amplitude reduces to the
corresponding supergravity amplitude in the o/ — 0 limit, will be based on showing that the
diagrams of class (1) precisely match those of field theory and that those of class (2) vanish.

The Schwinger parameters L1, Lo, L3 for the two-loop 1PI skeleton may be identified
with the imaginary part Y = Im Q of the period matrix  via the relation [85, 86],

1 (Li+Ls —L
y—— ([t 3 (7.1)
of —Ls Lo+ L3

in the limit o’ — 0 holding the L;’s fixed. The location of the external legs along the
two loops gives five additional parameters i, ...,¢5 lying in one of the intervals [0, L],
depending on the topology of the diagram. The topologies a’,b’,c¢ where two external
legs form a tree before attaching to the skeleton are included by allowing two of these
parameters to coincide.

7.2 Tropical limit of the Abelian differentials and prime form

Before analyzing the tropical limit of the string integrand, we review some basic results
about the tropical limit of Abelian differentials and Green functions [32, 33, 72]. We choose
a canonical homology basis of cycles 2 and *B; and conjugate normalized holomorphic
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Figure 5. The left panel exhibits the two-loop 1PI skeleton graph I" with a choice of homology
basis and parametrization. The right panel exhibits the simply connected graph IV = "\ P obtained
by removing one vertex P from I', and labeling P, the endpoint of the edge e,. On I' each pair
of points t;,t; is connected by a unique path (t;,t;). When ¢;,t; are on the same edge we have
0;L(t;,t;) = sgn(t; — t;) dt;, while when ¢;,t; are on different edges we have 0,L(¢;,t;) = —dt;. For
the purpose of illustration, we have displayed vertices corresponding to (a permutation of) graph (c)
in figure 1, the other graphs being analogous.

Abelian differentials w; on the Riemann surface ¥ (see appendix B for a summary). First,
let by be a homology basis on the skeleton graph I' arising by degenerating the homology
basis (7,B;) — (0,br) on X (see figure 5). In the tropical limit, the Abelian differentials
scale as follows,

iwi (t))
/

AN 7.2
wi(zg) —+ L (72)
where wi is equal to £dt; on the edge e, if e, belongs to the cycle by, and 0 otherwise.
The sign is fixed by the orientation of e, with respect to the cycle b;. For the choice of

parametrization and homology basis for the skeleton graph in figure 5, we have,

+dt; : on left edge 0 : on left edge
wi'(z;) = —dt; : on middle edge, w§(z;) =< +dt; : on middle edge (7.3)
0 : on right edge —dt; : on right edge

The imaginary part of the period matrix Y7; ~ [, wf /o’ reproduces (7.1) above.

In order to discuss the tropical limit of the prime form, careful account must be taken of
the fact that the prime form is a multi-valued form on X x 3. A single-valued representation
may be obtained by considering the prime form on the simply connected domain obtained
by fixing a base point P on X and then cutting 3 along four canonical homology basis
cycles 7, B chosen to pass through P (see e.g. figure 12 in [2]). In the tropical limit of
a genus-two Riemann surface, the point P will lie at one of the vertices of the skeleton I'
such that the graph IV = T"\ P becomes simply connected [76], as shown in the right panel
of figure 5 where the vertex P has been replaced by endpoints P, for the open edges e,.
Between any two points t;,t; € I, corresponding to the tropical limit of z;, z; on X, there
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is now a single path ~y(¢;,¢;) lying inside I .29 such that the Abel-Jacobi map scales like,

/L' r
(G =) = =G50 = —/ wit (7.4)
« Y(tists)
in the tropical limit. As explained in [72], the logarithm of the prime form then scales as
the length of the path,
T
In E(z;, 2;|Q) — aL(ti,tj) (7.5)

To establish this?! one shows that, for an adapted choice of the odd spin structure v =
[/, k"], the theta series in (B.14) and (B.15) are dominated by a single vector n in the
sum (B.9), such that,

27 1 1
In E(z;, 2|Q) — J| Ztl; K| - 3 In W™ (t;) - &'| — iln W () - K| (7.6)

Here, “adapted” means that the two arguments of the logarithms, coming from the tropical
limit of the half-differentials, are non-zero. Whether a given spin structure is adapted or
not strongly depend on the positions ¢;,t;: e.g for the two paths in the right panel of
figure 5, we have (omitting a factor dt; in the first three columns),

K |01, 02| 03 |04 || 20 - K 25" - 2080, - K
(3,00l 1 |0 |[=1|t1—ty ty — Ly Ly —ty )
o,H o |-1]1 0 ts— Ls ts+ty — Lo — Lg '
G| -1 |10 || ts—to|[ta+ts3—Li— Ly t3 — L3
where we have used the following abbreviations for ¢ = 1,2, 3,4 in the table,
o = 2w (t;) - K (7.8)

For the path ~(¢1,t2), the spin structures (%, 0) and (%, %) are both adapted, and the first
term in (7.6) is proportional to the length L(¢;,¢;). For the path v(t2,t3), only the spin
structure (%, 1) is adapted, and the same conclusion holds.

For other spin structures, deemed “not adapted”, one of the combinations w* (¢;) - x/
or w' (¢;) - " or both in the arguments of the logarithms of (7.6) may vanish in taking the
tropical limit naively. Instead, one must retain sub-leading corrections near the tropical
limit. Since the prime form E(z;, 2;|2) is independent of the choice of odd spin structure v,
these sub-leading corrections must conspire to reproduce the behavior (7.5).

It follows from (7.5) that the one-form 9; In E(z;, z;) reduces to £mdt; /o’ in the tropical
limit, where the sign depends whether the variation dt; increases or decreases the length
L(t;,t;). With the conventions of figure 5, the sign is always negative if the two points are
on different edges (e.g. for the path ~(t3,t4)), while it depends on the sign of ¢;—t; if the

two points are on the same edge (e.g. for the path v(¢1,t2)).

20The path v(¢;, ;) is not to be confused with the functions (z|Q2) which relate the string to the Arakelov
Green functions in (2.12).
21We are grateful to Piotr Tourkine for helpful discussions on this matter.
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As a first application, the tropical limit of the homology-invariant one-form (4.23) is
given by,

P (z) — % _m g %Z sen(t; — t;) k" — % Sk | at, (7.9)
jed JjgJ
where J is the set of external legs on the same edge as i (we include i in the set J, but
set sgn(0) = 0), and £ is the loop momentum flowing through the point 7 on the skeleton
diagram (in absence of other external vertices). By momentum conservation, this can be
rewritten as,

2 m 1 m
vl B > (14 sgu(t; — )k} | dt; (7.10)

a/
jedJ
which is recognized as the average of the momenta flowing into and out of the vertex point
t; along the graph I".
As a second application, we consider the tropical limit of the function gi{ ; defined
in (5.3),

0 zi

I

L= — InY[v](C|N2 i — :/ w 7.11

95,5 aC; [v](¢]€2) =it (Gi CJ)[ ., I ( )
Unlike the derivative of the prime form it has the antisymmetry property gjll =— gz{ ;- For

a choice of odd spin structure v = [k, k"] such that Z“; -k’ # 0, the tropical limit of the
theta series In 9[v]({|Q2) is given by the first term in (7.6), whose derivative with respect to

I .

;. gives,

gi{j — —2imsgn( frj k') K] (7.12)

One may check that this result is consistent with the relation (5.2) in the tropical limit.
For the specific choice of spin structure (%, %) and any pair of points in the right panel of
figure 5, we conclude that the tropical limit of gi{ ; 1s independent on I and given by,

+im : ti,t; on distinct edges (L1, La), (L1, Ls) or (L3, L2)
—im : ti,t; on distinct edges (Lo, L1), (L3, L1) or (La, L3)

I
P
Jisj imsgn(t; —t;) : t;,t; both on edge Ly

(7.13)
imsgn(t; —tj) : t;,t; both on edge Lo

This conclusion would not hold for pairs of points on the middle edge of figure 5, as the
pr,I“]'
makes the spin structure (

- k' would vanish in that case. The fact that (7.13) is independent on I
11
22
any other odd spin structure.

contraction

) particularly convenient, although one could in principle use

7.3 Tropical limit of the chiral integrand: pentaboxes

We shall now analyze the behavior of the chiral integrand in the regime where the Abel-
Jacobi map between the vertex points scales to infinity at the same rate ¢; — (; ~ ¢ frj /o
as the period matrix Q ~ Y/a/. This degeneration will turn out to reproduce precisely the
pentabox diagrams (a, b, c) which occur both in supergravity and SYM theory. Contact
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terms responsible for the double-box diagrams (a/,¥, ') require a discussion of the full
integrand, which is deferred to the next subsection.

Recall that the chiral integrand is given by (5.10), which we copy for convenience after
cyclically permuting the legs,

K5y = wr(2)A(3,4)A(5,1) K{ 5 545 + cyel(1,2,3,4,5) (7.14)

where K!

12,3045 is the sub-correlator (5.11), cyclically permuted,

I _ I m I I I
K1,2,3\475 = 27710mT172,3|4,5 - 92,3T23,1\4,5 - 92,1T21,3|475 - 93,1T31,2\4,5
I I I
- 92,452;4\5|1,3 - 93,453;4|5\2,1 - 91,451;4|5\2,3

I I I
- 92,552;5\4|3,1 - 93,553;5|4\2,1 - 91,551;5|4\2,3 (7.15)

where we recall that A(3, j) is the bi-holomorphic (1,0) form (3.31).

In the tropical limit, A(4,j) vanishes by antisymmetry if the vertices ¢;, t; lie on
the same edge of the skeleton diagram, and reduces to %dt; dt; otherwise with the sign
determined by (7.3). This implies that the three edges of the graph can carry (3,2,0), (3,1,1)
or (2,2,1) external legs and therefore rules out the first two graphs in figure 4 with bubble
and triangle subdiagrams. The third and fourth graph of figure 4 in turn involve bubble and
triangle subdiagrams within a 1PR skeleton and drop out from the field theory limit for a
different reason: Graphs obtained from the 1PR vacuum graph in the right panel of figure 2
cannot contribute by unitarity as a consequence of the non-renormalization theorems for

three-point functions of on-shell massless states at one loop [66] and two loops [16].

We shall assign the external legs such that, for the odd spin structure s = (%, %),
the inner product frj -/ in (7.6) is non-zero for all pairs of points, so that (7.13) applies.
This is for convenience only, since the result cannot depend on the choice of ' since
the correlator (7.14) is expressible in terms of prime forms, see (5.35) or (5.41), which
are independent of the spin structure. At the same time, the tropical limit of (7.14) is
unaffected by the vanishing of certain w(t;) - in (7.7) since they descend from the (3,0)-
forms hy,(z;) that were shown to cancel from K ) in section 5.1.

Consider first the case where the external legs are distributed as in the planar

pentabox (a) of figure 1. By (7.3), the Abelian differentials w;(z;) reduce to

t3 t wi(z)\ @ (1110 0 idt;
@ ti@ts (wlgj; 000-1-1) &
1 (7.16)

Thus the only non-vanishing term in the sum over cyclic permutations in (7.14) is the first
one proportional to wr(2)A(3,4)A(5,1) with wr(2) — id71dta/¢/, namely

(a) 1
Ky = — ()5

2 N(a)

1 (a)
K 23145 dty ... dls = — (a/)5” 123145

(0)dty ... dts (7.17)

— 57 —



with

N1(az)3\45() mele3|45ﬂL (T231\45+T123|45+T132|45)

1
+3 (52~4|5\1 3+53.4/502, 1+S1~4|5|2,3+52~5\4|3 1+55542,1+S150421)  (7.18)
<Pm 5 S (k1t+ka+ks)m ) 1234575 (T23 115+ 123145+ T13.2)45)

One can identify pl, with the loop momentum / in figure 1 (a) which is in the lower end of
the edge supporting the external particles 1,2,3. The combination (ki+ke+k3)mT7" 345
is obtained from the six permutations of Sy.451,3 via (4.53). Up to a global rescahng of
internal and external momenta by a factor of ¢ which was left implicit in [48], this is in
precise agreement with the numerator for the diagram (a) computed in that reference.
Next, consider the case where the external legs are distributed as in the non-planar
pentabox (b) of figure 1. By (7.3), the Abelian differentials w;(2;) now reduce to

(b) : tt3 f = w1(25) @ (L11-10) id
' 2t ’ wa(z) 000 1 —1 o
1 (7.19)

The only non-vanishing term in the sum over cyclic permutations in (7.14) is again the
first one proportional to wr(2)A(3,4)A(5, 1) with w;(2) — idr1dta/’, leading to the same
integrand as in (7.18) up to an overall sign from the fourth column,

(b { (b 2w b
K 2 s i i @ _ (a,)5/\ffﬁg’3‘4’5(£) dty ... dts (7.20)
with
(0) — (a)
N1,2,3|4 5(0) = N1,2,3|4,5 (0) (7.21)

The tropical limit of IC}’273| 45 1 identical in the cases of (a) and (b) since gi5 does not
occur in (7.15). The non-planar pentabox numerator (7.21) is again in precise agreement
with the numerator for the diagram (b) computed in [48].

Finally, let consider the case where the external legs are distributed as in the non-planar
pentabox (c) of figure 1 (also see the right panel of figure 5). The Abelian differentials wy(z;)
now reduce to,

(C) : to t4 N wl(zj) (i; 110 0 -1 y idtj
t1 t3 w2(2j> 00-1-11 o
(7.22)
There are now two non-vanishing terms in the sum over cyclic permutations in (7.14),

namely wr(1)A(2,3) A(4,5) and wy(4)A(5,1) A(2,3),

(e 27’[‘ ¢
/c@i( )(/c512|34 K24502) dir .. dt5J N ap (b dt - dts (723

with loop momenta p' = ¢ as well as p?> = —r in figure 1 (c) and

_ pr(a) _ ar(@) (a)
Nl 2[4, 3|5(£’ r) = N1,2,5|3 ne b+ N3 4501, o (= —p’) = N1,2,5|3,4(€) + N3,4,5|1,2(T) (7.24)
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again in precise agreement with the numerator for the diagram (c¢) computed in [48]. The
. 1 .4 r(a) 2 . ra
degenerations Ky ; 55 4 — _27TZN1,2,5|3,4(£) and K3 5110 = 27N 5
repeating the steps of (7.18) which are now sensitive to all the five cases of gi{ ; covered
in (7.13). The change of orientation in p? = —7 stems from the fact that the definition (2.15)

of loop momenta via 2;-cycle integrals leads to both of p! and p? pointing to the left in

(r) are obtained by

figure 1 (¢), whereas r is drawn to point to the right. Moreover, note the relative sign
between the right-hand sides of (7.23) and (7.17), (7.20) in identifying the numerators:
This sign reflects the orientation of leg 5 in figure 1 (¢) whether its external edge points to
the left or right and drops out from the gravity numerator N1(62)| 4’3|5(£, 7")]\71(62)| 4’3|5(€, ) that
we are deriving from the tropical limit.

Note that the relations (7.21) and (7.24) among pentabox numerators are the kinematic
Jacobi identities which are consequences of color-kinematics duality [67]. In our setup, the
kinematic Jacobi identities among N (@, A®) N(©) follow from the degenerations of the

five-forms in the correlator (7.14) and the tropical limit (7.13) of gz{ -

7.4 Tropical limit of the Type II string integrand: double boxes

Scattering amplitudes in Type II strings involve an integral (6.2) of the product
IC(5)I€(5) |I(5)|2 over the loop momentum, vertex points z; and complex structure mod-
uli parametrized by €). As we review in subsection 7.5 below, the tropical limit of the
chiral integrand discussed in the previous subsection reproduces exactly the contribution
of the pentabox diagrams (a, b, ¢) in figure 1. However, there are additional contributions
from maximal degenerations of the genus-two Riemann surface where two punctures collide,
which are responsible for the double-box diagrams (da’,¥’, '), as we now show.

Due to short-distance singularities in the chiral integrand arising from derivatives of

the prime form,
1

0., InE(z;, ) = P
i

+ O(Zi—Zj) (725)

the integral of the product IC(5)I€(5)|I(5)|2 over vertex points z; is not finite in the low

energy expansion, but rather has kinematical poles of the form

/ 21722 () = - L 4 o(s9) (7.26)
|z|<R S

where we assume that the function f(z) is continuous at the origin. The O(s°) term depends
on the radius R > 0 used to excise the singularity at z = 0, but does not contribute to the
field theory limit at leading order and can be ignored.

The coefficients of the kinematic poles can be computed by collecting the four possible
sources of poles of the form 1/|z;—z;|?, and performing the replacement,

‘azi IDE(ZmZ])F 1 _7r52(227zj)

~ —
— 821 In E(zi, Zj)azj In E(Zj, Zz) |Z,‘—Zj‘2 Sij

(7.27)

Note that products of prime forms with different arguments 0., In E(z;, 2;)0,, In E(z;, z1)
with k # j do not lead to any kinematical pole since the resulting singularity (z; —2;)~*(z; —
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Zr) ! integrates to zero after integration over the phase of z;j—2j. Moreover, maximal de-
generations with three of more punctures colliding do not contribute to the field theory limit
at five points since they would require more than one prime form in the chiral correlators
such that the integration rule (7.26) can be used multiple times.

The singularities (z1—22)~! of the chiral correlator were already extracted in (5.36)
based on the representation (5.35). The residue at sj2 = 0 of the relevant chiral contribu-
tions is given by,

/C%g) = Resz, 2, K(5) = Th2,31,5A(2,4)A(3,5) + Tha435A(2,3)A(4,5) (7.28)
which is permutation symmetric in 3,4,5, by virtue of the symmetries (3.29) and (3.32).

Hence, the graphs where the vertices 1 and 2 collide are captured by applying the replace-
ment (7.27) to,

Ki2 K2 52
% (6)~(5) m0%(21,22) (12 12

-y 2
Keke = 1,0 GG (7.29)

We will now extract the chiral contributions to double-box numerators for diagrams
(a"), (V'), (¢) in figure 1. Given that the chiral contribution (7.28) shares the structure of
the four-point correlator (3.33), the computations below closely follow the tropical limit of
the two-loop four-point amplitude in [72].

In the planar case (a’), the abelian differentials wy(z;) with j = 2,3,4,5 reduce to
(see (7.3))

(a/) : t3@t4 — (CUlEZj;) (i;) (1 1 0 O ) y Zdl/fj
t1,t t wa(z; 00—-1-1 «
o ° 2 (7.30)

and (7.28) reduces to the first term A(2,4)A(3,5) — dta...dts/(a’)*. The resulting nu-

merator agrees with the result of [48] (denoted by ./\fl(g )3‘ A5
)

('K Y Tiggupdta...dts S NG (0 dts s (7.31)

(¢) in the reference)

Moreover, this expression for planar double-box numerators matches antisymmetric com-
binations of planar pentabox numerators A'(®) in (7.18)

NG (€) = Tia 3145 = N (0) - N

12,3/4,5 1,2,34,5 2,1,3|4,5(€) (7.32)

and therefore realizes another kinematic Jacobi identity required by the color-kinematics
duality [67].

The above steps can be repeated to determine the non-planar double-box numerators
for diagrams (V') and (¢’) in figure 1. The degeneration of the Abelian differentials,

t . / . . .
W)y : ty = wiz)| @) (11 -1 0 idi;
b1t UJQ(Z]') 00 1 -1 o
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again suppresses the second term ~ A(2,3)A(4,5) in (7.28), and we obtain an extra minus
sign in A(2,4)A(3,5) — —dta...dts/(a)* as compared to the planar case (7.30). Hence,
the tropical limit of the correlator for diagrams (V') (¢/) is

) (<)
(&/)416%3) — —T1273|475 dty ... dt5 s (0/)4IC%§) — T1273|4,5 dts ... dt5 (734)
and one can read off the non-planar double-box numerators
N (@) =NE) () =-T =N (¢ 7.35
12,3|4,5( ) 12,3\4,5( ) 12,3]4,5 12,3|4,5( ) (7.35)

They reproduce the numerators of [48] (denoted by NE 123450 N, (5 )3| 4.5(0) in the reference)

and obey the color-kinematics duality when comparlng Wlth non- planar pentabox numer-
ators. Also note that the symmetry of /\/'1(;3'4 5(0), N12 314,50, /\/'1(57%|475(€) under 4 <> 5 is
consistent with the vanishing of numerators associated with triangle-subgraphs.

7.5 Assembling the supergravity amplitude

Collecting the results in the previous two subsections, we find that the field theory limit
of the genus-two scattering amplitude in Type II strings precisely produces the complete
two-loop five-point amplitude in maximal supergravity in D dimensions, in the double-copy
representation of [48] (with the structure of [67]),

1 1
el (a) (b) r(0) (b)
A =9 Zk /R2D< 1 23|4 5( )N1 ,2,3/4, 5( )11,2,3,475+1N1,2,3\4,5(£) 123\4,5(5)11,273,4,5

~ 1 ’ ~ () ’
+ *N1(CQ|4 3|5(£’7")N1(02)|4 3|5(€v T)If2),3 4 5+*N1(;3)\4 5N1(;3)\4 511(:12,)3 4,5 (7.36)
bl ]_ ~ /
N12 314, 5N(2 34501 2)3 45T Nm 304, 5N1(; ;\4 5152?3 a5tsym(1,2,3,4 5)>0d€dr
Here, the symmetry factors % and i ensure that the sum over 5! permutations of the

external legs does not overcount individual diagrams. The factors 11(?;2),3,4,5 are the usual
products of Feynman propagators for the diagrams in figure 1,

Bsa5= Cr2(0+ )2 — kp)2( — k12)21(£ ~ F123)2 (r — Es)2(r — k)2
1

[543 = r2(0+ 7)2(0— k1) 2(0 — F1a)2(0 — kras)® (r — ks)2(0 + 7 + ka2
19545 = B 1 TR0 TPl TP z Py Ty L

a’ 1
I£’2?3’4’5 = k%2€2T2(€ + 7")2@ — k12)2(€ — k123)2 (7“ — k5)2(7" — k‘45)2

/ 1

Hainas = k3 022 (0 +7)2(€ — k12)? (0 — k123)? (1 — k)2 (r + £ + ky)?

(<) 1

I =
L2345 7 2 0202(0 4+ 7)2(0 — k12)2(€ + 7 + k3)2 (r — k5)2(r — kas)?
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The zero-mode integral (...)o in (3.5) yields the components of the superspace numerators
for arbitrary external states of the ten-dimensional Type-II multiplets, see [56] for the
bosonic components of T1m72’3‘475 and T3 3)4,5-

The supergravity amplitude (7.36) has been given for general spacetime dimension D
by considering a compactification on a T~ P-torus and retaining only the zero-momentum
and -winding modes in the Siegel-Narain theta series (6.15). The superspace components of
the kinematic factors in (7.36) can be dimensionally reduced to any D < 10 and integrated
over the loop momenta in D < 7, where the integrals are UV-finite. Dimensional reduction
to D = 4 does not directly reproduce the BCJ numerators of [67] in spinor-helicity variables
since their building blocks 7;; involve certain inverse Levi-Civita invariants that are specific
to four dimensions. Still, the symmetry properties of the combinations of 7;; in [67] match
those of the superspace building blocks in (7.36), see appendix D of [48] for details. The
difference between the amplitude representation in [67] and the dimensionally reduced
superspace numerators of (7.36) should cancel when integrating the sum over all diagrams,
for instance using the recent progress on the relevant integrals in [87-90].

7.6 Comments on the Heterotic and Type I strings

Having correctly reproduced the two-loop integrand in maximal supergravity, one would
like to also match the two-loop integrand in ' = 4 super-Yang-Mills theory, which is closely
related to the supergravity amplitude by the double-copy prescription [67]. One possible
strategy is to extract the field theory limit of the scattering amplitude of five gauge bosons in
the Heterotic strings, but this would produce the integrand for half-maximal supergravity,
where both vector multiplets and the gravitational multiplet propagate in the loops. While
the four-point two-loop amplitude in half-maximal supergravity is known [91], this is not
the case to our knowledge for the five-point amplitude. Moreover, extracting the field
theory limit of Heterotic string amplitudes is bound to be subtle, as contributions from the
separating degeneration due to the pole of 1/¥y (where ¥yg is the genus-two Igusa cusp
form of weight 10) are known to contribute at four points [65], and are expected for five
points as well.

A more direct approach is to consider the oriented, open-string sector of Type I super-
strings, which precisely reduces to SYM theory at low energy, without contamination from
gravitational exchange. For open superstrings, scattering amplitudes of massless gauge
bosons are given by an integral over the moduli space of Riemann surfaces with bound-
aries, over the positions z; of the vertex operators along the boundaries [92], and over loop
momenta. Riemann surfaces with boundaries are constructed as a quotient of a closed
Riemann surface under an anti-holomorphic involution [93]. As a result, the period matrix
is purely imaginary, and can be parametrized by (7.1) for a genus-two Riemann surface
with three boundaries. The integrand is given by the product K(5)Z(5)C(5) where Cs) is
the Chan-Paton factor, which depends only on the color indices of the external particles.
For a five-point amplitude with gauge group SU(N.), possible choices of C(5) include a
single-trace N2Tr(T@ T T T%T4%) if all 5 external particles are attached to the same
boundary and a double-trace N Tr(TT%2T)Tr(TT%) if three particles are attached
on one boundary and two on another (recall that Tr(7'*) = 0 for a simple gauge group; the
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overall factors of N2 and N, arise from Tr(1) on the boundaries which do not support any
external particle).

At low energies, scattering amplitudes are again dominated by degenerate Riemann
surfaces, with long tubes replaced by strips and closed-string vertices replaced by disks.??
At two-loop, five points, they can be represented by fattened versions of the graphs in
figure 1, where the fattening keeps track of the position of the vertex operators. For
the pentabox diagrams (a,b,c), the same computations as in subsection 7.3 apply, and
reproduce the field theory integrands in color-kinematics dual form. Double-box diagrams,
however, arise in a different fashion than for closed strings, since the rules (7.26), (7.27)
for contact diagrams no longer apply. Instead, kinematic poles only arise from prime forms
involving pairs of neighbouring punctures on the same boundary,

1 (5 (Zi, Zi:i:l)

0z M B (23, zix1) ~ S I PR (7.38)
7 (2 (2

Therefore, the coefficient of a single-trace Chan-Paton factor ~ N2tr(T@1 T3 T%)
exhibits kinematical poles of the form 1/s12, 1/s23, 1/s34, 1/845, 1/s51, while a double-
trace Chan-Paton factor ~ Nctr(T*T%T )tr(T*T%) is accompanied by poles of the
form 1/s12,1/s23,1/s31. The numerators can be extracted in the same way as before, and
turn out to match with the prescription of [67], after converting color-ordered traces into
the color factors associated to the cubic graphs in figure 1. All cubic graphs are accessible
from the partial amplitudes ~ N2tr(T®T92T%T%T%) and ~ N tr(TT 2T )tr(T%T%)
since the N 2-suppressed single-trace contribution ~ Tr(T*T%2T%T%T%) is expressible
in terms of permutations of the former [96] (see [97] for the N 2-suppressed four-point
single-trace amplitude).

8 Conclusion and future directions

In this work, we have proposed a spacetime supersymmetric expression for the chiral two-
loop five-point amplitude relevant to massless states of Type II, Heterotic, and Type I
superstring theories. The construction of the chiral amplitude is driven by the BRST
cohomology of vertex operators in the pure spinor formalism and the constraints from
homology invariance in the chiral splitting procedure. The main result in (5.10) and (5.11)
is written in pure spinor superspace and therefore allows to address arbitrary combinations
of massless external states in the gauge and gravity supermultiplets.

The key result of this work is to obtain the full o’ dependence of the two-loop five-point
amplitudes, including the contributions to the correlators beyond the OPE analysis and
the low energy limit of Type I and Type II amplitudes in [25]. In doing so we provide
the starting point for a systematic study of the low energy expansion of Type II string
amplitudes beyond leading order, and comparison with predictions from string dualities,

22The field theory limit of the genus-two open-superstring partition function in a magnetic field was inves-
tigated in [81, 94, 95] using the Schottky representation, reproducing the Feynman diagrams contributing
to the Euler-Heisenberg Lagrangian of pure Yang-Mills theory. Our interest is in scattering amplitudes in
SYM theory in Minkowski background.
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which will be the subject of a companion paper [30]. Our result will be further validated by
a derivation from first principles in the RNS formalism of the chiral amplitude for external
NS bosons and even spin structure to be given in another companion paper [31].

We have also extracted the loop integrands for two-loop five-point amplitudes of super-
Yang-Mills and maximal supergravity in D < 10 dimensions: The worldline limit of the
string amplitudes in this work reproduce the representation of the field theory amplitudes
proposed in [48]. This form of the super-Yang-Mills and supergravity amplitudes features
the color-kinematics duality and double-copy structure [68-70]. Therefore, our work is
yet another showcase that hidden relations between gauge and gravity amplitudes may be
conveniently studied from a string-theory perspective.

Our methods should be useful to determine and organize chiral two-loop amplitudes for
higher numbers of massless states. The explicit construction of the kinematic factors will
require further cohomology studies in pure spinor superspace as for instance done at genus
one [52, 59]. The decomposition (5.10) of the chiral amplitude into a basis of differential
forms is easily extended to higher multiplicity: At six points for instance, the problem
reduces to constructing 14 sub-correlators along with the basis forms that are individually
homology-invariant functions of the punctures related by permutations of the external legs.

Given that the chiral correlators in (5.11) have no explicit o’ dependence, our results
may also be exported to the pure spinor incarnation of the ambi-twistor string [98, 99], and
should pave the way towards obtaining five-point supergravity amplitudes from correlators
on the bi-nodal sphere using the techniques of [100, 101].

A Clifford-Dirac algebra and pure spinor identities

Weyl spinors in the 16 and 16’ representations of the Lorentz group SO(10) in ten-
dimensional space-time R'° will be denoted with an upper and a lower index, respectively,
such as €% and y, where o = 1,---,16. The Clifford-Dirac matrices (7")qs and (y™)%
acting on Weyl spinors in the 16 and 16’ respectively satisfy the Clifford algebra,

(7™)as ()7 + (M ag (™) = 20" 80" (A1)

" is the flat Minkowski metric on R'® and m,n = 1,---,10. The summation

where n™
convention over pairs of repeated upper and lower vectorial or spinorial indices is adopted
throughout. We shall often be led to complexifying the momenta and polarization data of
the fields, in which case space-time is C1°, the Lorentz group is SO(10; C), and the metric

7™ is the Kronecker 6™", and all formulas in this section continue to hold as stated.

A.1 Basic identities

The anti-symmetric tensor y-matrices are defined by,

1
(’Ymn)aﬁ = E(Vm)ay(’y")w — 1 permutation of m,n
!
(") o = g(,ym)w(,yn)vé(,yp)w + 5 permutation of m,n,p (A.2)
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and so on for y™™P4 ~A™NPIT - and similarly for the y-matrices with reversed spinor indices
such as (y"")%g. We shall not need y-matrices of rank 6 or higher which are related to
~v-matrices of lower rank by Poincaré duality. The ~-matrices have the following symme-
try properties,

(Y")ap = +(1™)a (V") % = —=("")s"
(,ymnp)aﬁ — _(,ymnp)ﬁa (,ymn’PQ)a — _‘_(,ym”PQ)ﬁa
(Y"1 )ap = +(7""") pa (A.3)

satisfy the following product identities,

YmnYs = Ymns T YmMns — YnNms
TYmnpYs = TYmnps + YmnTps — YmpTins + TnpTims
YmnpgVs = VYmnpgs T YmnpTgs — YmngMps T Ympqns — VnpqTms (A4)

as well as the following contraction identities,

’Ym’}/mnl np — (10 - p)’Ym g
’YmVnr--anm = (10 — QP)(_)anlmnp (A.5)

As an immediate consequence for arbitrary commuting or anti-commuting spinors &%, %,
we have the following decomposition formulas,

1
€Y+ 7% = o Em) (7)Y + 1557 Emnpart) (7)Y

1
7 — €70 = o (Epmnpt) (1) (A.6)
For an arbitrary commuting Weyl spinor £, combining the first equation of (A.6) with the

second equation of (A.5) we obtain,

m 1 m
(v g)a(')/mf)ﬂ = _5(’Vm)aﬂ(§7 £) (A7)
Finally, we have the following Fierz identity,
85575015 = 4(’Ym)a,8(7m)76 - (’)’mn)oﬂ(’}’mn),@(S - 250&7555 (A.8)

and the famous supersymmetry Fierz identity,

0=(")ap(Vm)ys + (V") ay(vm)as + (7" )ra(ym)ss (A.9)
A.2 Identities involving pure spinors

A commuting pure Weyl spinor A is defined to satisfy (2.1), namely (Ay™\) = 0. Com-
bining (2.1) with (A.7) and with the last equation of (A.4) respectively, we see that an
arbitrary commuting pure spinor satisfies the following fundamental identities,

()"Ym)a()"}/m)ﬁ =0
(MmnpgrA) (AY™)a =0 (A.10)
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The tensor product of two identical pure Weyl spinors has the following decomposition,

AN = (MmnpgrA) (P47 P (A.11)

325!
The following identity holds for the tensor product of three identical pure Weyl spinors,

()"Y[mnpqr)‘)(A’Ys])oc =0 (A12)

where the anti-symmetrization bracket is applied to all six indices. The identity may be
proven as follows. The symmetric tensor product of three arbitrary Weyl spinors in the
16 is reducible by contracting two of the Weyl spinors with a ~-matrix. However, this
contraction vanishes for pure spinors by (2.1) and hence the symmetrized tensor product
of three pure Weyl spinors is irreducible. Its further tensor product with a 16 is readily
shown not to contain an anti-symmetric rank 6 tensor, which is Poincaré dual to an anti-
symmetric rank 4 tensor, which proves the identity.

B Functions and differentials on Riemann surfaces

In this appendix, we review the basic holomorphic and meromorphic functions, differentials,
and Green functions on a compact Riemann surface ¥ of genus h from which all string
correlators needed here can be constructed. Standard references are [2, 35, 102].

B.1 Homology and modular transformations
A canonical basis for the homology group H;(X,Z) consists of 1-cycles 2; and B; with
I=1,---, h and canonical intersection pairing J,

J®RAL™Ay) = I(B,B,) =0

J®A,By) = —J(B,2As) =61y (B.1)

Different canonical bases (2, B;) and (A7, B;) are related by linear transformations rep-
resented by a matrix M with integer entries,

0)-+(3

Here, 2l and B stand for the column matrices with entries [y and B, respectively, and
M is an element of the group Sp(2h,Z) of modular transformations, which preserve the
canonical intersection matrix J,

0 —1I, A B
MM =3 3= M = B.3
Y J v (Ih 0 ) (C D) (B-3)

where A, B,C,D are h x h matrices with integer entries. An important subgroup of
Sp(2h,Z) is the group Gl(h,Z) which consists of those modular transformations M which
transform 2A-cycles into linear combinations of 2-cycles and B-cycles into linear combina-
tions of B-cycles. It is obtained by setting B = C =0 and D = (A?)~L.
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B.2 Holomorphic 1-forms and the period matrix

A canonical basis of the cohomology group H (1,0) (3, Z) consists of holomorphic (1, 0)-forms
wy with I =1,---  h whose periods on the homology basis (2;,B;) are given by,

% wy=190r; f wy =g (B.4)
Ay B

The 2A-periods fix the canonical normalization of wy, while the 2B-periods give the period
matrix ), which is symmetric by the Riemann bilinear relations, and for which the matrix,

Y =Im Q (B.5)

is positive definite. Under modular transformations M € Sp(2h, Z), whose parametrization
in terms of h x h matrices A, B,C, D is given in (B.3), the matrix of holomorphic Abelian
differentials w, the period matrix €2, its imaginary part Y, and the determinant thereof
det Y transform as follows,

O =w(CQ+D)™!
Q= (AQ+ B)(CQ+ D) !
Y = (QC* + DY)~y (CQ* + D)
detY = |det (CQ + D)|*det Y (B.6)
B.3 The Abel map and Jacobi ¥-functions
The Jacobian of the surface ¥ is the Abelian variety defined by,

J(X) = Cch/{z" + Qzh} (B.7)

Given a base point zy € 3, the Abel map sends a divisor D of n points z; € 3 with weights
¢ €Zfori=1,---,n, formally denoted by D = 121 + - - - ¢n2zn, into C* by,

n 2
QIZI+"'+QnZnEZQi/ (w1, ,wn) (B.8)
i=1 %0

where the h-tuple (w1, ,wp) stands for the vector of holomorphic (1,0)-forms w;. The

Abel map into C" is multiple valued, but it is single valued as a map into J (2).
The Jacobi ¥-functions with characteristics & are defined on ¢ = ((1,--- , ()t € CP by,
I[k](C|Q) = Z exp (zw(n + &N + K + 2mi(n + £)HC + /@”)) (B.9)

nezh

Here, x = (/| k") is a general characteristic, where x/, x” € C" are both written as a
column vector. Henceforth, we shall assume that x corresponds to a spin structure, and
thus be valued in #’, k" € (Z/2Z)". The parity of the spin structure is determined by the
parity of the ¥-functions which satisfy,

/ 1

IK](=¢1) = (=) I[K](C|2) (B.10)

#For our conventions and notations for integrals of (1,0) forms see footnote 2.
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According to whether 4x/-k" is even or odd, k is referred to as an even or odd spin structure.
Upon shifting by full periods M, N € Z",

I[K)(C + M + QN|Q) = exp ( — NN — 2miNY (¢ + k') + 27rz’M%”)19[n}(§|Q) (B.11)

Under a modular transformation M € Sp(2h,Z) as given in (B.3), the characteristic k =
(k'| k") transforms as (see for example [102, 103])

7 p -\ (w\ 1. (cD

The ¥-function transforms as follows,

1
2

9] ((QC" + D)1 (AQ + BY(CQ + D)) = ek, M) (det (CQ+ D)) *9[x] (€|2) (B.13)

where e(k, M) is an eighth root of unity satisfying € = 1. Its explicit form is given
in [102, 103] but will not be needed here.

B.4 The prime form

The prime form is constructed as follows [102]. For any odd spin structure v, the 2h — 2
zeros of the holomorphic (1, 0)-form,

ho(z) =Y "] (0]Q)w;(z) ol = — (B.14)
I

are double and the form admits a unique (up to an overall sign) square root h,(z) which
is a holomorphic (1/2,0) form. The prime form is a (—1/2,0) form in z,w, living in the
covering space of X, defined by

Iv](z — w|Q)

E(z,w|Q2) = o (2) T ()

(B.15)

where the argument z — w of the J-functions stands for the Abel map of (B.8) with z; = z,
z9 = w and q1 = —¢2 = 1. The form E(z,w|}) defined in (B.15) is independent of v,
holomorphic in z and w, odd under swapping z and w, and has a unique simple zero at
z = w. It is single valued when z is moved around 2l cycles, but has non-trivial monodromy
around a Bj cycle,

E(z+4%B1,w|Q) = —exp <—i7TQH - 271'2'/ w1> E(z,w|) (B.16)

w

In terms of the first derivatives, we have,

0. mE(z+Br,w) =0, InE(z,w) — 2miwr(z)
0, InE(z,w+B1) =0, InE(z,w) + 2miwy(z) (B.17)
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The combination 0,0, In E(z,w|f?) is a single valued meromorphic differential with one
double pole at z = w and no single poles. Its integrals around homology cycles are given by,

7{ dz0,0, In E(z,w|Q?) =0
A7
}{ dz0,0, In E(z,w|Q) = 2miwr (w) (B.18)
Br
and will be of use throughout.

C Chiral splitting and loop momenta

In this appendix, we review chiral splitting for the z"-field in 10-dimensional space-time
on a compact Riemann surface of arbitrary genus h. The functional integrals of interest
may be obtained through a generating functional which includes both the contributions
from the Koba-Nielsen factor and from multi-linear insertions of the current dx,, required
in the vertex operators, and is given by (2.16).

The worldsheet field contents of the pure spinor string has been arranged so that their
combined Weyl and holomorphic anomalies cancel. Omitting the contribution to these
anomalies from the x-field by itself, its Gaussian functional integral evaluates to,

N
J = (2m) 06 (k) ~—— 1217 e Zs k=) k (C.1)
7 (det 2Y)5 P 4 g = '

Here, the determinant is taken of the matrix Y with components Y;; = Im Q;;, while Z is
the chiral scalar partition function which is holomorphic in moduli, and &;; is given by,

1
&j = —51{?1' . /{j G(Zi, Zj) + ik; - € asz(Zi, Zj) + ik; - nj 85]0(7:@-, Zj)
1 1 _ _
+ 561' CEj aziasz(Zi, Zj) + 5’/]1 -1 821.8%(}(21-, Zj) + 1 €5 agiasz(Zi, Zj) (C2)

The Green function G is given in (2.11), but may equivalently be replaced by the Arakelov
Green function of (2.12). We split &; into a part which involves only the holomorphic
prime form E(z;, 2;), another part which involves its complex conjugate, and a part which
involves the holomorphic Abelian differentials and Y17,

Eij = &5 +&; + & (C.3)
The individual contributions are given as follows,
1 , 1
E{; = 51@ - kj In E(z;, 25) — ik; - €5 0., In E(2;, 25) — 551' © €0 0z, In E(z;, 25)

lﬁl Ny 821.8%. In E(ZZ', Zj) (C4)

1 - -
SZ; = ikz . kj lnE(zi,zj) —ik; - nj 85]. lnE(zi,zj) - 5

and the sum of 5% is given by,

i £y = gYU (CI - 51) : (CJ - fJ) (C.5)

1,j=1
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where we have defined,
N %
(= Z (é‘;an(Zj) + Zk;n / w1>
20
- N zj
(= Z (ﬁ;."m(zj) + ik / (,u[) (C.6)

j=1 20

Next, we shall represent the combination of the (det Y)-denominator and the exponential
of the sum of El-oj by an integral over loop momenta p7* € R,

exp {Z” l]}

(det 2Y) - /Rloh dp oXp {_27‘-}/}‘]]?[ 'pJ + 27Tp1 : (CI - 5])} (07)

The full generating function is then given as follows,

7 = 6(k) / dp Bz, &1, ki, p'92) Bz i, ki, —p1 ) (C.8)
Rth

where the chiral amplitude is given by,

B(ziei ki, p'|Q) = Z7 0 exp {iWQIJPI pl 4+ 2mp” (Ei wr(2) + Z/fz/ Z w)

i 0

- % > (zkz + 54%) (ikj + 5;’%) In E(z;, Zj)} (C.9)

i#]

and similarly for its conjugate chiral amplitude. The chiral amplitude may be recast in the
form of a chiral correlator,

B(zi, e, ki, p'|Q) = Z71%exp {i?TQ[JpI p’ + ZQm’pI . kz/ OJ[} (C.10)
i %0

<expz{ (04 () + 2l (2)) +iki-x+<zi>}>

The effective rule for the Wick contraction of the chiral bosonic field x4 is given by (2.19).
We have grouped together the various terms involving the polarization vectors, which make
it clear that the effective rule for the insertion of the derivatives in the formulation with
loop momenta is given by the following substitution,

9x™(2) —  0x7(z) + 2m(p")"wi(2) (C.11)

It is this effective rule of which we shall make use here when applying chiral splitting.
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D Operator product expansions
The short-distance behavior of the physical canonical fields is given by the following OPEs,
a™(z2)a"(y) ~ —n"" In(z —y)

5a”
Pal()67() ~

(D.1)

As a result, the OPEs of the composite matter fields dq, II"™ defined in (2.4) may be deduced
from the OPEs of the physical canonical fields,

m ]
da2) £ 20),000)) ~ 22 da2) dp(y) ~ — 22

O Ya 06
M (2) f(2(y), 0(y)) ~ Ty da(2) ™ (y) ~ T (D.2)

where D, is the superspace derivative defined in (2.29), from which the BRST transfor-
mations of the matter fields in (2.26) may be evaluated. The OPEs of the ghost fields are
given by,

(5cxﬁ + (YA OAA’VBTL
wa(2) W5 (y) ~ 2

hY 0% + ('ij‘)a/_xgb - (’Ymr)aﬁbgb
2=y
0% + (’Vm)\)aq/ﬂ@n
2=y

s%(2) ra(y) ~ (D-3)
The presence of the functions A?n,f&gl,ég”,wg is required in order for the OPEs to be
compatible with the pure spinor constraints (2.1), and specifically to cancel the singularities
in the OPE of the fields wq, Wq, s¢ with the pure spinor constraints of (2.1). To do so, AT’B,L
and wrﬁn must satisfy,

(" Na(Ay™ ) + ("N = 0

(V"N (Wny™A) + (YN =0 (D.4)

while J_Xg and (;Sgl must satisfy the following set of coupled equations,

('ij‘)a + ('Ynj‘)a(‘/_\n')/mj‘) - ('an)a(ﬁbn'ij‘) =0
(Y"1)* + (PN (A7) = (1) (¢py"7) = 0 (D.5)
Note that the functions A%,]Xgﬁwg’f are commuting, while ¢3' is anti-commuting. The
solutions to these equations are not unique as there are non-trivial kernels. For example,

we cannot solve them simply by setting (A,7y™\) = —d,"" since this would be inconsistent
with the constraint Ay”*A = 0. Similarly for the other equations and their solutions.
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The contributions from A,,, A, G, 1/1[73” will cancel out of the OPEs of the composites
Nun, J, Ty, and their analogues for the ghosts w® and s®. Their OPEs with A% are given
by the corresponding linear transformations on A%,

1 A

Non(2) 2(3) ~ 5222
)\O[

=Y
o\

=Y

Ia(z) A*(y) ~

T (2) A*(y) ~ (D.6)
while their OPEs with w, are subject to extra terms due to the constraints (2.1) and
will not be needed here. The OPEs of the currents are more complicated because of the
constraints, and we quote here only the relevant results,

Npo — N, — N. N,
Npn(2) Npq(y) , MptNmg — Thmp nz - an mp T NmgNnp
NimqTlnp — Tlmping
-3 (D.7
(z —y)? )

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References
[1] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and
String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

[2] E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod.
Phys. 60 (1988) 917 nSPIRE].

[3] E. D’'Hoker and D.H. Phong, Lectures on two loop superstrings, Conf. Proc. C 0208124
(2002) 85 [hep-th/0211111] [INSPIRE].

[4] E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].

[5] N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000)
018 [hep-th/0001035] [INnSPIRE].

[6] N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism
for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] INSPIRE].

[7] N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089
[hep-th/0509120] [INSPIRE].

[8] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude
I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

[9] C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part
III. One-loop correlators and their double-copy structure, JHEP 08 (2019) 092
[arXiv:1812.10971] [INSPIRE].

79—


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(86)90356-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB271%2C93%22
https://doi.org/10.1103/RevModPhys.60.917
https://doi.org/10.1103/RevModPhys.60.917
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C60%2C917%22
https://arxiv.org/abs/hep-th/0211111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0211111
https://arxiv.org/abs/1209.5461
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.5461
https://doi.org/10.1088/1126-6708/2000/04/018
https://doi.org/10.1088/1126-6708/2000/04/018
https://arxiv.org/abs/hep-th/0001035
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001035
https://doi.org/10.1088/1126-6708/2004/09/047
https://arxiv.org/abs/hep-th/0406055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406055
https://doi.org/10.1088/1126-6708/2005/10/089
https://arxiv.org/abs/hep-th/0509120
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0509120
https://doi.org/10.1016/j.nuclphysb.2013.04.023
https://arxiv.org/abs/1106.2645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.2645
https://doi.org/10.1007/JHEP08(2019)092
https://arxiv.org/abs/1812.10971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10971

[10] E. D’Hoker and D.H. Phong, Two loop superstrings. 1. Main formulas, Phys. Lett. B 529
(2002) 241 [hep-th/0110247] [INSPIRE].

[11] E. D’Hoker and D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space,
Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [iNSPIRE].

[12] E. D’Hoker and D.H. Phong, Two loop superstrings. 3. Slice independence and absence of
ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] InSPIRE].

[13] E. D’'Hoker and D.H. Phong, Two loop superstrings 4: The cosmological constant and
modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].

[14] E. Witten, Notes On Super Riemann Surfaces And Their Moduli, arXiv:1209.2459
[INSPIRE].

[15] E. Witten, Notes On Holomorphic String And Superstring Theory Measures Of Low Genus,
arXiv:1306.3621 [INSPIRE].

[16] E. D’Hoker and D.H. Phong, Two-loop superstrings VI: Non-renormalization theorems and
the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].

[17] E. D’Hoker and D.H. Phong, Two-loop superstrings. V. Gauge slice independence of the
N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].

[18] E. D’Hoker, M. Gutperle and D.H. Phong, Two-loop superstrings and S-duality, Nucl. Phys.
B 722 (2005) 81 [hep-th/0503180] [INSPIRE].

[19] E. D’'Hoker and M.B. Green, Zhang-Kawazumi Invariants and Superstring Amplitudes, J.
Number Theory 144 (2014) 111 arXiv:1308.4597 [INSPIRE].

[20] E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D®R* interaction at
two-loops, JHEP 01 (2015) 031 [arXiv:1405.6226] [INSPIRE].

[21] E. D’Hoker and D.H. Phong, Two-Loop Superstrings. VII. Cohomology of Chiral
Amplitudes, Nucl. Phys. B 804 (2008) 421 [arXiv:0711.4314] [INSPIRE].

[22] N. Berkovits, Super-Poincaré covariant two-loop superstring amplitudes, JHEP 01 (2006)
005 [hep-th/0503197] [INSPIRE].

[23] N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure
spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234]
[INSPIRE].

[24] H. Gomez and C.R. Mafra, The Overall Coefficient of the Two-loop Superstring Amplitude
Using Pure Spinors, JHEP 05 (2010) 017 [arXiv:1003.0678] [INSPIRE].

[25] H. Gomez, C.R. Mafra and O. Schlotterer, Two-loop superstring five-point amplitude and
S-duality, Phys. Rev. D 93 (2016) 045030 [arXiv:1504.02759] [INSPIRE].

[26] H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10
(2013) 217 [arXiv:1308.6567] [INSPIRE].

[27] C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor
BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].

[28] E. D’Hoker and D.H. Phong, Conformal Scalar Fields and Chiral Splitting on
SuperRiemann Surfaces, Commun. Math. Phys. 125 (1989) 469 [inSPIRE].

[29] E. D’Hoker and D.H. Phong, The box graph in superstring theory, Nucl. Phys. B 440
(1995) 24 [hep-th/9410152] [INSPIRE].

- 73 —


https://doi.org/10.1016/S0370-2693(02)01255-8
https://doi.org/10.1016/S0370-2693(02)01255-8
https://arxiv.org/abs/hep-th/0110247
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110247
https://doi.org/10.1016/S0550-3213(02)00431-5
https://arxiv.org/abs/hep-th/0110283
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110283
https://doi.org/10.1016/S0550-3213(02)00432-7
https://arxiv.org/abs/hep-th/0111016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0111016
https://doi.org/10.1016/S0550-3213(02)00516-3
https://arxiv.org/abs/hep-th/0111040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0111040
https://arxiv.org/abs/1209.2459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.2459
https://arxiv.org/abs/1306.3621
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.3621
https://doi.org/10.1016/j.nuclphysb.2005.02.043
https://arxiv.org/abs/hep-th/0501197
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501197
https://doi.org/10.1016/j.nuclphysb.2005.02.042
https://arxiv.org/abs/hep-th/0501196
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501196
https://doi.org/10.1016/j.nuclphysb.2005.06.010
https://doi.org/10.1016/j.nuclphysb.2005.06.010
https://arxiv.org/abs/hep-th/0503180
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503180
https://doi.org/10.1016/j.jnt.2014.03.021
https://doi.org/10.1016/j.jnt.2014.03.021
https://arxiv.org/abs/1308.4597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.4597
https://doi.org/10.1007/JHEP01(2015)031
https://arxiv.org/abs/1405.6226
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.6226
https://doi.org/10.1016/j.nuclphysb.2008.04.030
https://arxiv.org/abs/0711.4314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.4314
https://doi.org/10.1088/1126-6708/2006/01/005
https://doi.org/10.1088/1126-6708/2006/01/005
https://arxiv.org/abs/hep-th/0503197
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503197
https://doi.org/10.1103/PhysRevLett.96.011602
https://arxiv.org/abs/hep-th/0509234
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0509234
https://doi.org/10.1007/JHEP05(2010)017
https://arxiv.org/abs/1003.0678
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0678
https://doi.org/10.1103/PhysRevD.93.045030
https://arxiv.org/abs/1504.02759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.02759
https://doi.org/10.1007/JHEP10(2013)217
https://doi.org/10.1007/JHEP10(2013)217
https://arxiv.org/abs/1308.6567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.6567
https://doi.org/10.1007/JHEP07(2014)153
https://arxiv.org/abs/1404.4986
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.4986
https://doi.org/10.1007/BF01218413
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C125%2C469%22
https://doi.org/10.1016/0550-3213(94)00526-K
https://doi.org/10.1016/0550-3213(94)00526-K
https://arxiv.org/abs/hep-th/9410152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9410152

[30] E. D’Hoker, C.R. Mafra, B. Pioline and O. Schlotterer, Two-loop superstring five-point
amplitudes II, Low energy expansion and S-duality, arXiv:2008.08687.

[31] E. D’Hoker, C.R. Mafra and O. Schlotterer, Two-loop superstring five-point amplitudes III,
Construction via the RNS formulation, to appear.

[32] E. D’Hoker, M.B. Green and B. Pioline, Higher genus modular graph functions, string
invariants, and their exact asymptotics, Commun. Math. Phys. 366 (2019) 927
[arXiv:1712.06135] [INSPIRE].

[33] E. D'Hoker, M.B. Green and B. Pioline, Asymptotics of the DSR* genus-two string
invariant, Commun. Num. Theor. Phys. 13 (2019) 351 [arXiv:1806.02691] InSPIRE].

[34] E.P. Verlinde and H.L. Verlinde, Multiloop Calculations in Covariant Superstring Theory,
Phys. Lett. B 192 (1987) 95 [INSPIRE].

[35] E.P. Verlinde and H.L. Verlinde, Chiral Bosonization, Determinants and the String
Partition Function, Nucl. Phys. B 288 (1987) 357 [INSPIRE].

[36] E. Witten, Twistor — Like Transform in Ten-Dimensions, Nucl. Phys. B 266 (1986) 245
[INSPIRE].

[37] J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super
Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].

[38] P.A. Grassi and L. Tamassia, Vertex operators for closed superstrings, JHEP 07 (2004) 071
[hep-th/0405072] [INSPIRE].

[39] G. Policastro and D. Tsimpis, R*, purified, Class. Quant. Grav. 23 (2006) 4753
[hep-th/0603165] [INSPIRE).

[40] N. Berkovits, Origin of the Pure Spinor and Green-Schwarz Formalisms, JHEP 07 (2015)
091 [arXiv:1503.03080] [NSPIRE].

[41] N. Berkovits, Untwisting the pure spinor formalism to the RNS and twistor string in a flat
and AdSs x S° background, JHEP 06 (2016) 127 [arXiv:1604.04617] [INSPIRE].

[42] N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure
spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].

[43] Y. Aisaka and N. Berkovits, Pure Spinor Vertex Operators in Siegel Gauge and Loop
Amplitude Regularization, JHEP 07 (2009) 062 [arXiv:0903.3443] INSPIRE].

[44] P.A. Grassi and P. Vanhove, Higher-loop amplitudes in the non-minimal pure spinor
formalism, JHEP 05 (2009) 089 [arXiv:0903.3903] [INSPIRE].

[45] N. Berkovits, Ezplaining Pure Spinor Superspace, hep-th/0612021 [INSPIRE].

[46] C.R. Mafra, Superstring Scattering Amplitudes with the Pure Spinor Formalism, Ph.D.
Thesis, Sao Paulo, IFT, (2008), arXiv:0902. 1552 [INSPIRE].

[47] C.R. Mafra, Pure Spinor Superspace Identities for Massless Four-point Kinematic Factors,
JHEP 04 (2008) 093 [arXiv:0801.0580] [INSPIRE].

[48] C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and
supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].

[49] S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM
theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].

— 74—


https://arxiv.org/abs/2008.08687
https://doi.org/10.1007/s00220-018-3244-3
https://arxiv.org/abs/1712.06135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06135
https://doi.org/10.4310/CNTP.2019.v13.n2.a3
https://arxiv.org/abs/1806.02691
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.02691
https://doi.org/10.1016/0370-2693(87)91148-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB192%2C95%22
https://doi.org/10.1016/0550-3213(87)90219-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB288%2C357%22
https://doi.org/10.1016/0550-3213(86)90090-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB266%2C245%22
https://doi.org/10.1007/BF01454971
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C106%2C183%22
https://doi.org/10.1088/1126-6708/2004/07/071
https://arxiv.org/abs/hep-th/0405072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0405072
https://doi.org/10.1088/0264-9381/23/14/012
https://arxiv.org/abs/hep-th/0603165
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603165
https://doi.org/10.1007/JHEP07(2015)091
https://doi.org/10.1007/JHEP07(2015)091
https://arxiv.org/abs/1503.03080
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.03080
https://doi.org/10.1007/JHEP06(2016)127
https://arxiv.org/abs/1604.04617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.04617
https://doi.org/10.1088/1126-6708/2006/12/029
https://arxiv.org/abs/hep-th/0609012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0609012
https://doi.org/10.1088/1126-6708/2009/07/062
https://arxiv.org/abs/0903.3443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.3443
https://doi.org/10.1088/1126-6708/2009/05/089
https://arxiv.org/abs/0903.3903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.3903
https://arxiv.org/abs/hep-th/0612021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0612021
https://arxiv.org/abs/0902.1552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.1552
https://doi.org/10.1088/1126-6708/2008/04/093
https://arxiv.org/abs/0801.0580
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.0580
https://doi.org/10.1007/JHEP10(2015)124
https://arxiv.org/abs/1505.02746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.02746
https://doi.org/10.1007/JHEP03(2016)090
https://arxiv.org/abs/1510.08843
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.08843

[50]

[51]

[52]

[61]

[62]

[63]

[64]

[65]

C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace
and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].

C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM
n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].

C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I.
Pure spinors and superfield kinematics, JHEP 08 (2019) 090 [arXiv:1812.10969]
[INSPIRE].

C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor
BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] INSPIRE].

C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP
01 (2010) 007 [arXiv:0909.5206] [INSPIRE].

C.R. Mafra, PSS: A FORM Program to Evaluate Pure Spinor Superspace FExpressions,
arXiv:1007.4999 [INSPIRE].

http://www.southampton.ac.uk/~crm1nl6/pss.html.

C.R. Mafra and O. Schlotterer, Double-Copy Structure of One-Loop Open-String
Amplitudes, Phys. Rev. Lett. 121 (2018) 011601 [arXiv:1711.09104] [INSPIRE].

C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional
supersymmetric Yang-Mills theory, Phys. Rev. D 92 (2015) 066001 [arXiv:1501.05562]
[INSPIRE].

C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure
spinor superspace, arXiv:1408.3605 [INSPIRE].

L. Alvarez—Gaumé, G.W. Moore and C. Vafa, Theta Functions, Modular Invariance and
Strings, Commun. Math. Phys. 106 (1986) 1 [INSPIRE].

D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic String Theory. 1. The Free
Heterotic String, Nucl. Phys. B 256 (1985) 253 INSPIRE].

D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic String Theory. 2. The
Interacting Heterotic String, Nucl. Phys. B 267 (1986) 75 nSPIRE].

G.W. Moore, Modular Forms and Two Loop String Physics, Phys. Lett. B 176 (1986) 369
[INSPIRE].

A.A. Belavin, V. Knizhnik, A. Morozov and A. Perelomov, Two and Three Loop Amplitudes
in the Bosonic String Theory, JETP Lett. 43 (1986) 411 Phys. Lett. B 177 (1986) 324
[INSPIRE].

G. Bossard, C. Cosnier-Horeau and B. Pioline, Fzact effective interactions and 1/4-BPS
dyons in heterotic CHL orbifolds, SciPost Phys. 7 (2019) 028 [arXiv:1806.03330]
[INSPIRE].

M.B. Green, J.H. Schwarz and L. Brink, N =4 Yang-Mills and N = 8 Supergravity as
Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

J.J.M. Carrasco and H. Johansson, Five-Point Amplitudes in N = 4 Super-Yang-Mills
Theory and N = 8 Supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711]
[INSPIRE].

Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [NSPIRE].

— 75 —


https://doi.org/10.1007/JHEP03(2016)097
https://arxiv.org/abs/1510.08846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.08846
https://doi.org/10.1103/PhysRevD.83.126012
https://arxiv.org/abs/1012.3981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3981
https://doi.org/10.1007/JHEP08(2019)090
https://arxiv.org/abs/1812.10969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10969
https://doi.org/10.1002/prop.201400076
https://arxiv.org/abs/1410.0668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0668
https://doi.org/10.1007/JHEP01(2010)007
https://doi.org/10.1007/JHEP01(2010)007
https://arxiv.org/abs/0909.5206
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.5206
https://arxiv.org/abs/1007.4999
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.4999
http://www.southampton.ac.uk/~crm1n16/pss.html
https://doi.org/10.1103/PhysRevLett.121.011601
https://arxiv.org/abs/1711.09104
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09104
https://doi.org/10.1103/PhysRevD.92.066001
https://arxiv.org/abs/1501.05562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.05562
https://arxiv.org/abs/1408.3605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3605
https://doi.org/10.1007/BF01210925
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C106%2C1%22
https://doi.org/10.1016/0550-3213(85)90394-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB256%2C253%22
https://doi.org/10.1016/0550-3213(86)90146-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB267%2C75%22
https://doi.org/10.1016/0370-2693(86)90180-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB176%2C369%22
https://doi.org/10.1016/0370-2693(86)90761-6
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C43%2C411%22
https://doi.org/10.21468/SciPostPhys.7.3.028
https://arxiv.org/abs/1806.03330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.03330
https://doi.org/10.1016/0550-3213(82)90336-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB198%2C474%22
https://doi.org/10.1103/PhysRevD.85.025006
https://arxiv.org/abs/1106.4711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.4711
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3993

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double
Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between
Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

I. Ttenberg and G. Mikhalkin, Geometry in the tropical limit, Mathematische
Semesterberichte 59 (2012) 57.

P. Tourkine, Tropical Amplitudes, Annales Henri Poincaré 18 (2017) 2199
[arXiv:1309.3551] [INSPIRE].

M.G. Schmidt and C. Schubert, Worldline Green functions for multiloop diagrams, Phys.
Lett. B 331 (1994) 69 [hep-th/9403158] [InSPIRE].

K. Roland and H.-T. Sato, Multiloop worldline Green functions from string theory, Nucl.
Phys. B 480 (1996) 99 [hep-th/9604152] [INSPIRE].

P. Dai and W. Siegel, Worldline Green Functions for Arbitrary Feynman Diagrams, Nucl.
Phys. B 770 (2007) 107 [hep-th/0608062] [INSPIRE].

P. Tourkine, Integrands and loop momentum in string and field theory, Phys. Rev. D 102
(2020) 026006 [arXiv:1901.02432] [INSPIRE].

J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP 08 (2010) 132
[arXiv:1004.2692] [NSPIRE].

J. Bjornsson, Multi-loop amplitudes in mazimally supersymmetric pure spinor field theory,
JHEP 01 (2011) 002 [arXiv:1009.5906] [INSPIRE].

C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ Numerators from Pure Spinors,
JHEP 07 (2011) 092 [arXiv:1104.5224] INSPIRE].

S. He, R. Monteiro and O. Schlotterer, String-inspired BCJ numerators for one-loop MHV
amplitudes, JHEP 01 (2016) 171 [arXiv:1507.06288] INnSPIRE].

L. Magnea, S. Playle, R. Russo and S. Sciuto, Two-loop Yang-Mills diagrams from
superstring amplitudes, JHEP 06 (2015) 146 [arXiv:1503.05182] [INSPIRE].

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

E.J. Martinec, Nonrenormalization Theorems and Fermionic String Finiteness, Phys. Lett.
B 171 (1986) 189 [INSPIRE].

E. Witten, More On Superstring Perturbation Theory: An Ouverview Of Superstring
Perturbation Theory Via Super Riemann Surfaces, arXiv:1304.2832 [INSPIRE].

M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01
(2006) 093 [hep-th/0510027] [INSPIRE].

M.B. Green, J.G. Russo and P. Vanhove, Modular properties of two-loop mazimal
supergravity and connections with string theory, JHEP 07 (2008) 126 [arXiv:0807.0389]
[INSPIRE].

S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point
amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603
[arXiv:1812.08941] [INSPIRE].

— 76 —


https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.0476
https://arxiv.org/abs/1909.01358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01358
https://doi.org/10.1007/s00591-011-0097-7
https://doi.org/10.1007/s00591-011-0097-7
https://doi.org/10.1007/s00023-017-0560-7
https://arxiv.org/abs/1309.3551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.3551
https://doi.org/10.1016/0370-2693(94)90944-X
https://doi.org/10.1016/0370-2693(94)90944-X
https://arxiv.org/abs/hep-th/9403158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403158
https://doi.org/10.1016/S0550-3213(96)00447-6
https://doi.org/10.1016/S0550-3213(96)00447-6
https://arxiv.org/abs/hep-th/9604152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604152
https://doi.org/10.1016/j.nuclphysb.2007.02.004
https://doi.org/10.1016/j.nuclphysb.2007.02.004
https://arxiv.org/abs/hep-th/0608062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0608062
https://doi.org/10.1103/PhysRevD.102.026006
https://doi.org/10.1103/PhysRevD.102.026006
https://arxiv.org/abs/1901.02432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.02432
https://doi.org/10.1007/JHEP08(2010)132
https://arxiv.org/abs/1004.2692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.2692
https://doi.org/10.1007/JHEP01(2011)002
https://arxiv.org/abs/1009.5906
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.5906
https://doi.org/10.1007/JHEP07(2011)092
https://arxiv.org/abs/1104.5224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.5224
https://doi.org/10.1007/JHEP01(2016)171
https://arxiv.org/abs/1507.06288
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.06288
https://doi.org/10.1007/JHEP06(2015)146
https://arxiv.org/abs/1503.05182
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.05182
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9403226
https://doi.org/10.1016/0370-2693(86)91529-7
https://doi.org/10.1016/0370-2693(86)91529-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB171%2C189%22
https://arxiv.org/abs/1304.2832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.2832
https://doi.org/10.1088/1126-6708/2006/01/093
https://doi.org/10.1088/1126-6708/2006/01/093
https://arxiv.org/abs/hep-th/0510027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0510027
https://doi.org/10.1088/1126-6708/2008/07/126
https://arxiv.org/abs/0807.0389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0389
https://doi.org/10.1103/PhysRevLett.122.121603
https://arxiv.org/abs/1812.08941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08941

[38]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop
five-particle amplitude in N = 8 supergravity, JHEP 03 (2019) 115 [arXiv:1901.05932]
[INSPIRE].

S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point
amplitude in N = 8 supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

S. Caron-Huot, D. Chicherin, J. Henn, Y. Zhang and S. Zoia, Multi-Regge Limit of the
Two-Loop Five-Point Amplitudes in N = 4 Super Yang-Mills and N = 8 Supergravity,
arXiv:2003.03120 [INSPIRE].

Z. Bern, S. Davies and T. Dennen, The Ultraviolet Structure of Half-Maximal Supergravity
with Matter Multiplets at Two and Three Loops, Phys. Rev. D 88 (2013) 065007
[arXiv:1305.4876] [INSPIRE].

O. Alvarez, Theory of Strings with Boundaries: Fluctuations, Topology, and Quantum
Geometry, Nucl. Phys. B 216 (1983) 125 [INSPIRE].

M. Bianchi and A. Sagnotti, Open Strings and the Relative Modular Group, Phys. Lett. B
231 (1989) 389 [INSPIRE].

L. Magnea, R. Russo and S. Sciuto, Two-loop Euler-Heisenberg effective actions from
charged open strings, Int. J. Mod. Phys. A 21 (2006) 533 [hep-th/0412087| [INSPIRE].

L. Magnea, S. Playle, R. Russo and S. Sciuto, Multi-loop open string amplitudes and their
field theory limit, JHEP 09 (2013) 081 [arXiv:1305.6631] INSPIRE].

A.C. Edison and S.G. Naculich, SU(N) group-theory constraints on color-ordered five-point
amplitudes at all loop orders, Nucl. Phys. B 858 (2012) 488 [arXiv:1111.3821] [InSPIRE].

Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4
superYang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017
[arXiv:1311.4156] [INSPIRE].

T. Adamo and E. Casali, Scattering equations, supergravity integrands, and pure spinors,
JHEP 05 (2015) 120 [arXiv:1502.06826] INSPIRE].

Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-Loop Scattering Amplitudes from
the Riemann Sphere, Phys. Rev. D 94 (2016) 125029 [arXiv:1607.08887] [INSPIRE].

Y. Geyer and R. Monteiro, Two-Loop Scattering Amplitudes from Ambitwistor Strings:
from Genus Two to the Nodal Riemann Sphere, JHEP 11 (2018) 008 [arXiv:1805.05344]
[INSPIRE].

J. Fay, Theta Functions on Riemann Surfaces, Lect. Notes Math. 352 Springer, Berlin,
Germany (1973).

J.I. Igusa, Theta Functions, Springer Verlag, (1972).

— 77—


https://doi.org/10.1007/JHEP03(2019)115
https://arxiv.org/abs/1901.05932
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.05932
https://doi.org/10.1007/JHEP03(2019)123
https://arxiv.org/abs/1901.08563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.08563
https://arxiv.org/abs/2003.03120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.03120
https://doi.org/10.1103/PhysRevD.88.065007
https://arxiv.org/abs/1305.4876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.4876
https://doi.org/10.1016/0550-3213(83)90490-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB216%2C125%22
https://doi.org/10.1016/0370-2693(89)90681-3
https://doi.org/10.1016/0370-2693(89)90681-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB231%2C389%22
https://doi.org/10.1142/S0217751X06025110
https://arxiv.org/abs/hep-th/0412087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412087
https://doi.org/10.1007/JHEP09(2013)081
https://arxiv.org/abs/1305.6631
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.6631
https://doi.org/10.1016/j.nuclphysb.2012.01.019
https://arxiv.org/abs/1111.3821
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.3821
https://doi.org/10.1016/S0370-2693(97)00413-9
https://arxiv.org/abs/hep-ph/9702424
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9702424
https://doi.org/10.1007/JHEP03(2014)017
https://arxiv.org/abs/1311.4156
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.4156
https://doi.org/10.1007/JHEP05(2015)120
https://arxiv.org/abs/1502.06826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06826
https://doi.org/10.1103/PhysRevD.94.125029
https://arxiv.org/abs/1607.08887
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.08887
https://doi.org/10.1007/JHEP11(2018)008
https://arxiv.org/abs/1805.05344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.05344

	Introduction
	Pure spinors and chiral splitting
	Worldsheet fields, action, and symmetries
	Gauge symmetry of the ghost fields and gauge invariant composites

	Chiral splitting
	Homology invariance
	Summary of the chiral splitting procedure

	BRST transformations
	Vertex operators
	The b-ghost

	Basics of genus-two amplitudes
	Genus-two correlators in the pure spinor formalism
	Partition functions
	Zero modes of (1,0)-form spinor fields
	Zero modes of (0,0)-form spinor fields and pure spinor superspace
	The zero-mode regulator
	Wick contractions of non-zero-mode fields
	The chiral correlator in pure spinor superspace

	Zero mode counting
	Zero modes absorbed by the b-ghosts
	The chiral amplitude for four external states

	Genus-two amplitudes for five massless states
	Structure of the chiral amplitude for five external states
	Four d-zero modes and one loop momentum from vertex operators
	Four d-zero modes and one Wick contraction from vertex operators
	Contributions with five d-zero modes from vertex operators

	The vector block for the amplitude of five external states
	Worldsheet dependence of the vector block
	BRST transformation of K**(V)((5))

	Construction of the scalar block
	Scalar block in terms of two-particle superfields
	Preamble
	Two-particle superfield formalism
	Two-particle superfields for the five-point function
	The scalar block in terms of two-particle superfields


	Structure of the chiral amplitude
	Theta functions and symmetry on the Jacobian variety
	Partition into sub-correlators
	Manifesting homology invariance
	Manifesting BRST invariance
	Simultaneous homology invariance and BRST invariance
	The simplified correlator in terms of prime forms
	Comparison with the OPE correlator from [25]

	An alternative correlator in terms of prime forms

	Type II and Heterotic 5-point amplitudes
	Assembling both chiralities for closed string amplitudes
	Type II amplitudes
	Heterotic string amplitudes

	The supergravity limit
	Maximal degeneration of a genus-two Riemann surface
	Tropical limit of the Abelian differentials and prime form
	Tropical limit of the chiral integrand: pentaboxes
	Tropical limit of the Type II string integrand: double boxes
	Assembling the supergravity amplitude
	Comments on the Heterotic and Type I strings

	Conclusion and future directions
	Clifford-Dirac algebra and pure spinor identities
	Basic identities
	Identities involving pure spinors

	Functions and differentials on Riemann surfaces
	Homology and modular transformations
	Holomorphic 1-forms and the period matrix
	The Abel map and Jacobi theta-functions
	The prime form 

	Chiral splitting and loop momenta
	Operator product expansions

