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Abstract: DelPhi is a popular scientific program which numerically solves the Poisson-Boltzmann
equation (PBE) for electrostatic potentials and energies of biomolecules immersed in water via finite
difference method. It is well known for its accuracy, reliability, flexibility, and efficiency. In this
work, a new edition of DelPhi that uses a novel Newton-like method to solve the nonlinear PBE, in
addition to the already implemented Successive Over Relaxation (SOR) algorithm, is introduced.
Our tests on various examples have shown that this new method is superior to the SOR method in
terms of stability when solving the nonlinear PBE, being able to converge even for problems
involving very strong nonlinearity.
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1. Introduction

Electrostatic interaction is a major factor which is commonly taken into account when studying
numerous biological phenomena [1,2], such as macromolecular binding and recognition [3—6],
pH-dependent folding and binding [7—11], nonspecific ion binding [12—14], pKa calculations [15—-17],
and salt-dependent effects [18,19], etc.. Existing models of calculating electrostatic potentials and
corresponding energies developed in the past couple of decades can be roughly classified into two
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categories. Explicit solvent models treat mobile water and ions explicitly and thus capture all
molecular details but are computationally costly in terms of CPU time and memory usage. Implicit
solvent models, such as the Generalized Born [20] and Poisson-Boltzmann (PB) models [21—26],
treat surrounding water as a continuum media, and can be solved with relatively low computational
costs. Because of that, implicit solvent models are usually preferred when modeling electrostatics of
macromolecules at genome-scale applications.

Among all existing implicit solvent models, the Poisson-Boltzmann equation (PBE), is one of
the most popular models utilized by many researchers. A lot of efforts have been devoted to
developing scientific software to solve the PBE. For instance, DelPhi [27,28] utilizes the finite
difference and Successive Over Relaxation (SOR) methods to iteratively solve the PBE until a
prescribed tolerance is satisfied, PBSA [29] adopts the Finite Volume/Periodic Conjugate Gradient
(FV/PCG) and the Immersed Interface/Fast Fourier Transform (IIM/FFT) methods to solve the PBE,
MIBPB [30] develops a unique matched interface and boundary (MIB) method to explicitly enforce
the jump conditions on the interfaces (molecular surfaces) in the finite difference formulations,
resulting in a method capable of capturing sharp jumps of the potentials at the molecular surfaces,
APBS [31] is an adaptive PBE solver which solves the PBE by a specifically designed finite element
method, and many others [32,33].

As one of the most popular PBE solvers, DelPhi has been continuously maintained and
developed for improved performance. Many new features were added in DelPhi in recent years [34].
This work reports a newly developed Newton-like method which was introduced into DelPhi recently.
This new method has been tested extensively, including some purposely created —erashing” cases
with strong nonlinearity. In particular, this method has been shown to be incredibly stable and is
capable of delivering reliable numerical results in all tested cases, making this newly developed
method a valuable add-on to DelPhi for solving problems with strong nonlinearity.

The rest of this work is organized as follows. The PBE and the finite difference methods are
presented in section 2. Benchmarks of selected examples are shown section 3 to numerically
compare the two methods implemented in DelPhi, followed by Conclusions and Acknowledgements
in sections 4 and 5, respectively.

2. Methods
2.1. The Poisson-Boltzmann equation (PBE)

The PBE [35] is an elliptic-type Partial Differential Equation (PDE) given by

V - (e(x)Vg(x)) — k(x)?sinh(¢p(x)) = —4mp(x), (1)

where ¢(x) is the electrostatic potential, €(x) is a spatial dielectric function, x(x) is a modified
Debye-Huckel parameter, and p(x) is the charge distribution function. Equation (1) is usually
referred to as the Nonlinear Poisson-Boltzmann Equation (NLPBE) due to the presence of the
hyperbolic sine function, sinh(¢(x)), in Eq (1). If the potential ¢(x) is known to be small, Eq (1)
can be linearized by an approximation, sinh(¢(x)) = ¢(x), yielding a simplified model
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V - (e()Vp(x)) — k(x)?Pp(x) = —4mp(x), )

commonly referred to as the Linearized Poisson-Boltzmann Equation (LPBE). It is known that exact
solutions to Egs (1) and (2) only exist for a few simplified cases [27]. In practice, they must be
solved numerically via certain numerical treatments for real bio-objects due to their irregular shapes.
The numerical approaches for handling the nonlinearity of the PBE can be classified into two
categories. In the most commonly used approach, the PBE is discretized by using finite difference or
finite element methods, resulting a nonlinear algebraic system. Then a nonlinear algebraic method,
such as nonlinear relaxation method [36,37], nonlinear conjugate gradient method [38] or inexact
Newton method [39], can be employed to solve the nonlinear system efficiently. A comprehensive
assessment of various algebra-based nonlinear PBE solvers can be found in [40]. A pseudo-time
approach has also been developed [41—43], in which a time-dependent PBE is introduced by adding
a pseudo-time derivative, and the PBE solution is recovered by a steady-state integration. The
pseudo-time approach is usually less efficient than the nonlinear algebraic approach, because a
long-time integration is needed for the steady state. But the pseudo-time approach could be more
stable, especially when an analytical treatment to the nonlinear term is applied [43]. The method
proposed in this work belongs to the first category. In the following subsections, implemented
numerical methods in the DelPhi program will be introduced.

Figure 1. A graph demonstration of the numerical methods implemented in the DelPhi
solver.

2.2. The successive over relaxation (SOR) method

DelPhi solves Eqs (1) and (2) in a cubic domain () containing the interested molecule.
Boundary conditions are imposed on the six faces of (1. Domain Q is discretized by a uniform mesh
size¢ h=Ax = Ay = Az in all x-, y-, and z- directions. Approximations to the exact solutions of
Egs (1) and (2) are to be found at all grids.
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Following the standard finite difference formulation, Eq (1) is discretized, resulting in [27]

hziﬁ=1 gp; — h2?=1 gy — K? sinh(¢0)h3 + 4mqy = 0, (3)

where ¢, is the unknown potential at a grid x; ;x, qo 1s the charge assigned to the same grid x; j x,
¢;, i =1..6 are unknown potentials at six closest adjacent grids, and ¢;,i = 1...6 are dielectric
coefficients at six adjacent half grids. See Figure 1 for a demonstration. Equation (3) can be rewritten
as an iteration updating formula

n+1
hYS el — h Yo, &8t — k? sinh(pf)h3 (p';n +4mwq, =0 (4)
0

with the superscript n = 0,1, ... indicating the number of iterations. Solving ¢§*! in terms of
others in Eq (4) yields [35]

inh(¢¢)
98" = (So el +750)/(Sho e + (e T20) )

to solve the NLPBE for the potential at grid x; ; . In a similar fashion, one can obtain the formula [44]
4
put = (ZLy el + 52) /By & + (ch)?) (6)

to solve the LPBE for the potential at x; ;. Provided a guessed value of @3 (usually called the

initial value), the current (approximated) potential ¢;* is evolved to the next (approximated)
potential ¢*t! by either Eq (5) or Eq (6) in the nth step of an iteration process for n = 1,2, ....
This process is terminated until a prescribed criterion is satisfied.

In DelPhi, potentials ¢t and ¢& in Eqs (5) and (6) are used in the SOR method

¢ = wpp™ + (1 - w)gf (7)

for improved efficiency or stability in the nth iteration as well. Here the relaxation parameter w is
selectedto be 0 < w < 2. When a value 0 < w < 1 is used, the iteration process converges slower
but more stably (under relaxation). When a value 1 < w <2 is used, the iteration process
converges in a faster pace but could be less stable (over relaxation). DelPhi uses w = 1 as the
default value, yielding a method commonly known as the Gauss-Seidel (GS) method. DelPhi users
can either manually set the value of w, or let the program automatically calculate the optimized
values of w, for either faster convergence rates or stronger stability.

Equation (5) provides a numerical formula to solve the NLPBE iteratively but its convergence
rate is not fast enough to solve problems in three dimensions [44]. DelPhi utilizes a special technique
to accelerate the convergent rate. To this end, Eq (1) is —hearized” and rewritten as

V - (e)VH()) — k(x)2(x) = —4mp(x) + k(@)? (sinh(p () — $()), (®)
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where the nonlinear term, k(x)? (sinh(qb(x)) — qb(x)), acts as an —excess charge” added to the

regular charge term on the right-hand side of Eq (8) [44]. When Eq (8) is discretized, a formula

4 (k(@)?(sinh($7)—-¢5))
3 = (Sh ey + Bl - HEDEEERERD) 5 e+ (ch)?) ©

is derived in place of Eq (5) for solving the NLPBE. In Eq (9), the excess charge term is multiplied
by a second relaxation (strength) parameter y which is initially small, y = 0.05. This parameter is
slowly increased as iteration moves forward until y = 1 is reached. Then —full” nonlinear iterations
start with y = 1 along the way.

In DelPhi, Eqgs (6) and (7) are coupled for solving the LPBE, and Eqs (7) and (9) are coupled for
solving the NLPBE. The iteration process is terminated, for instance, when |¢p3*! — ¢#| < TOL at
all grids for a prescribed tolerance TOL. These methods, together with additional computational
techniques, such as the —eheckerboard” ordering, stripping, and contiguous memory mapping’>, have
been proven to be able to effectively deliver accurate numerical solutions to the LPBE and NLPBE
for many three-dimensional problems.

However, it is known that the aforementioned -excess charge” treatment is merely a
computational technique which could lead to undesired divergences caused by potentials at grids in
water passing certain threshold, the grid spacing, and other factors [44]. One such —bizarre” example
in which the SOR method fails to converge is given in the next section. It calls for a new addition to
DelPhi’s capabilities, namely a Newton-like method, primarily focusing on solving the NLPBE for
problems with strong nonlinearity. This method is described in the next subsection.

2.3. A Newton-like (NWT) method
The NWT method was developed to improve the stability of the numerical procedure when

solving the NLPBE for problems with strong nonlinearity. To this end, we reconsider the left-hand
side of Eq (3) as a function of ¢, and write

6 6
F($) =h ) aibi—h ) ey — k2 sinh(dg)h® + 4mq. (10)
i=1 i=1

In order to find the root(s) of the equation F(¢,y) = 0 via the Newton’s algorithm, the derivate of
F(¢y) is calculated first

dF .
— = —hz g — h3Kk? cosh(¢y). (11)
do i=1

Then Eqs (10) and (11) are substituted in the Newton’s algorithm, yielding
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nt1 _ gn_ _F(@0)
o = P gE
ddg (o)
h¥e-1 89! —h¥i_; &5 — Kk sinh($pg)h® + 4mqy
B —h Y%, & — h3k? cosh(¢g)
%y eidF + 2290 1 (ch)2(¢} cosh(¢}) — sinh(d})
Yo, & + (kh)? cosh(¢pf) '

= ¢ (12)

Equation (12) can be treated as a new updating formula to evolve ¢& to ¢#*1. Moreover, one can
see that there is no difficulty to couple Eqs (7) and (12) and embrace all techniques already
implemented in DelPhi to solve the NPBE.

Following similar derivations, Eq (2) can be discretized as

REEy i — h Ly eubo — K2h3o + dmgy = O, (13)
Defining
6 6
G(po) =h ) e —h ) ey - k*h3p, + dmg, (14)
i=1 i=1

one can calculate G'(¢,) as

dG hi h3ic? (15)
— = g; — h3K?2.
ddo i=1 l

Substituting Eqs (14) and (15) in the Newton’s algorithm yields

n+l _ n _ G(d)g)
0 - d)O dG
n
dT% (¢0)
_ gn— hYf &l —hEl adt — kK*h3¢f + 4nqo 16)
0 —h Y5, & — h3K?
4
_ P + %
B 2?:1 &+ (Kh)z
for solving the LPBE.

Equation (16) is actually the same as Eq (6). That is, both SOR and NWT methods utilize the
same numerical formula to solve the LPBE. Thus, it is expected that these two methods are equally
accurate and efficient for solving the LPBE. An example is provided in the supplementary material to
numerically verify that implementations of these two methods in DelPhi are indeed equally accurate
and efficient. Therefore, we will concentrate on comparing their performance when different
formulas are actually used to solve the NLPBE in the remaining of this work.
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The novelty of the NWT method is two-fold. First, Eq (12) is derived by applying the Newton
algorithm on discretized equations obtained from the original PBE, while other Newton-type PBE
solvers in the literature, to our best knowledge, are obtained by applying the Newton’s algorithm
directly on the original PBE. Secondly, this NWT method is implemented in a way to inherit all
unique computational techniques, except the —excess charge”, already implemented in the DelPhi
solver. One can view this new NWT method as a DelPhi-specialized Newton-like method which is
not seen elsewhere.

2.4. Comparison

Three iteration formulas, Egs (5), (9) and (12), have been presented in this section for solving
the NLPBE. It will be interesting to compare them side by side and provide our understanding of
these iteration formulas. In order to simplify the discussions, we assume that a mesh size h is fixed
and h « 1. We focus on just one iteration step, the nth iteration, in which the potential ¢ at an
arbitrary grid is evolved to ¢#*! by one of these three formulas. Moreover, we assume all potentials
on the right-hand side of three equations all take on the same values in the nth iteration step. Noticing
that the three formulas become identical at grids inside the molecule/protein because the modified
Debye-Huckel parameter k(x) = 0 in this case. Therefore, performance differences can only be
observed at grids immersed in water. We thus limit our analysis to the solvent domain, where the
potential function is smooth and bounded because no point charges locate there. Thus, in the water, it
is reasonable to assume ¢;' = ¢f,i = 1,...,6 in these formulas for a small but fixed h. When being
stable, these three formulas will converge to the same solution as n goes to infinity. Such a solution
will be called the algebraic solution, which satisfies the finite difference discretization of the NLPBE,
ie., Eq (3).

We will investigate these three formulas in two aspects, i.e., compare their convergence rates
and analyze their stabilities when the potential is large. Equation (5) is considered first. When ¢{ is
small, Eq (5) is reduced to Eq (6) by approximating sinh(¢q) = ¢¢. In addition, by the assumption
of ¢"' =~ ¢p8,i =1,...,6, Eq (5) can be viewed as a linear function, ¢** ~ a¢? + b for some
constants a and b, where 0 < a < 1. Thus, ¢#*! converges in a linear rate with respect to ¢y.
When ¢{ is large but still on track, the right-hand side of Eq (5) has a much large denominator than
sinh(¢g)

b0

Nevertheless, when ¢¢ is large and away from the limiting value, stability has to be analyzed.
Assuming ¢;' = ¢¢ and neglecting constants, the dominate term of Eq (5) can be expressed as
C(py)?/sinh(¢pf) for some constant C. Because the denominator is much larger than the
numerator, this iteration will not blow up and thus remains stable. In total, we view the series of
potentials {¢(r)l+1}n=0,1,2,... calculated by Eq (5) are stably converging to the algebraic solution of Eq (3).
However, it is known that {¢§*'},-012. converges not quickly enough for solving
three-dimensional problems [44].

The SOR method utilizing Eq (9) aims at making the iteration process converge in a faster pace.
To see this, we rewrite Eq (9) as

that of Eq (6) because > 1. This drives Eq (6) to converge to the NLPBE potential.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259-6277.
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6 2p e ny _ 4n 6
. <z£i¢?+47;qo_)((rc(x) (Slnl;l(ﬁbo) ¢0))> /(Zgi . (Kh)2>

i=1 i=1 (17)
4r
_ ZRaadl + T x(eG)(sinh(9F) — 30/
T X E + (h)? PR CO

where the first term on the right-hand side is the same as the right-hand side of Eq (6), and the
second term can be viewed as a —eorrection” added to the first term for improved convergence rate.
When ¢ is small, sinh(¢}) ~ ¢¥ so that the correction term does not contribute much to ¢p3*1.
In this case Eq (9) converges in a similar rate as that of Eqs (5) and (6). When ¢¢ is large,
sinh(¢pg) — ¢pg > 1 and (sinh(¢g) — ¢pg)/h is even larger provided h < 1 so that the
correction term becomes a significant portion in ¢! and drives ¢3! in an accelerated pace
towards the algebraic solution of the discretized NLPBE. However, the correction term could also
introduce additional issues. When ¢§ > 1, the value of (sinh(¢}) — ¢¥)/h could drive ¢pf*?
stride to be overshot the solution. Assuming ¢]' = ¢¢ and neglecting constants, the dominate term
of Eq (6) takes a form of a sinh(¢g) — beg for some constants a and b. Consequently, the
potential could grow exponentially, and the whole iteration process quickly diverges. DelPhi utilizes
a couple of relaxations parameters, w in Eq (7) and y in Eq (9), in order to pull ¢3*! back to the
range of the solution in the overshot situation. These relaxation techniques work in most situations,
but there is no guarantee that they are always effective. For instance, one —erashing” example is
demonstrated in the next section that the SOR method faces severe difficulties to converge.

Equation (9) has been proven to cope with most cases in practice and it has other advantages over
Eq (5). First of all, it allows the same computational and programming techniques flawlessly shared
between solving the LPBE and NLPBE. Secondly, the denominator on the right-hand side of Eq (9) is
unchanged in all iterations so that it can be calculated once, saved and then reused in all iterations. It is
very computationally economical. Third, Eq (9) can collaborate with other advanced techniques in
DelPhi, resulting in one of the best PBE solvers in the world. Overall, we believe the SOR method
implemented in DelPhi is an effective method to solve the NLPBE for three-dimensional problems.

The newly developed NWT method utilizes Eq (12) in order to maintain stability when solving
the NLPBE for problems with strong nonlinearity, while it is still able to converge in a rate faster than
the method using Eq (5). To see this, we rewrite Eq (12) as

.y eidF + 2290 1 (eh)2(¢3 cosh(¢y) — sinh(¢}))

n+1 —

0 B ¢ & + (kh)? cosh(¢d)
n 4
_ ERaEdf+TES (ch)(F cosh(¢}) — sinh(¢])) (8)
X8, & + (kh)? cosh(¢f) ©-1 & + (kh)? cosh(¢g)
o, eip + 204 (kh)*(¢} — tanh(p}))

Yo & + (kh)? cosh(py)  Xo_, & /cosh(epd) + (kh)?

where the first term on the right-hand side is similar to that of Eq (17) with one additional cosh(¢g) in
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the denominator, and the second term, which is still called the correction term, is new in the NWT
method. When ¢§ is small, the first term is practically the same as that of Eq (17) because cosh(¢g) =
1, and the second term vanishes because tanh(¢g) = ¢§. In this case Eq (12) converges in a similar
rate as that of Egs (5), (6) and (9). When ¢ is large but still on track, [sinh(¢g) | = cosh(¢f) >
|| > 1 so that the first term on the right-hand side of Eq (18) is smaller than the right-hand
side of Eq (5). Together with the second term, this will drive the potential convergent to the algebraic
solution of the discretized NLPBE in a faster pace than that of Eq (5). When ¢g is large and far apart
from the algebraic solution, the dominate term of Eq (12) behaves like a¢§ + btanh(¢g) +
cpy/ cosh(¢pg) for some constants a, b, and ¢ by assuming ¢;* = ¢§ and neglecting constants. This
iteration only grows linearly as ¢¢ increases. This is essentially why the NWT method is more stable
than the SOR method.

In summary, we believe that Eq (5) could provide a stable method to solve the NLPBE. However, its
relatively low convergence rate makes it unsuitable to solve the NLPBE for three-dimensional problems.
The SOR method improves the convergence rate by an —exponential” correction term. This correction
term allows the iterations progress in a fast pace, but it could lead to unexpected divergence for problems
with high nonlinearity. The NWT method substitutes the correction term with a moderate one to balance
the needs for both efficiency and stability, and we expect it to be a useful alternative of the SOR method
in DelPhi to solve problems with high nonlinearity.

3. Results

Benchmarks are presented to compare the SOR and NWT methods in this section. Both methods
have been implemented in DelPhi using the same computational and programing techniques. A wide
selection of examples was tested, and three examples are chosen to demonstrate due to the limited length
of this work.

Example 1. In the first example, we show that both methods are capable of producing close
numerical approximations to the algebraic solution of the discretized NLPBE at a given mesh size h. To
this end, a basic example of barnase-barstar complex (subfigure in Figure 2b) is borrowed from DelPhi’s
online example repository http://compbio.clemson.edu/delphi and the NLPBE is solved for this complex.
Two potential-dependent energies, the total grid energy G, and the corrected reaction field (RXN)
energy G,, are used to compare the accuracy of the two methods.

The first series of benchmarks is conducted to show that both methods produce closer
approximations as the mesh size h diminishes. In DelPhi the mesh size h is controlled by a parameter
scale, defined to be the number of grids per angstrom. The mesh size h decreases as the scale increases.
In this series of benchmarks, the tolerance is fixed, TOL = 1.0E—4, and the scale is varied from
scale = 0.5 (29 grids per direction) to scale = 5.0 (293 grids per direction). Energies obtained by the SOR
and NWT methods are denoted by G;°%, GFOF, GY"T and GN"T, respectively. Results are shown in
Figure 2.

Obtained energies are shown in Figure 2a,b first. In both subfigures, it is noticed that energies
obtained by the SOR method are always slightly larger than their comparative partners obtained by the
NWT method at all tested scales. It shall be pointed out that it may not be the case for other molecules
and proteins. It could just be caused by, for instance, the parameter values used in the tests, the initial
values used for the iterations, and other factors. Nevertheless, close energies obtained by the two methods
at all tested scales evidently demonstrate that they are converging to the exact energies. More detailed
comparisons were performed and reported in Figure 2¢,d. In these subfigures, the differences, defined as
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G;°% — G)™T and so on, and the relative differences, defined as (G;°% — G)"™™)/G5°R x 100% and so on,
are shown. The differences, except those at a low scale = 1.0, are seen to approach to a value as small as

< 5 KT as the scale increases (Figure 2c), while the relative differences, starting with an already low
percentage ~ 1.7%, consistently converge to zero as the scale increases (Figure 2d).
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Figure 2. Benchmarks obtained by the SOR and NWT methods with a fixed tolerance

TOL = 1.0E—4 and various scales in Example 1. (a) Grid energies. (b) Reaction field
energies. (c¢) Differences. (d) Relative differences. (¢) CPU time.
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In the light that both methods acquire close approximations at all tested scales, and the
approximations are getting closer as the scale increases, we conclude that both methods are obtaining
close approximations to the same algebraic solutions of the NLPBE at all tested mesh sizes in this

example.
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Figure 3. Benchmarks obtained by the SOR and NWT methods with a fixed scale = 2.0
and various tolerances in Example 1. (a) Grid energies. (b) Reaction field energies. (¢)
Differences. (d) Relative differences.

Corresponding execution time of the DelPhi program is demonstrated in Figure 2e to compare
the efficiency of these two methods. One can see that the SOR method costs less time, and therefore
is more efficient, at all tested scales. It is primarily due to two reasons. First, the SOR method starts
off the nonlinear iterations with better initial values achieved by solving the LPBE for a few dozens
of iterations. This numerical treatment significantly reduces the numbers of more costly nonlinear
iterations. On the other hand, the NWT method merely uses the default initial values (zeros on all
grids) without additional treatments. Secondly, by reusing the saved denominator, each iteration of
the SOR method is computationally cheaper than that of the NWT method. As a consequence, the
SOR method is found to be more computationally efficient than the NWT method for solving the
NLPBE in this example, and it is believed to be the case for many other problems as well.

Mathematical Biosciences and Engineering

Volume 17, Issue 6, 6259-6277.



6270

It has been shown that both methods are capable of achieving close approximations at all scales.
We are also interested to see that how fast, in terms of the number of iterations, these two methods
can achieve their best approximations at a given scale. To this end, the second series of benchmarks
is performed by fixing the scale = 3.0 (175 grids per direction) and varying the tolerance from
1.0E—1 to 1.0E—7. It is naturally expected that both methods will take more iterations, and therefore
produce more accurate energies, when smaller tolerance is used. The results shown in Figure 3 match
our expectation. Semi-log plots (the horizontal axis is the logarithm of the tolerance) are used in
Figure 3 that the scale decreases from the right to left.

Energies, G, and G,, obtained by the two methods are presented in Figure 3a,b. One can see
that the SOR method shows its stunning efficiency in this example. The obtained curves for the SOR
method (pink curves) are almost flat in both subfigures, implying that the SOR method achieves its
best approximations without requiring many iterations. In contrast, the NWT method (blue curves)
behaves differently: it takes less iterations and achieves coarser approximations when the tolerance is
large, and it takes more iterations and obtains finer approximations as the tolerance is smaller. The
observed different convergent trends of these two methods can be explained using Eqs (17) and (18).
The SOR method tends to add a -big” correction in each iteration to pull ¢§*! into the range of its
best approximation as quickly as possible, so that it does not take too many iterations to attain its best
approximation despite which tolerance is actually used. On the contrary, the NWT method adds a
moderate correction in each iteration so that it takes more iterations to attain its best, and the
approximations are observed to gradually approach to the best as the tolerance decreases. Another
important observation on Figure 3a,b is that GN™7 is larger than G °F at tolerance = 1.0E—1 in
Figure 3b. Thus, it is not true that the NWT method always obtains smaller energies.

Differences and relative differences are presented in Figure 3c,d. In both subfigures, all
differences and relative differences are found to converge as the tolerance decreases. At the smallest
tolerance = 1.0E—7, the differences of G; and G, are found to be as close as < 5 KT in Figure 3c,
and the relative differences are found to be as close as < 0.005% in Figure 3d. CPU times of this
series of benchmarks are omitted because they are consistent to what shown in Figure 2e—the SOR
method 1s more time consuming than the SOR method in all tested cases.

Example 2. Results obtained in the first example have provided some insights on the
performance of the two methods. We continue to study these two methods for a blindly selected
group of proteins. This group of proteins is composed of 15 dimers, and each of them consists of two
monomers, namely monomer A and B. More energies, in addition to G, and G, returned by DelPhi
will be reported in this example. In particular, they will be used to calculate the binding energy,
denoted by AG(bind), in this example. Two approaches were suggested in the work [34] to calculate
the binding energy. The first approach (approach 1) calculates the electrostatic component of the
binding energy from the total nonlinear grid energies of the complex, monomer A and B by

AG, (bind) = G4(complex) — G4(A) — G4(B), (19)
and the second approach (approach 2) calculates the binding energy from partitioned energies by

AG,(bind) = AG, + AG, + AG, + AG; + AG,. (20)

where G, and G, again denote the total grid energy and the corrected reaction field energy,
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respectively, G, denotes the g* 2 term in solution, G, denotes the osmotic pressure term, G;

denotes the direct ionic contribution inside the box, G, denotes the Coulombic energy, and AGg
with the subscript m = 1,p,0,i,c denotes corresponding partitioned energy similar to that defined
in Eq (19). Even though AG;(bind) and AG,(bind) are both used to approximate the exact
binding energy AG(bind), it has been pointed out in the work [34] that they are actually slightly
different due to the fact that approach 1 does not fully cancel —artificial grid energy” arising from real
charges partitioning onto the grids. Thus, AG,(bind) is always slightly larger than AG,(bind).
Approach 2 via the energy partition technique does not have such issue so that it is recommended
over approach 1.

We first show that binding energies calculated via those returned by DelPhi in solving the
NLPBE via the SOR and NWT methods are close. To this end, binding energies calculated by both
approaches are demonstrated for one dimer, /fle. The NLPBE is solved by the SOR and NWT
methods with a fixed tolerance = 1.0E—4 and various scales. Calculated binding energies are denoted
by AG$OR(bind) , AGS°R(bind) , AGYWT(bind) , and AGYWT(bind) , respectively, and
demonstrated in Figure 4. A couple of observations can be made on Figure 4. First of all, the two
binding energies have the same trend as those obtained by the SOR method that AGNWT(bind)
(solid green curve) is always slightly larger than AGYWT(bind) (dashed brown curve) at all tested
scales. It matches the statements in the work [34]. Secondly, one can see that AG3°R(bind) and
AGYWT(bind) (two solid curves) converge to AG,(bind), while AG3°R(bind) and AGYWT(bind)
(two dashed curves) converge to AG,(bind), as the scale increases. It is also interesting to point out
another important observation, which is not shown in Figure 4. In the benchmarks of dimer Ifle, we
observed that the SOR method is faster than the NWT method in most tested cases. However, there
are a few cases in which the NWT method uses the default w = 1.0 and converges without any
issue, while the SOR method needs a smaller relaxation parameter, w = 0.5, in order to converge.
When it occurs, the SOR method takes significantly more iterations and becomes slower than the
NWT method.

120

115

110, =~ AG$OF (bind)

1ol \\ o AGEOR(bind)
\

3 | AGYWT (bind)
> 100F
2 \ AGY™T (bind)
S 95- 3
(=]
£ oof R,
f=
£

85

80

75

70
1

Figure 4. Binding energies obtained by solving the NLPBE via the SOR and NWT
methods with a fixed tolerance TOL = 1.0E—4 and various scales for dimer Ifle in
Example 2.
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The next series of benchmarks was performed to calculate the binding energies at a fixed
scale = 2.0 (the most commonly used scale in practice) for all 15 dimers. Results are presented in
Figure 5
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Figure S. Binding energies and partitioned energies obtained on 15 dimes in Example 2.
(a) Binding energies obtained by the SOR method (left panel) and the NWT method
(right panel). (b) Percentages of partitioned energies in the binding energy AGS°R(bind).
(c) Percentages of partitioned energies in the binding energy AGYWT(bind). Partitioned
energies with large magnitudes are shown on the left panel and the remaining energies
are shown on the right panel in Figure 5b,c.

In Figure 5a, the SOR-generated binding energies (AG3°R(bind) and AG3°R(bind)) are
demonstrated on the left panel, and the NWT-generated binding energies (AGYWT(bind) and
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AGYWT (bind)) are demonstrated on the right panel. By comparing each blue bar to its paired orange
bar on both panels, one can see that the binding energies obtained by approach 1 are always larger
than those obtained by approach 2 for all 15 proteins. It is the case for both SOR and NWT methods.
Next, by comparing bars in the same color for each dimer on the left and right panels, one can see
visible differences on the SOR- and NWT- generated binding energies. However, given the
experiences achieved for dimer Ifle, it is reasonable to expect that these differences are going to
diminish if a larger scale is used.

We are interested in seeing how much each individual partitioned energy contributes in the
calculated binding energies. Taking AG,(bind) calculated by Eq (20) in approach 2 as an example,
the percentages of partitioned energies in the binding energy, defined as AGy/AG,(bind) X 100%,
are shown in Figure5b for the SOR method, and Figure 5c¢ for the NWT method, respectively.
Percentages of two partitioned energies, AG, and AG., are found to be significantly larger than
those of other partitioned energies. Therefore, they are presented on the left panel and others are
presented on the right panel in both Figure 5b,c. In these subfigures, one can see that AG, and AG,
are always in opposite signs for all 15 dimers, and their sum, AG, + AG,, contributes more than 90%

of AG,(bind), while the sum of the remaining three, AG, + AG, + AG;, contributes less than 10%

of AG,(bind), for all 15 dimers. Moreover, by comparing corresponding energies, it is easy to see
that the two methods, SOR and NWT, not only produce similar binding energy AG,(bind) as a sum
of 5 partitioned energies, but also produce similar individual partitioned energy. These partitioned
energies, except the partitioned Coulombic energy AG,., all depend on the potentials calculated via
the SOR and NWT methods. It suggests that the two methods indeed produce close potentials for all
15 dimers.

Above experiments at scale = 2.0 were repeated at a doubled scale, scale = 4.0, and the
differences shown in Figure 5 are found to be consistently smaller for all 15 dimers. It evidently
shows that one can confidently relies on the energies produced by DelPhi using either method when
the iteration process converges at the end. Moreover, we have observed more cases in which the SOR
method requires smaller relaxation parameter to converge, while the NWT method has no such issue
at all, in the cases tested at scale = 4.0. It inspires us to perform more tests to examine the stability of
the two methods.

Example 3. It has been observed in Example 2 that the SOR method may require smaller
relaxation parameter in order to successfully converge in some cases, while the NWT method never
has such issue. Out of abundance of caution, a —erashing” example is purposely created and
examined to numerically verify that the NWT method is still able to converge even in some rare and
extreme scenarios before we claim that the NWT is a strongly stable method for solving the NLPBE.

This example was tested with a fixed tolerance, TOL = 1.0E—4, and numerous scales ranging
from 1.0 to 5.0. This example is believed to be —bizarre” that the iteration process of the SOR method
can never be terminated by meeting the desired tolerance at all tested scales. The iteration process is
hindered only after a few iterations when the differences of calculated potentials in two successive
iterations are large at some grids, causing the SOR method relentlessly seek for smaller relaxation
parameter w to reduce these differences before moving forward to the next iteration. This effort
repeats many times in each of the first several iterations and prevents the iterations progress properly
towards the end. As a consequence, the SOR method fails to produce any energies in this example
after waiting for a long time.
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It is a completely different story for the NWT method. The NWT method merely uses the
default w = 1.0 and converges successfully in all tested cases. Energies produced by DelPhi
running the NWT method are presented by a semi-log plot (the vertical axis is the logarithms of the
absolute values of the energies) in Figure 6. One can see that all energies behave normally without
any unanticipated outcomes.
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Figure 6. DelPhi returned energies obtained by solving the NLPBE via the NWT method
with a fixed tolerance = 1.0E—4 in Example 3.

Additional examples beside Example 3 have been tested as well and we have not seen one case
that the NWT method fails to converge. The experiences we earned make us confidently claim that
the newly developed NWT method is a reliable alternative to solve the NLPBE for problems with
high nonlinearity. Meanwhile, bearing in mind that the SOR method is still more efficient in many
cases, the SOR method is still recommended to solve the LPBE/NLPBE when no divergence issue
takes place. In the cases that the SOR method has troubles to converge, one can immediately observe
in DelPhi’s outputs that the iteration stops progressing forward, the relaxation parameter becomes
smaller, and the calculated tolerances get larger. It will be enough to tell that the SOR method is
having troubles to converge, and it is advised to stop the program and switch to the NWT method.

4. Discussions and conclusions
In this work, a newly developed Newton-like method is proposed. It has been implemented in

the DelPhi program to solve the PBE for electrostatic potentials. It has been demonstrated that the
NWT method is relatively slower, equally accurate, and more stable compared to the SOR method

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6259-6277.



6275

for solving the NLPBE. The merits of the new NWT method make it a valuable add-on to the DelPhi
program. The NWT method is recommended to the computational molecular society to solve the
NLPBE for problems with strong nonlinearity when other solvers have trouble to converge and
deliver reliable solutions. Developments to improve the efficiency of the NWT method will be
carried out and reported in the future.
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