
MBE, 17(6): 6259–6277. 
DOI: 10.3934/mbe.2020331 
Received: 29 June 2020  
Accepted: 06 September 2020  
Published: 21 September 2020 

http://www.aimspress.com/journal/MBE 
 

Research article 

A Newton-like iterative method implemented in the DelPhi for solving 

the nonlinear Poisson-Boltzmann equation 

Chuan Li1,*, Mark McGowan2, Emil Alexov3 and Shan Zhao2 

1 Department of Mathematics, West Chester University of Pennsylvania, West Chester, 
Pennsylvania 19383, USA 

2 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA 
3 Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, 

USA 

* Correspondence: Email: cli@wcupa.edu; Tel: +16104361081; Fax: +16107380578. 

Abstract: DelPhi is a popular scientific program which numerically solves the Poisson-Boltzmann 
equation (PBE) for electrostatic potentials and energies of biomolecules immersed in water via finite 
difference method. It is well known for its accuracy, reliability, flexibility, and efficiency. In this 
work, a new edition of DelPhi that uses a novel Newton-like method to solve the nonlinear PBE, in 
addition to the already implemented Successive Over Relaxation (SOR) algorithm, is introduced. 
Our tests on various examples have shown that this new method is superior to the SOR method in 
terms of stability when solving the nonlinear PBE, being able to converge even for problems 
involving very strong nonlinearity. 
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1. Introduction  

Electrostatic interaction is a major factor which is commonly taken into account when studying 
numerous biological phenomena [1,2], such as macromolecular binding and recognition [3−6], 
pH-dependent folding and binding [7−11], nonspecific ion binding [12−14], pKa calculations [15−17], 
and salt-dependent effects [18,19], etc.. Existing models of calculating electrostatic potentials and 
corresponding energies developed in the past couple of decades can be roughly classified into two 
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categories. Explicit solvent models treat mobile water and ions explicitly and thus capture all 
molecular details but are computationally costly in terms of CPU time and memory usage. Implicit 
solvent models, such as the Generalized Born [20] and Poisson-Boltzmann (PB) models [21−26], 
treat surrounding water as a continuum media, and can be solved with relatively low computational 
costs. Because of that, implicit solvent models are usually preferred when modeling electrostatics of 
macromolecules at genome-scale applications. 

Among all existing implicit solvent models, the Poisson-Boltzmann equation (PBE), is one of 
the most popular models utilized by many researchers. A lot of efforts have been devoted to 
developing scientific software to solve the PBE. For instance, DelPhi [27,28] utilizes the finite 
difference and Successive Over Relaxation (SOR) methods to iteratively solve the PBE until a 
prescribed tolerance is satisfied, PBSA [29] adopts the Finite Volume/Periodic Conjugate Gradient 
(FV/PCG) and the Immersed Interface/Fast Fourier Transform (IIM/FFT) methods to solve the PBE, 
MIBPB [30] develops a unique matched interface and boundary (MIB) method to explicitly enforce 
the jump conditions on the interfaces (molecular surfaces) in the finite difference formulations, 
resulting in a method capable of capturing sharp jumps of the potentials at the molecular surfaces, 
APBS [31] is an adaptive PBE solver which solves the PBE by a specifically designed finite element 
method, and many others [32,33].  

As one of the most popular PBE solvers, DelPhi has been continuously maintained and 
developed for improved performance. Many new features were added in DelPhi in recent years [34]. 
This work reports a newly developed Newton-like method which was introduced into DelPhi recently. 
This new method has been tested extensively, including some purposely created ―crashing‖ cases 
with strong nonlinearity. In particular, this method has been shown to be incredibly stable and is 
capable of delivering reliable numerical results in all tested cases, making this newly developed 
method a valuable add-on to DelPhi for solving problems with strong nonlinearity. 

The rest of this work is organized as follows. The PBE and the finite difference methods are 
presented in section 2. Benchmarks of selected examples are shown section 3 to numerically 
compare the two methods implemented in DelPhi, followed by Conclusions and Acknowledgements 
in sections 4 and 5, respectively. 

2. Methods 

2.1. The Poisson-Boltzmann equation (PBE) 

The PBE [35] is an elliptic-type Partial Differential Equation (PDE) given by 

∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2 sinh(𝜙(𝑥)) =  −4𝜋𝜌(𝑥),                                                       (1) 

where 𝜙(𝑥) is the electrostatic potential, 𝜀(𝑥) is a spatial dielectric function, 𝜅(𝑥) is a modified 
Debye-Huckel parameter, and 𝜌(𝑥) is the charge distribution function. Equation (1) is usually 
referred to as the Nonlinear Poisson-Boltzmann Equation (NLPBE) due to the presence of the 
hyperbolic sine function, sinh(𝜙(𝑥)), in Eq (1). If the potential 𝜙(𝑥) is known to be small, Eq (1) 
can be linearized by an approximation, sinh(𝜙(𝑥)) ≈ 𝜙(𝑥), yielding a simplified model 
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∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2𝜙(𝑥) =  −4𝜋𝜌(𝑥),                                                       (2) 

commonly referred to as the Linearized Poisson-Boltzmann Equation (LPBE). It is known that exact 
solutions to Eqs (1) and (2) only exist for a few simplified cases [27]. In practice, they must be 
solved numerically via certain numerical treatments for real bio-objects due to their irregular shapes. 
The numerical approaches for handling the nonlinearity of the PBE can be classified into two 
categories. In the most commonly used approach, the PBE is discretized by using finite difference or 
finite element methods, resulting a nonlinear algebraic system. Then a nonlinear algebraic method, 
such as nonlinear relaxation method [36,37], nonlinear conjugate gradient method [38] or inexact 
Newton method [39], can be employed to solve the nonlinear system efficiently. A comprehensive 
assessment of various algebra-based nonlinear PBE solvers can be found in [40]. A pseudo-time 
approach has also been developed [41−43], in which a time-dependent PBE is introduced by adding 
a pseudo-time derivative, and the PBE solution is recovered by a steady-state integration. The 
pseudo-time approach is usually less efficient than the nonlinear algebraic approach, because a 
long-time integration is needed for the steady state. But the pseudo-time approach could be more 
stable, especially when an analytical treatment to the nonlinear term is applied [43]. The method 
proposed in this work belongs to the first category. In the following subsections, implemented 
numerical methods in the DelPhi program will be introduced. 

 

Figure 1. A graph demonstration of the numerical methods implemented in the DelPhi 
solver. 

2.2. The successive over relaxation (SOR) method 

DelPhi solves Eqs (1) and (2) in a cubic domain Ω containing the interested molecule. 
Boundary conditions are imposed on the six faces of Ω. Domain Ω is discretized by a uniform mesh 
size ℎ = Δ𝑥 = Δ𝑦 = Δ𝑧 in all 𝑥-, 𝑦-, and 𝑧- directions. Approximations to the exact solutions of 
Eqs (1) and (2) are to be found at all grids. 
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Following the standard finite difference formulation, Eq (1) is discretized, resulting in [27]  

ℎ ∑ 𝜀𝑖𝜙𝑖
6
𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0

6
𝑖=1 − 𝜅2 sinh(𝜙0)ℎ3 + 4𝜋𝑞0 = 0,                                                       (3) 

where 𝜙0 is the unknown potential at a grid 𝑥𝑖,𝑗,𝑘, 𝑞0 is the charge assigned to the same grid 𝑥𝑖,𝑗,𝑘, 
𝜙𝑖 , 𝑖 = 1 … 6 are unknown potentials at six closest adjacent grids, and 𝜀𝑖, 𝑖 = 1 … 6 are dielectric 
coefficients at six adjacent half grids. See Figure 1 for a demonstration. Equation (3) can be rewritten 
as an iteration updating formula  

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛+16

𝑖=1 − 𝜅2 sinh(𝜙0
𝑛)ℎ3 𝜙0

𝑛+1

𝜙0
𝑛 + 4𝜋𝑞0 = 0                                                       (4) 

with the superscript 𝑛 = 0,1, … indicating the number of iterations. Solving 𝜙0
𝑛+1 in terms of 

others in Eq (4) yields [35] 

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 sinh(𝜙0

𝑛)

𝜙0
𝑛 )⁄                                                        (5) 

to solve the NLPBE for the potential at grid 𝑥𝑖,𝑗,𝑘. In a similar fashion, one can obtain the formula [44] 

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2)⁄                                                        (6) 

to solve the LPBE for the potential at 𝑥𝑖,𝑗,𝑘. Provided a guessed value of 𝜙0
0 (usually called the 

initial value), the current (approximated) potential 𝜙𝑖
𝑛  is evolved to the next (approximated) 

potential 𝜙0
𝑛+1 by either Eq (5) or Eq (6) in the 𝑛th step of an iteration process for 𝑛 = 1,2, …. 

This process is terminated until a prescribed criterion is satisfied. 
In DelPhi, potentials 𝜙0

𝑛+1 and 𝜙0
𝑛 in Eqs (5) and (6) are used in the SOR method 

𝜙0
𝑛+1 = 𝜔𝜙0

𝑛+1 + (1 − 𝜔)𝜙0
𝑛                                                       (7) 

for improved efficiency or stability in the nth iteration as well. Here the relaxation parameter 𝜔 is 
selected to be 0 < 𝜔 < 2. When a value 0 < 𝜔 < 1 is used, the iteration process converges slower 
but more stably (under relaxation). When a value 1 < 𝜔 < 2  is used, the iteration process 
converges in a faster pace but could be less stable (over relaxation). DelPhi uses 𝜔 = 1 as the 
default value, yielding a method commonly known as the Gauss-Seidel (GS) method. DelPhi users 
can either manually set the value of 𝜔, or let the program automatically calculate the optimized 
values of 𝜔, for either faster convergence rates or stronger stability.  

Equation (5) provides a numerical formula to solve the NLPBE iteratively but its convergence 
rate is not fast enough to solve problems in three dimensions [44]. DelPhi utilizes a special technique 
to accelerate the convergent rate. To this end, Eq (1) is ―linearized‖ and rewritten as 

∇ ∙ (𝜀(𝑥)∇𝜙(𝑥)) − 𝜅(𝑥)2𝜙(𝑥) =  −4𝜋𝜌(𝑥) + 𝜅(𝑥)2 (sinh(𝜙(𝑥)) − 𝜙(𝑥)),                                                       (8) 
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where the nonlinear term, 𝜅(𝑥)2 (sinh(𝜙(𝑥)) − 𝜙(𝑥)), acts as an ―excess charge‖ added to the 

regular charge term on the right-hand side of Eq (8) [44]. When Eq (8) is discretized, a formula  

𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
−

𝜒(𝜅(𝒙)2(sinh(𝜙0
𝑛)−𝜙0

𝑛))

ℎ
) (∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2)⁄                                                        (9) 

is derived in place of Eq (5) for solving the NLPBE. In Eq (9), the excess charge term is multiplied 
by a second relaxation (strength) parameter 𝜒 which is initially small, 𝜒 = 0.05. This parameter is 
slowly increased as iteration moves forward until 𝜒 = 1 is reached. Then ―full‖ nonlinear iterations 
start with 𝜒 = 1 along the way.  

In DelPhi, Eqs (6) and (7) are coupled for solving the LPBE, and Eqs (7) and (9) are coupled for 
solving the NLPBE. The iteration process is terminated, for instance, when |𝜙0

𝑛+1 − 𝜙0
𝑛| < TOL at 

all grids for a prescribed tolerance TOL. These methods, together with additional computational 
techniques, such as the ―checkerboard‖ ordering, stripping, and contiguous memory mapping35, have 
been proven to be able to effectively deliver accurate numerical solutions to the LPBE and NLPBE 
for many three-dimensional problems. 

However, it is known that the aforementioned ―excess charge‖ treatment is merely a 
computational technique which could lead to undesired divergences caused by potentials at grids in 
water passing certain threshold, the grid spacing, and other factors [44]. One such ―bizarre‖ example 
in which the SOR method fails to converge is given in the next section. It calls for a new addition to 
DelPhi’s capabilities, namely a Newton-like method, primarily focusing on solving the NLPBE for 
problems with strong nonlinearity. This method is described in the next subsection. 

2.3. A Newton-like (NWT) method 

The NWT method was developed to improve the stability of the numerical procedure when 
solving the NLPBE for problems with strong nonlinearity. To this end, we reconsider the left-hand 
side of Eq (3) as a function of 𝜙0 and write 

𝐹(𝜙0) = ℎ ∑ 𝜀𝑖𝜙𝑖

6

𝑖=1

− ℎ ∑ 𝜀𝑖𝜙0

6

𝑖=1

− 𝜅2 sinh(𝜙0)ℎ3 + 4𝜋𝑞0. (10) 

In order to find the root(s) of the equation 𝐹(𝜙0) = 0 via the Newton’s algorithm, the derivate of 
𝐹(𝜙0) is calculated first  

𝑑𝐹

𝑑𝜙0
= −ℎ ∑ 𝜀𝑖

6

𝑖=1

− ℎ3𝜅2 cosh(𝜙0). (11) 

Then Eqs (10) and (11) are substituted in the Newton’s algorithm, yielding 
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𝜙0
𝑛+1 = 𝜙0

𝑛 −
𝐹(𝜙0

𝑛)

𝑑𝐹
𝑑𝜙0

(𝜙0
𝑛)

                                                                              

= 𝜙0
𝑛 −

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛6

𝑖=1 − 𝜅2 sinh(𝜙0
𝑛)ℎ3 + 4𝜋𝑞0

−ℎ ∑ 𝜀𝑖
6
𝑖=1 − ℎ3𝜅2 cosh(𝜙0

𝑛)

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
+ (𝜅ℎ)2(𝜙0

𝑛 cosh(𝜙0
𝑛) − sinh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
.    

 (12) 

Equation (12) can be treated as a new updating formula to evolve 𝜙0
𝑛 to 𝜙0

𝑛+1. Moreover, one can 
see that there is no difficulty to couple Eqs (7) and (12) and embrace all techniques already 
implemented in DelPhi to solve the NPBE.  

Following similar derivations, Eq (2) can be discretized as 

ℎ ∑ 𝜀𝑖𝜙𝑖
6
𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0

6
𝑖=1 − 𝜅2ℎ3𝜙0 + 4𝜋𝑞0 = 0.                                                       (13) 

Defining  

𝐺(𝜙0) = ℎ ∑ 𝜀𝑖𝜙𝑖

6

𝑖=1

− ℎ ∑ 𝜀𝑖𝜙0

6

𝑖=1

− 𝜅2ℎ3𝜙0 + 4𝜋𝑞0, (14) 

one can calculate 𝐺′(𝜙0) as  

𝑑𝐺

𝑑𝜙0
= −ℎ ∑ 𝜀𝑖

6

𝑖=1

− ℎ3𝜅2. (15) 

Substituting Eqs (14) and (15) in the Newton’s algorithm yields 

𝜙0
𝑛+1 = 𝜙0

𝑛 −
𝐺(𝜙0

𝑛)

𝑑𝐺
𝑑𝜙0

(𝜙0
𝑛)

                                                                  

= 𝜙0
𝑛 −

ℎ ∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 − ℎ ∑ 𝜀𝑖𝜙0
𝑛6

𝑖=1 − 𝜅2ℎ3𝜙0
𝑛 + 4𝜋𝑞0

−ℎ ∑ 𝜀𝑖
6
𝑖=1 − ℎ3𝜅2

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2

                                                           

 (16) 

for solving the LPBE.  
Equation (16) is actually the same as Eq (6). That is, both SOR and NWT methods utilize the 

same numerical formula to solve the LPBE. Thus, it is expected that these two methods are equally 
accurate and efficient for solving the LPBE. An example is provided in the supplementary material to 
numerically verify that implementations of these two methods in DelPhi are indeed equally accurate 
and efficient. Therefore, we will concentrate on comparing their performance when different 
formulas are actually used to solve the NLPBE in the remaining of this work. 
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The novelty of the NWT method is two-fold. First, Eq (12) is derived by applying the Newton 
algorithm on discretized equations obtained from the original PBE, while other Newton-type PBE 
solvers in the literature, to our best knowledge, are obtained by applying the Newton’s algorithm 
directly on the original PBE. Secondly, this NWT method is implemented in a way to inherit all 
unique computational techniques, except the ―excess charge‖, already implemented in the DelPhi 
solver. One can view this new NWT method as a DelPhi-specialized Newton-like method which is 
not seen elsewhere.  

2.4. Comparison 

Three iteration formulas, Eqs (5), (9) and (12), have been presented in this section for solving 
the NLPBE. It will be interesting to compare them side by side and provide our understanding of 
these iteration formulas. In order to simplify the discussions, we assume that a mesh size ℎ is fixed 
and ℎ ≪ 1. We focus on just one iteration step, the nth iteration, in which the potential 𝜙0

𝑛 at an 
arbitrary grid is evolved to 𝜙0

𝑛+1 by one of these three formulas. Moreover, we assume all potentials 
on the right-hand side of three equations all take on the same values in the nth iteration step. Noticing 
that the three formulas become identical at grids inside the molecule/protein because the modified 
Debye-Huckel parameter 𝜅(𝑥) = 0 in this case. Therefore, performance differences can only be 
observed at grids immersed in water. We thus limit our analysis to the solvent domain, where the 
potential function is smooth and bounded because no point charges locate there. Thus, in the water, it 
is reasonable to assume 𝜙𝑖

𝑛 ≈ 𝜙0
𝑛, 𝑖 = 1, … ,6 in these formulas for a small but fixed ℎ. When being 

stable, these three formulas will converge to the same solution as n goes to infinity. Such a solution 
will be called the algebraic solution, which satisfies the finite difference discretization of the NLPBE, 
i.e., Eq (3).  

We will investigate these three formulas in two aspects, i.e., compare their convergence rates 
and analyze their stabilities when the potential is large. Equation (5) is considered first. When 𝜙0

𝑛 is 
small, Eq (5) is reduced to Eq (6) by approximating sinh(𝜙0

𝑛) ≈ 𝜙0
𝑛. In addition, by the assumption 

of 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛, 𝑖 = 1, … ,6, Eq (5) can be viewed as a linear function, 𝜙0
𝑛+1 ≈ 𝑎𝜙0

𝑛 + 𝑏 for some 
constants 𝑎 and 𝑏, where 0 < 𝑎 < 1. Thus, 𝜙0

𝑛+1 converges in a linear rate with respect to 𝜙0
𝑛. 

When 𝜙0
𝑛 is large but still on track, the right-hand side of Eq (5) has a much large denominator than 

that of Eq (6) because sinh(𝜙0
𝑛)

𝜙0
𝑛 ≫ 1. This drives Eq (6) to converge to the NLPBE potential. 

Nevertheless, when 𝜙0
𝑛 is large and away from the limiting value, stability has to be analyzed. 

Assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants, the dominate term of Eq (5) can be expressed as 
𝐶(𝜙0

𝑛)2/ sinh(𝜙0
𝑛)  for some constant 𝐶 . Because the denominator is much larger than the 

numerator, this iteration will not blow up and thus remains stable. In total, we view the series of 
potentials *𝜙0

𝑛+1+𝑛=0,1,2,… calculated by Eq (5) are stably converging to the algebraic solution of Eq (3). 
However, it is known that *𝜙0

𝑛+1+𝑛=0,1,2,…  converges not quickly enough for solving 
three-dimensional problems [44].  

The SOR method utilizing Eq (9) aims at making the iteration process converge in a faster pace. 
To see this, we rewrite Eq (9) as  
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𝜙0
𝑛+1 = (∑ 𝜀𝑖𝜙𝑖

𝑛

6

𝑖=1

+
4𝜋𝑞0

ℎ
−

𝜒(𝜅(𝒙)2(sinh(𝜙0
𝑛) − 𝜙0

𝑛))

ℎ
) (∑ 𝜀𝑖

6

𝑖=1

+ (𝜅ℎ)2)⁄

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2

−
𝜒(𝜅(𝒙)2(sinh(𝜙0

𝑛) − 𝜙0
𝑛)) ℎ⁄

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2

,                                 

 (17) 

where the first term on the right-hand side is the same as the right-hand side of Eq (6), and the 
second term can be viewed as a ―correction‖ added to the first term for improved convergence rate. 
When 𝜙0

𝑛 is small, sinh(𝜙0
𝑛) ≈ 𝜙0

𝑛 so that the correction term does not contribute much to 𝜙0
𝑛+1. 

In this case Eq (9) converges in a similar rate as that of Eqs (5) and (6). When 𝜙0
𝑛 is large, 

sinh(𝜙0
𝑛) − 𝜙0

𝑛 ≫ 1  and (sinh(𝜙0
𝑛) − 𝜙0

𝑛) ℎ⁄  is even larger provided ℎ ≪ 1  so that the 
correction term becomes a significant portion in 𝜙0

𝑛+1 and drives 𝜙0
𝑛+1 in an accelerated pace 

towards the algebraic solution of the discretized NLPBE. However, the correction term could also 
introduce additional issues. When 𝜙0

𝑛 ≫ 1, the value of (sinh(𝜙0
𝑛) − 𝜙0

𝑛) ℎ⁄  could drive 𝜙0
𝑛+1 

stride to be overshot the solution. Assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants, the dominate term 
of Eq (6) takes a form of 𝑎 𝑠𝑖𝑛ℎ( 𝜙0

𝑛) − 𝑏𝜙0
𝑛 for some constants a and b. Consequently, the 

potential could grow exponentially, and the whole iteration process quickly diverges. DelPhi utilizes 
a couple of relaxations parameters, 𝜔 in Eq (7) and 𝜒 in Eq (9), in order to pull 𝜙0

𝑛+1 back to the 
range of the solution in the overshot situation. These relaxation techniques work in most situations, 
but there is no guarantee that they are always effective. For instance, one ―crashing‖ example is 
demonstrated in the next section that the SOR method faces severe difficulties to converge. 

Equation (9) has been proven to cope with most cases in practice and it has other advantages over 
Eq (5). First of all, it allows the same computational and programming techniques flawlessly shared 
between solving the LPBE and NLPBE. Secondly, the denominator on the right-hand side of Eq (9) is 
unchanged in all iterations so that it can be calculated once, saved and then reused in all iterations. It is 
very computationally economical. Third, Eq (9) can collaborate with other advanced techniques in 
DelPhi, resulting in one of the best PBE solvers in the world. Overall, we believe the SOR method 
implemented in DelPhi is an effective method to solve the NLPBE for three-dimensional problems. 

The newly developed NWT method utilizes Eq (12) in order to maintain stability when solving 
the NLPBE for problems with strong nonlinearity, while it is still able to converge in a rate faster than 
the method using Eq (5). To see this, we rewrite Eq (12) as 

𝜙0
𝑛+1 =

∑ 𝜀𝑖𝜙𝑖
𝑛6

𝑖=1 +
4𝜋𝑞0

ℎ
+ (𝜅ℎ)2(𝜙0

𝑛 cosh(𝜙0
𝑛) − sinh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
              

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
+

(𝜅ℎ)2(𝜙0
𝑛 cosh(𝜙0

𝑛) − sinh(𝜙0
𝑛))

∑ 𝜀𝑖
6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)

=
∑ 𝜀𝑖𝜙𝑖

𝑛6
𝑖=1 +

4𝜋𝑞0

ℎ
∑ 𝜀𝑖

6
𝑖=1 + (𝜅ℎ)2 cosh(𝜙0

𝑛)
+

(𝜅ℎ)2(𝜙0
𝑛 − tanh(𝜙0

𝑛))

∑ 𝜀𝑖
6
𝑖=1 / cosh(𝜙0

𝑛) + (𝜅ℎ)2
,          

 (18) 

where the first term on the right-hand side is similar to that of Eq (17) with one additional cosh(𝜙0
𝑛) in 
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the denominator, and the second term, which is still called the correction term, is new in the NWT 
method. When 𝜙0

𝑛 is small, the first term is practically the same as that of Eq (17) because cosh(𝜙0
𝑛) ≈

1, and the second term vanishes because tanh(𝜙0
𝑛) ≈ 𝜙0

𝑛. In this case Eq (12) converges in a similar 
rate as that of Eqs (5), (6) and (9). When 𝜙0

𝑛 is large but still on track, |sinh(𝜙0
𝑛) | ≈ cosh(𝜙0

𝑛) ≫

|𝜙0
𝑛| > 1 so that the first term on the right-hand side of Eq (18) is smaller than the right-hand 

side of Eq (5). Together with the second term, this will drive the potential convergent to the algebraic 
solution of the discretized NLPBE in a faster pace than that of Eq (5). When 𝜙0

𝑛 is large and far apart 
from the algebraic solution, the dominate term of Eq (12) behaves like 𝑎𝜙0

𝑛 + 𝑏 tanh(𝜙0
𝑛) +

𝑐𝜙0
𝑛/ cosh(𝜙0

𝑛) for some constants a, b, and c by assuming 𝜙𝑖
𝑛 ≈ 𝜙0

𝑛 and neglecting constants. This 
iteration only grows linearly as 𝜙0

𝑛 increases. This is essentially why the NWT method is more stable 
than the SOR method. 

In summary, we believe that Eq (5) could provide a stable method to solve the NLPBE. However, its 
relatively low convergence rate makes it unsuitable to solve the NLPBE for three-dimensional problems. 
The SOR method improves the convergence rate by an ―exponential‖ correction term. This correction 
term allows the iterations progress in a fast pace, but it could lead to unexpected divergence for problems 
with high nonlinearity. The NWT method substitutes the correction term with a moderate one to balance 
the needs for both efficiency and stability, and we expect it to be a useful alternative of the SOR method 
in DelPhi to solve problems with high nonlinearity.  

3. Results 

Benchmarks are presented to compare the SOR and NWT methods in this section. Both methods 
have been implemented in DelPhi using the same computational and programing techniques. A wide 
selection of examples was tested, and three examples are chosen to demonstrate due to the limited length 
of this work. 

Example 1. In the first example, we show that both methods are capable of producing close 
numerical approximations to the algebraic solution of the discretized NLPBE at a given mesh size ℎ. To 
this end, a basic example of barnase-barstar complex (subfigure in Figure 2b) is borrowed from DelPhi’s 
online example repository http://compbio.clemson.edu/delphi and the NLPBE is solved for this complex. 
Two potential-dependent energies, the total grid energy 𝐺𝑔 and the corrected reaction field (RXN) 
energy 𝐺𝑟, are used to compare the accuracy of the two methods.  

The first series of benchmarks is conducted to show that both methods produce closer 
approximations as the mesh size ℎ diminishes. In DelPhi the mesh size ℎ is controlled by a parameter 
scale, defined to be the number of grids per angstrom. The mesh size ℎ decreases as the scale increases. 
In this series of benchmarks, the tolerance is fixed, TOL = 1.0E−4, and the scale is varied from 
scale = 0.5 (29 grids per direction) to scale = 5.0 (293 grids per direction). Energies obtained by the SOR 
and NWT methods are denoted by 𝐺𝑔

𝑆𝑂𝑅, 𝐺𝑟
𝑆𝑂𝑅, 𝐺𝑔

𝑁𝑊𝑇 and 𝐺𝑟
𝑁𝑊𝑇, respectively. Results are shown in 

Figure 2.  
Obtained energies are shown in Figure 2a,b first. In both subfigures, it is noticed that energies 

obtained by the SOR method are always slightly larger than their comparative partners obtained by the 
NWT method at all tested scales. It shall be pointed out that it may not be the case for other molecules 
and proteins. It could just be caused by, for instance, the parameter values used in the tests, the initial 
values used for the iterations, and other factors. Nevertheless, close energies obtained by the two methods 
at all tested scales evidently demonstrate that they are converging to the exact energies. More detailed 
comparisons were performed and reported in Figure 2c,d. In these subfigures, the differences, defined as 
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𝐺𝑔
𝑆𝑂𝑅 − 𝐺𝑔

𝑁𝑊𝑇 and so on, and the relative differences, defined as (𝐺𝑔
𝑆𝑂𝑅 − 𝐺𝑔

𝑁𝑊𝑇) 𝐺𝑔
𝑆𝑂𝑅⁄ × 100% and so on, 

are shown. The differences, except those at a low scale = 1.0, are seen to approach to a value as small as 
< 5 KT as the scale increases (Figure 2c), while the relative differences, starting with an already low 
percentage ≈ 1.7%, consistently converge to zero as the scale increases (Figure 2d). 

a 

 

b 

 
c 

 

d 

 
e 

 

  

Figure 2. Benchmarks obtained by the SOR and NWT methods with a fixed tolerance 
TOL = 1.0E−4 and various scales in Example 1. (a) Grid energies. (b) Reaction field 
energies. (c) Differences. (d) Relative differences. (e) CPU time. 
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In the light that both methods acquire close approximations at all tested scales, and the 
approximations are getting closer as the scale increases, we conclude that both methods are obtaining 
close approximations to the same algebraic solutions of the NLPBE at all tested mesh sizes in this 
example.  

a 

 

b 

 
c 

 

d 

 

Figure 3. Benchmarks obtained by the SOR and NWT methods with a fixed scale = 2.0 
and various tolerances in Example 1. (a) Grid energies. (b) Reaction field energies. (c) 
Differences. (d) Relative differences. 

Corresponding execution time of the DelPhi program is demonstrated in Figure 2e to compare 
the efficiency of these two methods. One can see that the SOR method costs less time, and therefore 
is more efficient, at all tested scales. It is primarily due to two reasons. First, the SOR method starts 
off the nonlinear iterations with better initial values achieved by solving the LPBE for a few dozens 
of iterations. This numerical treatment significantly reduces the numbers of more costly nonlinear 
iterations. On the other hand, the NWT method merely uses the default initial values (zeros on all 
grids) without additional treatments. Secondly, by reusing the saved denominator, each iteration of 
the SOR method is computationally cheaper than that of the NWT method. As a consequence, the 
SOR method is found to be more computationally efficient than the NWT method for solving the 
NLPBE in this example, and it is believed to be the case for many other problems as well. 
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It has been shown that both methods are capable of achieving close approximations at all scales. 
We are also interested to see that how fast, in terms of the number of iterations, these two methods 
can achieve their best approximations at a given scale. To this end, the second series of benchmarks 
is performed by fixing the scale = 3.0 (175 grids per direction) and varying the tolerance from 
1.0E−1 to 1.0E−7. It is naturally expected that both methods will take more iterations, and therefore 
produce more accurate energies, when smaller tolerance is used. The results shown in Figure 3 match 
our expectation. Semi-log plots (the horizontal axis is the logarithm of the tolerance) are used in 
Figure 3 that the scale decreases from the right to left. 

Energies, 𝐺𝑔 and 𝐺𝑟, obtained by the two methods are presented in Figure 3a,b. One can see 
that the SOR method shows its stunning efficiency in this example. The obtained curves for the SOR 
method (pink curves) are almost flat in both subfigures, implying that the SOR method achieves its 
best approximations without requiring many iterations. In contrast, the NWT method (blue curves) 
behaves differently: it takes less iterations and achieves coarser approximations when the tolerance is 
large, and it takes more iterations and obtains finer approximations as the tolerance is smaller. The 
observed different convergent trends of these two methods can be explained using Eqs (17) and (18). 
The SOR method tends to add a ―big‖ correction in each iteration to pull 𝜙0

𝑛+1 into the range of its 
best approximation as quickly as possible, so that it does not take too many iterations to attain its best 
approximation despite which tolerance is actually used. On the contrary, the NWT method adds a 
moderate correction in each iteration so that it takes more iterations to attain its best, and the 
approximations are observed to gradually approach to the best as the tolerance decreases. Another 
important observation on Figure 3a,b is that 𝐺𝑟

𝑁𝑊𝑇 is larger than 𝐺𝑟
𝑆𝑂𝑅 at tolerance = 1.0E−1 in 

Figure 3b. Thus, it is not true that the NWT method always obtains smaller energies. 
Differences and relative differences are presented in Figure 3c,d. In both subfigures, all 

differences and relative differences are found to converge as the tolerance decreases. At the smallest 
tolerance = 1.0E−7, the differences of 𝐺𝑔 and 𝐺𝑟 are found to be as close as < 5 KT in Figure 3c, 
and the relative differences are found to be as close as < 0.005% in Figure 3d. CPU times of this 
series of benchmarks are omitted because they are consistent to what shown in Figure 2e—the SOR 
method is more time consuming than the SOR method in all tested cases. 

Example 2. Results obtained in the first example have provided some insights on the 
performance of the two methods. We continue to study these two methods for a blindly selected 
group of proteins. This group of proteins is composed of 15 dimers, and each of them consists of two 
monomers, namely monomer A and B. More energies, in addition to 𝐺𝑔 and 𝐺𝑟, returned by DelPhi 
will be reported in this example. In particular, they will be used to calculate the binding energy, 
denoted by ΔG(bind), in this example. Two approaches were suggested in the work [34] to calculate 
the binding energy. The first approach (approach 1) calculates the electrostatic component of the 
binding energy from the total nonlinear grid energies of the complex, monomer A and B by 

ΔG1(bind) = 𝐺𝑔(complex) − 𝐺𝑔(A) − 𝐺𝑔(B),                                                       (19) 

and the second approach (approach 2) calculates the binding energy from partitioned energies by 

ΔG2(bind) = Δ𝐺𝑟 + Δ𝐺𝜌 + Δ𝐺𝑜 + Δ𝐺𝑖 + Δ𝐺𝑐.                                                       (20) 

where 𝐺𝑔  and 𝐺𝑟  again denote the total grid energy and the corrected reaction field energy, 
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respectively, 𝐺𝜌  denotes the 𝜌

𝜙
∗ 2 term in solution, 𝐺0  denotes the osmotic pressure term, 𝐺𝑖 

denotes the direct ionic contribution inside the box, 𝐺𝑐 denotes the Coulombic energy, and Δ𝐺∎ 
with the subscript ∎ = 𝑟, 𝜌, 𝑜, 𝑖, 𝑐 denotes corresponding partitioned energy similar to that defined 
in Eq (19). Even though ΔG1(bind) and ΔG2(bind) are both used to approximate the exact 
binding energy ΔG(bind), it has been pointed out in the work [34] that they are actually slightly 
different due to the fact that approach 1 does not fully cancel ―artificial grid energy‖ arising from real 
charges partitioning onto the grids. Thus, ΔG1(bind) is always slightly larger than ΔG2(bind). 
Approach 2 via the energy partition technique does not have such issue so that it is recommended 
over approach 1.  

We first show that binding energies calculated via those returned by DelPhi in solving the 
NLPBE via the SOR and NWT methods are close. To this end, binding energies calculated by both 
approaches are demonstrated for one dimer, 1fle. The NLPBE is solved by the SOR and NWT 
methods with a fixed tolerance = 1.0E−4 and various scales. Calculated binding energies are denoted 
by ΔG1

SOR(bind) , ΔG2
SOR(bind) , ΔG1

NWT(bind) , and ΔG2
NWT(bind) , respectively, and 

demonstrated in Figure 4. A couple of observations can be made on Figure 4. First of all, the two 
binding energies have the same trend as those obtained by the SOR method that ΔG1

NWT(bind) 
(solid green curve) is always slightly larger than ΔG2

NWT(bind) (dashed brown curve) at all tested 
scales. It matches the statements in the work [34]. Secondly, one can see that ΔG1

SOR(bind) and 
ΔG1

NWT(bind) (two solid curves) converge to ΔG1(bind), while ΔG2
SOR(bind) and ΔG2

NWT(bind) 
(two dashed curves) converge to ΔG2(bind), as the scale increases. It is also interesting to point out 
another important observation, which is not shown in Figure 4. In the benchmarks of dimer 1fle, we 
observed that the SOR method is faster than the NWT method in most tested cases. However, there 
are a few cases in which the NWT method uses the default 𝜔 = 1.0 and converges without any 
issue, while the SOR method needs a smaller relaxation parameter, 𝜔 = 0.5, in order to converge. 
When it occurs, the SOR method takes significantly more iterations and becomes slower than the 
NWT method. 

 

Figure 4. Binding energies obtained by solving the NLPBE via the SOR and NWT 
methods with a fixed tolerance TOL = 1.0E−4 and various scales for dimer 1fle in 
Example 2. 
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The next series of benchmarks was performed to calculate the binding energies at a fixed 
scale = 2.0 (the most commonly used scale in practice) for all 15 dimers. Results are presented in 
Figure 5 

a 

 
b 

 
c 

 

Figure 5. Binding energies and partitioned energies obtained on 15 dimes in Example 2. 
(a) Binding energies obtained by the SOR method (left panel) and the NWT method 
(right panel). (b) Percentages of partitioned energies in the binding energy ΔG2

SOR(bind). 
(c) Percentages of partitioned energies in the binding energy ΔG2

NWT(bind). Partitioned 
energies with large magnitudes are shown on the left panel and the remaining energies 
are shown on the right panel in Figure 5b,c. 

In Figure 5a, the SOR-generated binding energies (ΔG1
SOR(bind) and ΔG2

SOR(bind)) are 
demonstrated on the left panel, and the NWT-generated binding energies (ΔG1

NWT(bind) and 
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ΔG2
NWT(bind)) are demonstrated on the right panel. By comparing each blue bar to its paired orange 

bar on both panels, one can see that the binding energies obtained by approach 1 are always larger 
than those obtained by approach 2 for all 15 proteins. It is the case for both SOR and NWT methods. 
Next, by comparing bars in the same color for each dimer on the left and right panels, one can see 
visible differences on the SOR- and NWT- generated binding energies. However, given the 
experiences achieved for dimer 1fle, it is reasonable to expect that these differences are going to 
diminish if a larger scale is used. 

We are interested in seeing how much each individual partitioned energy contributes in the 
calculated binding energies. Taking ΔG2(bind) calculated by Eq (20) in approach 2 as an example, 
the percentages of partitioned energies in the binding energy, defined as Δ𝐺∎ ΔG2(bind)⁄ × 100%, 
are shown in Figure5b for the SOR method, and Figure 5c for the NWT method, respectively. 
Percentages of two partitioned energies, Δ𝐺𝑟 and Δ𝐺𝑐, are found to be significantly larger than 
those of other partitioned energies. Therefore, they are presented on the left panel and others are 
presented on the right panel in both Figure 5b,c. In these subfigures, one can see that Δ𝐺𝑟 and Δ𝐺𝑐 
are always in opposite signs for all 15 dimers, and their sum, Δ𝐺𝑟 + Δ𝐺𝑐, contributes more than 90% 

of ΔG2(bind), while the sum of the remaining three, Δ𝐺𝜌 + Δ𝐺𝑜 + Δ𝐺𝑖, contributes less than 10% 

of ΔG2(bind), for all 15 dimers. Moreover, by comparing corresponding energies, it is easy to see 
that the two methods, SOR and NWT, not only produce similar binding energy ΔG2(bind) as a sum 
of 5 partitioned energies, but also produce similar individual partitioned energy. These partitioned 
energies, except the partitioned Coulombic energy Δ𝐺𝑐, all depend on the potentials calculated via 
the SOR and NWT methods. It suggests that the two methods indeed produce close potentials for all 
15 dimers.  

Above experiments at scale = 2.0 were repeated at a doubled scale, scale = 4.0, and the 
differences shown in Figure 5 are found to be consistently smaller for all 15 dimers. It evidently 
shows that one can confidently relies on the energies produced by DelPhi using either method when 
the iteration process converges at the end. Moreover, we have observed more cases in which the SOR 
method requires smaller relaxation parameter to converge, while the NWT method has no such issue 
at all, in the cases tested at scale = 4.0. It inspires us to perform more tests to examine the stability of 
the two methods.  

Example 3. It has been observed in Example 2 that the SOR method may require smaller 
relaxation parameter in order to successfully converge in some cases, while the NWT method never 
has such issue. Out of abundance of caution, a ―crashing‖ example is purposely created and 
examined to numerically verify that the NWT method is still able to converge even in some rare and 
extreme scenarios before we claim that the NWT is a strongly stable method for solving the NLPBE. 

This example was tested with a fixed tolerance, TOL = 1.0E−4, and numerous scales ranging 
from 1.0 to 5.0. This example is believed to be ―bizarre‖ that the iteration process of the SOR method 
can never be terminated by meeting the desired tolerance at all tested scales. The iteration process is 
hindered only after a few iterations when the differences of calculated potentials in two successive 
iterations are large at some grids, causing the SOR method relentlessly seek for smaller relaxation 
parameter 𝜔 to reduce these differences before moving forward to the next iteration. This effort 
repeats many times in each of the first several iterations and prevents the iterations progress properly 
towards the end. As a consequence, the SOR method fails to produce any energies in this example 
after waiting for a long time. 
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It is a completely different story for the NWT method. The NWT method merely uses the 
default 𝜔 = 1.0 and converges successfully in all tested cases. Energies produced by DelPhi 
running the NWT method are presented by a semi-log plot (the vertical axis is the logarithms of the 
absolute values of the energies) in Figure 6. One can see that all energies behave normally without 
any unanticipated outcomes. 

 

Figure 6. DelPhi returned energies obtained by solving the NLPBE via the NWT method 
with a fixed tolerance = 1.0E−4 in Example 3.  

Additional examples beside Example 3 have been tested as well and we have not seen one case 
that the NWT method fails to converge. The experiences we earned make us confidently claim that 
the newly developed NWT method is a reliable alternative to solve the NLPBE for problems with 
high nonlinearity. Meanwhile, bearing in mind that the SOR method is still more efficient in many 
cases, the SOR method is still recommended to solve the LPBE/NLPBE when no divergence issue 
takes place. In the cases that the SOR method has troubles to converge, one can immediately observe 
in DelPhi’s outputs that the iteration stops progressing forward, the relaxation parameter becomes 
smaller, and the calculated tolerances get larger. It will be enough to tell that the SOR method is 
having troubles to converge, and it is advised to stop the program and switch to the NWT method. 

4. Discussions and conclusions 

In this work, a newly developed Newton-like method is proposed. It has been implemented in 
the DelPhi program to solve the PBE for electrostatic potentials. It has been demonstrated that the 
NWT method is relatively slower, equally accurate, and more stable compared to the SOR method 
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for solving the NLPBE. The merits of the new NWT method make it a valuable add-on to the DelPhi 
program. The NWT method is recommended to the computational molecular society to solve the 
NLPBE for problems with strong nonlinearity when other solvers have trouble to converge and 
deliver reliable solutions. Developments to improve the efficiency of the NWT method will be 
carried out and reported in the future. 
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