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Abstract
This work concerns with the development of fast and high order algorithms for solving a sin-
gle variable Poisson’s equation with rectangular domains and uniform meshes, but involving
staggered boundaries. Here the staggered boundary means that the boundary is located mid-
way between two adjacent grid nodes. Due to the popularity of staggered grids in scientific
computing for solving multiple variables partial differential equations (PDEs), the planned
development deserves further studies, but is rarely reported in the literature, because grand
challenges exist for spectral methods, compact finite differences, and fast Fourier transform
(FFT) algorithms in handling staggered boundaries. A systematic approach is introduced in
this paper to attack various open problems in this regard, which is a natural generalization of
a recently developed Augmented Matched Interface and Boundary (AMIB) method for non-
staggered boundaries. Formulated through immersed boundary problems with zero-padding
solutions, the AMIBmethod combines arbitrarily high order central differences with the FFT
inversion. Over staggered boundaries, the proposedAMIBmethod can handleDirichlet, Neu-
mann, Robin or any combination of boundary conditions. Convergence orders in four, six
and eight are numerically validated for the AMIB method in both two and three dimensions.
Moreover, the proposed AMIB method performs well for some challenging problems, such
as low regularity solution near boundary, PDE solution not satisfying the boundary condition,
and involving both staggered and non-staggered boundaries on two ends.
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1 Introduction

Motivated by the extensive applications of Poisson’s equation in a wide range of fields
including fluid dynamics, electrostatics, and mechanical engineering, the development of
fast and high order Poisson solvers has attracted a considerable interest in the literature.

A fast Poisson solver refers to an algorithmwhose complexity is O(N ) or O(N log N ), for
solving a linear system with a degree of freedom N arising from a numerical discretization
of Poisson’s equation over rectangular domains. This is significantly faster than a generic
iterative solver whose complexity is on order of O(N 2). The fast Fourier transform (FFT)
of complexity O(N log N ) is the most commonly employed tool for building fast Poisson
solvers. In second order central difference approximation to Poisson problems, Fourier trans-
form algorithms can be modified for discretization on non-staggered or staggered boundary
conditions to meet special needs [21]. With Fourier analysis and synthesis well formulated
for certain boundaries, pre- and post-processing [21] or symmetric FFTs [24] have been
developed to achieve corresponding fast summation of complexity O(N log N ). Multigrid
method with computational complexity O(N ) is another type of algorithmwidely adopted to
design fast Poisson solvers. It removes the low-frequency and high-frequency of the numer-
ical errors by successively adopting a couple of mesh levels. Then the solution on the coarse
levels can be interpolated to fine levels to improve the solutions. Generally, this process needs
to be done recursively before the improved solution reaches desired precision.

In recent years, there has been an increased interest in boosting fast Poisson solvers to high
order, because high order methods allow the use of coarse grids so that the computational
efficiency could be further accelerated. Based on FFT or multigrid algorithms, compact dif-
ferences and spectral methods are frequently used to fulfill high accuracy on cubic domains.
Numerous high order compact finite differences with FFT fast solvers [3,16,23,27] or multi-
grid fast solvers [12,13,28] have been developed in the literature. The popularity of compact
finite differences is attributed to adoption of nearest neighboring nodes in the numerical
differential kernel in compact schemes, which makes it relatively easier to handle different
boundary conditions, and to incorporate the schemes in FFT ormultigrid procedures. A series
of Fourier pseudospectral (FPS) methods have been developed in [2,4,5] for solving multi-
dimensional Poisson and Helmholtz equations with various boundary conditions. It can be of
arbitrary order accuracy in principle, while the practical numerical order is determined by the
polynomial subtraction technique for boundaries and corners treatment. Spectral-Galerkin
methods can also provide fast Poisson solutions with complexity of O(N log N ) [22], in
which boundary conditions are satisfied by specially choosing basis functions as compact
combinations of orthogonal polynomials. Recently, an Augmented Marched Interface and
Boundary (AMIB) approach has been introduced in [8] as the first fast Poisson solver in
the literature that combines FFT with arbitrarily high order central difference schemes. The
AMIB method not only can handle the Dirichlet, Neumann, Robin or any combination of
boundary conditions, but also can be easily generalized to two dimensions (2D) or three
dimensions (3D). Such properties are usually not shared by compact difference and spectral
methods.

This work concerns with the development of fast and high order Poisson solvers for rect-
angular domains and uniform meshes with staggered boundaries. It is known that staggered
grids are widely used in scientific computing to solve partial differential equations (PDEs)
with multiple dependent variables, such as incompressible Navier-Stokes equations [11,30],
Maxwell’s equations [31], and wave equations [6,15]. By defining different variables at dif-
ferent grid locations such as centers or edges, a staggered grid could avoid the odd-even
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decoupling error of a collocated grid arrangement. Moreover, staggered grids enjoy some
advantages in handling multiple variables, including better computational efficiency, smaller
memory requirement and easier implementation.

In this paper, we will focus only on a single variable Poisson’s equation with a uniform
mesh, but allow the boundaries of the cubic domain to be staggered with the grid, i.e., the
boundary locates midway between two adjacent grid nodes. We will call such a boundary as
a staggered boundary, on which Dirichlet, Neumann, or Robin boundary condition needs to
be satisfied. The problem to be solved can be regarded as one component needed in solving
multiple variable PDEs on staggered grids. For example, the Poisson problem modeling
pressure on staggered grids is derived in the projection method on unsteady incompressible
Navier-Stokes equation, where solution from fast Poisson solver is desired to accelerate the
computation process [11]. Moreover, high order methods have been applied to tackle many
Poisson-related problems on staggered grids [6,15,30]. It is thus interested to develop fast
and high order Poisson solvers for staggered boundaries.

In spite of a great success of compact difference and spectral methods for designing
high order fast Poisson solvers on usual grids, few of them have been exploited for treating
staggered boundaries. Considerable difficulties may arise not only in designing high order
discretizations over staggered grids, but also in combining high order schemes with efficient
linear solvers. For example, since a spectral method uses a global basis for approximating
Poisson solutions, it seems not in the same philosophy of a shifted discretization for staggered
grids, especially when the Chebyshev polynomial has roots clustered around the boundaries.
As a result, high order Poisson solvers based on spectral methods and FFT implementation
may not be achievable for staggered boundaries. In fact, even for second order versions, only
a few fast Poisson solvers have been reported in the literature for staggered boundaries. A
cyclic reduction method was proposed to obtain a second order solution of Poisson equa-
tion with staggered Neumann boundary conditions in [20]. Based on second order central
difference, various Fourier transform algorithms have been constructed in [21] for differ-
ent non-staggered or staggered boundary conditions. Nevertheless, there are still boundary
combinations remaining unsolved for second order FFT Poisson solvers. Multigrid methods
also have been exploited to fulfill second order finite differences or finite volume schemes
in approximating Poisson solutions on the staggered or non-staggered boundary conditions
[26,29]. The Poisson equation with staggered Neumann boundary conditions has received
a special attention [1,37] due to its derivation from projection methods used in numerical
simulation of incompressible fluid flows. The only known high order Poisson solver [1] in the
literature combines multigrid method with fourth order compact scheme to deal with stag-
geredNeumann boundary conditions. This is highly nontrivial, because staggered boundaries
introduced additional difficulty when incorporating boundary conditions in the process of
interpolation and restriction of multigrid. In summary, for Poisson’s equation with staggered
boundaries, themultigrid type high order solver is available only for Neumann boundary with
all other conditions untouched, while FFT-based high order solvers are completely open.

The goal of this paper is to develop high order fast Poisson solvers which can handle
staggered boundaries together with any boundary condition. Such a development shall be
a milestone in the literature by resolving all aforementioned open problems for staggered
boundaries. On the other hand, this development is a natural generalization of our recently
developed AMIB method [8], which provides fast Poisson solvers on usual grids by com-
bining arbitrarily high order central differences with FFT inversion. We note that before
the AMIB approach [8], high order central difference schemes have never been applied for
designing fast Poisson solvers, even though the most popular FFT fast Poisson solver is
based on a second order central difference. This is because central differences with long
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stencils require fictitious nodes outside the boundary, which poses a challenge to integrate
boundary conditions in FFT computations. This is true in both staggered and non-staggered
boundary conditions. Motivated by the AMIB scheme developed in [7,9] for solving 2D
elliptic interface problems with complex geometries, a Poisson boundary value problem over
a rectangular domain is converted to an immersed boundary problemwith zero-padding solu-
tions beyond the original cubic domain in [8]. Consequently, the anti-symmetric property
needed in high order FFT inversions is simply satisfied over the boundary of the enlarged
cubic domain, while the immersed boundary problem can be efficiently solved by a Schur
complement procedure with iterative algorithms [7–9].

In this paper, we will adopt the same AMIB approach to construct high order fast Poisson
solvers for staggered boundaries. Like the original AMIBmethod [8], the new Poisson solver
can handle the Dirichlet, Neumann, and Robin boundary conditions, and can be easily imple-
mented in multidimensions, due to its tensor product nature of discretization. Furthermore,
the proposed AMIB method can be made to arbitrarily high order in principle. Finally, since
the AMIB treatments at left and right boundaries are independent, problems with a regular
boundary on one end and a staggered boundary on another end will be considered with any
boundary condition loaded on each end. Such a study fully demonstrates the flexibility of
the proposed algorithm.

The paper contains several sections as follows. The Sect. 2 reviews a systematic direct
high order Poisson solverwith the assumption of anti-symmetric solution across the boundary
and a brief generalization for real problems. Section 3 focuses on the details about immersed
boundary treatment that artificially allows for anti-symmetric solution, and the corrected
differences to make high order Poisson solver feasible in the context of staggered boundary
conditions. Besides, truncation error analysis of the corrected differences is presented to
ensure the high order accuracy of the Poisson solver. Following this, in Sect. 4, the augmented
system is formulated as the core of the method. In Sect. 5, numerical experiments are carried
out to demonstrate the robustness and efficiency of the proposed method. Finally, a summary
will be discussed at the end of the paper.

2 Background

An Augmented Matched Interface and Boundary (AMIB) method has been developed in [8]
as the first fast Poisson solver that combines FFTwith arbitrarily high order central difference
schemes. The key ideas of the AMIB Poisson solver are briefly reviewed in this section.

2.1 Anti-symmetric Solution

Consider a rectangular domain with an usual grid and non-staggered boundaries. Across
each boundary, assume the Poisson solution satisfying the anti-symmetric property. For such a
setting, a direct FFT-based Poisson solver via high order central difference can be constructed
up to arbitrary order [8]. The formulation for a fourth order solver is discussed below.

It is sufficient to limit our discussion to a one dimensional (1D) Poisson’s equation

uxx (x) = f , for x ∈ [a, b] (1)

subject to Dirichlet zero boundary condition. Suppose a uniform partition on the domain
x ∈ [a, b] with hx = b−a

M , where M is the partition number on the given domain. As in
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x1 x2 xM−1 xM = bx0 = a

x−1 xM+1

Fig. 1 the standard grid setting in 1D

Fig. 1, the standard grid points are defined as

R = {xi |xi = a + ihx , i = −1, 0, 1, . . . , M, M + 1.}.
Two extra grid points outside the given domain are defined due to the need of two ghost

values deployed in the fourth order central difference

uxx (xi ) = 1

h2x
[− 1

12
u(xi−2) + 4

3
u(xi−1) − 5

2
u(xi ) + 4

3
u(xi+1) − 1

12
u(xi+2)] + O(h4x ),

(2)

for numerical approximation at grid points neighboring the boundaries. Assume the anti-
symmetry property for ghost values up to order 6:

u(x0) = 0, u(x−1) = −u(x1) + O(h6x ), (3)

u(xM ) = 0, u(xM+1) = −u(xM−1) + O(h6x ). (4)

Denote ui as the approximation to the exact value of u(xi ) and fi as f (xi ):

ui ≈ u(xi ), i = −1, 0, . . . , M + 1,

fi = f (xi ), i = 1, 2, . . . , M − 1.

Substituting anti-symmetric properties (3) and (4) into (2) and dropping the fourth order local
truncation errors, we arrive at equations system of fourth order discretization for equation
(1) :

1

h2x
(− 1

12
ui−2 + 4

3
ui−1 − 5

2
ui + 4

3
ui+1 − 1

12
ui+2) = fi , for i = 1, . . . , M − 1. (5)

Concisely, system (5) has a matrix-vector form

AU = F, (6)

where A ∈ R
M−1,M−1, U ∈ R

M−1 and F ∈ R
M−1. Due to the anti-symmetric solution

across the boundary, coefficients of the ghost values are absorbed into coefficients of their
counterparts inside the domain. The matrix A is a symmetric matrix [8]. The system (6) can
then be efficiently inverted using following FFT procedure with flops O(M log(M)):

1. Compute Sine transform for f (x j ) via inverse fast Sine transform(IFST). f̂l =
2
M

∑M−1
j=1 f (x j ) sin(

l jπ
M ), for l = 1, . . . , M − 1.

2. ûl = f̂l
λl

, for l = 1, 2, . . . , M − 1, where λl = − 1
3h2x

[cos( lπM ) − 1][cos( lπM ) − 7].
3. Compute u j via fast Sine transform (FST): u j = ∑M−1

l=1 ûl sin(
l jπ
M ), for j =

1, . . . , M − 1.

Remark 2.1 Thanks to the tensor product style of central difference approximation, the above
fourth order one dimensional fast solvers can be easily generalized to multi-dimensions over
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cubic domains. When the above assumptions are satisfied in each dimension, the resulting
discretization matrix system AU = F can all be quickly inverted with flops O(Md log(M)),
where d denotes the dimension and uniform degree of freedom of M in each dimension is
assumed.

Remark 2.2 In general, if the solution satisfies anti-symmetric property up to (2m + 2)th
order across both ends with a positive integer m, then (2m)th order FFT solution can be
realized by (2m)th order central differences without any boundary adjustment as in the fourth
order solver. In principle, arbitrarily high order can be fulfilled using corresponding central
differences with the assumption of anti-symmetric solution holding. It can be observed that
coefficient matrix A arising from the finite difference discretization can automatically allow
for fast solution of Ax = f for any right side due to the fact that A is inherent to the FFT-
based Poisson solvers construction. Besides, A is a symmetric coefficient matrix, making its
transpose still available for FFT solutions.

2.2 Generalization to Real Boundary Conditions

The anti-symmetric assumptions (3) and (4) are generally not true for real problems. Thus the
high order AMIB method [8] introduces a thin fictitious buffer zone or zero-padding region
outside the domain such that the anti-symmetric property can be automatically satisfied up to
the desired orders on the boundary of the extended domain. In this way, the original boundary
value problem is converted to an immersed boundary problem, as the original boundary
becomes a closed interface in the extended domain, which requires high order corrected
differences to restore the accuracy across the interface and to facilitate FFT inversion. The
overall efficiency via FFT is accomplished in the framework of AMIB method, where FFT
is used to obtain both the values of jump quantities in corrected differences and the function
values. As such immersed boundary treatment can be naturally applied in staggered boundary
problem, details for designing the fourth order fast solvers are shown in the following sections.

3 Poisson Solver for Staggered Boundaries

Consider Poisson’s equation over cubic domains

�u = f (�x), �x ∈ � (7)

where �x = (x1, x2, . . . , xd) is the spatial vector (d = 2, 3 for two and three dimensions), �
is the domain of interest, and � is the Laplacian operator defined by

� =
d∑

i=1

∂2

∂x2i
.

On staggered boundaries, three standard boundary conditions are considered :

1. Dirichlet boundary condition:

u = φ jon � j ,

2. Neumann boundary condition:

∂u

∂n
= φ jon � j ,

123



Journal of Scientific Computing             (2021) 86:7 Page 7 of 25     7 

a b

Γ1 Γ2

a b
c

d

Γ1

Γ2

Γ3

Γ4

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

a

b

c de

f

x

y

x

x

y

z

Fig. 2 Illustration of boundary notation in 1D, 2D and 3D

3. Robin boundary condition:

ku + ∂u

∂n
= φ jon � j ,

where � j is one of the boundaries of the computational domain as shown in Fig. 2, and ∂
∂n

denotes the outward normal derivative.
We are concerned with solution of Poisson’s equation on domain (x, y, z) ∈ � = [a, b]×

[c, d]×[e, f ]with staggered boundary conditions. Choose integerM, N , P such that spacing

hx = b − a

M
, hy = d − c

N
, hz = f − e

P
(8)

are used in x-, y- and z-directions, respectively. There are a few key ingredients needed for
high order fast Poisson solvers with staggered boundary conditions. As enough details about
the FFT solvers have been given in the previous section, we now will focus on immersed
boundary and corrected differences.

3.1 Immersed Boundary Problem

For staggered boundaries in 2D, the following grid node coordinates are defined

R0 = {(xi , y j )|xi = a + (i − 0.5)hx , y j = c + ( j − 0.5)hy,

i = 0, . . . , M + 1, j = 0, . . . , N + 1} (9)

where hx = b−a
M , hy = d−c

N such that the boundaries of the given domain lie in midway
between two grid points as shown in Fig. 3. However, asmentioned in Sect. 2.2, it is necessary
to embed the original domain � into a larger rectangle such that the aforementioned FFT
solvers can be applied when the zero solutions are defined on the extended part. The extended
length of 2.5hx or 2.5hy for x− or y− direction is sufficient in supporting fourth order solvers,
because the requirement of being anti-symmetric across the new boundary can be satisfied.
A comparison between the current grid setting and the one for non-staggered boundaries is
shown in Fig. 4. After extension, the grid coordinates are redefined as:
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(0, 0) (1, 0) (M + 1, 0)(M, 0)(i, 0) (i + 1, 0)

(0, 1)

(0, N + 1)

(0, N)

(0, j)

(0, j + 1)

(i, j)

(1, 1)

(M,N)

Γ1

Γ2

Γ3

Γ4

1
2hx hx

x

y

a b

c

d

o

Fig. 3 Poisson solutions on black dots in a uniform grid with staggered boundaries. Each boundary is located
midway between two nodes

u− ∈ Ω−u+ ∈ Ω+

∂B

Γ = ∂Ω−

B = Ω+ ∪ Ω−

3hx

3hy

x

y

fictitious values

ghost values

u− ∈ Ω−u+ ∈ Ω+

∂B

Γ = ∂Ω−

B = Ω+ ∪ Ω−

fictitious values

ghost values
2.5hy

2.5hx

Fig. 4 A comparison on two kinds of grids construction for immersed boundary problem with fourth order
central difference scheme. The left is for usual grid, and the right one is for staggered grid. Filled circles
stand for fictitious values used in approximation of jump quantities from corrected differences. Ghost values
(depicted as open circles) are zero padding values beyond the expanded domain satisfying anti-symmetry

R = {(xi , y j )|xi = a + (i − 2.5)hx , y j = c + ( j − 2.5)hy,

i = 0, . . . , M + 5, j = 0, . . . , N + 5}, (10)

where hx , hy are the same as above. The figure of grids in (10) would be equipped with two
more layers of grid points outside each side of the domain in comparison with Fig. 3.

From now on, we denote the original domain � as �− and the extended subdomain as
�+, yielding the whole domain B = �+ ∪�−. Correspondingly, the solution in the original
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domain is defined as u− in �−, and solution in the extended domain �+ as u+ = 0. Source
term is defined as f − ∈ �− and f + = 0 ∈ �+. Then the immersed boundary problem can
be modeled as

� u(�x) = f , �x ∈ B (11)

with source term being

f =
{
f −, �x ∈ �−,

f +, �x ∈ �+.

However, this remodeled problem introduces an interface � = ∂�−, across which disconti-
nuity of solution and source term emerges. As regular central difference approximations for
Laplacian will suffer accuracy reduction near a discontinuous interface, corrected difference
will be adopted with some interface quantities to compensate the discontinuity. One core
part of corrected difference is that it preserves the high order translation-invariant central
difference stencil, enabling formation of special matrix structure of the FFT matrix A as
above.

Without the loss of generality, discussion can be focused on 1D case, as the generaliza-
tion to multi-dimension is simply by virtue of tensor product. Hence, we may just concern
ourselves with u = u(x). Generally, in the fourth order central difference approximation,
corrected differences are only needed at grid nodes, where the central difference stencil
involves node information on the other side of the interface. To be more clear, assume the
interface intersects the grid line y = y j at some point α between xi and xi+1, then at nodes
xi−1, xi , xi+1 and xi+2, corrected differences are required. We call these four nodes as irreg-
ular points, while other nodes as regular points.

3.2 Corrected Finite Differences for Laplacian

Corrected differences of different orders have been formulated in [8]. As we just focus on
fourth order approximation in this paper, fourth order corrected differences are included here.

Theorem 1 Fourth order corrected differences.

Let x j ≤ α < x j+1, h− = x j − α, and h+ = x j+1 − α. Suppose u ∈ C6[x j −
2h, α)

⋂
C6(α, x j+1 + 2h], with derivative extending continuously up to the interface α.

Then the following approximations hold to O(h4) when M = 5 :

uxx (x j−1) ≈ 1

h2
[− 1

12
u(x j−3) + 4

3
u(x j−2) − 5

2
u(x j−1) + 4

3
u(x j ) − 1

12
u(x j+1)]

+ 1
12h2

M∑

m=0

(h+)m

m! [u(m)],

uxx (x j ) ≈ 1

h2
[− 1

12
u(x j−2) + 4

3
u(x j−1) − 5

2
u(x j ) + 4

3
u(x j+1) − 1

12
u(x j+2)]

− 4
3h2

M∑

m=0

(h+)m

m! [u(m)] + 1
12h2

M∑

m=0

(h+h+)m

m! [u(m)],

uxx (x j+1) ≈ 1

h2
[− 1

12
u(x j−1) + 4

3
u(x j ) − 5

2
u(x j+1) + 4

3
u(x j+2) − 1

12
u(x j+3)]

+ 4
3h2

M∑

m=0

(h−)m

m! [u(m)] − 1
12h2

M∑

m=0

(h−−h)m

m! [u(m)],
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uxx (x j+2) ≈ 1

h2
[− 1

12
u(x j ) + 4

3
u(x j+1) − 5

2
u(x j+2) + 4

3
u(x j+3) − 1

12
u(x j+4)]

− 1
12h2

M∑

m=0

(h−)m

m! [u(m)],

where [u(m)] = [u(m)]α = lim
x→α+ u(m)(x)− lim

x→α− u(m)(x). In practice, M = 4 is sufficient to

ensure fourth order accuracy for elliptic problem globally despite third order local truncation
error O(h3) [8]. As the derivative jumps [u(m)] are in general not easily determined fromPDE
and given boundary conditions, we may need numerical approximation. Theoretically, if we
can numerically approximate [u(m)] with error of O(h5−m), the local third order truncation
error can then be guaranteed. On the other hand, due to the fact that high order central
differences approximate Laplacian dimension by dimension, we can apply the corrected
differences where there exist irregular points.

3.2.1 Reconstructing the Cartesian Derivative Jumps

As discussed, the derivative jumps [u(m)] are expected to be numerically approximated with
error of O(h5−m). Based on the definition of [u(m)], it is natural to use polynomials of
certain degree to approximate limx→α+ u(m)(x) or limx→α− u(m)(x). As the parameter M
is set as 4 in the fourth order corrected differences in practical use, the mth order derivative
u(m)(x) can be up to fourth order. It is sufficient to use polynomials of degree 4 for the
approximation with respect to the third order truncation error. Detailed analysis will be
shown in the following subsections. For accuracy concern, it is best to use central differences
or pseudo-central differences to approximate these one-sided limits. We then may have to
generate two layers of fictitious values outside the interface� as shown in Fig. 5. A systematic
MIB boundary closure [32–35] has been developed in the literature for any combination of
Dirichlet, Neumann, and Robin boundary conditions. In the present study, this MIB method
will be employed to enforce boundary conditions and correspondingly generate the needed
fictitious values. Then such fictitious values will be utilized for calculating the derivative
jumps [u(m)], as in the AMIB method [7–9]. In our practical numerical approximation, the
two fictitious values outside � will be combined with three real function values on the other
side of the interface to give desired polynomials respectively. The right one in Fig. 4 shows
two layers of fictitious values needed near the interface � for the fourth order corrected
differences.

3.2.2 Fictitious Values Formulation

We adopt theMIB formulation [35] of fictitious values near the staggered boundary condition
before the reconstruction of the Cartesian derivative jumps. It is sufficient to illustrate the
process in the case of Robin boundary condition in 1D,

ku + ∂u

∂n
= ku − ∂u

∂x
= φ on �1. (12)

This procedure can be easily modified for the cases of Dirichlet and Neumann boundary
conditions, as Robin boundary condition is essentially comprised of these two conditions.We
generate fictitious values iteratively by repeatedly matching the boundary conditions across
the boundary. Referring to Fig. 5, to generate M fictitious values ûi for i = 1, 2, . . . , M
outside the domain, L + 1 function values u j for j = 0, 1, . . . , L inside the domain are to
be used.
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x = α

ûM û2 û1 u0 u2 u3 uL

Fig. 5 An illustration of fictitious values near the staggered left boundary

We can generate the first layer of fictitious value û1 according to approximation to bound-
ary (12):

k(C (0)
2,1û1 +

L+2∑

i=2

C (0)
2,i ui−2) + (C (1)

2,1û1 +
L+2∑

i=2

C (1)
2,i ui−2) = φ, (13)

where C (0)
2,i and C (1)

2,i are finite difference (FD) weights in approximating zeroth and first
derivative at x = a by using a stencil {û1, u0, . . . , uL}. Such weights can be determined by
calling a Fortran subroutine weights from [10]. The notation 2 in first subscript of C (1)

2,i and

C (1)
2,i is because u0 is the second point in the FD stencils. As a result, unknown û1 can be

represented as the combination of ui for i = 0, 1, . . . , L and φ. Taking û1 as known, we can
determine another fictitious value û2 by one more iteration

k(C (0)
3,1û2 + C (0)

3,2û1 +
L+3∑

i=3

C (0)
3,i ui−3) + (C (1)

3,1û2 + C (1)
3,2û1 +

L+3∑

i=3

C (1)
3,i ui−3) = φ, (14)

where C (0)
3,i ,C

(1)
3,i are FD weights to approximate zeroth and first order derivatives at x = a

using a stencil {û2, û1, u0, u1, . . . , uL }. The first subscript 3 inC (0)
3,i andC

(1)
3,i is because u0 is

the third point in the FD stencils. In such iterative approach, we can obtain representation of
fictitious values û3, û4, . . . , ûM in terms of ui for i = 0, 1, . . . , L. We need properly choose
the value of L to have high-order accuracy for fictitious values. Generally, L is related to M
with L + 1 = 2M . As shown below for the fourth order study, two layers of fictitious values
are needed for approximation of jump quantities, which means M and L is set to be 2 and 3
respectively.

Wehere conduct someerror analysis about the accuracyof thefictitious values by enforcing
Robin boundary conditions, which will be used for further analysis in the next subsection.
In the situation of M = 2 and L = 3, we assume the real function values to be f1 and
f2 corresponding to the fictitious values û1 and û2 at the same locations. Due to Lagrange
interpolation, we have following equation:

k(C (0)
2,1 f1 +

5∑

i=2

C (0)
2,i ui−2 + O(h5)) + (C (1)

2,1 f1 +
5∑

i=2

C (1)
2,i ui−2 + O(h4)) = φ, (15)

Subtracting Eq. (13) from Eq. (15) gives

k[C (0)
2,1(û1 − f1) + O(h5)] + [C (1)

2,1(û1 − f1) + O(h4)] = 0.
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Equivalently,

(kC (0)
2,1 + C (1)

2,1)( f1 − û1) = O(h5) + O(h4) = O(h4).

Therefore,

ε1 = f1 − û1 = O(h4)

kC (0)
2,1 + C (1)

2,1

= O(h4)

O(1) + O( 1h )
= O(h5).

The last second equality holds because C (0)
2,i and C (1)

2,i scale as O(1) and O( 1h ) respectively.
From this, we may notice that the error between real function value f1 and the fictitious value
û1 is of O(h5).

In the second step with one more fictitious value, it holds that

k(C (0)
3,1 f2 + C (0)

3,2 f1 +
5∑

i=3

C (0)
3,i ui−3 + O(h6))

+ (C (1)
3,1 f2 + C (1)

3,2 f1 +
5∑

i=3

C (1)
3,i ui−3 + O(h5)) = φ, (16)

Subtracting Eq.(14) from Eq.(16) yields to

k[C (0)
3,1(û2 − f2) + C (0)

3,2(û1 − f1) + O(h6)]
+ [C (1)

3,1(û2 − f2) + C (1)
3,2(û1 − f1) + O(h5)] = 0.

Since û1 − f1 = O(h5), C (0)
3,i scales as O(1), and C (1)

3,i scales O( 1h ), we arrive at

k[C (0)
3,1(û2 − f2) + O(h5)] + [C (1)

3,1(û2 − f2) + O(h4)] = 0.

Equivalently,

(kC (0)
3,1 + C (1)

3,1)( f2 − û2) = O(h5) + O(h4) = O(h4).

Hence,

ε2 = f2 − û2 = O(h4)

kC (0)
3,1 + C (1)

3,1

= O(h4)

O(1) + O( 1h )
= O(h5).

In short, the errors of fictitious values û1 and û2 are of O(h5) when L = 3.
TheMIB implementationofDirichlet orNeumannboundary condition at staggeredbound-

aries can be similarly formulated. Each implementation may just follow the formula inside
the first or second parenthesis in (13) and (14).

In comparing with the present boundary treatments with those for non-staggered bound-
aries [8], Neumann and Robin cases are essentially the same. However, the Dirichlet case
is totally different. In [8], with the boundary being a node, the interpolation or zeroth order
derivative approximation will have zero weights for fictitious points. To avoid this problem,
a numerical boundary condition is typically used

∂2u

∂n2
= φ, (17)

where n denotes the x- or y-direction. Such boundary condition was manually derived based
on the given Poisson equation and Dirichlet boundary conditions [8]. For example, suppose
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Dirichlet condition is given as u(x, y) = φ4(y) on �4. Taking second order derivative on

φ4(y) with respect to y leads to d2φ4(y)
dy2

, which is essentially ∂2u(x,y)
∂ y2

along boundary �4.
Assuming that the governing equation �u = f is valid on the boundary �4, we can derive a
new boundary condition as in (17):

∂2u

∂x2

∣
∣
∣
�4

=
[

f − ∂2u

∂ y2

]

�4

=
[

f − d2φ4(y)

dy2

]

�4


= φ(x). (18)

The boundary condition (18) can be iteratively enforced to generate desired fictitious values
[8]. The MIB scheme for staggered boundaries avoids using numerical boundary conditions
(17). Consequently, the present MIB scheme has some advantages over that in [8]. For
instance, it is still valid even if the solution loses some high order regularity on the boundary.
We will demonstrate this in numerical experiments.

In summary, the fictitious values ûi, j at (xi , y j ) calculated from Dirichlet, Neumann, and
Robin boundary conditions can be written into a general form:

ûi, j =
∑

(xI ,yJ )∈Si, j
WI ,J u I ,J + W0φ, (19)

which is a linear combination of functions values on a chosen set Si, j , and known boundary
data. The node set Si, j can be determined by the choice of M and L before calculating the
MIB weights WI ,J .

3.2.3 Approximation to Derivative Jumps

To approximate jump quantities in the fourth order corrected differences, we consider using
polynomials of degree 4 from inside of the interface � together with the external function
u+ = 0 to calculate limiting derivatives. The jump quantity at x = α is defined as

[
∂mu

∂xm

]

|x=α = lim
x→α+

∂mu

∂xm
− lim

x→α−
∂mu

∂xm
(20)

Figure 6 graphically gives an explanation of fourth order numerical approximation to jumps
with aid of polynomial near the interface. Essentially, The derivative jumps are calculated by
taking derivatives of one-sided polynomials at intersecting point (α, y j ). Here certain sign is
to be determined for the left or right end [8].

We take the case of immersed boundary located to the left boundary for instance. The
jump quantities are approximated by (refer to Fig. 6)
[

∂mu

∂xm

]

= ∂mu−

∂xm
− 0

= wm
i−1, j fi−1, j + wm

i, j fi, j +
3∑

k=1

wm
i+k, j ui+k, j + O(h5−m)

= wm
i−1, j (ûi−1, j + O(h5)) + wm

i, j (ûi, j + O(h5)) +
3∑

k=1

wm
i+k, j ui+k, j + O(h5−m)

= wm
i−1, j ûi−1, j + O(h5−m) + wm

i, j ûi, j +
3∑

k=1

wm
i+k, j ui+k, j + O(h5−m)
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Fig. 6 An illustration of jumps
approximation via a Lagrange
polynomial from inside of the
interface x = α and zeros
solution from the outside for the
fourth order approximation. The
black dots stand for the real
values while the yellow dots
denote the fictitious values

x

x = α

x2 x3x1 x4x0 x5

f1,j

f2,j
u3,j

u4,j
u5,j

u0,j u1,j u2,j

u = 0

= wm
i−1, j ûi−1, j + wm

i, j ûi, j +
3∑

k=1

wm
i+k, j ui+k, j + O(h5−m) (21)

where u− ∈ �−, andwm
p,q stands for the weights in finite difference approximation at x = α

and scales as O(h−m). This leads to the approximation error of O(h5−m) in the last second
equality. The approximation in the first equality is due to the Lagrange interpolation error. In
wm

p,q , subscript (p, q) denotes the location (xp, yq), and m = 0, 1, . . . , 4 indicates the mth
derivative. Consequently, the local truncation error in the fourth order corrected differences
will keep third order of O(h3).

Dropping the error terms and plugging fictitious values representation (19) into (21), we
have an equivalent form:

∑

(xI ,yJ )∈Si, j
CI ,J u I ,J + [∂

mu

∂xm
] = C0φ, (22)

where CI ,J are the corresponding weights of function value ui, j in approximation to jump
quantity [ ∂mu

∂xm ]. Taking [ ∂mu
∂xm ],m = 0, 1, . . . , 4 as auxiliary variables, system of equation

(22) can be written in a matrix-vector form:

CU + I Q = �, (23)

where C stands for the weights coefficients matrix, U represents the function variables,
I ∈ R

5,5 is the identity matrix, Q is the introduced auxiliary variables on all boundary
nodes, and � is from the known boundary quantities φ. Without loss of generality, the form
of (23) can be applied for derivative jump approximation on the other side of the domain or
in the y−direction.
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4 Augmented System

4.1 Formulation of the Augmented System

For fourth order study on 2D Poisson’s problem (11), let Ui, j indicate the discrete solution
while u(xi , y j ) is analytical solution at (xi , y j ). Based on the corrected difference analysis,
the problem (7) is discretized as

LhUi, j + Ci, j = fi, j , 1 ≤ i ≤ M + 4, 1 ≤ j ≤ N + 4, (24)

where Ci, j is the correction term, and LhUi, j is the standard high order central difference
scheme to Laplacian with a degree of freedom N1 = (M+4)×(N +4). Note that correction
term only exists at irregular points but vanishes at regular points. Following the introduced
variables Q in Eq.(23), Eq.(24) can be rewritten into

AU + BQ = F, (25)

where A is a symmetric, diagonally dominant matrix of dimension N1 by N1, B is a
matrix of coefficients from correction terms and F is a vector with entries being fi j . The

auxiliary variables involve terms as [u]i , [ ∂u
∂x ]i , [ ∂2u

∂x2
]i , [ ∂3u

∂x3
]i , [ ∂4u

∂x4
]i for i = 1, 2, . . ., and

[u] j , [ ∂u
∂ y ] j , [ ∂2u

∂ y2
] j , [ ∂3u

∂ y3
] j , [ ∂4u

∂ y4
] j , for j = 1, 2, . . . , at the intersection of interface and grid

lines. The total number of auxiliary variables, denoted as N2, is 5 times that of all intersection
points. So N2 is one dimension smaller than N1. Matrix B is a sparse matrix of dimension
N1 × N2, and it is composed of the coefficients from the correction terms in the corrected
differences.

On the other hand, inspired by formula (23), approximation to all auxiliary variables leads
to

CU + I Q = Φ. (26)

Matrix C is a sparse matrix of dimension N2 × N1, and I is a N2 by N2 identity matrix.
An augmented matrix is therefore obtained by combining (25) and (26),

KW = R, (27)

where

K =
(
A B
C I

)

,W =
(
U
Q

)

, and R =
(
F
Φ

)

.

4.2 Schur Complement

As we discussed in the beginning, the matrix form of A enables FFT solution. Eliminating
U in (27) gives a Schur complement system for Q,

(I − CA−1B)Q = Φ − CA−1F, (28)

with variable Q solved by using biconjugate gradientmethod combinedwith FFT. The reason
for obtained Q first is that system (28) has a smaller dimension, and FFT can accelerate the
overall calculation. Finally U is solved by applying FFT one more time for the system

AU = (F − BQ). (29)

The details of implementation on Schur complement system (28) in biconjugate gradient
subroutines are formulated as below:
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1. One determines right side F̂ = Φ −CA−1F with one FFT for A−1F and some algebraic
operations.

2. For the left hand, thematrix vector product of (I−CA−1B)Q is completed in a few steps.
Based on the equivalence to I Q−CA−1BQ, a FFT is carried out on the product of BQ,
that’s to say, A−1(BQ). Then it is followed with simple multiplication and summation
for I Q−CA−1(BQ). The transpose of (I −CA−1B)T Q is done on I Q− BT A−1CT Q
in a similar fashion.

3. A initial guess Q = (0, 0, . . . , 0)T starts the biconjugate gradient iteration, and either the
maximal iteration number 5000 or error tolerance equal to 10−15 terminates the iteration.
The termination criteria are adjustable according to actual computational needs.

5 Numerical Experiments

In this section, we examine the performance of the proposed AMIBmethod in solving two or
three dimensional Poisson’s equation with an arbitrary combination of Dirichlet, Neumann,
and Robin boundary conditions on staggered boundaries. The numerical performance of
AMIB4, AMIB6, and AMIB8 methods will be tested, with the number after AMIB standing
for the designed order of accuracy. Moreover, we will compare the present AMIB with the
one in [8] in some examples. To denote the difference, we use S to stand for the study with
staggered boundary conditions. For example, AMIB4-S indicates the fourth order AMIB
method on staggered boundary conditions, while AMIB4-NS means the non-staggered case.

For simplicity, a square or cubic domain with uniform number of grids in each direction
is studied, and we follow the boundary notations in Fig. 2. The numerical accuracy and
convergence will be tested by comparing the numerical solutions and exact solutions under
the standard maximum norm and L2 norm defined as

L∞ = max
(i, j)∈S�−

|u(xi , y j ) − uh(xi , y j )|,

and

L2 =
√
√
√
√

1

N 2

∑

(i, j)∈S�−
|u(xi , y j ) − uh(xi , y j )|2,

where uh(xi , y j ), u(xi , y j ) are numerical and analytical solution, respectively. The set S�−
stands for the set of grid points on the given domain before the proposed domain expansion,
and N is the number of grid points in each direction of set S�− . In each table below, Nx , Ny

and Nz stand for grid numbers on the domain �− in each direction.
The convergence rate of the scheme will be examined by the formula

order =| log(||E1||/||E2||)
log(h1/h2)

|,

where ||Ei || is the error of mesh hi for i = 1, 2 using either of the above two defined norms
on N by N mesh. The solution calculation is facilitated by a FFT subroutine from Numerical
Recipes [19] with 2n summation. Due to the limitation of partition number equal to 2n in the
subroutine, non-bisection refinement of interval size is used in the error analysis.

All the experiments were carried out on MacBook Pro with 8.00 RAM and Intel 2.3 GHz
Intel Core i5.
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5.1 The AMIBMethod for Staggered Boundaries

In this subsection, we examine the AMIB method for Poisson problems in 2D and 3D with
Dirichlet conditions.

Example 1 This example focuses on validating the ultra high orders of our new schemes.
Restricted on a domain [−π

3 , π
3 ] × [−π

3 , π
3 ], a 2D Poisson’s equation is defined as

uxx + uyy = −2k2 sin(kx) cos(ky) (30)

with Dirichlet boundary condition determined by analytical solution u = sin(kx) cos(ky),
in which the wave number k could be chosen as a large number. Basically, only for highly
oscillating solutions, ultra high order of convergence can be detected numerically. In this
example, AMIB4-S, AMIB6-S, AMIB8-S are examined under above Dirichlet boundary
conditions with the parameter k set to be 5, 10 and 20, respectively.

The high order convergence of the AMIB-S methods is validated in Table 1. We note that
because different wave numbers are used, the error comparison among different orders does
not make much sense. In particular, the errors on the coarsest mesh for the AMIB8-S are
much larger than those of AMIB6-S, simply because the numerical problem becomes much
challenging for k = 20. It can be seen that the fourth and sixth orders are achieved. The
eighth order accuracy of AMIB8-S is not reached first, but is attained eventually when the
mesh resolution is fine enough.

As the computing time is related to the iteration number for solving the auxiliary variables
in Schur complement, we report the iteration number in the second last column in Table 1.
The last column is the CPU time in seconds for each case. For the present study, the iteration
number has no change or just increases a little when mesh size is doubled. Consequently,
we may say that the iteration number weakly depends the mesh size in this case, and the
AMIB-S method is very efficient.

Example 2 Both boundary condition implementation and solution of algebraic system are
conducted in dimension by dimension manner in the AMIBmethod. Thus, the generalization
of 2D AMIB method to 3D is straightforward. Here the performance of AMIB4-S is tested
by the following 3D Poisson problem:

uxx + uyy + uzz = sin(kx)ey+z(2 − k2) (31)

with Dirichlet boundary conditions determined by solution u = sin(kx)ey+z on the domain
[−π

3 , π
3 ] × [−π

3 , π
3 ] × [−π

3 , π
3 ]. Parameter k is set to be 5 in this 3D test. The fourth order

convergence of theAMIB4-S for 3DPoisson problem is numerically verified throughTable 2.
Moreover, the iteration number increases very little when the mesh size is doubled in each
dimension.

5.2 Comparison of AMIB-S and AMIB-NS

Because only a single variable Poisson’s equation and a uniform mesh are considered in this
paper, the users actually have the freedom to partition the domain into either staggered or
non-staggered boundaries. This means for many problems studied in this work, both AMIB-S
and AMIB-NS methods can be applied. It is thus interested to compare the performance of
two methods for solving the same problem. In particular, two special examples are designed
to demonstrate the advantages of AMIB-S over AMIB-NS.
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Table 1 Example 1—high order numerical error analysis

[Nx , Ny ] Error Order Error Order
AMIB4-S and k = 5

L∞ L2 iter no. CPU time

[27, 27] 2.917E−4 – 1.131E−4 – 11 4.912E−3

[59, 59] 1.133E−5 4.16 4.655E−6 4.08 11 1.168E−2

[123, 123] 5.956E−7 4.01 2.430E−7 4.02 10 3.261E−2

[251, 251] 3.563E−8 3.95 1.431E−8 3.97 10 0.125

[507, 507] 2.187E−9 3.97 8.795E−10 3.97 10 0.468

[Nx , Ny ] AMIB6-S and k = 10

L∞ L2 iter no. CPU time

[25, 25] 9.183E−4 – 3.241E−4 – 30 1.135E−2

[57, 57] 9.968E−6 5.48 2.885E−6 5.73 38 3.671E−2

[121, 121] 1.160E−7 5.92 3.479E−8 5.87 44 1.121

[249, 249] 1.762E−9 5.80 4.823E−10 5.93 48 0.447

[505, 505] 2.920E−11 5.80 7.158E−12 5.95 52 2.029

[Nx , Ny ] AMIB8-S and k = 20

L∞ L2

[23, 23] 4.932E−2 – 1.343E−2 – 35 1.451E−2

[55, 55] 1.439E−4 6.70 2.625E−5 7.15 46 5.823E−2

[119, 119] 4.458E−7 7.49 6.451E−8 7.79 53 0.177

[247, 247] 1.830E−9 7.53 2.013E−10 7.90 60 0.603

[503, 503] 6.625E−12 7.90 7.006E−13 7.96 63 2.482

Table 2 Example 2—fourth order numerical error analysis of the AMIB4-S on 3D Poisson’s equation

[Nx , Ny , Nz ] Error Order Error Order
AMIB4-S

L∞ L2 iter no. CPU time

[11, 11, 11] 2.291E−2 – 5.127E−3 – 31 4.098E−2

[27, 27, 27] 6.986E−4 3.89 1.780E−4 3.74 39 0.301

[59, 59, 59] 3.095E−5 3.99 7.852E−6 3.99 42 2.689

[123, 123, 123] 1.639E−6 4.00 4.161E−7 4.00 44 24.28

[251, 251, 251] 9.445E−8 4.00 2.400E−8 4.00 45 246.57

Example 3 This example shows some advantage of AMIB4-S over AMIB4-NS on Poisson
problem with analytical solution:

u = sin(kx)
(
y + π

3

) 5
2

(32)

on domain [−π
3 , π

3 ] × [−π
3 , π

3 ] with k = 5. On four sides, Dirichlet boundary conditions
are given by the analytical solution. Note that the analytical solution has good smoothness
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Table 3 Example 3—fourth order numerical error analysis of the AMIB4-S and AMIB4-NS

[Nx , Ny ] Error Order Error Order
AMIB4-S

L∞ L2 iter no. CPU time

[59, 59] 3.739E−5 – 1.270E−5 – 42 3.556E−2

[123, 123] 1.977E−6 4.00 6.737E−7 4.00 41 9.587E−2

[251, 251] 1.139E−7 4.00 3.946E−8 3.97 43 0.371

[507, 507] 6.847E−9 4.00 2.636E−9 3.85 44 1.690

[Nx , Ny ] AMIB4-NS

L∞ L2

[59, 59] 4.107E−5 – 1.341E−5 – 20 1.780E−2

[123, 123] 3.426E−6 3.34 8.878E−7 3.65 20 6.472E−2

[251, 251] 6.210E−7 2.38 1.062E−7 2.96 20 0.189

[507, 507] 1.116E−7 2.43 1.746E−8 2.56 21 0.845

except at y = −π
3 , on which the partial derivatives with respect to y are defined only up to

second order.
Recall that the implementations of AMIB-S and AMIB-NS are different for Dirichlet

conditions. For AMIB4-S, the boundary enforcement is basically through interpolation. Nev-
ertheless, for AMIB4-NS, numerical boundary conditions like (17) need to be constructed,
which essentially involve approximations of Laplacian along y = −π

3 . For the fourth order
central difference approximations, this requires at least sixth order regularity, which is obvi-
ously not true for the present example. Hence, order reduction is inevitable for theAMIB4-NS
scheme. On the other hand, since the boundary y = −π

3 is staggered with respect to the grid,
the approximation of Laplacian is simply avoided at this low-regularity boundary in the
AMIB4-S discretization. Consequently, the order of AMIB4-S is not affected by the low
regularity solution.

In the Table 3, we can observe that AMIB4-S is superior to AMIB4-NS in preserving
fourth order accuracy on the numerical results.

Example 4 In this example, we consider a problem in which the PDE is not satisfied at the
Dirichlet boundaries. Such a problem is frequently encountered in practice, due to some
randomness or perturbation in experimental measurements. On domain [−π

3 , π
3 ]×[−π

3 , π
3 ],

the Poisson problem is given as

uxx + uyy = −2k2 sin(kx) cos(ky) (33)

subject to a perturbed Dirichlet boundary condition defined by the function v(x, y) =
sin(k0x) cos(k0y). A small perturbation exists in parameters with k = k0 + ε. Here we
set k0 = 10 and ε = 0.01.

The AMIB4-NS scheme is not applicable to this problem, because the PDE solution will
not satisfy theDirichlet condition.Hence, the numerical boundary condition (17) based on the
PDE and Dirichlet condition is simply erroneous. This leaves the AMIB4-S scheme a natural
choice for the present problem, which can still maintain the fourth order convergence. As
there is no analytical solution for this problem,we generate reference solutions on sufficiently
dense mesh to carry out numerical analysis, which means we have to compare the solutions
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Table 4 Example 4—fourth order numerical error analysis of the AMIB4-S

[Nx , Ny ] Error Order Error Order
AMIB4-S

L∞ L2 iter no. CPU time

[10, 10] 1.486E−1 – 7.269E−2 – 16 3.812E−3

[20, 20] 1.129E−2 3.72 5.447E−3 3.74 26 4.205E−3

[40, 40] 8.478E−3 3.74 3.775E−4 3.99 31 1.404E−2

[80, 80] 5.703E−4 3.89 2.447E−5 4.00 36 4.107E−2

[160, 160] 3.617E−5 3.98 1.546E−6 4.00 39 0.238

on coarse meshes to those on fine meshes. Suppose that there are N grids on the coarse
mesh of the given domain and M grids on the fine mesh in each direction. Here M has to
be (1 − 2k2) times of N with k2 being negative integers such the each grid on coarse mesh
can agree with the grid on fine mesh at the same location. The index i on the coarse mesh
should correspond to j on fine mesh with the relation j = (1 − 2k2)i + k2. In this way, we
can use the solutions on sufficiently fine mesh as reference solutions for numerical analysis.
In our numerical experiments, we choose fine meshes with k2 as −39,−19,−9,−4 and −2
for grid number Nx equal to 10, 20, 40, 80, and 160 on the coarse meshes. In this example,
the FFT subroutine used is from FFTPACK.

The numerical results of the AMIB4-S scheme are reported in Table 4. It can be seen that
the AMIB4-S scheme is accurate and efficient for problems without analytical solutions.

Example 5 This example compares the results of AMIB4-S and AMIB4-NS for solving
Poisson’s equation

uxx + uyy = e−x2− y2

2 (4x2 + y2 − 3) (34)

subject to Robin boundary conditions:

u + ∂u

∂n
=

(
1 − π

3

)
e−x2− π2

18 on �1,

u + ∂u

∂n
=

(

1 + 2π

3

)

e− π2
9 − y2

2 on �2,

u + ∂u

∂n
=

(
1 + π

3

)
e−x2− π2

18 on �3,

u + ∂u

∂n
=

(

1 − 2π

3

)

e− π2
9 − y2

2 on �4,

which are determined by analytical solution u = e−x2− y2

2 on domain [−π
3 , π

3 ] × [−π
3 , π

3 ].
Table 5 shows that the both approaches give good accuracy in solving the Poisson equation
with Robin boundary conditions, but the iteration number of AMIB4-S is higher than that of
AMIB4-NS.

Example 6 Consider Poisson’s equation

uxx + uyy = −2ex sin(x + y) − ex cos(x + y) (35)
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Table 5 Example 5—fourth order numerical error analysis

[Nx , Ny ] Error Order Error Order
AMIB4-S

L∞ L2 iter no. CPU time

[11, 11] 4.182E−4 – 3.017E−4 – 15 5.820E−3

[27, 27] 3.893E−6 5.21 2.161E−6 5.50 20 6.565E−3

[59, 59] 2.839E−7 3.35 1.177E−7 3.72 26 2.135E−2

[123, 123] 1.744E−8 3.80 8.023E−9 3.66 34 8.622E−2

[251, 251] 1.071E−9 3.92 5.162E−10 3.85 45 0.389

[Nx , Ny ] AMIB4-NS

L∞ L2 iter no. CPU time

[11, 11] 6.064E−4 – 3.669E−4 – 16 2.919E−3

[27, 27] 8.515E−6 4.46 4.075E−6 4.71 21 6.771E−3

[59, 59] 2.791E−7 4.26 1.322E−7 4.27 22 1.952E−2

[123, 123] 1.291E−8 4.13 6.417E−9 4.07 26 6.725E−2

[251, 251] 6.967E−10 4.07 3.594E−10 4.02 33 0.302

on domain [−π
3 , π

3 ] × [−π
3 , π

3 ], subject to mixed boundary conditions determined by the
exact solution u = ex cos(x + y).

u = ex cos
(
x + π

3

)
on �1,

u + ∂u

∂n
= e

π
3

(
2 cos

(π

3
+ y

)
− sin

(π

3
+ y

))
on �2,

u + ∂u

∂n
= ex

(
cos

(
x + π

3

)
− sin

(
x + π

3

))
on �3,

ux = e− π
3

(
cos

(
−π

3
+ y

)
− sin

(
−π

3
+ y

))
on �4.

Table 6 indicates that the AMIB4-S produces a fourth order of convergence. However, the
iterative number increases dramatically as Nx = Ny increases. So does the CPU time.
Consequently, the AMIB4-S scheme becomes inefficient comparing with the AMIB4-NS
scheme. For theAMIB4-NS scheme, the overall complexity is still on the order ofO(N log N )

for this 2D problem with N = Nx × Ny . In general, it is found that the AMIB4-S scheme
fails to reach the desired efficiency for problems with mixed boundary conditions as in this
example. Therefore, whenever the regular AMIB4-NS scheme is applicable, we recommend
to use the regular AMIB method for both accuracy and efficiency.

5.3 Combined AMIBMethod

Example 7 In this example, we combine AMIB4-S and AMIB4-NS schemes to attack one
type of problems for which high order fast Poisson solvers have never been reported. Practical
applications sometimes lead to the consideration of a staggered boundary on one end but a
non-staggered boundary on the other end. Since in theAMIBmethod, the boundary treatments
at left and right ends are independent, the AMIB4-S and AMIB4-NS schemes can be simply
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Table 6 Example 6—fourth order numerical error analysis of AMIB4-S for mixed boundary conditions

[Nx , Ny ] Error Order Error Order
AMIB4-S

L∞ L2 iter no. CPU time

[11, 11] 1.245E−4 – 5.487E−5 – 3.980E−3 31

[27, 27] 5.075E−6 3.56 1.595E−6 3.94 1.209E−2 48

[59, 59] 2.542E−7 3.83 7.063E−8 3.99 4.603E−2 69

[123, 123] 1.414E−8 3.93 3.727E−9 4.00 0.233 108

[251, 251] 8.333E−10 3.97 2.147E−10 4.00 1.323 157

[507, 507] 5.402E−11 3.89 1.716E−11 3.59 8.193 224

[Nx , Ny ] AMIB4-NS

L∞ L2 iter no. CPU time

[11, 11] 4.883E−4 – 1.469E−4 – 3.946E−3 28

[27, 27] 1.480E−5 3.66 5.404E−6 3.46 8.879E−3 31

[59, 59] 6.514E−7 3.89 2.586E−7 3.79 2.810E−2 38

[123, 123] 3.457E−8 3.95 1.419E−8 3.90 0.120 50

[251, 251] 1.987E−9 3.98 8.276E−10 3.96 0.578 67

[507, 507] 9.724E−11 4.28 3.177E−11 4.62 3.522 96

employed at either end. The combined AMIB method is flexible and robust in handling any
combination of grid setting.

We test ourmethod on the following problem.On domain [−π
3 , π

3 ]×[−π
3 , π

3 ], the Poisson
problem has

uxx + uyy = cos(ky)ey(−k2 + 1) (36)

with analytical solution u = cos(kx)ey . Suppose it is subject to boundary conditions and
grid setting as below:

uy = cos(kx)e− π
3 on �1,

u = cos

(
kπ

3

)

ey on �2,

u = cos(kx)e
π
3 on �3,

ux = sin

(
kπ

3

)

ey on �4.

In addition, we have staggered boundary condition imposed on the boundaries �1 and �4.

The results in Table 7 indicate that the combined AMIB method achieves a fourth order
convergence, while being efficient.

6 Summary

Due to the popularity of staggered grids in scientific computing for solving PDEs with mul-
tiple dependent variables, the development of fast Poisson solvers with staggered boundaries
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Table 7 Example 7—fourth order numerical error analysis of the AMIB4

[Nx , Ny ] Error Order Error Order
AMIB4

L∞ L2 iter no. CPU time

[27, 27] 5.680E−3 – 2.427E−3 – 30 9.736E−3

[59, 59] 2.356E−4 4.07 9.742E−5 4.64 39 2.959E−2

[123, 123] 1.194E−5 4.06 4.863E−6 4.08 51 0.123

[251, 251] 6.719E−7 4.03 2.715E−7 4.04 69 0.572

[507, 507] 3.984E−8 4.01 1.604E−8 4.02 101 3.964

deserves research attention. However, grand challenges exist for spectral methods and FFT
algorithms in handling staggered boundaries. The only known high order fast Poisson solver
[1] combines fourth order compact finite difference with multigrid for staggered Neumann
conditions. There are many unsolved open problems, such as Robin conditions, problems
with both staggered and non-staggered boundaries on both ends, etc.

Based on the AMIB method developed recently in [8], which provides high order fast
Poisson solvers for non-staggered boundaries, a systematic approach is introduced in this
paper to attack the aforementioned open problems with staggered boundaries. Different from
traditional direct FFT solution using Fourier analysis and synthesis, our AMIB methods
avoid the boundary treatment difficulty by transforming the original problem into immersed
boundary problems, so that the FFT inversion could be utilized. In treating Dirichlet and
Robin conditions, the AMIB method is efficient enough for solving Poisson problem with
staggered boundaries, for which fourth, sixth, eighth order accuracy have been observed. As
it uses high order central differences, multidimensional problems can be naturally solved by
means of tensor product.

Comparison between AMIB methods based on staggered and non-staggered boundary
settings has been conducted, because this paper only solves a single variable Poisson’s equa-
tion. Due to the difficulties associated with the numerical boundary condition in the Dirichlet
implementation, the non-staggered AMIB scheme is not applicable to problems in which the
PDE is not satisfied at the boundaries, while the staggered AMIB scheme works perfectly
for such problems. Moreover, for problems with low regularity solutions on the boundaries,
the non-staggered AMIB scheme experiences order reduction, while the staggered AMIB
scheme keeps the high order convergence. However, the efficiency of the proposed method
needs to be improved for problems with mixed types of boundary conditions. For such prob-
lems, the non-staggered AMIB method [8] performs robustly and should be employed. In
the future, we plan to investigate preconditioning strategies so that the iteration number of
the new method could be reduced to speed up the AMIB computation.
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