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Abstract: Numerical treatment of singular charges is a grand challenge in solving the Poisson-
Boltzmann (PB) equation for analyzing electrostatic interactions between the solute biomolecules
and the surrounding solvent with ions. For diffuse interface PB models in which solute and solvent
are separated by a smooth boundary, no effective algorithm for singular charges has been developed,
because the fundamental solution with a space dependent dielectric function is intractable. In this
work, a novel regularization formulation is proposed to capture the singularity analytically, which
is the first of its kind for diffuse interface PB models. The success lies in a dual decomposition –
besides decomposing the potential into Coulomb and reaction field components, the dielectric function
is also split into a constant base plus space changing part. Using the constant dielectric base, the
Coulomb potential is represented analytically via Green’s functions. After removing the singularity,
the reaction field potential satisfies a regularized PB equation with a smooth source. To validate the
proposed regularization, a Gaussian convolution surface (GCS) is also introduced, which efficiently
generates a diffuse interface for three-dimensional realistic biomolecules. The performance of the
proposed regularization is examined by considering both analytical and GCS diffuse interfaces, and
compared with the trilinear method. Moreover, the proposed GCS-regularization algorithm is validated
by calculating electrostatic free energies for a set of proteins and by estimating salt affinities for seven
protein complexes. The results are consistent with experimental data and estimates of sharp interface
PB models.
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1. Introduction

At atomistic level of detail, biological processes involve charged objects such as proteins, DNAs
and RNAs, immersed in an aquatic environment with mobile ions. To understand such processes, an
electrostatic analysis is indispensable, which concerns interactions between solute macromolecules,
the surrounding solvent molecules, and ions. Explicit solvent calculations are very expensive since
they involve millions of water molecules, while implicit solvent models, such as the
Poisson-Boltzmann (PB) equation [1–3], allow for fast analysis, by computing interactions via a mean
force approach. Physically, by treating the macromolecule and water as dielectric continuum, the PB
model combines the Gauss’s law in electrodynamics with Boltzmann distribution in statistical
thermodynamics. Mathematically, the PB equation is an elliptic partial differential equation (PDE)
with singular source terms to account for partial charges contained in the macromolecule, and is
defined on a domain consisting of solute and solvent regions.

In the classical PB model [1–3], a sharp interface is assumed as the solute-solvent boundary, and a
low dielectric constant is assigned to the biomolecule, while the water phase is considered as a high
dielectric constant medium. The shape of the interface is known as a molecular surface, and is usually
modeled according to the protein structure, as well as effect of water penetration. The most commonly
used models include Van der Waals (VdW) surface, solvent accessible surface (SAS) [4], solvent
excluded surface (SES) [5], and Gaussian surface [6]. Nevertheless, a sharp interface introduces a
discontinuity in the dielectric coefficient across the solute-solvent boundary, so that the PB potential
solution loses its regularity too. This demands special handling in numerical solution of the PB
equation [7, 8]. Moreover, geometrical singularities could occur at sharp molecular surfaces [9, 10].

It is known physically that the dielectric coefficient of a medium is determined by the polarizability
of the medium in responding to local electrostatic field. Thus, for biological and chemical systems in
molecular scales, the assumption of a sharp interface in the PB model as the solute-solvent boundary
seems to be unphysical [11–13]. In particular, beginning with macromolecule interior and moving
toward the molecular surface and further into the water phase, the polarizability constantly increases,
but should not undergo a sharp jump [14]. This motivates the development of many PB models by
treating the solute-solvent boundary as a smooth diffuse interface [9, 10, 15–18]. For example, in
studying charged objects immersed in liquids, a smooth implicit solvent model has been developed by
incorporating the structures of water dipoles and ions into mean field modeling, so that the effective
dielectric coefficient becomes a smoothly variant function [15]. A popular mathematical
formulation [9, 10, 16–18] for studying polar and non-polar interactions between the macromolecule
and solvent is to construct a free energy functional by incorporating various contributions, such as
electrostatic effects, protein dimensions, surface curvatures, etc. Then, the Euler-Lagrange variation
of the free energy minimization will lead to a coupled PDE system, and the resulted PB equation
naturally involves a diffuse interface type dielectric boundary.

This work focuses on numerical treatments of the singular sources in the PB equation, which take
the form of a sum of the Dirac delta distributions in modeling of the partial charges located at the
atomic centers of the biomolecules [1–3]. Mathematically, the electrostatic potential blows up at the
atom centers too, which introduces a great difficulty to the theoretical analysis [19]. Numerically, the
accurate treatment of singular charge sources in grid based computations is a significant issue for the
PB equation with either sharp or diffuse interfaces.
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The existing algorithms for the PB charge singularities in the classical sharp interface setting can
be classified into direct and indirect approaches. The most commonly used direct approach is to
distribute the point charges to their neighboring vertexes of the cube or element by means of a
trilinear approximation [3]. Alternatively, in a finite element variational form, one can apply the
definition of the delta function so that a point charge can be evaluated through the trial functions [20].
Being computationally efficient, these direct approaches usually involve a large approximation error.
To improve the accuracy, the approximation of partial charges by Gaussian function or high order
polynomials has also been considered in the PB literature [21, 22]. Nevertheless, these methods
involve a wide stencil of grid nodes for approximating a point charge. Numerically, when the point
charge is near the molecular surface, it could happen that one will use nodes outside the molecular
surface to approximate partial charges inside the protein. Recently, a second order accurate geometric
discretization of the multidimensional Dirac delta distribution has been introduced in [23] for solving
Poisson’s equation, in which the approximation is confined within a simplex. Special treatments have
been designed so that the second order accuracy is maintained even when the simplex is intersecting
with the dielectric interface.

In an indirect approach for solving the PB equation with a sharp interface, the inaccurate
discretization of the unbounded delta function by finite grid values is avoided. In the biophysics
community, an induced charge method has been developed [24, 25], in which the free energy is split
into Coulomb, reaction field, and ionic solvent components. The reaction field effects due to a
dielectric boundary can be physically reproduced by an appropriate mapping of induced polarization
charge placed on the molecular surface, so that one can use real charges rather than their grid
representation in calculating the free energy. In the mathematical literature, a series regularization
methods [8, 19, 26–33] have been introduced for handling singular charges by directly manipulating
the PDE. Typically, these methods involve a decomposition of the potential solution into two or three
components with a singular one to capture the singularity. In most methods, this singular component
is defined as the Coulomb potential and satisfies a Poisson’s equation with the same singular sources,
so that it can be analytically solved as Green’s functions. In the range separated regularization
method [26, 31], the delta functions are further decomposed into local and global components. The
singular component corresponding to the local singular sources can be accurately approximated by
tensor discretizations. After removing the calculated singular component, other potential components
in all regularizations become bounded so that their numerical computation becomes more accurate.
Recently, a comparison of four popular regularizations was conducted in [34] to investigate an
accuracy reduction issue. An accuracy recovery technique has been correspondingly designed so that
all four methods yield the same high precision.

To the best of the authors’ knowledge, only direct approaches have been implemented in the existing
diffuse interface PB models, and indirect approaches have never been developed for handling charge
sources, due to various challenges. In the induced charge method [24,25], the surface induced charges
are defined on the sharp molecular surface. It is uncertain if this method can be generalized for a
diffuse interface. For regularization methods, the difficulty is due to the space dependent dielectric
function in the Laplacian operator of the PB equation. Mathematically, the fundamental solution that
satisfies the Poisson’s equation with such a Laplacian and singular sources is not analytically available,
even though a semi-analytical method has been proposed to construct it for separable geometries via
quasi-harmonic approximations [35]. Without an analytical representation of the singular potential, it
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is unclear on how to formulate a regularization for the PB equation with diffuse interfaces.
The main goal of this paper to introduce the first regularization method to treat singular charges for

diffuse interface PB models. Following our recent study of Poisson’s equation with a diffuse
interface [36], the main idea of our new approach is to decompose the inhomogeneous dielectric
function into a constant base plus a space variant part. This allows us to capture the singular potential
by considering a Poisson’s equation with the constant base dielectric value, and analytically solve the
fundamental solution as Green’s functions. Through a simple PDE analysis, the other component, i.e.,
the reaction field potential, can be shown to be bounded. With a smooth dielectric setting and being
free of singular sources, the reaction field potential can be accurately approximated by any numerical
discretization.

The second goal of this work is to introduce a simple algorithm for generating a diffuse interface
in dealing with complex protein systems. In principle, the proposed regularization method can be
applied to all existing diffuse interface PB models [9, 10, 15–18]. Nevertheless, in order to validate
our regularization in an independent setting, a Gaussian convolution surface (GCS) will be introduced
together with a fast Fourier transform (FFT) implementation. The new algorithm can robustly handle
various protein geometries, and is very efficient for large complex systems. The GCS algorithm will
provide a smooth surface function to characterize the space, which takes a constant value of one and
zero, respectively, in the solute and solvent domains. In a narrow transition layer at the solute-solvent
boundary, the surface function decays smoothly from one to zero.

The rest of this paper is organized as follows. The proposed regularization method will be
introduced in Section 2. Its numerical implementation will be discussed too. In Section 3, the details
of the proposed GCS diffuse interface will be offered. Numerical tests will be carried out to examine
the GCS model parameters. The validation of the proposed regularization based on analytical surface
and GCS will be considered in Section 4 for several simple atomic systems. The biological
applications to small macromolecules, large proteins, and binding protein complexes will be
investigated in Section 5. Finally, this paper ends with a conclusion.

2. Poisson-Boltzmann model and regularization

In this section, we will develop a regularization approach for treating singular charge sources of the
Poisson-Boltzmann (PB) equation, where a smooth solute-solvent boundary is assumed to be given by
a known diffuse interface. Numerical discretization of the PB equation and energy calculation will be
discussed too.

2.1. A Poisson-Boltzmann model with a diffuse interface

In implicit solvent models, a macromolecule such as a protein is regarded as a solute, being
immersed into an aqueous solvent. Consider a large enough cubic domain Ω ⊂ R3 that contains this
three dimensional (3D) solute-solvent system. In a traditional two-dielectric PB model [1–3], the
domain Ω is divided by a molecule surface Γ into two parts, namely the molecule domain Ω− and
solvent domain Ω+, and the dielectric function ε(~r) is assumed to be a piecewise constant with ε = ε−

in Ω− and ε = ε+ in Ω+. See Figure 1a for an illustration.
In this paper, we will focus on a smooth dielectric PB model with a diffuse interface, see Figure 1b.

The domain Ω is separated into three regions: an interior domain Ωi, an exterior domain Ωe and a
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Figure 1. (a). A typical sharp interface solvation model. (b). A typical diffuse interface
solvation model.
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Figure 2. (a). An illustration of the surface function S along a straight line. (b). The
corresponding dielectric function ε.

transition layer Ωt in between Ωi and Ωe. The dielectric function ε(~r) will take constant values in
solute and solvent with ε(~r) = εi in Ωi and ε(~r) = εe in Ωe, with 0 < εi < εe. In the smooth solute-
solvent boundary Ωt, ε(~r) varies smoothly from εi to εe. Mathematically, the domain partition can be
characterized by a level set or surface function S (~r), which equals to one and zero, respectively, in Ωi

and Ωe. In Ωt, S (~r) monotonically decays from one to zero, so that S (~r) is at least a C2 continuous
function over the entire domain Ω. See Figure 2a for an illustration. The dielectric function is then
defined as [9, 12]

ε(~r) = S (~r)εi + (1 − S (~r))εe, for ~r ∈ Ω, (2.1)

which is also at least C2 continuous, see Figure 2b. In the present study, we will take εi = 1 for the
protein and εe = 80 for the water. The construction of the smeared surface function S (~r) for real
proteins will be discussed in the next section. We assume S (~r) being given in the following discussion
on regularization.

For the present setting, the nonlinear Poisson-Boltzmann (PB) equation for the electrostatic
potential u(~r) can be expressed as [12]

− ∇ · (ε(~r)∇u(~r)) + (1 − S (~r))κ2 sinh(u(~r)) = ρ(~r), in Ω, (2.2)
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in the dimensionless form. Here the source term is due to singular charges contained in the protein

ρ(~r) = 4π
ec

2

kBT

Nm∑
j=1

q jδ(~r − ~r j), in Ω, (2.3)

where δ(~r −~r j) is the Dirac delta distribution. Consequently, the solution u to Eq (2.2) shall be defined
in a weak form. We refer to the references [19, 32, 37] for more details about the weak solution and
well-posedness of the PB equation.

In this work, Nm is the total number of atoms in the solute molecule, kB is the Boltzmann constant,
and T is the temperature. For each atom, a partial charge q j in terms of the fundamental charge ec is
located at the atom center ~r j. Since ~r j ∈ Ωi for all j, ρ(~r) is only defined within in Ωi and S (~r) has
actually been dropped in the source term, i.e., S (~r)ρ(~r) = ρ(~r) in Eq (2.2). With S (~r), the coefficient of
the PB nonlinear term (1−S )κ2 is at least C2 continuous, where the modified Debye-Hückel parameter

κ takes a constant value κ2 =

(
2NAe2

c
100kBT

)
I = 8.486902807Å−2I. Here NA is the Avogadro’s Number and I

is the molar ionic strength. On the outer boundary ∂Ω, a Dirichlet boundary condition can be assumed

u(~r) = ub(~r) :=
ec

2

kBT

Nm∑
j=1

q j

εe|~r − ~r j|
e−|~r−~r j |

√
κ2
εe , on ∂Ω. (2.4)

We note that the potential u and its gradient ∇u are continuous everywhere in Ω, except at charge
centers. We also note that the dimensionless potential u =

ecφ

kBT , where the original electrostatic potential
φ has the unit kcal/mol/ec.

2.2. A novel regularization for the PB equation

Following our recent study [36] on the regularization of the Poisson’s equation with a diffuse
interface, we propose to regularize the PB equation (2.2) through a dual decomposition strategy. The
potential u is split into a Coulomb component uC and a reaction field component uRF with
u(~r) = uC(~r) + uRF(~r) in Ω. The dielectric function is decomposed to be a constant base value plus
space variant part ε(~r) = εi + ε̂(~r), with ε̂(~r) ≥ 0 for ~r ∈ Ω. Note that ε̂ = 0 in Ωi and ε̂ = εe − εi in Ωe.

The key of regularization is to capture the solution singularity analytically by the Green’s function.
Similar to [36], we assume that the Coulomb potential uC satisfies a homogeneous Poisson’s equation
with the singular source ρ given by Eq (2.3),−εi∆uC(~r) = ρ(~r) in R3,

uC(~r) = 0 as |~r| → ∞.
(2.5)

Then, the singular component uC is analytically given as the Green’s function G(~r)

uC(~r) = G(~r) :=
e2

c

kBT

Nm∑
j=1

q j

εi|~r − ~r j|
. (2.6)

After removing uC, the reaction field potential uRF(~r) will be bounded everywhere inside Ω.
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With the dual decomposition, the PB equation (2.2) can be expanded as

− ∇ · (ε̂∇uC)) − ∇ · (ε̂∇uRF) − εi∆uC − εi∆uRF + (1 − S )κ2 sinh(uC + uRF) = ρ, in Ω. (2.7)

By subtracting Eq (2.5) from Eq (2.7), the PB equation is free of singular charges

− ∇ · (ε̂∇uC) − ∇ · (ε̂∇uRF) − εi∆uRF + (1 − S )κ2 sinh(uC + uRF) = 0, in Ω. (2.8)

Since uC = G(~r) is known, we can move the first term to the right-hand side

− ∇ · (ε̂∇uRF) − εi∆uRF + (1 − S )κ2 sinh(uRF + G) = ∇ · (ε̂∇G), in Ω. (2.9)

This actually gives rise to a regularized PB equation for the reaction field component

− ∇ · (ε∇uRF) + (1 − S )κ2 sinh(uRF + G) = ∇ · (ε̂∇G), in Ω, (2.10)

where the gradient of Green’s function is analytically given as

∇G(~r) = −
e2

c

kBT

Nm∑
j=1

q j(~r − ~r j)
εi|~r − ~r j|

3
. (2.11)

The regularized source ∇ · (ε̂∇G) is smooth and non-vanishing only in Ωt. To see this, recall that
ε̂ = 0 inside Ωi. Even though ∇G is singular at atom centers ~r j in Ωi, the limit of ε̂∇G as ~r goes to ~r j

exists and actually equals to zero. Thus, ε̂∇G is a smooth function in the entire domain Ω, so that the
new source term can be rewritten as

∇ · (ε̂∇G) = ∇ε̂ · ∇G + ε̂∆G, in Ω. (2.12)

Since ∆G = 0 everywhere except at charge centers, whereas ε̂ = 0 inside Ωi including at charge centers,
we have ε̂∆G = 0 for all ~r ∈ Ω. Thus, this term can be dropped from the new source

∇ · (ε̂∇G) = ∇ε̂ · ∇G = ∇ε · ∇G, in Ω, (2.13)

where we have applied ∇ε = ∇ε̂, because ε and ε̂ differ by a constant εi. According to the definition
of ε by Eq (2.1), ∇ε = 0 in both molecule domain Ωi and solvent domain Ωe. So does ∇ε · ∇G. In the
transition layer Ωt, ∇G can be analytically calculated according to Eq (2.11), while ∇ε shall be smooth.
Thus, the regularized source ∇ε · ∇G is bounded and smooth in entire Ω, while being non-vanishing
only in Ωt.

In summary, we propose a new regularized PB equation for the reaction field potential−∇ · (ε∇uRF) + (1 − S )κ2 sinh(uRF + G) = ∇ε · ∇G in Ω,

uRF = ub(~r) −G(~r) on ∂Ω.
(2.14)

We note that the decomposition of the dielectric function ε = εi + ε̂ is used only in the derivation, and all
computations can be carried out based on ε(~r) only. Since (1 − S ) = 0 inside Ωi, the nonlinear term in
Eq (2.14) is also vanishing in Ωi. This guarantees that the reaction field potential uRF will be bounded
and smooth in Ω, and can be easily solved by any numerical method. Once uRF is computed from
Eq (2.14), the potential solution of the PB equation (2.2) is simply given by u = uRF + G. Throughout
this paper, the dielectric coefficients will be chosen as εi = 1 and εe = 80. The ionic strength will be
taken as I = 0.15 M unless specified otherwise.
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2.3. Numerical discretization

When the electrostatic potential is weak, sinh(u) can be approximated by u, which yields a linearized
PB (LPB) model. For simplicity, we will numerically validate the proposed regularization method by
considering the following LPB equation with a diffuse interface

− ∇ · (ε(~r)∇u(~r)) + (1 − S (~r))κ2u(~r) = ρ(~r), in Ω, (2.15)

subject to the same source term (2.3) and boundary condition (2.4). It can be similarly derived that
now the reaction field component satisfies the following regularized LPB equation−∇ · (ε∇uRF) + (1 − S )κ2uRF = ∇ε · ∇G − (1 − S )κ2G in Ω,

uRF = ub(~r) −G(~r) on ∂Ω.
(2.16)

Note that the second source term is vanishing inside Ωi due to (1− S ) factor. In Ωt and Ωe, the Green’s
function G(~r) is bounded and can be directly computed by Eq (2.6).

Consider a uniform mesh partition of the computational domain Ω, with Nx, Ny, Nz being the number
of the grid points in x, y, and z directions, respectively. Without the loss of generality, we assume the
grid spacing h in all x, y, and z directions to be the same, i.e., h = ∆x = ∆y = ∆z, with the unit Å. For
a function f defined at a node (xi, y j, zk), we denote fi, j,k = f (xi, y j, zk). For real proteins, the surface
function S (~r) has to be generated numerically. Thus, in the present numerical discretization, we will
assume S i, j,k being known for all i, j, and k. Similarly, by using Eq (2.1), we have all nodal values εi, j,k.
But we may not know S and ε values off-grid. In the source term, Gi, j,k and ∇Gi, j,k can be calculated
analytically.

The central finite difference method is employed to solve the regularized LPB equation (2.16). For
this purpose, we rewrite Eq (2.16) into its Cartesian component form

− ε

(
∂2uRF

∂x2 +
∂2uRF

∂x2 +
∂2uRF

∂z2

)
−
∂ε

∂x
∂uRF

∂x
−
∂ε

∂y
∂uRF

∂y
−
∂ε

∂z
∂uRF

∂z
+ (1 − S )κ2uRF

=
∂ε

∂x
∂G
∂x

+
∂ε

∂y
∂G
∂y

+
∂ε

∂z
∂G
∂z
− (1 − S )κ2G. (2.17)

Since both surface function S and dielectric function ε are available only on grid nodes, derivatives
of uRF and ε in Eq (2.17) will be discretized by using central differences involving nodal values. For
example, we have

∂2uRF

∂x2

∣∣∣∣∣
i, j,k

=
(uRF)i−1, j,k − 2(uRF)i, j,k + (uRF)i+1, j,k

h2 + O(h2), (2.18)

∂ε

∂x

∣∣∣∣∣
i, j,k

=
εi+1, j,k − εi−1, j,k

2h
+ O(h2). (2.19)

In the present study, the band-width of Ωt will be taken as 3Å in protein studies, which guarantees
a high accuracy in approximating ∇ε by Eq (2.19). After discretization, Eq (2.17) becomes a sparse
linear system with dimension N3-by-N3, where N3 = Nx × Ny × Nz. A biconjugate gradient iterative
solver [38] is employed to solve this linear system for uRF(xi, y j, zk). The order of accuracy of the entire
central difference discretization is two.
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For a comparison, the traditional trilinear method [3] will also be employed to treat singular charges.
In the trilinear method, for each charge q j in the source ρ located at ~r j, one will find a cubic cell
containing this charge. One will then distribute the charge q j into eight corner nodes of the cell.
Denote Qi, j,k as the resulting fractional charge at grid point (xi, y j, zk). One can then directly discretize
the LPB equation (2.15) by evaluating q j as eight Qi, j,k values in ρ, while the left hand side terms can
be approximated by the same second order central differences. We denote the resulting potential of the
trilinear method as uT L(xi, y j, zk). The trilinear distribution usually involves a huge error—much larger
than the discretization error of the central difference.

2.4. Electrostatic free energy

The energy released when the solute molecule is dissolved in solvent is known as the free energy
of solvation. The polar component of solvation free energy can be calculated in the PB model by
computing the difference between total electrostatic free energy of the macromolecule in the solvent
and in the vacuum [1–3]. For the linearized PB equation with a diffuse interface, i.e., Eq (2.15), this
involves two numerical solutions in traditional methods, such as the trilinear method. One first solves
Eq (2.15) for the water state to obtain u(~r). For the vacuum state, one solves a Poisson equation

− εi∆u0(~r) = ρ(~r), (2.20)

which is obtained by taking κ = 0 in the PB equation (2.15) and boundary condition (2.4), and εi = εe =

1 for defining ε in Eq (2.1). Here we denote the vacuum state solution as u0(~r). The polar solvation
free energy or electrostatic free energy is then calculated as

E =
1
2

kBT
∫

Ω

Nm∑
j=1

q jδ(~r − ~r j)(u(~r) − u0(~r))d~r =
1
2

kBT
Nm∑
j=1

q j(u(~r j) − u0(~r j)). (2.21)

We note that the solution of Eq (2.20) is actually the coulomb component uC, which is known
analytically as the Green’s function G. Nevertheless, in the trilinear method, one still numerically
solvers Eq (2.20) for u0. Because the same source approximation is utilized in the water and vacuum
states on the same mesh, the discretization error of trilinear distribution can be offset when evaluating
uT L − u0 in Eq (2.21) for free energy calculation [3].

For the regularization approach, one does not need to solve Eq (2.20), and just solves the PB
equation once in the water state for uRF . Then, the electrostatic free energy is computed as

E =
1
2

kBT
∫

Ω

Nm∑
j=1

q jδ(~r − ~r j)(u(~r) − uC(~r))d~r =
1
2

kBT
Nm∑
j=1

q juRF(~r j). (2.22)

Since the calculated potentials u, u0, and uRF are available only at grid nodes (xi, y j, zk), a linear
interpolation is conducted to evaluate these potentials at charge centers ~r j in Eqs (2.21) and (2.22). In
the present study, the electrostatic free energy will be reported in the unit of kcal/mol.

3. A simple diffuse interface model

In order to validate our regularization in an independent setting, we will introduce a simple
algorithm in this section to compute the surface function S (~r). For any protein, we will determine Γi
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Figure 3. (a). Commonly used molecular surfaces. (b). The idea of the Gaussian convolution
surface.

and Γe properly so that S (~r) = 1 in Ωi and S (~r) = 0 in Ωe, while S (~r) changes smoothly in Ωt. Our
intention is not to introduce another molecular surface definition. Instead, our focus is on
computational efficiency in treating large proteins, as well as numerical robustness in handling
complex shapes in a discrete setting.

3.1. Molecular surface and mathematical theory

We first briefly review several commonly used molecular surfaces, see Figure 3a. For a protein with
a total Nm atoms, we know the center ~rl and radius rl of each atom. By representing each atom as
a hard sphere, the Van der Waals (VdW) surface is simply defined as the smallest envelop enclosing
the union of all spheres. The solute-accessible surface (SAS) and solute-excluded surface (SES) [4, 5]
are defined by rolling a probe sphere around the VdW surface, to mimic the solvent penetration by the
water molecule. The probe radius rp will be fixed as 1.5Å in this study. The SAS is traced by the center
of the probe, while the SES is traced by the inward-facing surface of the probe, see Figure 3a. However,
these sharp interface molecular surface definitions are known to admit geometric singularities [9, 10].

We propose a new algorithm to generate a diffuse interface type smooth molecular surface based
on the SAS. We start by defining a Heaviside function H(~r) such that H = 1 when ~r is inside the SAS
or on the SAS, and H = 0 when ~r is outside. A smeared surface function S (~r) can be obtained by
convoluting H(~r) with a one-dimensional (1D) Gaussian kernel function K(x) defined as

K(x) =
1

σ
√

2π
exp

(
−

x2

2σ2

)
. (3.1)

This normalized Gaussian function represents the probability density function of a normal distribution
with a variance σ and the expected value being zero. The Gaussian convolution or filtering will be
carried out in x, y, and z directions in a tensor product style. Thus, the convolution of H and K along a
x grid line can be expressed as

(H ∗ K)(x) =

∫ ∞

−∞

H(x − t)K(t)dt, (3.2)

where we have abused the notation by denoting H as a 1D function function H(x). In Figure 3b, such a
1D Heaviside function H(x) is shown in the top portion. The convoluted function shown in the bottom
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Figure 4. (a). Initial setup of the GCS computation. (b) Gaussian kernel and its discrete
sampling.

portion clearly involves a smooth transition from 1 to 0, corresponding to a smooth solute-solvent
boundary.

Mathematically, the convolution equation (3.2) can be simply realized via the Fourier transform F ,
which transfers a physical space in x to a frequency space in ω,

F {H}(ω) = F {H(x)} =
1

2π

∫ ∞

−∞

H(x)eiωxdx. (3.3)

By the convolution theorem, we have

F {H(x) ∗ K(x)} = F {H(x)} × F {K(x)}. (3.4)

Thus, the convolution equation (3.2) can be carried out in three steps. First, both H(x) and K(x) are
transformed into frequency space to obtain F {H} and F {K}. Second, a scalar product of two Fourier
components produces the Fourier component F {H ∗ K}. Finally, an inverse Fourier transform yields
the convoluted function (H ∗ K)(x). The resulting function after convoluting H(~r) with K(x) in x, y,
and z directions is the desired smeared surface function S (~r), and the underlying diffuse interface will
be called as the Gaussian convolution surface (GCS).

The initial setup of the GCS computation is illustrated in Figure 4a. Centered around the SAS, we
aim to create a transition layer with the width being 3Å as the smooth solute-solvent boundary. This
guarantees that the solute domain Ω̃i inside the VdW surface Γ̃i has a fixed dielectric value ε = εi.
Mathematically, we define an enlarged SAS by augmenting the atomic radii by 2rp = 3Å, and denote
it as Γ̃e. Outside Γ̃e, the dielectric value is fixed as ε = εe in the solvent domain Ω̃e. Note that we have
added a tilde in all notations because they are physically defined before the Gaussian filtering. After
convolution, the actual domains and boundaries will be slightly different. We will discuss them in the
next subsection.

3.2. A fast algorithm for Gaussian convolution surface

In practice, the GCS is generated discretely based on a given uniform mesh with a spacing h. The
fast Fourier transform (FFT) will be adopted to accelerate the computational speed. In such
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Figure 5. Discrete convolution effect under zero-padding and FFT strategy.

computation, one does not need to specify the exact locations of Γ̃i and Γ̃e. Instead, it is sufficient to
generate nodal values of S (xi, y j, zk) for all grid nodes, which then can be utilized in the regularization
discretization.

We first numerically determine the Heaviside function. Consider a protein with Nm atoms. For
l = 1, 2, . . .Nm, the atom center (xl, yl, zl) and radius rl of the protein structure can be obtained from
the Protein Data Bank (PDB) by using the PDB ID. Note that the SAS is actually a VdW surface by
augmenting each atomic radius rl by the probe radius rp = 1.5Å. We first initiate H = 0 for all nodes
(xi, y j, zk) in Ω. Then for each atom, we will search for nearby nodes. If the distance between the
atom center and one node is close enough, i.e.,

√
(xl − xi)2 + (yl − y j)2 + (zl − zk)2 ≤ rl + rp, we set

H(xi, y j, zk) = 1.
A proper discrete sampling of Gaussian kernel K(x) is crucial for convoluting with the Heaviside

function H(xi, y j, zk). In order to make sure that the width of the transition layer is around 3Å, we may
control the window size of K(x) by adjusting σ. Another important factor is the width of the sampled
Gaussian kernel, see Figure 4b. In the present study, we set the half-width to be

W = σ
√
− ln(2πτ2σ2), (3.5)

which is obtained by solving K(W) = τ, where τ is a tolerance measuring the height of the truncated
Gaussian kernel above the x axis, see Figure 4b. The tolerance is fixed to be τ = 0.0025 in this work.
Then, the discrete kernel will be sampled uniformly in the interval [−W,W]. The total number of
sampling is related to the probe radius rp and the mesh spacing h,

M = 2
⌊rp

h

⌋
+ 1, (3.6)

where b·c is the floor function. For example, for rp = 1.5 and h = 0.5, we have M = 7. We then sample
K(x) defined by Eq (3.1) by a uniform grid with M nodes over the interval [−W,W], see Figure 4b. The
resulting vector is denoted as ~K with ~K ∈ RM.

The Gaussian convolution equation (3.2) will be carried out dimension by dimension. Without
the loss of generality, let us discuss the filtering in the x direction with Nx grid nodes. The discrete
Heaviside function is a vector of dimension Nx, and is denoted as ~H. An illustration of ~H and ~K is
shown in Figure 5, along with the convoluted vector. Note that by the definition of both Heaviside
function H(~r) and surface function S (~r), a periodic boundary condition could be assumed for both
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functions over the domain Ω in any Cartesian direction. Thus, their discretized versions also satisfy the
periodic boundary condition. Therefore, the convolution of two vectors ~H and ~K could be represented
either as linear convolution or circular convolution. For instance, in case of linear convolution, let us
formulate the convoluted vector ( ~H ? ~K) with its i-th element being

( ~H ? ~K)[i] =

M∑
j=1

~H[i + j − 1]~K[ j]. (3.7)

In order to make sure that the convoluted vector has dimension Nx, the discrete
convolution equation (3.7) shall be defined for i = 1, 2, . . .Nx. This means that the dimension ~H has to
be extended to Nx + M − 1. This is achieved by zero padding, i.e., one simply adds enough number of
zeros at the end of vector ~H. Moreover, in order to apply the FFT algorithm, the dimension of ~H
should be an integer power of 2. Thus, more zeros will be added into ~H such that the dimension N f is
the least integer satisfying N f > Nx + M − 1 and N f = 2m for some integer m. A vector ~H after zero
padding is shown in the top portion of Figure 5. The vector ~K is also padded with zeros such that its
dimension is N f as well, see the middle portion. By maintaining the same length for ~H and ~K, the
discrete Fourier components of both vectors, which are obtained by the FFT, can be multiplied
term-wisely. An inverse FFT will produce a vector of dimension N f , as shown in the bottom part of
Figure 5. Because the convolution result by the FFT is based on the circular convolution, the first
(M − 1)/2 points of this vector are ‘corrupted’ by circulation. Thus, we will skip the first (M − 1)/2
points, and read the next Nx values to define a vector ~S as the convoluted result. See Figure 5. We
note that the complexity for the FFT Gaussian convolution along one grid line is O(N f log N f ). The
entire GCS algorithm involves the discrete Gaussian filtering in x, y and z directions, and for all grid
lines. The overall complexity asymptotically equals to O(N3 log N3), where N3 = Nx × Ny × Nz is the
the total degree of freedom (DOF). It is noted that since the width M of the Gaussian kernel K(x) is
proportional to Nx, the direct convolution using Eq (3.7) will result in a complexity O(N2

3 ). This is
much slower than the proposed FFT procedure.

At last, we need to process the generated discrete function S (xi, y j, zk) to cancel numerical artifacts.
Even though the present Gaussian kernel is properly defined so that the convolution could be confined
within a band of 3Å, the numerical value of S could be slightly less than 1 inside Ω̃i, say 0.9999. In fact,
such a long tail smoothing is because the Fourier component of the Gaussian function is not a band-
limited function in the frequency domain. This is a well known drawback of the Gaussian filtering. To
rectify this, we usually conduct a post-processing after convolutions. For any node (xi, y j, zk) inside Γ̃i,
we simply reset S = 1. Similarly, for any node (xi, y j, zk) outside Γ̃e, we will force S = 0. The S values
between two boundaries will not be changed. Because the long tail smearing is so weak, the rectified
discrete function S (xi, y j, zk) are still sufficiently smooth for the regularization analysis.

Mathematically, the solute domain Ωi, transition region Ωt, solvent domain Ωe, and their boundaries
Γi and Γe can be defined based on the final S (xi, y j, zk). For example, Γi and Γe could be represented
as an isosurface S = 1 and S = 0, respectively. For most parts, these domains and boundaries will be
close to their counterparts defined initially in Figure 4a. Nevertheless, the new boundaries Γi and Γe

will become very smooth, which is different from Γ̃i and Γ̃e. Moreover, our GCS algorithm is designed
to guarantee that Ω̃i ⊂ Ωi and Ω̃e ⊂ Ωe. Finally, we note that the explicit definition of domains and
boundaries are actually unnecessary, because in our regularization computation, we just need to know
nodal values of the GSC surface function S (xi, y j, zk).
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Figure 6. (a). Plot of the surface function along a x grid line by using different σ2 values in
the one atom system. (b). Zoom-in of transition part of (a).

3.3. GCS model validation

In this subsection, we validate the GCS model numerically by considering some simple systems. In
all tests, a cubic domain Ω = [−10, 10]3 is employed. A uniform grid with mesh size N = Nx = Ny = Nz

is used with a spacing h = 20
N−1 .

(a) Heaviside (b) σ = 10−10 (c) σ = 10−6

(d) σ = 10−2 (e) σ = 1 (f) σ = 10

Figure 7. Heat-map plot of Heaviside function and GCS function with different σ values
cross the plane z = 0 for the diatomic system.

3.3.1. How σ2 influences the GCS

The Gaussian kernel in Eq (3.1) contains only one parameter: the variance σ, which controls the
shape of Gaussian function. We first explore how σ2 influences the GCS by studying a one-atom model
with radius R = 2 and the atom center located at the origin (0, 0, 0). Because of a simple geometry,
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the boundaries Γi and Γe could be fixed in the one-atom model throughout the Gaussian filtering, and
are chosen as spheres with radii ri = 2 and re = 5, respectively. In Figure 6, we plot S along a x grid
line y = z = 0 by considering different σ2 values and N = 401 for one atom system. Due to the design
of the GCS algorithm, all cases have the same S values for |~r| < ri = 2 and |~r| > re = 5. For the
transition layer ri ≤ |~r| ≤ re, the GCS shape depends on σ2. In particular, as σ2 becomes smaller, the
decay from S = 1 to S = 0 becomes steeper. It can be seen in Figure 6 that as σ2 → 0, the GCS curve
has a tendency to converge to a Heaviside function with radius r = 3.5. However, such a theoretical
convergence is impossible to be realized numerically with a finite mesh size N = 401. As can be seen
in Figure 6b, the GCS surface is still quite smooth when σ2 is as small as 10−20. Moreover, a too small
σ2 value is usually not welcomed in the PB simulations, because the central difference will yield a
large numerical error in resolving a rapid ε change. On the other hand, when σ2 is too large, it can be
seen that the decay becomes too slow in Figure 6b. The post-processing of S becomes critical in this
case. Otherwise, one may concern about the smoothness of S near ri and re. For simplicity, a median
value such as σ2 = 1 is what we recommend for general computations.

We next study a diatomic system with both radii being R = 2 and centers located at (±3, 0, 0). In
Figure 7, the GCS heat-map figures for the diatomic system are shown. By using N = 401, the initial
Heaviside function is plotted in part (a), while other parts use different σ2 values. Similar to the one
atom case, σ2 controls the steepness of decay in the transition layer. Moreover, the smoothness of
the GCS diffuse interface is well illustrated in Figure 7. For this diatomic system, the VdW surface
Γ̃i consists of two isolated spheres, and the enlarged SAS Γ̃e looks like the SAS, i.e., it involves two
geometrical singularities, see Figure 7a. Nevertheless, after Gaussian filtering, domains and boundaries
become sufficiently smooth. In particular, the solute domain Ωi becomes a connected region with
Ω̃i ⊂ Ωi. For the solvent domain, we also have Ω̃e ⊂ Ωe. In Ωt, S has a smooth decay from 1 to 0 in
any direction.

To further illustrate the smoothness of the GCS model, we change the distance between two atom
centers by fixing σ2 = 1 and other parameters, see Figure 8. In particular, six cases are considered
with the atom centers being chosen as (±2, 0, 0), (±2.3, 0, 0), (±2.6, 0, 0), (±2.9, 0, 0), (±3.2, 0, 0), and
(±3.5, 0, 0). In the first case, the VdW surface Γ̃i involves two touched spheres, while in the last case,
the enlarged SAS Γ̃e also consists of two touched spheres. After Gaussian smoothing, a connected
solute domain Ωi is resulted in the first five cases, while Ωi becomes two isolated spheres in the last
case. In all cases, S is sufficiently smooth, especially near the origin in the last case. These qualitative
studies indicate that the GCS model provides a suitable diffuse interface for the proposed
regularization. In the rest of this paper, unless specified otherwise, we will fix σ2 = 1 in all GCS
studies.

3.3.2. How grid size N influences the GCS

When N goes to ∞ or h → 0, the GCS will approach certain limit. Nevertheless, a finite N has to
be used in practice. We next explore how N influences the GCS, by considering the same one atom
system studied above. In Figure 9a, we plot S under different grid sizes N = 51, 101, ...401, along the
x-axis with y = 0 and z = 0. Visually, all curves coincide with each other, except the one with N = 51,
which is a little bit away from the others. It gives us a rough idea that changing grid size will not cause
much difference on the shape of GCS surfaces.

Two zoom-in plots are shown in Figure 9 to allow us to see some subtle changes. In particular,
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Figure 8. Heat-map plot of GCS function with different atom centers cross the plane z = 0
for the diatomic system. In all plots, σ2 = 1 and the radii are 2 for both atoms, with the
following atom centers: (a) (±2, 0, 0); (b) (±2.3, 0, 0); (c) (±2.6, 0, 0); (d) (±2.9, 0, 0); (e)
(±3.2, 0, 0); (f) (±3.5, 0, 0).

in Figure 9b, we focus on a region to the right of x = −re = −5 or in the orange box of part (a). In
Figure 9c, details are shown for a region to the left of x = −ri = −2 or in the green box of part (a). In
the transition layer [−re,−ri], curves with different N cross each other frequently. With a fine enough
resolution in part (c), the curves are separated so that we can read the order of N values according
the position of curves from top to bottom. The order is “51 → 101 → 251 → 301 → 151 →
351 → 401 → 201”, which is also shown in the legend. For Figure 9b, the zoom-in resolution is
insufficient, so that the curves are still clustered. The order from top to bottom is tentatively given as
“401→ 151→ 351→ 201→ 301→ 101→ 251→ 51”, and shown in the legend. We note that these
two sequences are given roughly because the curves cross each other and change their relative positions
frequently. What is interesting is that these two sequences have completely different orders. In general,
this means that the GCS convergence with respect to N is not monotonic. Consider a “ground truth”
curve as the asymptotic limit, the GCS curve will not converge to this limit from left, nor from right.
Instead, the GCS curve will oscillate around the limit in a random fashion. In next section, we will
show that the electrostatic free energy sensitively depends on the GCS curve near Γi, so that the energy
convergence with respect to N is also oscillatory.

To comprehend such oscillations, two diagrams are considered in Figure 10, where a “ground
truth” sharp interface is fixed. In each diagram, two uniform meshes are shown. The interface
representation problem underlying this study can be formulated like this: based on each coarse mesh,
the sharp interface is approximated by a reconstructed interface (not shown) by certain approach.
Now without knowing the sharp interface explicitly, the convergence of this approach can only be
assessed by examining two reconstructed interfaces, which, unfortunately, are affected by the
particular locations of the grid nodes with respect to the sharp interface. In the top subfigure of
Figure 10, grid nodes with two general N values, such as N = 15 and N = 21, are plotted. These
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Figure 9. (a). Plot of the surface function along a x grid line by using different N values. (b).
Zoom-in near x = −4.6. (c). Zoom-in near x = −2.6.

nodes are mostly different, except for a few points. Consequently, the interfaces reconstructed based
on two independent meshes are quite irrelevant. This is essentially why the convergence pattern in
Figure 9 by using a general sequence of N is oscillatory.

This motivates us to study the convergence by considering a special sequence of N. In the bottom
part of Figure 10, the mesh spacing is halved from N = 11 to N = 21. In this manner, the denser
mesh keeps all original nodes of the coarser mesh, while adding more nodes. It is expected that the
interface information contained in the reconstruction on the coarser mesh is preserved with newly
added information. A better convergence pattern could be resulted.

In Figure 11, we display the GCS curves of one atom system by considering N = 51, 101, 201, and
401. Similarly, two zoom-in plots are also given. It can be observed that the convergence is still not
monotonic, but becomes more regular. In particular, if we take the GCS curve for N = 401 as the
reference solution, and measure the distance of other curves away from it. Such a distance obviously
becomes smaller when N increases. Such a convergence can be illustrated visually and quantitatively.
Qualitatively, we can take the surface function S for N = 401 as the reference solution S re f . Note
that all grid nodes of the other three mesh sizes are also nodes for N = 401. This enables us to
calculate the absolute difference |S N − S re f | point-wisely, where S N is the surface function under grid
size N = 51, 101, or 201. Such differences are depicted in Figure 12 as surface plots on the plane
z = 0. The convergence is evidently. Quantitatively, we measure the differences by using the L2 norm:
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Figure 10. An illustration of how meshes sense the underlying interface. (a). Under an
irregular mesh refinement. (b). Under a regular mesh refinement.

L2 =
√∑

i, j,k |S N − S re f |
2/N3, and the results are found to be 1.4E-2, 3.5E-3, and 6.9E-4, respectively,

for N = 51, 101, and 201. This is obviously a convergence on the order of O(h2). Therefore, in the
following studies, when we examine the GCS convergence, we will take N = 51, 101, 201, and 401.

4. Model validation

In this section, we will validate the regularization method and the GCS model by solving the
linearized PB (LPB) equation for several simple atomic systems. Comparison of the regularization
method and the trilinear technique will be conducted too. In all cases, a cubic domain Ω = [−10, 10]3

is partitioned by a uniform mesh with the spacing h = 20
N−1 in all directions. Here the length unit for h

is Å.

4.1. One atom system with an analytical diffuse interface

Consider the one atom system studied in Section 3.3 with center at (0, 0, 0) and radius 2. We first
define an analytical smeared surface to verify the proposed regularization method. The boundaries Γi

and Γe are spheres with radii being ri = 2 and re = 5, respectively. In Ωi and Ωe, the level set function
takes constant values S (~r) = si = 1 and S (~r) = se = 0, respectively. In the transition band ri < |~r| < re,
it takes the form

S (~r) =
se − si

2
tanh(k(

|~r| − ri

re − ri
− 0.5) + 1) + si. (4.1)

where the parameter k controls the steepness of transition. We choose k = 6, which is large enough to
ensure that S (~r) is a smooth function throughout the domain Ω. This diffuse interface will be called
tanh-like surface in the following discussions.

We first demonstrate how error cancellation is so crucial for the trilinear method in calculating the
electrostatic free energy. Consider a point charge q1 = 1 at the atom center (0, 0, 0). In Figure 13,
the result of the regularization method is compared with that of the trilinear method in two subfigures.
Line plots of potentials along a x line with y = 0 and z = 0 are shown. As mentioned in Section 2.4,
the electrostatic free energy depends on u(~r) − G(~r). However, the trilinear method produces a huge
error in approximating the singular source q1. Thus, the plot of uT L−G has a sharp spike near x = 0. In
fact, since G(~r) is undefined at x = 0, in this plot, we re-defined the grid value G(0, 0, 0) as the average
of six nearest neighboring nodes. For the regularization method, Green’s function G is analytically
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Figure 11. (a). Plot of the surface function along a x grid line by using N = 51, 101, . . . , 401.
(b). Zoom-in near x = −4.2. (c). Zoom-in near x = −2.6.

excluded so that the reaction field potential uRF is free of singularity. Being invisible in Figure 13a, the
difference between two potentials uT L −G and uRF is actually quite minor away from the point charge.

As suggested in Eq (2.21), in calculating the electrostatic free energy by the trilinear method, one
will not use the Green’s function directly. Instead, one numerically solves the Poisson’s equation (2.20)
to obtain an approximated Green’s function u0. The plot of uT L − u0 against uRF in Figure 13b shows
the power of error cancellation. The error of singular source approximation has been compensated,
because the same approximation is invoked twice in uT L and u0. Consequently, uT L − u0 also yields a
constant potential inside the sphere, and behaves similarly to the uRF . The height difference between
uT L − u0 and uRF becomes smaller when N is larger.

We next examine the electrostatic free energies for the one atom system with one point charge at
the its center and tanh-like surface. The numerical results of the trilinear and regularization methods
are listed in Table 1 for various mesh sizes. For the regularization method, because the level function
S (~r) is analytically defined for the tanh-like surface, all terms in the regularized source of Eq (2.16)
can be computed analytically, including ∇ε. Thus, in this example, the numerical error of the
regularization is solely from finite difference discretization of the PB equation. When h becomes
smaller, the energy of the regularization method quickly approaches to a limit around −65.6
(kcal/mol). For the trilinear method, the charge distribution is actually not conducted, because for all
odd N values, the charge center (0, 0, 0) is a grid node. Thus, one simply approximates the delta
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Figure 12. Surface differences. (a). Between N = 51 and N = 401. (b). Between N = 101
and N = 401. (c). Between N = 201 and N = 401.
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Figure 13. Electrostatic potential comparisons for the one atom system with the analytical
diffuse interface. (a). uT L −G VS uRF . (b). uT L − u0 VS uRF .

function by 1
h3 on that node. Even though the error cancellation trick has been applied, the energy

predicted by the trilinear method is still inaccurate. When h is as small as h = 0.05, the energy is still
not close to that of the regularization method. With large h values, the errors are significant.

To fully illustrate the approximation error of the trilinear distribution, we next consider the same
one atom system and tanh-like surface with two charges q1 = q2 = 1 located at (±1.475, 0, 0). In
this way, these two charges are not located on grid nodes for all tested N values, so that trilinear
distributions are indeed carried out in all cases. The potentials generated by trilinear and regularization
are depicted in Figure 14. It can be seen that the potential is no longer flat inside the sphere. We note
that charge centers are close to the molecular surface in the present study, which mimics the usual
protein problems. Due to an intensive interaction between charges and ∇ε in diffuse interface, the
potential changes abruptly near the VdW surface x = ±2. This produces a strong grid error, especially
when h is large for the trilinear method. The regularization method performs robustly for this difficult
problem with a fast convergence. As can be seen in Table 1, energies for h < 1 are all around −303 and
the relative difference between N = 201 and N = 401 is as small as 0.11%. The energies predicted by
the trilinear method are not close to those of the regularization. In particular, taking the energy of the
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Table 1. Electrostatic free energies (kcal/mol) of one-atom system with different grid size N.
By using the tanh-like diffuse interface, two charge settings are studied.

Electrostatic free energy
One charge Two charges

N h Trilinear Regularization Trilinear Regularization
11 2 –175.3344 –56.8468 –414.6217 –271.3451
21 1 –94.2773 –64.8951 –486.4823 –310.5806
31 0.6667 –79.4891 –63.9885 –419.0835 –300.3787
41 0.5 –74.9363 –64.7367 –380.6996 –303.0649
51 0.4 –72.7830 –65.1096 –364.9318 –305.7947
101 0.2 –69.6594 –65.4422 –339.0436 –305.1510
201 0.1 –68.8730 –65.6210 –329.3492 –304.1162
401 0.05 –68.6046 –65.6644 –326.3818 –303.7689

Table 2. CPU time in seconds of the regularization and trilinear methods for solving the
one-atom system with different grid size N.

CPU time (s)
One charge Two charges

N h Trilinear Regularization Trilinear Regularization
11 2 6.230E − 4 4.610E − 4 7.490E − 4 5.610E − 4
21 1 9.498E − 3 5.594E − 3 1.096E − 2 6.531E − 3
41 0.5 1.921E − 1 1.149E − 1 2.134E − 1 1.520E − 1
51 0.4 4.537E − 1 3.058E − 1 1.026E + 0 7.435E − 1
101 0.2 1.248E + 1 8.003E + 0 1.379E + 1 9.220E + 0
201 0.1 1.845E + 2 1.114E + 2 2.205E + 2 1.754E + 2
401 0.05 3.641E + 3 1.712E + 3 2.564E + 3 3.054E + 3

regularization at N = 401 as a reference, the relative error of the trilinear method at h = 0.5 is about
25.33%. Since h = 0.5 is the mostly commonly used mesh spacing in real protein applications, the
trilinear energies are simply unreliable.

To further compare the regularization with the trilinear method, their CPU time for solving the
one-atom system is reported in Table 2. It can be seen that in most cases, the trilinear method
demands more CPU time than that of the regularization, because it needs to additionally solve the
Poisson equation (2.20) for calculating the electrostatic free energy. Here a biconjugate gradient
iterative algorithm [38] is employed for solving both the PB and Poisson equations. For the
regularization, the computation of the discrete source terms takes more time, so that for a large N like
N = 401, it becomes more expensive in the case of two charges.
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Figure 14. Line plots of uRF and uT L − u0 along a x line with y = 0 and z = 0.

4.2. Regularization method verification in GCS model

For the one atom studies above, tanh-like smeared surface can be constructed analytically.
However, such surface cannot be applied to more complicated molecules. In order to test the
regularization method for real problems, we have introduced an efficient FFT algorithm to generate a
Gaussian convolution surface (GCS). For simplicity, we will call the proposed regularization method
and GCS model as the REG-GCS method. In this subsection, we first validate the REG-GCS
algorithm for several atomic systems.

4.2.1. One atom system

We first investigate the impact of the GCS model by considering again the one atom system. Here
σ = 1 is used. One point charge q1 = 1 will be assumed at (0, 0, 0), and is treated by the regularization
method. Electrostatic free energies calculated based on both tanh-like and GCS surfaces are presented
in Table 3. Obviously, the energy converges to a different limit when a different diffuse interface is
employed. Another subtle difference can be seen in Figure 15a for the convergence lines with respect
to all N values. For the tanh-like surface, the same analytical surface is utilized for all N values.
Moreover, all source terms in the regularized PB equations are analytically calculated. Consequently,
the convergence pattern of the regularization method for the tanh-like surface is superior—the energy
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Table 3. Electrostatic free energies (kcal/mol) of one-atom system with different grid size N.
The regularization method is applied with tanh-like and GCS diffuse interfaces (σ = 1).

Electrostatic free energy
N h tanh-like GCS
51 0.4 –65.1096 –67.3895
101 0.2 –65.4422 –67.7956
151 0.1333 –65.5656 –68.5860
201 0.1 –65.6210 –69.0848
251 0.08 –65.6477 –67.6126
301 0.0667 –65.6423 –68.1096
351 0.0571 –65.6568 –68.4918
401 0.05 –65.6644 –68.7645
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Figure 15. Electrostatic free energy (kcal/mol) calculated by the regularization method by
using tanh-like and GCS surfaces in the one-atom model. (a). Convergence with respect to
many grid sizes N; (b). Convergence with respect to a special sequence of doubly refined N
values; (c). For the special sequence of N, the self-convergence of the GCS model becomes
monotonic.

converges monotonically and becomes almost flat for large N values. On the other hand, the GCS
convergence line is oscillatory in Figure 15a. Moreover, the magnitude of such oscillation decays, but
does not decay quickly when even larger N values are used. The convergence is impacted in two ways.
First, the GCS surface is constructed based on a given h value and the fixed width re − ri = 3. In other
words, a different smeared surface is used for a different N. Thus, the energy convergence line includes
not only the numerical convergence of the regularization method for solving the PB equation, but also
the convergence of GCS surface. Second, with the level set function S being defined numerically, ∇ε
in the regularized sources has to be approximated numerically, which further impact the convergence
of the PB solver.

In Section 3.3, we have discussed how grid size N influences the GCS model. The surface function
S (~r) has been shown to oscillate with respect to N in the transition region, and the essential reason of
such oscillation has been discussed. In particular, the GCS line plots near Γi roughly follow the order
“51 → 101 → 251 → 301 → 151 → 351 → 401 → 201” as shown in Figure 9c, with some lines
crossing each other. Since the zoom-in region is close to the charge center, we expect a correlation
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Figure 16. Electrostatic free energy (kcal/mol) of the REG-GCS method for different σ
values.

between the surface plot order and the sorted energy order. The energies in Table 3 can be re-ordered
from large to small, which gives an order “51 → 251 → 101 → 301 → 351 → 151 → 401 → 201”.
By comparing these two orders, we found that they are mostly the same. There are only two tuples
(101, 251) and (351, 151) in the GCS order that are switched in the energy order. This mismatch could
be due to the selected window for the zoom-in plot. We note that the the GCS order is changing from
place to place. So the present GCS order may have minor differences comparing with the surface plot
sequences in the innermost transit region. Moreover, for these two tuples, their energy differences are
about 0.1, which is less than the total average difference of the value about 0.3. For these reasons, the
oscillatory energy convergence pattern is believed to be due to the GCS convergence.

Like we mentioned in the Section 3.3 about the GCS convergence, a monotonic convergence is
unlikely when a general sequence of N is adopted. Nevertheless, if we choose a sequence of doubly
refined meshes such as 51, 101, 201, 401, the interface information contained in the coarse mesh will
be inherited in the fine mesh. This will results a better convergence in the GCS surface construction,
as well as the energy calculation. In Figure 15b, we limited ourselves to this special sequence of N,
and plot energies of the tanh-like and GCS surfaces. It can be seen that the energy convergence for
the GCS is still not monotonic. However, the magnitude of oscillation will decay quickly when h
is further halved. In particular, we take the energy at N = 401 as the reference value, and plot the
absolute errors for N = 51, 101, and 201 in Figure 15c. The self-convergence now becomes evidently
and is monotonic. This agrees with the finding presented in Figure 11c for the GCS convergence by
using the same sequence 51, 101, 201, 401. In the following studies, we will test the convergence of
the REG-GCS algorithm by only considering the doubly refined sequence N = 51, 101, 201, and 401.

By using N = 401, we next test how the free energy depends on the GCS parameter σ, by studying
the same one-atom system. As we mentioned before, as σ → 0, the GCS theoretically converges to
a sharp interface. In this case, this is the SAS with radius r = 3.5, whose analytical energy is known
to be −46.8447 (kcal/mol). It is interesting to examine if the GCS energy could converge to −46.8447
(kcal/mol) as σ goes to zero. However, we should emphasize that such a σ convergence is numerically
unreachable. As shown in Figure 6b, the GCS is still a smooth diffuse interface at σ = 10−10, which
is still far away from the Heaviside function, while an even smaller σ will be beyond the numerical
resolution of the grid size N = 401. In the present study, the electrostatic free energies obtained by
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Figure 17. Results of the REG-GCS method for the two-atoms system. (a). Surface plot
of uRF on the plane z = 0. (b). Self-convergence analysis of the electrostatic free energy
(kcal/mol).
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Figure 18. Difference in electrostatic free energy (kcal/mol) |E − Ere f | for 17 compounds.
For each molecule, the reference energy Ere f is taken as the one calculated by h = 0.05Å.

taking σ to be 1, 10−2, 10−4, 10−6, 10−8, and 10−10 are plotted in Figure 16 against − log10 σ. It can be
seen that starting from −68.7645 (kcal/mol) at σ = 1, the GCS free energy becomes closer to −46.8447
(kcal/mol) as σ becomes smaller, and shows a good tendency towards the sharp interface limit. In the
rest of studies, we will fix σ = 1 for simplicity.

4.2.2. Two atoms system

We next study a diatomic system with two atoms of the same radius 2. At two centers (±10/3, 0, 0),
two point charges q1 = q2 = 1 are assumed. The surface plot of the potential uRF calculated by the
REG-GCS method is shown in Figure 17a. Besides the surface plot over the plane z = 0, the contour
plot is also shown at the bottom of Figure 17a. It can be seen that uRF is no longer flat inside two
atoms. The smoothness of the potential contour plot also indicates the smoothness of the GCS diffuse
interface. The self-convergence analysis of the electrostatic free energy is depicted in Figure 17b. As
above, we treat the energy at N = 401 as exact, and calculate absolute errors for N = 51, 101, and 201.
Again, for this doubly refined sequence, the REG-GCS energy converges monotonically.
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Table 4. Electrostatic free energies (kcal/mol) of 17 compounds with different grid spacing
h = 0.4, 0.2, 0.1 and 0.05 Å.

Compound h = 0.4 h = 0.2 h = 0.1 h = 0.05
glycerol triacetate –5.5859 –5.8435 –6.2175 –6.1240
benzyl bromide –2.4127 –2.5128 –2.6296 –2.5913
benzyl chloride –2.5949 –2.5944 –2.7114 –2.6707
m-bis(trifluoromethyl)benzene –1.6184 –1.6538 –1.7213 –1.7017
N,N-dimethyl-p-methoxybenzamide –4.7921 –4.9632 –5.2105 –5.1445
N,N-4-trimethylbenzamide –4.0717 –4.2108 –4.4131 –4.3589
bis-2-chloroethyl ether –1.7917 –1.8995 –2.0339 –1.9984
1,1-diacetoxyethane –4.0385 –4.1670 –4.3924 –4.3299
1,1-diethoxyethane –1.6122 –1.7166 –1.8364 –1.8095
1,4-dioxane –2.6011 –2.6957 –2.8760 –2.8283
diethyl propanedioate –3.8696 –4.0384 –4.2788 –4.2165
dimethoxymethane –1.8382 –1.9678 –2.1123 –2.0750
ethylene glycol diacetate –3.9456 –4.1291 –4.3829 –4.3154
1,2-diethoxyethane –1.5662 –1.6326 –1.7431 –1.7139
diethyl sulfide –1.3971 –1.4242 –1.4866 –1.4696
phenyl formate –3.9594 –4.0447 –4.2625 –4.2003
midazole –6.0855 –6.3074 –6.6142 –6.5268

5. Biological applications

In this section, we carry out numerical experiments to test the performance of the proposed
regularization method and GCS diffuse interface for solving real biological systems. Considering the
LPB model, we will examine the convergence of the REG-GCS algorithm by studying small
compounds and proteins. Salt affinities of protein complexes will also be studied. The dielectric
coefficients are chosen as εi = 1 and εe = 80. The ionic strength is taken as I = 0.15 M, except in
studying the salt effect.

5.1. Numerical convergence

We first verify the numerical convergence of the proposed REG-GCS method by considering a set
of 17 small compounds. The charges, atomic coordinates, and radii are defined based on a
parameterization presented in [39]. The solvation free energies of this test set have been studied by
using different methods in the literature [39, 40]. We note that the present algorithm is designed to
compute the polar component of the solvation free energy. Thus, without non-polar components [40],
the present results cannot be directly compared with those in the literature. This test set is adopted in
the present study, because of small sizes of these molecular systems. This allows to use dense meshes
to verify the numerical convergence.

Since the physical dimensions of 17 compounds are different, we will adjust spacing h instead of
mesh size N in the present study. For each compound, we will choose a fixed computational domain Ω

and partition it into uniform meshes by using h = 0.4, 0.2, 0.1 and 0.05Å. Note that h is halved in each
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Table 5. Electrostatic free energy (kcal/mol) of the protein 1AHO calculated by the REG-
GCS method. For each tested mesh size N, the CPU time (seconds) in generating the GCS
surface and solving the PB equation is reported.

Surface generation Solving PB Equation
N h Energy CPU Rate CPU Rate
51 1.2 –746.6443 0.244 – 168.315 –
101 0.6 –567.6880 1.805 7.39 61.265 0.36
201 0.3 –558.4886 14.359 7.95 555.374 9.07
401 0.15 –525.6934 114.464 7.97 5777.622 10.40
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Figure 19. Plots of the surface potentials of the protein 1AHO at different isosurfaces S =

const. (a) S = 0.1; (b) S = 0.5; (c) S = 0.9.

refinement, in order to maintain the convergence pattern of the proposed method. The electrostatic free
energies computed by the REG-GCS method are listed in Table 4. A clear convergent trend is seen
in all compounds. To see the converging pattern better, we set the energy calculated by h = 0.05Å
(densest case) as the reference value for each molecule. The absolute errors of the other meshes are
calculated and depicted in Figure 18. It can be seen that the absolute error approaches to zero in a
monotonic manner. This agrees with our previous findings for atomic systems.

We next examine the convergence by considering a protein with protein databank (PDB) ID: 1AHO.
A fixed domain Ω = [0, 60]3Å is partitioned into uniform meshes with a grid size N = Nx = Ny = Nz.
By using N = 51, 101, 201, and 401, the calculated electrostatic free energies are reported in Table 5.
If we take the energy with N = 401 as the reference, the absolute errors for N = 51, 101, and 201, are
220.9509, 41.9946, and 32.7952, respectively, which shows a monotonic converge trend as well.

The CPU time for generating the GCS surface and solving the LPB equation is also reported in
Table 5. For each N, the majority of execution time was spent on solving the three-dimensional (3D)
PDE by using a biconjugate gradient iterative algorithm [38]. When one halves the spacing, the degree
of freedom (DOF) N3 increases by eight times. The CPU increment rate is calculated as the ratio of
CPU time values between two mesh levels. It is interesting to note that the CPU increment rate of the
GCS surface generation is about eight. This indicates the complexity of the proposed FFT Gaussian
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Table 6. Electrostatic free energies (kcal/mol) of a set of 21 proteins with h = 0.5Å.

PDB-ID Atom number Total charge rMIB REG-GCS REG-GCS-predict
1AHO 962 1 –920.28 –630.56 –939.81
1C75 985 –6 –1522.18 –1172.89 –1488.11
1J0P 1597 8 –2435.43 –1881.69 –2355.66
1TG0 1029 –12 –2797.92 –2436.10 –2762.73
1X8Q 2815 –1 –2544.05 –1711.55 –2501.48
1CBN 639 0 –379.55 –243.23 –468.69
1G6X 888 6 –1363.14 –1069.62 –1359.67
1IQZ 1171 –17 –4210.73 –3784.43 –4147.89
1IUA 1207 –1 –943.47 –646.21 –1019.01
1L9L 1226 11 –2896.89 –2444.89 –2822.62
1M1Q 1265 –7 –2023.72 –1548.87 –1936.72
1NWZ 1912 –6 –2086.55 –1579.30 –2134.99
1OK0 1076 –5 –1211.65 –879.69 –1218.51
1TQG 1660 –7 –1736.90 –1385.71 –1876.02
1VB0 913 3 –924.29 –646.66 –943.20
1VBW 1056 8 –1683.58 –1311.53 –1645.16
1W0N 1756 –5 –1760.92 –1273.34 –1788.56
1X6X 1732 0 –1559.74 –1108.59 –1617.59
1XMK 1268 1 –1253.35 –872.73 –1261.35
1ZUU 868 3 –1285.57 –1001.23 –1286.09
1ZZK 1252 1 –1348.43 –1005.53 –1390.01

convolution algorithm being O(N3 log N3) for a 3D DOF N3. For the numerical solution of the LPB
equation, the CPU time at N = 51 is larger than that at N = 101 for this problem. This is because
with a coarse spacing h = 1.2Å, the finite difference discretization error is quite significant so that the
biconjugate gradient solver takes too many iterations. When h is refined to h = 0.6Å, the iterative
solver actually converges faster so that the CPU time becomes short. When N is large enough, we can
see the CPU increment rate is larger than 10, which is normal for the biconjugate gradient method and
3D problems.

We next visualize the GCS surface for the 1AHO. With the GCS diffuse interface, we generate three
isosurfaces at S = 0.1, S = 0.5 and S = 0.9. It can be seen in Figure 19 that these three surfaces are
equivalent in a homological sense, and becomes bigger and smoother as S decreases. The electrostatic
potential uRF computed by the REG-GCS algorithm is mapped onto three isosurfaces. Such potential
plots can help us seeing the changing location of electrostatic potential and are helpful to the study
of protein interactions. As expected, the intensity of the potential map is stronger when S is larger or
closer to the VdW surface. The potential becomes weaker as S is approaching zero.

5.2. Electrostatic free energies of proteins

We next apply the REG-GCS method for calculating electrostatic free energy of proteins by using a
fixed mesh spacing h = 0.5Å. For this purpose, a set of 21 proteins which have been studied in [11] are
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Figure 20. (a). Electrostatic free energies (kcal/mol) of 21 proteins calculated by rMIB
Model and REG-GCS Model. (b). The difference in electrostatic free energies calculated by
rMIB Model and REG-GCS Model.

chosen. The results are listed in Table 6 under the name REG-GCS. In order to validate our new model,
the rMIB algorithm [8] has also been employed to compute the energies. In solving the LPB equation
with a sharp interface, the rMIB method treats the molecular surface by using a second order accurate
interface algorithm, and uses a two-component regularization to remove charge singularities. Thus, the
rMIB method is one of the most accurate algorithms for solving the PB equation [8]. Because of the
difference between sharp interface and diffuse interface PB models, the energies of the rMIB method
do not agree with those of the REG-GCS. However, certain correlation can be identified.

In Figure 20a, the free energies calculated by the rMIB and REG-GCS models are plotted against
the number of atoms for 21 proteins. It can be seen that the difference between two models becomes
larger as the atom number increases. In Figure 20b, such difference is shown against the atom number
Nm. A linear trend is clearly behind the data points. This motivates us to construct a linear fitting
model. Let us define the energy difference as D = E(rMIB) − E(REG-GCS), and assume that it is a
linear function of Nm, i.e., the number of atoms. By using the least squares fitting, we have obtained
D = −0.2594Nm − 59.6969 (kcal/mol).

Consider that it takes a longer computational time by applying the rMIB model, we propose a
simple formula to predict the free energy results of the sharp interface PB model by using our diffuse
interface PB model. With the REG-GCS energy, we will predict the rMIB energy as E(rMIB) ≈
E(REG-GCS)−0.2594Nm−59.6969 (kcal/mol). The resulted energies are also shown in Table 6 under
the name REG-GCS-predict. Obviously, these predictions are in good agreement with the original
rMIB energies. Moreover, the predictions are plotted against the original rMIB energies in Figure 21.
The Pearson correlation coefficient of the prediction results and actual rMIB results is found to be
r = 0.998. This means the prediction model is able to yield the rMIB energies almost precisely
identical.

This present study demonstrates the consistency between the REG-GCS model and rMIB model.
This is not surprising, because both models share many common counterparts, such as the linearized
PB equation, two-component regularization, and second order finite difference discretization. From
numerical point of view, the REG-GCS model is easier to implement.
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Figure 21. Comparison of the electrostatic free energies (kcal/mol) of 21 proteins obtained
from the rMIB model and the REG-GCS prediction. An auxiliary line y = x is showed for
helping to see the prediction effect. The Pearson correlation coefficient of this prediction is
r = 0.998.

Table 7. Comparison of binding affinities (kcal/mol2) of 7 protein complexes.

Binding affinity A
Complex PDB Experimental Ref. [41] Ref. [42] REG-GCS REG-GCS-scaled
E9Dnase-Im9 1EMV 2.17 1.29 2.18 0.50 1.97
Barnase-Barstar 1BRS 0.96 0.67 1.86 0.2 0.81
Thrombin-Hirudin 4HTC 0.82 0.90 0.69 0.38 1.48
Tem 1-Blip 1JTG 0.40 0.38 0.06 0.08 0.33
Amy2-Basi 1AVA 0.35 0.37 0.29 0.086 0.34
Hemoglobin tetramer 1A3N 0.16 0.23 -0.16 0.11 0.45
Lactoglobulin dimer 1BEB –1.62 –0.82 –1.71 –0.27 –1.05

5.3. Salt effect on protein-protein binding energies

We finally investigate the performance of the proposed REG-GCS model for the evaluation of the
salt effect on the binding of ligands, proteins, peptides, etc.. By solving the LPB model, one can
calculate the polar component of the binding energy (∆E), which measures the difference in the
electrostatic free energy between the protein complex and its monomers at a salt strength I.

∆E(I) = EAB(I) − EA(I) − EB(I), (5.1)

where EAB(I), EA(I) and EB(I) are the electrostatic free energies of the complex AB, monomer A and
monomer B, respectively, at a given ionic-strength I. The polar binding free energy can be further
split into salt independent and dependent parts. The salt dependent part can be analyzed by calculating
∆E(I) based on some salt strength I and at the zero salt concentration. By taking difference of these
two quantities, the salt dependent part of the binding free energy is defined as [41]

∆∆E(I) = ∆E(I) − ∆E(0), (5.2)
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Figure 22. Comparison of experimental and calculated salt effect of binding free
energies. Calculated slope include the original calculated slope [∂∆∆G(I)/∂Ln(I)] and scaled
calculated slope [∂∆∆Gm(I)/∂Ln(I)]. r is the Pearson correlation coefficient, s is the slope of
the fitting curve.

in which the salt independent part in the binding free energy is canceled out. The binding affinity A
(kcal/mol2) is then calculated as the slope ratio of the salt-dependent binding energy at certain salt
strength I against the natural logarithm of I. Mathematically, the binding affinity A can be defined as

A =
∂∆∆E(ln I)
∂(ln I)

, (5.3)

in which ln I is treated as the independent variable, and ∆∆E is regarded as a function of ln I.
Numerically, the binding affinity A is estimated by calculating ∆∆E at several salt strengths of I or
ln I, and conducting a least square fitting for the slope.

In this investigation, we tested the salt dependence of binding free energy on 7 protein-protein
complexes that have been tested in [41,42]. CHARMM force field has been used. The results calculated
by the proposed REG-GCS model with h = 0.5Å are listed in Table 7. For each complex, several salt
strengths of I are calculated within a range. For the E9Dnase-Im9 and Lactoglobulin dimer, the range is
[0.02, 0.08], while the other complexes use the range [0.02, 0.6]. The experiment results of the binding
affinity are known for these 7 complexes, and are also shown in the table. For a comparison, numerical
predictions by using a sharp interface PB model [41] and a Gaussian dielectric smooth PB model [42]
are also included. It can be seen that the salt effect is much weaker for the present diffuse interface PB
model.

In Figure 22, we plot the REG-GCS binding affinity A against the experimental value. With a weak
salt effect, the range of the REG-GCS binding affinity is much shorter than that of the experimental
data. Nevertheless, our results are actually highly related to the experimental results. The Pearson
correlation coefficient between the binding affinities of the REG-GCS method and experimental ones
is actually 0.9564.
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Physically, the much weaker salt effect is due to the nature of the diffuse interface model. The ionic
strength I determines the value of the modified Debye-Hückel parameter κ for the solvent. For sharp
interface and Gaussian-dielectric PB models [41, 42], the full strength of κ is applied quickly outside
the VdW surface or in traditional solvent region. For the present GCS diffuse interface, the salt effect
is loaded gradually with (1 − S )κ in the transition band, and is fully operated after 3Å away from
the VdW surface. Thus, the impact of changing I to the potential u becomes much insensitive in the
diffuse interface model. This is essentially why the REG-GCS salt effect becomes weaker, but is still
consistent with the experiment data.

An easy fix is carried out. Because of the underestimation, we will amplify the binding affinity of
the REG-GCS by a constant m to give Am = mA, such that the scaled salt dependent part of the binding
free energy m∆∆E(I) matches the experimental values in a least square sense. The best scaling factor is
calculated as m = 3.9201. The scaled binding affinity values are listed in Table 7 for the column REG-
GCS-scaled. The mean square error equals to 0.13 for such scaled Am and experimental A values. In
Figure 22, Am is also plotted against experimental A. Without any distortion, this scaling maintains the
same Pearson correlation coefficient 0.9564. For both original and scaled REG-GCS results, we also fit
them as straight lines in Figure 22. The corresponding slopes are 0.2075 and 0.8134, respectively. In
summary, with an appropriate scaling to account for the hidden physical feature, the REG-GCS diffuse
interface PB model produces decent estimates of the binding affinity. It is believed that the scaling
factor should be related to the width of the GCS transition layer. This will be explored in a future
work.

6. Conclusions

The main contribution of this work is the introduction of the first regularization method in the
literature for treating charge singularities of the Poisson-Boltzmann (PB) model in a diffuse interface
setting. Traditionally, only direct methods such as a trilinear distribution of the point charges are
available for diffuse interface PB models [9,10,15–18]. However, by approximating the delta function
by a finite quantity, the trilinear method produces a significant error at charge centers. Taking advantage
of an error cancellation in calculating the electrostatic free energy, the trilinear method can produce
bounded energy estimations. Nevertheless, the source approximation error is still large and makes this
method unreliable for large spacing h. On the contrary, the proposed regularization method avoids
singularity analytically, and produces a fast convergence in calculating free energies when the diffuse
interface is analytically constructed.

In order to validate the proposed regularization for more general problems, we have also
introduced a Gaussian convolution surface (GCS) to characterize a smooth solute-solvent boundary
for proteins with complex geometries. Physically, beginning with macromolecule interior and moving
into the water phase, the polarizability increases gradually, and should not undergo a sharp jump. In
other words, the dielectric function ε will increase smoothly from εi to εe over a transition band. This
is the physical justification of the diffuse interface modeling. Mathematically, the diffuse interface PB
equation with a smooth ε function guarantees a better regularity for the potential u near the
solute-solvent boundary, i.e., u is C∞ continuous in Ωt. For the sharp interface PB equation, u is
merely C0 continuous, so that extra efforts are required for mathematical analysis and numerical
computation. Computationally, based on the fast Fourier transform (FFT), the GCS generation is very
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efficient. In particular, the complexity of the GCS algorithm is O(N3), where N3 is the total degree of
freedom. We note N3 value depends on the physical size of protein domain and mesh spacing h. This
is different from the SES generation, which only depends on protein domain. Moreover, in testing the
performance of the proposed regularization (REG) together with the GCS model, we have found that
the energy convergence of the REG-GCS model is dominated by the GCS convergence, which is
typically oscillatory for a sequence of general mesh size N. Nevertheless, for a doubly refined
sequence of N, the energy convergence pattern becomes regular. We note that the bandwidth of Ωt

should be large enough, such as 3Å in the present study. Otherwise, finite difference approximation
may not able to capture the change of ∇ε in Ωt. Moreover, when the width shrinks or when σ goes to
zero, the GCS surface function becomes a Heaviside function. In this case, the present GCS-REG
model should not be applied. Instead, one should use various regularization schemes developed for
the sharp interface PB model.

In our future studies, it is interested to apply the proposed regularization in other diffuse interface
PB models [9, 10, 15–18]. Moreover, this study opens a new theoretical direction for developing
regularization formulations for other heterogeneous dielectric PB models, such as the super Gaussian
PB model [12]. The development of more accurate and efficient numerical algorithms for solving the
regularized PB equation with a smooth dielectric profile will also be explored. The GCS model
optimization by taking σ as a tunable parameter deserves further investigation.
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