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Abstract—Despite of the technology advancements, remote
sensing images usually suffer from a poor spatial resolution. To
resolve this issue, a lot of research efforts have been devoted
to developing resolution enhancement methods which retrieve a
high-resolution image out of its low-resolution degraded versions.
In this paper, we consider a nonlocal total variation (NLTV)
based super-resolution method which handles low-resolution
images with geometric deformations. In particular, we apply
the framework of alternating direction method of multipliers
(ADMM) to deduce an effective algorithm, which involves soft
thresholding and gradient descent. Effectiveness and robustness
to noise of the proposed method are verified by various numerical
experiments.

Index Terms—Remote sensing images, super-resolution image
reconstruction, nonlocal total variation, alternating direction
method of multipliers (ADMM)

I. INTRODUCTION

Remote sensing images have been playing an important
role in many areas including geology, oceanography, weather
forecasting, astrophysics, and radio astronomy. During the
acquisition and transition, image quality is usually deteriorated
due to limited imaging capabilities which results in a poor
spatial resolution, i.e., the side length of an image pixel.
In the meanwhile, other image degradations including noise,
blurring artifacts and geometric deformations are inevitably
present. Therefore, it is demanding to develop super-resolution
(SR) methods, which create a high-resolution (HR) image
using its low-resolution (LR) degraded versions. In this paper,
by assuming that LR images are aligned via registration in
advance, we study the multi-frame SR image enhancement
and recovery given blurring and sampling operators.

A lot of research efforts have been devoted to applying
various regularizations to solve the SR recovery problem.
For example, the total variation (TV) has been widely used
to preserve edge-like discontinuities during the SR recon-
struction [1], [2], [3], [4]. However, by assuming that the
ground truth is piecewise constant, TV based methods usually
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cause spurious staircasing artifacts in practice. As one of
the remedies, bilateral TV (BTV) was integrated into the
SR recovery framework by considering image smoothness in
large neighborhoods together with the L;-norm based fidelity
[5]. Furthermore, high-order TV regularized SR methods have
been developed, such as the fractional-order TV [6].

Nonlocal total variation (NLTV), which fully exploits patch-
wise similarity in the gradient domain of an image, has
shown great potential in image processing [7]. By taking
more nearby pixels into consideration, NLTV can capture
more neighborhood similarity than BTV. Thus NLTV and its
variants have been applied to SR recovery with promising
performance [8], [9]. Moreover, to deal with sophisticated
noise in real applications, we adopt the L;-norm fidelity
because of its outstanding performance in image processing
over the traditional Lo-norm fidelity [10], [11]. On the other
hand, implementation of NLTV involves intensive computation
of patchwise similarity which becomes a bottleneck of iterative
least-square solvers. To circumvent this problem, we recently
proposed a SR model based on NLTV and the L;-norm fidelity
(NLTV-L1) [12], which is solved by a primal-dual type of al-
gorithm. Duality brings the flexibility of converting nonsmooth
subproblems into smooth ones but introduces redundant dual
variables and corresponding subproblems. To further improve
efficiency and reduce the number of intermediate variables,
we resort to the operator splitting technique. In this work,
we convert the NLTV-L1 model into a linear constrained
optimization problem, and then apply the alternating direction
method of multipliers (ADMM) [13]. ADMM has recently
gained popularity in image processing and solving inverse
problems [14], [15], [16] since there are closed-form solutions
to the resultant subproblems that can be either implemented
by the Fast Fourier Transform (FFT) or expressed by simple
proximal operators. Furthermore, due to the presence of highly
ill-conditioned operators — blurring, geometric deformation,
and downsampling — in our problem, we solve the least squares
subproblem using the gradient descent in the Gauss-Seidel
manner. Numerical experiments have shown that this proposed
algorithm based on the inexact ADMM yields smaller recon-
struction error than the primal-dual type of algorithm.

The remainder of the paper is structured as follows. In
Section II, we present the NLTV-regularized super-resolution
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reconstruction model and propose an efficient ADMM-based
algorithm. A variety of numerical simulations are conducted to
justify effectiveness of our algorithm on producing a HR image
out of a set of geometrically deformed LR remote sensing
images with various noise settings in Section III.

II. PROPOSED SUPER-RESOLUTION METHOD

A. Nonlocal Operators

Given an image in its vector form {u(i)}},, the discrete
nonlocal gradient is defined as D,u(i,j) = v/w(i,7)(u(i) —
u(j)). Here we adopt the following symmetric weight func-
tion w(i, j) = exp(— 32, ka(®)luli + ) — u(j +1)[2/(2h2))
where k, is the Gaussian convolution kernel with the standard
deviation «, and h acts as a filtering scale. According to the
nonlocal gradient, the NLTV is characterized as ||D,ul|; =

>-iv/22; Douli, j)?. By extending the divergence theorem

to the nonlocal setting, the nonlocal divergence div,u € RM
is given by (divyu)(i) = >, (vw(d, jlu(i) — \/w(j, i)u(j)).
Notice that the summands in the nonlocal operators can be
empirically narrowed down to a search window of small size
instead of the whole image space. Straightforward computa-
tions lead to (D,u,v) = (u, div,v) which implies that div,,
is the adjoint operator of D,,.

B. Proposed SR Reconstruction Method

Let B, € RM with k = 1,...,N be the degraded
LR images of size v/M x v/M in lexicographic order, and
X € R™M the desired HR image where r denotes the
sampling factor. Assume that the relationship between the HR
image X and the observed LR image sequence {Bk}ivzl is
expressed by the linear equation By = Py HpFp X + ¢ for
k=1,...,N. Here F}, stands for the geometric deformation
between the HR image and its k-th LR observation, which
can be estimated by image registration. The blur operator
H, € R™MxrM consists of atmospheric blur and sensor
blur, and the downsampling operator P, € RM*"*M jnyolves
the factor » > 1. Moreover, ¢ is typically additive noise,
e.g., Gaussian noise. According to the properties of circulant
matrices, we have Fy Hy = Hy Fy. To simplify the discussion,
Py, Hy, and Fy, are provided in advance and Hy, is restricted to
the Gaussian blurring operator. Motivated by the robustness of
the L;-norm fidelity to noise and its advantage in preserving
image contrast [5], [10], [11], we propose the following NLTV
regularized SR image reconstruction model with a L;-norm
fidelity

N
rg}n];npkkaX — Billy + M| Dw Xy - (1)

To solve the above model, we first split variables by substitut-
ing Py Hy F, X — By, and D,, X with other variables, and then
directly apply ADMM. Specifically, we convert (1) into its

equivalent form by the change of variables U = Ay X — By
and V =D, ,X:
N

LY Ul + 1V

mir
X, U,V
k=1

st. ApX — B = Uy,

2
DpX = V.

By introducing the dual variables Uy and V, we define the
corresponding augmented Lagrangian function

S 2
L= ]; ||Uk||1 + ||VH1 + % ‘AkX — B, — U +UkH2

112
+@HDWX—V+VH .
2 2

Next we separate the primal variables into two groups:
(U,...,Un,V) and X. After applying the two-block
ADMM, we obtain the subproblems

X" — argmin £(X, UL, ..., UR, V™)
X

(U U vt = argmin £(X™ T Uy, ..., U, V),
Ui, Un,V

together with the update of the dual variables Ul, e UN, V.

Due to the separability of Uy’s and V in the (U, ..., Uy, V)-

subproblem, we can further get three groups of subproblems

N
R 2
X" Z argmin % 3 HAkx — B, UM+ U
X =1 2

+2||pux —vr i

2
)
2

Ut = argmin | U ||, + % HAkX — B, U+ U}

2
b
Uy 2

R 2
v+ = argmin | V]|, + % ‘DwX — v ||
1%

The X-subproblem has no closed-form solution expressed
by FFT since V,, cannot be diagonalized under the Fourier
transform. Moreover, matrix factorization based least-squares
solvers will easily get stuck due to the ill-conditioned Ag’s.
Thus we apply the gradient descent to inexactly solve the X-
subproblem but in the Gauss-Seidel manner, i.e., updating X
or its copy whenever it is available. The detailed algorithm is
described in Algorithm 1, where the soft thresholding operator
reads as S(I, p); = sign(l;) x max(|L;| — p,0).

III. NUMERICAL RESULTS

To demonstrate the performance of the proposed algorithm,
we test an image which simulates the 150-GHz microwave
channel of the hurricane Rita in 2005. The data is generated to
match the realistic configuartion of the Advanced Microwave
Sounding Unit (AMSU-B) instrument, which is designed to
measure microwave radiation from multiple layers of the
atmosphere and record the sounding information. AMSU-B
data has played an important role in the weather analysis
and prediction. We use the cloud resolving numerical weather
prediction model (WRF) [17] to generate a test image of size
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Algorithm 1 Robust Super-Resolution Reconstruction Algo-
rithm Based on ADMM

INPUT: LR images {By}Y_,, sampling factor r € N,
geometric deformation F},, blurring operator H,, parameters
P1, p2 > 0, maximum iteration number Ny and tolerance
tol.

OUTPUT: HR image X.

For £ = 1,..., N, set the downsampling operator Pj and
Ak = PkaFk.
Set X = MedianAndShift(B, ..., By).
Set U2, VO, U2, VO = 0.
for n=0,1,2,..., Ny do

Set 70 = X"

for k=0,1,...,N —1do

ZY = 7k — o) AX (AR ZF — B, — U +U)
end for

Update X"t = ZN — pydivy, (D ZN — V™ + V™)
for k=0,1,...,N —1do R
UMt = S(AR X" — By + U, 1/p1)
end for
Vit = S(Dy X" + VL N/ ps)
Uptt = Up + (A X"+ = By — U
vt — v + (Dan+1 _ Vn+1)
if || X"+ — X7, /|| X", < tol then
the algorithm terminates.
end if
end for

402 x 402 with the spatial resolution 1.3 km per pixel. Methods
to be compared include: Algorithm 1, SR method based on
BTV and Lj-norm fidelity (BTV-L1) [5] and our previous
work based on the primal-dual algorithm (NLTV-PD) [12].
Throughout the experiments, we use the same pre-processing
step and initial guess for all methods: F};’s in (1) are created
by the registration process, and the initial guess is generated
by applying a median filter to the upsampled and translated
LR images. Finally, we crop all the reconstructed images
to remove dark boundaries. To quantify the performance,
we use the peak signal-to-noise ratio (PSNR) defined as
PSNR = 20log(Imax/||X —X||2), where X is the estimation
of the noise-free image X and [,.x is the maximum possible
image intensity. All the experiments are implemented using
MATLAB R2019a for Windows 10 on a desktop PC with
64GB RAM and a 3.10GHz Intel Core i9-9960X CPU.

Following [12], we create a set of 64 noise-free LR images
of size 100 x 100 based on the relationship between B}, and
X in Section II. More specifically, the ground truth is first
rotated clockwise/counterclockwise by ¢ degrees, or translated
diagonally/antidiagonally by ¢ pixels for ¢ = 1,...,16. Note
that dark boundaries incurred from the geometric deformation
are removed. Next a 3 x 3 Gaussian blur with standard
deviation one is applied to all deformed images. Finally, the
blurry images are downsampled with the factor 4. As an
illustration, Fig. 1 displays two such degraded LR test images.

Fig. 1. LR test images. From left to right: clockwise rotated by 5 degrees
and diagonal translated by 5 pixels.

% N

Ground truth

Fig. 2. SR results without noise. PSNR(dB): 27.05 (BTV-L1), 28.28 (NLTV-
PD), 33.88 (Algorithm 1).

v{:v

BTV-L1 NLTV-PD Algorithm 1

A. Experiment 1: Test Noise-free Data

First, we test the noise-free data. In the NLTV-PD, we
choose the parameters A\ = 0.04, © = 0.03, 7 = 0.8, and
6 = 1 for which the performance is optimized. In addition,
the sizes of similarity and search window are set to 3 X 3
and 5 x b, respectively, and the filtering scale h = 0.25
in the weight function w. In Algorithm 1, we set p; = 1
and po = 1072, All the algorithms terminate when 100
iterations are reached. Numerical experiments have shown
that Algorithm 1 can achieve good performance within very
few iterations. Recovered HR images are shown in Fig. 2,
where close-up comparisons of a small region are outlined by
yellow lines. Visual quality comparison illustrates that BTV-
L1 tends to produce staircase artifacts especially in the smooth
regions. By contrast, the proposed method preserves local
geometries of an image. This phenomenon can be explained
by the formulation of NLTV which involves more neighboring
pixels for calculating the similarity. In addition, there is a
trade-off between search/similarity window size and computa-
tional time/complexity. Furthermore, the runtimes in seconds
(s) per iteration for all the methods are listed as follows:
0.0643s for BTV-L1, 0.5016s for NLTV-PD, and 0.7004s for
Algorithm 1. Despite being more computationally expensive
per iteration than NLTV-PD, the proposed algorithm yields a
high-resolution image with higher accuracy and better visual
quality.

B. Experiment 2: Test Gaussian Noise

Next we test the robustness of the algorithms to the Gaus-
sian noise. Specifically, we add Gaussian noise with zero mean
and standard deviation o € {1,2,3,4,5} to the noise-free LR
test images. The maximum iteration number for both BTV-
L1 and NLTV-PD is set as 300 while 100 for Algorithm 1.
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Method\o 1 2 3 3 5

BTV-L1 26.82  26.62 2639 2630 25.92

NLTV-PD 2744 2726 2679 26.60 26.10

Proposed 31.18  29.68 28.62 28.25 26.99
TABLE 1

SR RESULT COMPARISON WITH GAUSSIAN NOISE IN PSNR (DB).

Method\ 6 5 10 15 20 25

BTV-L1 27.05 27.05 27.07 27.03 26.62

NLTV-PD 2827 2824 2817 2790 26.93

Proposed 33.83 33.57 3293 3153 28.96
TABLE 11

SR RESULT COMPARISON WITH SALT-AND-PEPPER NOISE IN PSNR (DB).

For NLTV-PD, we choose 7 = 0.8,0.2,0.2,0.1,0.1 and use
the same parameters as those in the previous experiment
for various Gaussian noise settings. Similarly, we use the
same parameters as those in Experiment 1 for our algorithm.
Empirical results suggest that 7 has to be small when the noise
level is high. Table I exhibits the quantitative performance
comparison of all three algorithms in terms of PSNR under
various settings of Gaussian noise. Note that the proposed
method is not sensitive to the choice of parameters, in the sense
that a set of appropriate parameters work for the same category
of test images with various levels of noise. Surprisingly, the
proposed algorithm performs much better than NLTV-PD.

C. Experiment 3: Test Salt-and-Pepper Noise

To further verify the robustness to the noise, we test the Salt-
and-Pepper noise setting. Specifically, a sequence of noisy LR
images are generated by redefining the image intensities of the
noise-free data as follows:

Bmaxa if Bk(l) > Bmax - 61
By(i) = { Bi(i), if Bunin +6 < Bi(i) < Bmax — 65
Bmin7 if Bk(l) S Bmin + 0.

Here B,,.x and B, ;, are the maximum and minimum inten-
sities of the LR images By’s, respectively. The value of 6
varies in {5, 10, 15,20, 25} corresponding to the percentages
of wrong pixels: 0.28%, 0.6%, 1.22%, 2.53% and 5.63%. The
parameters for BTV-L1 and NLTV-PD are the same as those in
Experiment 2. We set p; = 1 and po = 107! in Algorithm 1.
The performance comparisons in terms of PSNR under various
0’s are shown in Table II. The results show that the proposed
algorithm performs best for most cases in terms of PSNR.

IV. CONCLUSIONS

In remote sensing, reconstruction of a HR image from
multiple LR degraded images with complex noise is highly ill-
posed as a consequence of image quality degradation caused
by blur, noise, sampling and deformation. In this paper, we
propose an effective SR method which combines NLTV and
L1-norm data fidelity in the pursuit of reconstruction accuracy
and robustness improvement. Specifically, a novel algorithm
is derived by following the framework of ADMM, whose
subproblems can be solved by Gauss-Seidel type of gradient
descent and shrinkage. A large amount of numerical results

show that the proposed algorithm is capable of retrieving
HR images with higher accuracy and visual quality than the
BTV and L; based method and our previous work based
on the primal-dual algorithm. The proposed approach is also
robust to various noise types, including Gaussian and Salt-and-
Pepper noise. As for the future work, we will integrate tensor
structures into the proposed work to reduce the computational
cost for the patchwise similarity in NLTV.
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