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This work further improves the pseudo-transient approach for the
Poisson Boltzmann equation (PBE) in the electrostatic analysis
of solvated biomolecules. The numerical solution of the nonlinear
PBE is known to involve many difficulties, such as exponential non-
linear term, strong singularity by the source terms, and complex
dielectric interface. Recently, a pseudo-time ghost-fluid method
(GFM) has been developed in [S. Ahmed Ullah and S. Zhao, Ap-
plied Mathematics and Computation, 380, 125267, (2020)], by an-
alytically handling both nonlinearity and singular sources. The
GFM interface treatment not only captures the discontinuity in
the regularized potential and its flux across the molecular surface,
but also guarantees the stability and efficiency of the time integra-
tion. However, the molecular surface definition based on the MSMS
package is known to induce instability in some cases, and a nontriv-
ial Lagrangian-to-Eulerian conversion is indispensable for the GFM
finite difference discretization. In this paper, an Eulerian Solvent
Excluded Surface (ESES) is implemented to replace the MSMS for
defining the dielectric interface. The electrostatic analysis shows
that the ESES free energy is more accurate than that of the MSMS,
while being free of instability issues. Moreover, this work explores,
for the first time in the PBE literature, adaptive time integration
techniques for the pseudo-transient simulations. A major finding
is that the time increment Δt should become smaller as the time
increases, in order to maintain the temporal accuracy. This is oppo-
site to the common practice for the steady state convergence, and
is believed to be due to the PBE nonlinearity and its time split-
ting treatment. Effective adaptive schemes have been constructed
so that the pseudo-time GFM methods become more efficient than
the constant Δt ones.
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1. Introduction

The Poisson Boltzmann equation (PBE) [18] is a widely used implicit solvent
continuum model for studying electrostatic interaction between a biomole-
cule and its solvent environment. Such an electrostatic analysis plays an im-
portant role in understanding the structure, function, and dynamics of the
biomolecules. By treating the solute biomolecule and the solvent, respec-
tively, as low-dielectric and high-dielectric medium, the PBE is formulated
as a nonlinear elliptic partial differential equation with singular source terms
to account for partial charges contained in the macromolecule. The numer-
ical solution of the three-dimension (3D) PBE for real protein structures is
known to be challenging in various aspects, such as strong singularity due
to the charge sources [16], geometrically complicated molecular surface as
the solute-solvent boundary [10, 32], the exponential nonlinearity for strong
ionic strength [15, 40], and special accommodation needed for the regularity
loss of the potential across the dielectric interface [8]. To deal with these dif-
ficulties, various software packages have been successfully developed in the
literature for electrostatic analysis, such as DelPhi [24], AMBER [7], APBS
[3], MIBPB [8], and SDPBS [37].

Recently, a pseudo-transient approach [1] has been introduced for solv-
ing the PBE, which is equipped with effective components to overcome the
aforementioned numerical difficulties. In treating singular charge sources,
the two-component regularization method developed in [16] is adopted so
that the singular component of the potential can be analytically captured
by Green’s functions. One then needs to solve a regularized PBE with both
the solution and its flux being discontinuous across the dielectric interface.
To deal with the hyperbolic sine term, the regularized PBE boundary value
problem is converted into a pseudo-time steady-state problem. In a time
splitting setting, the nonlinear subsystem can be analytically integrated
[15, 40] so that the nonlinearity instability is suppressed. The time stepping
of the linear subsystem can be carried out by using fully implicit alternating
direction implicit (ADI) [15, 40] or locally one dimensional (LOD) [36] meth-
ods, both of which efficiently reduce the 3D problems into one-dimensional
(1D) ones. Moreover, the ghost-fluid method (GFM) originally developed in
[14, 26] has been reformulated in the ADI framework [1] for treating com-
plicated molecular surface and discontinuous solution across the dielectric
interface. The modified GFM minimizes the geometric information needed
for the molecular surface, and maintains the symmetry and diagonal dom-
inance of the 1D finite-difference matrix, so that the stability of ADI and
LOD methods is boosted [1].
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The first goal of this work is to further improve the pseudo-time GFM

approach by adopting a more suitable molecular surface. In the PBE liter-

ature, the solute-solvent boundary is usually taken as the solvent excluded

surface (SES) [22, 30], which is defined with a solvent molecule probe that

rolls around the Van der Waals spheres representing all atoms. The bound-

ary of the surface is determined by locations that the probe cannot access.

Connolly described how this surface can be analytically calculated through

a series of patches [10]. The MSMS software developed in [32] provides an

efficient generation of the SES based on a reduced surface, and has been

adopted in many PBE solvers, as well as in visualization softwares such as

Chimera [28] and VMD [19]. Mathematically, the MSMS output provides

a Lagrangian representation of the SES by means of a triangulated surface

mesh, whose quality is controlled by a specified density measuring triangle

vertices per angstrom [32]. In the pseudo-time GFM approach [1], in order

to facilitate the GFM interface treatments, a Lagrangian-to-Eulerian algo-

rithm similar to the one presented in [38] has been developed to convert the

MSMS triangulation into Cartesian grids.

However, some problems have been reported for the MSMS in the liter-

ature. For example, if an atom causes MSMS to fail to compute a surface,

MSMS will increase the atomic radius of that atom by 0.1Å and restart the

surface calculation [32]. After three failures, MSMS quits and fails to gen-

erate a surface, which happens in several large systems [9]. In other cases,

MSMS generates an incorrect surface [12, 25], especially when large densities

are employed. Moreover, the Lagrangian-to-Eulerian conversion is numeri-

cally challenging, because the SES molecular surface is known to have geo-

metrical singularities [38]. Because the GFM scheme only needs the interface

locations, and not the normal directions, the conversion in the pseudo-time

approach [1] is slightly simpler than that of the MIB method [38]. Still,

the computation becomes nontrivial when the density is large, because with

smaller sizes of triangles, the interaction of one Cartesian grid line with the

SES is hard to find. The MSMS induced instability is frequently encountered

in the PBE simulations.

Fortunately, an Eulerian Solvent Excluded Surface (ESES) algorithm

[25] has been constructed recently to directly calculate the analytical SES

patches given by Connolly [10] on Cartesian grids. The ESES computes

distances between Cartesian grid points and surface intersections as well

as the normal direction of the surface at the intersection, which can be

directly adopted in the pseudo-time GFM approach without further conver-

sion. Moreover, when applying the ESES in the existing MIB-PBE solver
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[8], it has been observed [25, 39] that the ESES surface is not only free of in-
stability issues, but also produces more accurate free energies. In particular,
while being stable, the MSMS solvation energy usually approaches to that of
the ESES as the MSMS density increases. This motivates us to replace the
MSMS by the ESES in the pseudo-time GFM approach and investigate the
stability and performance of the improved pseudo-time solver in this study.

The second goal of this work is to improve the computational efficiency
of the pseudo-time GFM approach. In the pseudo-transient approach, the
solution of the PBE is recovered from the steady-state solution of the pseudo-
time dependent PBE [15, 40], which means that a long time integration is
required. In order to allow the use of a large time increment Δt for efficiency,
implicit methods are normally employed in pseudo-time approaches [15, 36,
13]. For implicit schemes, a large linear system obtained from discretizing
the 3D PBE has to be solved in each time step. Consider the spatial degree
of freedom to be N for the 3D system. Both alternating direction implicit
(ADI) [15, 40] and locally one dimensional (LOD) [36] methods have been
developed to achieve the fastest speed for solving the PBE linear systems. By
converting 3D systems into a set of independent 1D systems, the complexity
of ADI and LOD is just O(N logN) for each time step.

In the present study, we will develop an adaptive pseudo-time approach
for the PBE. Our aim is to select Δt adaptively so that total time steps
could be minimized, without sacrificing the temporal accuracy. In the litera-
ture, the use of adaptive time step is a well known technique for an efficient
convergence to the steady state [4, 21, 29]. Because the solution approaches
to certain limit as the time t becomes larger, the temporal variation of the
solution becomes smaller. Thus, one tends to use a large Δt as t increases
to save total time steps. However, the present study shows contradictory re-
sults. For the pseudo-time GFM approach, the final accuracy in estimating
the electrostatic free energy depends on Δt critically. In order to maintain
such accuracy, a small enough Δt is required before the steady state. There-
fore, our strategy for minimizing the time steps is using a large Δt initially,
and reduce it as t increases. Moreover, the proportional–integral–derivative
(PID) method [35] originally developed for fluid dynamics is employed to
select Δt adaptively.

The rest of this paper is organized as follows. In Section 2, we will briefly
review the PBE model and the pseudo-time GFM approach. The replace-
ment of the MSMS by the ESES will be discussed in Section 3, together
with numerical validation of the new pseudo-time GFM solver based on the
ESES. The adaptive time selection of this new solver will be considered in
Section 4. Several strategies will be explored so that a tradeoff could be
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achieved in minimizing the CPU time and preserving the accuracy. A large
scale tests of proteins will be carried out to benchmark the new PBE solvers.
Finally, this paper ends with a conclusion.

2. Poisson-Boltzmann equation and pseudo-time methods

In this section, we briefly review the physical model and the pseudo-time
ghost-fluid method (GFM) developed in [1]. The proposed numerical im-
provements will be presented in next two sections.

2.1. Poisson-Boltzmann equation

The Poisson-Boltzmann Equation (PBE) is the governing equation of elec-
trostatics for a solute macromolecule immersed in an aqueous solvent envi-
ronment [18]. After loading a protein structure from protein databank [5],
a large enough cubic domain Ω ∈ R

3 is first identified as the computational
domain. This domain consists of two regions, Ω− and Ω+, respectively, for
solute and solvent, with the solute-solvent boundary defined by the molecu-
lar surface Γ [22, 30]. A two-dimensional representation of this domain can
be seen in Fig. 1. The electrostatic interaction of this solute-solvent system
for r ∈ Ω is governed by the nonlinear PBE as

(1) −∇ · (ε(r)∇φ(r)) + κ2(r) sinh(φ(r)) = ρ(r),

where φ(r) is the electrostatic potential and the singular source ρ(r) term
is defined as

(2) ρ(r) = 4π
e2c

kBT

Nc∑
i=1

qiδ(r− ri).

Here Nc is the total number of atoms in the solute molecule, T is the
temperature, kB is the Boltzmann constant, ec is the fundamental charge
and qi, in the same unit as ec is the partial charge on the ith atom of
the solute molecule located at position ri. On the outer boundary of Ω,
i.e., ∂Ω, a Dirichlet boundary condition is usually assumed in biomolecular
simulations

φ(r) = φb(r) :=
e2c

kBT

Nc∑
i=1

qie
−|r−ri|

√
κ2

ε+

ε+|r− ri|
, on ∂Ω.
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Figure 1: Illustration of the PBE domain.

The PBE is known as an elliptic interface problem in the literature,

because across the interface Γ, two parameters presented in (1) are piece-

wisely defined. The relative permittivity ε takes a low dielectric value ε−

in Ω− and a high dielectric value ε+ in Ω+. The Debye-Huckel parameter

κ2 = 8.486902807Å−2Is [1] for r ∈ Ω+ and κ = 0 for r ∈ Ω−. Consequently,
the potential losses its regularity across Γ. Numerically, in order to guaran-

tee the order of convergence, two physical conditions for the potential and

flux density have to be satisfied in the discretization. These jump conditions

are

(3) [φ]Γ = 0 and [εφn]Γ = 0.

where n = (nx, ny, nz) is the outer normal direction on the interface Γ and

φn = ∂φ
∂n is the directional derivative in n. The notation [f ]Γ = f+ − f−

represents the difference of the functional value across the interface Γ.

2.2. Pseudo-transient approach

In the pseudo-transient approach [1], to overcome the numerical challenge

associated with the singular source ρ in (1), a two-component regularization

formulation proposed in [16] is first applied to transform the PBE into a

source free regularized PBE. Then in order to bypass the nonlinear instabil-

ity due to the exponential nonlinear term sinh(φ(r)), the PBE is converted

into a time-dependent steady state problem [15, 40]. The governing system



Adaptive pseudo-time methods for the PBE with ESES 91

can be given as [1]

∂u(r, t)

∂t
= ∇ · (ε(r)∇u(r, t))− κ2(r) sinh(u(r, t)), in Ω− ∪ Ω+,(4)

[u] = G, on Γ,(5) [
ε
∂u

∂n

]
= ε−

∂G

∂n
, on Γ,(6)

u = φb, on ∂Ω,(7)

where u(r, t) is the pseudo-time dependent potential. Its steady state solu-

tion gives rise to the regularized potential, from which the original potential

φ can be directly calculated [16]. We note that because of regularization, the

jump conditions (5) and (6) becomes nonhomogeneous, i.e., both the poten-

tial and its flux are now discontinuous. Here G(r) is the Green’s function

due to the singular charges [16]

(8) G(r) =
e2c

kBT

Nc∑
i=1

qi
ε−|r− ri|

.

Both G(r) and its gradient are analytically defined on Γ.

Two efficient operator splitting schemes have been proposed in the PBE

literature for analytically treating the nonlinear term sinh(u), i.e., the alter-

nating direction implicit (ADI) [15, 40] and locally-one-dimensional (LOD)

[36]. Let us consider a uniform mesh with a grid spacing h in all x, y and z

directions having Nx, Ny and Nz as the number of the grid points in each

direction. We assume the vector Un =
{
unijk

}
for i = 1, ...., Nx, j = 1, ...Ny,

and k = 1, ...Nz having all the nodal values of u at the time level tn as its

elements. To update Un at time level tn to Un+1 at time level tn+1 = tn+Δt,

a time splitting with two stages is employed in the ADI scheme [15, 40]

∂w

∂t
= −κ2 sinh(w) with Wn = Un and t ∈ [tn, tn+1] ,(9)

∂v

∂t
= ∇ · (ε∇v) with V n = Wn+1 and t ∈ [tn, tn+1] .(10)

Then, we take Un+1 = V n+1. The nonlinear subsystem (9) can be analyt-

ically integrated [1] so that the nonlinear instability is avoided. The linear

subsystem (10) subject to the same jump and boundary conditions (5)–(7)

is first integrated in time by the implicit Euler scheme. Then the linear
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system involving three-dimensional (3D) unknowns is decomposed into one-

dimensional (1D) linear algebraic systems [1]

(
1−Δtδ2x

)
v∗i,j,k =

[
1 + Δt

(
δ2y + δ2z

)]
vni,j,k,(11) (

1−Δtδ2y
)
v∗∗i,j,k = v∗i,j,k −Δtδ2y

(
vni,j,k

)
,(12) (

1−Δtδ2z
)
vn+1
i,j,k = v∗∗i,j,k −Δtδ2z

(
vni,j,k

)
.(13)

where δ2x, δ
2
y and δ2z are the central finite difference operators for the x,

y, and z directions, respectively. For example, away from the interface Γ,

we have δ2x(v
n
i,j,k) = εi,j,k

h2 (vni−1,j,k − 2vni,j,k + vni+1,j,k). Each ADI equation

has a tridiagonal structure, and can be efficiently solved by the Thomas

algorithm with a complexity like O(Nx logNx). Thus, for each time step,

the complexity of the entire ADI time splitting scheme is on the order of

O(N logN), where N = Nx ×Ny ×Nz is the spatial degree of freedom.

In the LOD scheme, the pseudo-time PBE (4) is split into three stages

∂w

∂t
= −1

2
κ2 sinh(w) with Wn = Un and t ∈ [tn, tn+1] ,

∂v

∂t
= ∇ · (ε∇v) with V n = Wn+1 and t ∈ [tn, tn+1] ,(14)

∂w̃

∂t
= −1

2
κ2 sinh(w̃) with W̃n = V n+1 and t ∈ [tn, tn+1] .

Then we have Un+1 = W̃n+1. The two nonlinear subsystems are analytically

integrated, while the linear subsystem subject to (5)–(7) is decomposed into

1D diffusion equations, which are then discretized by the Crank-Nicolson

scheme [1]

(
1− Δt

2
δ2x

)
v∗i,j,k =

(
1 +

Δt

2
δ2x

)
vni,j,k,(

1− Δt

2
δ2y

)
v∗∗i,j,k =

(
1 +

Δt

2
δ2y

)
v∗i,j,k,(

1− Δt

2
δ2z

)
vn+1
i,j,k =

(
1 +

Δt

2
δ2z

)
v∗∗i,j,k.

(15)

This method is called as the LODCN in [1], and will be simply referred to

as the LOD scheme in the present study.
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2.3. Modified ghost-fluid method

Because the potential u and its flux are discontinuous across the interface

Γ, jump conditions (5) and (6) have to be satisfied numerically in order to

guarantee spatial convergence. Moreover, in the ADI and LOD time dis-

cretizations, the 3D problem is decomposed into 1D ones in order to achieve

high efficiency. Most existing interface treatments in the literature cannot be

applied to the present problem, because jump conditions have to be enforced

in a tensor product decomposition manner to fit with the ADI/LOD frame-

work. There exists a few matched ADI methods [41, 23] that deliver a second

order of spatial accuracy for solving the parabolic interface problems in the

ADI framework, which, however, break the symmetry of the finite difference

matrix. The greatest contribution of Ref. [1] is the introduction of a mod-

ified ghost-fluid method (GFM), which not only handles the discontinuous

jumps in discretization, but also maintains a symmetric and tridiagonal ma-

trix structure for each ADI/LOD step. The key challenge here lies in the flux

jump condition (6), i.e., the normal direction is not a Cartesian direction

so that its direct discretization naturally couples all Cartesian directions.

In [1], this difficulty is overcame through an approximation of (6) by three

tensor product decomposed jump conditions in Cartesian directions

(16)

[
ε
∂u

∂x

]
≈ ε−

∂G

∂x
,

[
ε
∂u

∂y

]
≈ ε−

∂G

∂y
, and

[
ε
∂u

∂z

]
≈ ε−

∂G

∂z
.

In this manner, for each intersection point between the interface Γ and a

Cartesian grid line (say x-line), two 1D jump conditions are available, e.g.

[u] = G and [ε∂u∂x ] = ε− ∂G
∂x . These two 1D conditions can be enforced to

modify the finite difference operator δ2x near the interface, without breaking

the symmetry [1]. The modified GFM yields a first order global accuracy in

space.

2.4. Pseudo-time GFM algorithms

By combining the ADI/LOD time integration with the GFM spatial dis-

cretization, two pseudo-time GFM algorithms will be investigated in this

paper, i.e., the GFM-ADI and GFM-LOD schemes [1]. The PBE solvers are

usually benchmarked by the electrostatic free energy Esol, which is defined

as the energy released when the solute in free space is dissolved in the sol-

vent. In the regularization methods [16], one does not calculate the energy
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for the solute in the vacuum state. Instead, one just solves one regularized
PBE in the water state, and Esol can be approximated as

(17) Esol =
1

2
kBT

Nc∑
i=1

qiφRF (ri),

where φRF is the reaction-field potential. In the pseudo-time GFM method
[1], the reaction-field potential φRF (r) inside the solute domain Ω− is simply
the steady-state solution of u(r, t).

In pseudo-time integration, either a zero solution or the solution of the
linearized PBE is chosen as the initial solution u(r, 0). Then one will solve
the time-dependent PBE for a long time or until t = Tend to ensure that the
steady state is achieved. The steady-state convergence can also be checked
by the energy difference. In particular, define En

sol to be the free energy at
time step tn. We calculate the energy difference at each time step

(18) ΔEn
sol = |En

sol − En−1
sol |.

The convergence is assumed to be attained if the energy difference is less
than a tolerance, i.e., ΔEn

sol < TOL. Because the GFM discretization guar-
antees that each 1D finite difference matrix maintains symmetry, diagonally
dominate, and tridiagonal [1], the stability of the ADI and LOD methods is
much better than those in the previous pseudo-time approaches [15, 40, 36].
The fully-implicit GFM-ADI method allows the use of a large time incre-
ment, which is efficient enough for most steady-state simulations, while the
GFM-LOD method is unconditionally stable in time integration [1].

Numerical experiments in [1] indicate that both GFM-ADI and GFM-
LOD schemes are first order accurate in time. The GFM-ADI is more ac-
curate when a smaller Δt is used, while for large Δt values, GFM-LOD is
better. In terms of spatial accuracy, both methods achieve first order con-
vergence in L∞ norm, and the orders in L2 norm could be close to two.
For each time step, the complexity of both methods scales like O(N logN)
with N being the number of total spatial unknowns. However, a constant
Δt is employed in [1], so that many steps of time integration are commonly
required to reach the steady-state. In [1], the molecular surface is calculated
based on the triangulation from the MSMS package, and is converted via a
Lagrangian-to-Eulerian algorithm. Such a conversion is slightly simpler than
that in the MIB method [38], because in the GFM, only interface locations
are needed in (16), while the normal directions are not required. Neverthe-
less, the MSMS is known to induce instabilities in the PBE solution of some
systems, specially when the density is large.
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3. Eulerian Solvent Excluded Surface (ESES)

In this section, the implementation details of the ESES [25, 39] in the pseudo-
time GFM approach [1] are reported. Numerical experiments are carried out
to examine the stability and performance of the improved pseudo-time solver
over the original one based on the MSMS.

3.1. ESES algorithm

The Eulerian Solvent Excluded Surface (ESES) algorithm constructs the
SES analytically over Cartesian grids [25]. ESES takes as input the location
of atom centers and radii, and calculates the analytical SES patches given
by [10]. Then ESES marks all points contained in the solvent accessible
surface (SAS) as uncertain and those outside the SAS as outside the SES.
ESES creates several auxiliary geometric features for the analytic patches.
Membership or non-membership to these auxiliary features and the analytic
patches are used to determine the classification of the majority of uncertain
points. The remaining uncertain points are then classified by the number of
times the SES intersects a grid line containing the point [25]. This classi-
fication is an Eulerian representation of the SES. Finally, ESES computes
distances between grid points and surface intersections as well as the normal
direction of the surface at the intersection.

It has been observed that as MSMS surface density increases, the MSMS
surface visually approaches that defined by ESES [25]. On the other hand, for
the electrostatic free energy calculated by the MIB-PBE algorithm [8], the
MSMS energy approaches that of the ESES as the density becomes larger.
Moreover, the ESES is free of instability issues associated with the MSMS
and its usage in finite difference methods avoids the need of the Lagrangian-
to-Eulerian conversion [38]. These factors motivate us to replace the MSMS
by ESES in the pseudo-time GFM approach.

3.2. ESES implementation

In this subsection we briefly describe the input and output of ESES and
its integration with our source code. The input for ESES is the location of
atom centers and radii. Our software requires the atom positions, radii, and
charges, which we format in one file. We modified the ESES input method
to accept the file that includes the atom charge, which is not used in surface
calculation. This removes some duplicated data, as previously the radii and
charges were stored separately, each with a copy of the coordinates.
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ESES outputs a bounding box, the grid information, and the intersec-
tion information. The bounding box describes the number of points in each
dimension, as well as the start and end points. The grid information classi-
fies all points as inside or outside the molecule. The intersection information
contains every intersection of the grid lines with the SES, which is described
by the grid indices on either side of the surface, the distance from the in-
side grid point to the surface, the normal direction of the surface at the
intersection, and the atom indices for the patch that was intersected.

Although there is a parallelized version of ESES [39], we use it as a
single-threaded application. Utilizing the parallelized version would make
surface computation much quicker for very large proteins. We select either
the MSMS or ESES surface by command-line parameter. We set the ESES
probe radius to be rp = 1.4Å. ESES allows an extension parameter that
describes the distance between the outermost atoms in each direction and
the bounding box. We set this as the floor of 2rp, in order to approximate
the bounding box we use for the MSMS surface. The use of an extension
parameter is necessary to achieve the correct accuracy.

ESES is invoked via a system call from the Fortran code. In our tests of
different pseudo-time algorithms, the same protein and spatial mesh are re-
used. For such problems, re-computing the ESES surface for every test uses
unnecessary computation time. To conserve time for our simulations that
did not measure CPU time, we save the outputs in a directory categorized
by PDB ID and grid size. We then read in the bounding box and grid
information to set up our grid. In our previous MSMS package, we encoded
points inside the MSMS surface as −1 and outside as 1, while ESES does
the opposite. Upon input, we negate the ESES values to avoid changing
well-tested code.

Next, we read the intersection information. We use this to classify the
irregular points, those with a neighboring grid point on the other side of the
surface, which are used in the GFM described in [1]. We read the file once
to get the number of intersections and estimate the maximum number of
irregular points as no more than 3 times the number of intersections. We
re-read the intersection information into arrays declared for this maximum
number. This method of input for irregular points is not efficient in CPU or
memory usage, and is a point for future improvement.

3.3. ESES validation

In this subsection, we validate the ESES surface in the pseudo-time GFM
package, and compare it with the original one based on the MSMS surface.
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Since the visual difference between the ESES and MSMS has been studied
in [25], in the present study, we will focus on the difference in electrostatic
free energy calculated by the ESES and MSMS, based on the same pseudo-
time GFM algorithm. In all tests, the nonlinear PBE is solved with ε+ = 80
and ε− = 1. Two pseudo time methods, i.e., ADI and LODCN schemes [1]
will be employed, with the latter being referred to as the LOD for simplic-
ity. Throughout this paper, the length is reported with units of Å and the
electrostatic free energy has the unit of kcal/mol. For all pseudo-time simu-
lations in this section, the computation will stop if either the time t reaches
Tend = 10 or the difference in free energy satisfies En

sol < 10−4. We note
that Tend = 10 maybe not longer enough for the steady-state convergence in
protein studies. Nevertheless, this shortened computation will not affect our
comparison between the MSMS and ESES, and the conclusion to be drawn.

Figure 2: Convergence in electrostatic free energies for one atom model by
using varying grid sizes based on an ESES surface, an MSMS surface with
density 10, and an MSMS surface with density 100. Left: GFM-ADI; Right:
GFM-LOD.

3.3.1. Kirkwood sphere with one centered charge We consider a
spherical cavity with radius R = 2 and one centered charge q = 1. The
ionic strength is chosen such that the Debye-Huckle constant κ = 1. The
analytical energy for the one atom model is available for both Poisson’s
equation and linearized PBE, while the analytical energy for the nonlinear
PBE is unavailable, but is known to be very close to that of the Poisson’s
equation [16], i.e., ΔG = −81.9782 kcal/mol. In [1], in order to fairly test
the accuracy of the pseudo-time GFM algorithm, an exact sphere is used as
the molecular surface. In the present study, in order to compare the ESES
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with MSMS, the molecular surface is generated numerically. Visually, we
have verified that the ESES surface converges to the sphere as the grid size
h goes to zero. The default density of the MSMS surface is 10. By increasing
it from 10 to 100, the MSMS surface becomes closer to the sphere.

Table 1: Convergence in electrostatic free energy for one atom model. For
the MSMS, two densities values 10 and 100 are studied. In the last column,
the molecular surface is taken as the exact sphere [1].

h ESES MSMS(10) MSMS(100) Sphere [1]
GFM-ADI

1 -82.28624893 -82.51547246 -82.1541084 -82.132181
0.5 -82.22609329 -82.55340833 -82.22504644 -82.063724
0.25 -82.2146617 -82.56126599 -82.23883839 -82.051117
0.125 -82.21027973 -82.55973867 -82.23620811 -82.046462

GFM-LOD
1 -82.28627562 -82.51588465 -82.15442576 -82.132148
0.5 -82.22615189 -82.55359102 -82.22520013 -82.063684
0.25 -82.21470823 -82.56125163 -82.23882793 -82.051064
0.125 -82.21030578 -82.56070777 -82.23726394 -82.046402

We first test the energy convergence by considering various values of
h, see Fig. 2. Here the GFM-ADI and GFM-LOD algorithms are employed
with Δt = 0.001 and Tend = 10. It can be seen that the energies of the
ESES and MSMS with density 100 converge to the same place. The MSMS
surface with density 10 is slightly offset from the other two, but appears
to converge just as quickly to its final solvation free energy. Table 1 shows
a subset of these results and also includes the energies reported in [1] by
using the exact sphere as the molecular surface. With h ≤ 1, the energies
become pretty close to that of exact sphere. With the smallest h = 0.125,
the ESES and MSMS energy approaches to −82.21 and −82.23, respectively.
These values are reasonably close to the limiting value of the exact sphere,
i.e., −82.05. Nevertheless, we note that the difference between the limiting
energies of ESES/MSMS and exact sphere does not seem to approach to
zero as h → 0. This perhaps suggests that the numerical molecular surface
will always invoke certain approximation error in practice, even though it is
negligibly small.

In Fig. 3, self-convergence studies are carried out for both GFM-ADI
and GFM-LOD methods based on the ESES, MSMS with density 10, and
MSMS with density 100. For each case, we choose the reference energy to be
the one obtained by h = 0.125, and calculate the relative errors of other grid
sizes with respect to the reference energy. By plotting the error against the
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Figure 3: self-convergence study for the one atom model by taking the energy
computed with h = 0.125 as the reference solution for each case. Both GFM-
ADI and GFM-LOD methods are studied with an ESES surface, an MSMS
surface with density 10, and an MSMS surface with density 100. Also plotted
are the least squares regression lines of best fit for the log of each relative
error. Reported for each regression is the rate of convergence, r.

grid size, we are able to numerically analyze the self-convergence order of
the pseudo-time GFM algorithm. Such convergence rates are also shown in
the legends of each subfigure, and they are all above two. We note that the
self-convergence rate is not equivalent to the actual numerical order – the
latter can be numerically detected only when analytical energy is available.
But the self-convergence rate usually can imply the actual numerical order,
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Figure 4: The electrostatic free energy of the ESES and MSMS with different
densities for (a) one atom model with h = 0.5 and (b) protein 1a2e with h =
0.5. In (b), both GFM solvers diverged for the MSMS surface of 1a2e with
densities 40, 50, 60, 65, 70, 75, 100, and 105. For density 95, the converged
value of both solvers involves an extremely high error, and is not shown in
the figure. By increasing the surface density in both cases from 5 to 100, the
MSMS energy approaches that of the ESES.

especially when the grid size h is sufficiently small. This study demonstrates
that the GFM algorithm could achieve a spatially second order convergence
in free energy calculation.

We next demonstrate the convergence of the MSMS surface with respect
to the density. By using h = 0.5, the electrostatic free energy produced by
different MSMS densities are depicted in Fig. 4 (a). Obviously, the MSMS
energy converges to the ESES energy as density becomes larger. When den-
sity is above 50, the MSMS energy oscillates around the ESES energy. This
validates the accuracy of the ESES surface for the one atom model. We also
note that by using a large density, the MSMS produces more triangles to
represent the SES, which becomes numerically more demanding.

3.3.2. Electrostatics on proteins We next test the pseudo-time GFM
methods and ESES/MSMS molecular surface by studying several protein
systems with complex geometry, and the protein structures were processed
by using the CHARMM force field. The nonlinear PBE is solved with the
ionic strength Is = 0.15 M. For both GFM-ADI and GFM-LOD schemes,
we take Δt = 0.001 and Tend = 10.

We first focus on a particular protein with PDB ID: 1a2e [11]. The
electrostatic free energies calculated by the ESES, MSMS with density 10,
and MSMS with density 100, are shown in Fig. 5 for different grid size h.
By changing h from 2 to 0.25, the ESES energies for both GFM-ADI and
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Figure 5: Electrostatic free energies of 1a2e when using varying grid sizes
based on an ESES surface, an MSMS surface with density 10, and an MSMS
surface with density 100. For the MSMS with density 100, the energies were
non-negative for h = 1.5 and h = 2.0, while for h = 0.5, both pseudo-time
solvers diverged. These divergent values are not depicted in the figure.

GFM-LOD behave similarly and show a fast convergence. For the MSMS

with the default density 10, the energies for a large h obviously involve a

quite large error. When h < 1, the energies become visually the same as

those of the ESES. For the MSMS with density 100, a lot of instability cases

have been experienced. In particular, the energies were non-negative for

h = 1.5 and h = 2.0, while for h = 0.5, both pseudo-time solvers diverged.

These divergent values are not depicted in Fig. 5. Other energies of the

MSMS with density 100 are still problematic. For example, such values at

h = 0.25 obviously do not agree with the others. These instability issues

are simply due to the use of a dense MSMS triangulation, which not only

renders the molecular surface generation more complicated, but also brings

more difficulty to the Lagrangian-to-Eulerian conversion.

The electrostatic free energies calculated by three SES definitions are

listed in Table 2 for h ≤ 1. For the ESES surface, as h reduces from 1

to 0.25, both the GFM-ADI and GFM-LOD results converge to the same

place, which is about −4756.5. A fast self-convergence can be seen. For the

MSMS with density 10, large errors are presented for h = 1, but for smaller

h values, they rapidly converge to −4760.1. For the MSMS with density

100, the energies at h = 1 and 0.75 seem to be on the right track for a

convergence, but both GFM methods diverged at h = 0.5 and the energies

at h = 0.25 are obviously wrong. Again, the MSMS energy is ruined by the

instability introduced by the large density.



102 Benjamin Jones et al.

Table 2: Convergence in electrostatic free energy for a protein (PDB ID:
1a2e). For the MSMS, two densities values 10 and 100 are studied.

Method h ESES MSMS(10) MSMS(100)

GFM-ADI

1 -4833.64 -3515.85 -4765.34
3/4 -4769.28 -4763.13 -4759.73
1/2 -4755.23 -4758.26 Fail
1/4 -4756.45 -4760.05 -4129.98

GFM-LOD

1 -4832.90 -3552.67 -4768.46
3/4 -4769.18 -4763.17 -4759.78
1/2 -4755.28 -4758.30 Fail
1/4 -4756.49 -4760.08 -4130.61

We next study the convergence of the MSMS surface with respect to
the density. By using h = 0.5, the electrostatic free energies produced by
different MSMS densities are depicted in Fig. 4 (b). For both GFM-ADI and
GFM-LOD schemes, the MSMS energy shows a convergence trend initially.
But the limiting values are hard to determine, because both solvers are
unstable for so many large densities. This example demonstrates that for
real proteins, the MSMS energy with a high density is not reliable, while
the energy with a low density is not accurate enough.

We next investigate the CPU time for protein 1a2e. The CPU time for
solving the PBE and generating the SES is shown, respectively, in Fig. 6
(a) and (b). In each subfigure, six curves are considered for two PBE solvers
and three SES surfaces (ESES, MSMS with density 10, and MSMS with
density 100). In Fig. 6 (a), all six curves are similar. For part (b), it can
be seen the MSMS(100) is more expensive than the MSMS(10) for all grid
sizes. Here, the CPU time for the SES includes not only the SES generation,
but also the Lagrangian-to-Eulerian conversion in case of the MSMS. For
the MSMS generation, it takes the same CPU time for different grid size h,
while the CPU for the conversion depends on the grid size h. In total, the
CPU time for the MSMS barely increases or increases a little as h becomes
smaller. For the ESES, a different SES is generated at different h, so that
the CPU time increases as total degree of freedom becomes larger. So the
ESES is initially cheaper at a large h, and becomes as expensive as the
MSMS(100) on the densest mesh. We also note that the CPU time for the
GFM-ADI is slightly different from that of the GFM-LOD in Fig. 6 (b), while
they should be the same theoretically for generating molecular surface. The
minor difference here is due to the randomness in calculating CPU time,
which may be influenced by system processing time, memory reading time,
etc.
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Figure 6: CPU time in seconds taken for calculating electrostatic free energy
of protein 1a2e by using varying grid sizes. Two pseudo-time solvers with a
fixed Δt = 0.001 and Tend = 10 are considered and three surfaces, i.e., an
ESES surface, an MSMS surface with density 10, and an MSMS surface with
density 100, are employed. (a) is the time taken to solve the PBE alone, (b)
is the time taken to compute the molecular surface alone, and (c) is the total
time to compute the energy, including computing the molecular surface and
solving the PBE.
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Figure 7: Total CPU time in seconds taken to compute the SES and solve
the PBE for protein 1a2e. Also plotted are the least squares regression lines
of best fit.

The total CPU is shown in Fig. 6 (c). Because the CPU time for the

SES generation is much shorter than that for solving the PBE, the total
CPU curves look like the part (a), and all six curves follow a similar trend.

Based on the total CPU time, we next investigate the complexity of the
pseudo-time solvers based on different SES definitions. For this purpose, we

plot six cases separately in Fig. 7 against the total degree of freedom (DoF)
N . The log(CPU) as a function of log(N) is fitted with the least squares

regression line. The slope r of this line gives us the complexity order, i.e.,
the CPU is on the order of O(N r). It can be observed that in all cases, such
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rate is about one. This agrees with our finding in [1] that the complexity of
the pseudo-time methods scale linearly with respect to the DoF N when the
number of time steps is fixed. We note that the rates for the MSMS(100) are
slightly less than the others. This does not mean the MSMS(100) is faster,
but this is actually because the MSMS(100) takes more CPU time than the
ESES and MSMS(10) for large h values.

Table 3: Comparison of the electrostatic free energies for six proteins 1bbl
[31], 1vii [27], 1aho [34], 1svr [33], 1a63 [6], and 1a7m [17] using the ESES and
MSMS surfaces. MSMS used a density of 10. Here, Δt = 0.005, h = 0.5, and
the stopping condition is either Tend = 10 or ΔEn

sol < 10−4. The difference
between reported energies relative to the MSMS energy is reported as the
relative difference.

PDB ID # Atoms Method ESES energy MSMS energy
Relative
difference

1bbl 576
GFM-ADI -984.01 -986.53 2.55E-03
GFM-LOD -983.48 -986.19 2.75E-03

1vii 596
GFM-ADI -898.29 -901.78 3.87E-03
GFM-LOD -897.99 -901.37 3.75E-03

1aho 962
GFM-ADI -887.46 -893.86 7.16E-03
GFM-LOD -884.42 -890.76 7.11E-03

1svr 1435
GFM-ADI -1704.58 -1707.87 1.93E-03
GFM-LOD -1703.00 -1706.40 1.99E-03

1a63 2065
GFM-ADI -2372.65 -2370.80 7.79E-04
GFM-LOD -2371.54 -2369.29 9.50E-04

1a7m 2809
GFM-ADI -2152.13 -2155.05 1.36E-03
GFM-LOD -2149.73 -2152.50 1.29E-03

We further validate the ESES by studying more proteins. The electro-
static free energies of six proteins are considered in Table 3. Because the
instability issues associated with a high density, we only employed the den-
sity 10 for the MSMS. For the pseudo-time solvers, we take h = 0.5 and
Δt = 0.005. The stopping condition is either Tend = 10 or ΔEn

sol < 10−4. For
each method, the energies calculated by the ESES and MSMS are reported
and their relative difference is also shown. As demonstrated in the previous
studies, the MSMS energy with density 10 is slightly inaccurate than that
of the ESES. Thus, there is always some difference between energies of the
ESES and MSMS. It can be observed in Table 3, such relative difference is
not significant, ranging from 8E-04 to 7E-03. In general, the ESES energies
are consistent with those of the MSMS. Because a better accuracy and sta-
bility, the present study validate the use of the ESES molecular surface in
the pseudo-time GFM approach.
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Figure 8: Potentials mapped onto molecular surface after solving the PBE
for protein 1AHO with h = 0.5, Δt = 0.005, Tend = 10. The MSMS surface
used a density of 10. Potentials were scaled linearly into the interval [−3, 3].

We finally illustrate the visual difference between the ESES and MSMS,
see Fig. 8. For each case, the potential calculated by the GFM-ADI or GFM-
LOD has been mapped onto the molecular surface. It can be seen that two
MSMS pictures are of high quality, because they are generated by using the
VMD [19] built-in functions. The ESES defines the same SES on Cartesian
grids, but no suitable software is available for visualizing it. In the present
study, an ESES hypersurface function is calculated as in Ref. [25] and an
isosurface is plotted by using the VMD. The ESES surfaces plotted in Fig.
8 are clearly based on Cartesian volumetric data, and look slightly different
from the MSMS surfaces. This visual resolution difference is because the
visualization tool we used, VMD, supports better visualization of MSMS
surfaces than the ESES surfaces. Note that the representations used in our
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calculations were based on Cartesian points for both the ESES and MSMS
surfaces. This visualization resolution difference does not reflect any dif-
ference in surface quality for our numerical calculations. Putting aside the
quality difference due to visualization tools, the four surfaces in Fig. 8 are
actually very similar, in terms of both the shape and the mapped potentials.

4. Adaptive pseudo-time GFM approach

In this section, we explore hypothesis and techniques for adaptive time in-
tegration in the pseudo-time GFM simulations. In all tests, the nonlinear
PBE is solved with h = 0.5, ε+ = 80, ε− = 1, and κ = 0.15 M, and the
ESES molecular surface is employed. Unless specified otherwise, the initial
condition is taken as the solution of the linearized PBE.

4.1. Hypothesis test

The adaptive time stepping has been widely studied in the literature [4, 21,
29] for an efficient convergence to the steady state. Because the solution
approaches a limit as the time t becomes larger, the temporal variation of
the solution becomes smaller. Thus, a common hypothesis in the field is that
as t increases, a larger Δt is sufficient to capture temporal variation, which
saves total time steps for accelerating the convergence. In the present study,
we first test this hypothesis by considering a protein 2pde [20] under different
combinations of Δt values. For simplicity, computations were stopped when
Tend = 10. For both GFM-ADI and GFM-LOD, 6 tests were carried out. In
Test 1 and Test 2, a constant Δt = 0.001 and Δt = 0.01 were employed,
respectively. Test 3 used Δt = 0.01 until t = 9, then Δt = 0.001. Test 4
used Δt = 0.001 until t = 1, then Δt = 0.01. Test 5 used Δt = 0.01 until
t = 5, then Δt = 0.001. Test 6 used Δt = 0.001 until t = 5, then Δt = 0.01.
Note that each value of Δt was used for the same number of steps in tests
3 and 4. The same is true for tests 5 and 6. The resulting energies and the
corresponding CPU time are listed in Table 4. For both the GFM-ADI and
GFM-LOD schemes, the energy of Test 1 is chosen as the reference value,
and the relative errors for other tests are also reported.

By examining the results in Table 4, the following conclusion can be
drawn, which is true for both the GFM-ADI and GFM-LOD schemes. By
comparing Test 3 with Test 4 and comparing Test 5 with Test 6, the test
with the smaller final value of Δt is always more accurate, while both tests
consume similar execution times because of the same number of time steps.
In section 4.3, this finding has been further verified in many other proteins
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Table 4: The electrostatic free energies calculated by using different combi-
nations of Δt values and the corresponding CPU time. The protein 2pde is
used with h = 0.5 and Tend = 10.

Test Esol CPU (s) Initial Δt final Δt
Switch
time

Error

GFM-ADI
1 -1140.343 3819.01 0.001 0.001 N/A N/A
2 -1138.156 292.14 0.01 0.01 N/A 0.00191785
3 -1139.766 522.61 0.01 0.001 9 0.00050631
4 -1138.185 519.98 0.001 0.01 1 0.00189262
5 -1140.205 1421.55 0.01 0.001 5 0.00012112
6 -1138.295 1424.10 0.001 0.01 5 0.00179579

GFM-LOD
1 -1140.581 5018.96 0.001 0.001 N/A N/A
2 -1139.139 336.98 0.01 0.01 N/A 0.00126422
3 -1140.333 613.13 0.01 0.001 9 0.00021708
4 -1139.147 620.03 0.001 0.01 1 0.00125672
5 -1140.537 1673.64 0.01 0.001 5 0.00003841
6 -1139.183 1653.28 0.001 0.01 5 0.00122576

for the present pseudo-time GFM approach. This means that the common
hypothesis is invalid for the pseudo-time PBE. The reason for this is perhaps
because of the PBE nonlinearity and its treatment. A time splitting is the
key of the pseudo-time method for treating PBE nonlinearity analytically,
which inevitably introduces a splitting error on the order of O(Δt). Such
a splitting error can be controlled only if a small enough Δt is used, even
when the steady-state is approaching.

Moreover, if one compares among Test 2, 4, and 6, i.e., three tests with
the same ending Δt, one can see their accuracies are almost the same. In
other words, the use of a smaller Δt in early stage does not improve the final
accuracy. It is the final Δt value that determines the final accuracy. Thus,
the use a smaller Δt in early stage should be avoided, because it simply
wastes the CPU time. Therefore, in order to save computation time without
a significant loss of accuracy, the best strategy is to start with a large Δt and
reduce Δt as t increases. This is the basic idea for our further exploration.

4.2. One protein study

For the rest of this paper, we will consider the GFM-LOD method only. The
developed adaptive schemes can be applied to the GFM-ADI too. But the
use of the GFM-LOD gives us more freedom to search for the best adaptive
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Table 5: The electrostatic free energies and CPU time of the protein 2pde for
different constant Δt values and various adaptive Δt schemes. The relative
CPU and error are calculated by using the result of Δt = 0.001 as the
reference solution.

Method Δtmax Δtmin CPU(s) Energy
Relative
CPU

Relative
error

Constant Δt

0.001 0.001 17535 -1157.652 N/A N/A
0.010 0.010 1944 -1155.439 11.09% 1.912E-03
0.100 0.100 215 -1143.129 1.223% 1.254E-02
1.000 1.000 40 -1112.360 0.229% 3.912E-02

MANUAL1 1.000 0.001 9967 -1156.932 56.84% 6.218E-04
MANUAL2 1.000 0.001 5505 -1156.945 31.40% 6.109E-04
PID1 1.000 0.001 3850 -1157.038 21.95% 5.303E-04
PID2 1.000 0.001 9598 -1157.651 54.74% 3.790E-07
FastPID 1.000 0.001 95 -1145.151 0.544% 1.080E-02
Nonincreasing

PID
1.000 0.001 4840 -1156.900 27.60% 6.494E-04

strategy, because any Δt value can be employed, thanks to the unconditional
stability of the GFM-LOD [1].

We continue to study the protein 2pde in this subsection by designing
various time stepping schemes. To benchmark different schemes, a reference
solution is generated with Δt = 0.001 and stopping condition being either
Tend = 50 or ΔEn

sol < 10−4. See Table 5. We note that such a computation
is very costly, and is not recommended for practical usage. The results by
using Δt = 0.01, 0.1 and 1 are also listed in Table 5. It can be seen that as
Δt increases, the relative error becomes larger, while the CPU time becomes
smaller. These constant Δt results also provide benchmarks for examining
adaptive Δt schemes.

We consider a series of methods with Δtmax = 1 and Δtmin = 0.001, and
allow Δt to be changed only in the range of [Δtmin,Δtmax], i.e., Δtmin ≤
Δt ≤ Δtmax. We first explore two “manual” methods, in which the refine-
ment of Δt is automatically applied whenever a criterion in terms of an error
measurement e is satisfied. In particular, two error norms are considered to
measure the temporal variation, i.e., the change in two steps for the solution
e = ||Un−Un−1||2 and that for the free energy e = ΔEn

sol. The corresponding
methods are called Manual 1 and Manual 2, respectively. In both methods,
we take Δt = Δtmax and δ = 1 initially. In each time step, we keep checking
if e < δ. When e < δ, we halve both Δt and δ, i.e., Δt = Δt/2 and δ = δ/2.
After the condition e < δ being met for multiple times, the minimal Δt is
reached and no further refinement is conducted whenever Δt = Δtmin. The
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computation is continued until either Tend = 50 or ΔEn
sol < 10−4. It can be

seen from Table 5 that both manual methods produce very good accuracy,
while save CPU time. Moreover, the Manual 2 scheme is better, because it
demands less CPU time.

The time increment Δt produced by two manual methods is essentially
a piecewise constant, i.e., it is a constant for a certain time period and is
halved for the next period. This is not an adaptive Δt process. The adaptive
time integration in numerical analysis means that one keeps tracking the
temporal variation or error and based on that to select Δt simultaneously.
For this purpose, we adopt the PID control technique developed in [35] to
track the temporal change and correspondingly define a scaling factor

(19) F =

(
en−1

en

)kP
(
εp
en

)kI
(

e2n−1

enen−2

)kD

,

where the same parameters as in [35] are used, i.e., εp = 0.0025, kP =
0.075, kI = 0.175, and kD = 0.01. In each time step, the time increment
is updated as Δt = Δt

F . Here en is an error norm. In the present study, we
test two PID schemes with en being chosen as

e(u)n =
||un − un−1||2

||un||2
,(20)

e(E)
n =

∣∣∣∣ΔEn
sol

En
sol

∣∣∣∣ ,(21)

for the PID1 and PID2, respectively. In our computations, the factor F is
bounded between 0.2 and 5.0, and Δtmin ≤ Δt ≤ Δtmax is always ensured.
The time integration will be stopped when either Tend = 50 or ΔEn

sol < 10−4.
The key features of the PID1 and PID2 are summarized in Table 6.

Table 6: PID methods with different error norms and stopping conditions.
The NonincreasingPID method has an additional constraint to prevent Δt
from increasing at any time step.

Name en Stopping condition

PID1 e
(u)
n Tend = 50 or ΔEn

sol < 10−4

PID2 e
(E)
n Tend = 50 or ΔEn

sol < 10−4

FastPID e
(u)
n

Tend = 50 or ΔEn
sol < 10−4

or 100 steps after Δtmin is first reached.

NonincreasingPID e
(u)
n

Tend = 50
or (ΔEn

sol < 10−4 and Δtmin is reached).
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The numerical results of the PID1 and PID2 are also listed in Table
5. The PID2 has an extremely small error, while the accuracy of the PID1
is better than two manual methods. On the other hand, the PID2 is quite
expensive, while the PID1 is faster than the PID2 and two manual meth-
ods. We note that the adaptive time process essentially trades the accuracy
for efficiency. It is not necessary to achieve a high precision like the PID2.
Instead, we aim to maintain the relative error less than 1.0E-3, while reduce
the CPU time as much as possible. Based on these considerations, the PID1
is obviously our pick, among two PID and two manual methods.

Two more PID methods, i.e., FastPID and NonincreasingPID, are also
tested in Table 5. For the protein 2pde, these two PID methods perform
worse than the PID1 – they were designed after more protein studies have
been conducted. The two new PID methods are designed based on the PID1,

i.e., using the same error norm en = e
(u)
n , but have different stopping condi-

tion, see Table 6. For the FastPID, the computation could stop earlier after
Δt has been reduced to Δt = Δtmin and then 100 steps further computa-
tions are conducted. As its name stands, the FastPID is very efficient, but its
error is about 1% for the protein 2pde. The original PID method [35] allows
Δt to be changed according to the temporal variation, which could result
in a larger or smaller new Δt. As explained above, our aim is to reduce Δt
monotonically in the pseudo-time GFM approach. A NonincreasingPID is
thus designed, in which the scaling factor F calculated from (19) will be re-
set to be one when F < 1. This makes sure that Δt decreases monotonically
in the NonincreasingPID.

4.3. Large scale study

In this subsection, we test the PID methods by considering a test set of 74
proteins studied in [2], which gives a representative sample of proteins in the
protein databank [5]. We refer to [2] for more details on how this set is se-
lected and processed based on specific physical features. A reference solution
is generated for each protein in this set with a constant Δt = 0.01 and stop-
ping condition being either Tend = 50 or ΔEn

sol < 10−4. Note that the con-
stant Δt is larger in this large scale study in order to save simulation time for
a total of 74 proteins. Moreover, a minimal stopping time is imposed so that
the computation will not stop before t = 5 even if ΔEn

sol < 10−4 is satisfied.
Details about this early stopping issue will be discussed in next subsection.

We first test the performance of the FastPID by using Δtmax = 1 and
Δtmin = 0.001. The FastPID is almost the same as the PID1, except an early
stop is allowed after 100 steps of integration are conducted at Δt = Δtmin.
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Table 7: Effect of Δtmax on the accuracy and efficiency of the FastPID for
74 proteins.

Δtmax Maximum relative error Mean relative error Mean relative time
1.0 0.1037399 0.0485009 0.135525608
0.5 0.0666789 0.0172739 0.163347295
0.1 0.0151291 0.0033452 0.161796101

Figure 9: Relative errors in electrostatic free energy for 74 proteins computed
with the FastPID method using Δtmax = 1.0, 0.5, and 0.1.

The FastPID prevents time-stepping at Δt = Δtmin for a long time in the
PID1, which will be very expensive.

The FastPID results are reported in Table 7 for different Δtmax. By using
Δtmax = 1, the maximum relative error is about 10%, which is intolerable
for real applications. By checking different parameters of the FastPID, it is
found in our studies that the max error could be reduced by using a smaller
Δtmax. It can be seen in Table 7 that the max relative error becomes 7% and
2%, respectively, for Δtmax = 0.5 and Δtmax = 0.1. In order to help us to
comprehend these results, we plot the relative errors of the FastPID method
for 74 proteins in Fig. 9. We see that there is a strip of errors between
10−2 and 10−1 with Δtmax = 1.0 and Δtmax = 0.5, but not Δtmax = 0.1. In
particular, there are many proteins whose relative errors are large, not just a
few of them. This study suggests that the FastPID scheme fails to be a good
adaptive time integration technique, because the final accuracy depends on
the initial Δt = Δtmax. If the adaptive process was effective, it is the final
Δt = Δtmin that determines the final accuracy. Then the accuracy should
not critically depend on Δtmax.

In searching for the cause for the failure of the FastPID scheme, we found
that for many proteins, the FastPID never reaches Δt = Δtmin in the PID
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Figure 10: The electrostatic free energy and Δt value over time for the
protein 1zuu. For the FastPID, we take Δtmax = 1.0. The reference energy
is plotted as a horizontal line in part (a).

updates. One such example is shown in Fig. 10. By plotting the FastPID
free energy Esol and Δt against the time t, we see that both of them oscillate
for the second half of the time integration period until the computation is
stopped by Tend = 50. In particular, after Δt becomes smaller than Δtmax

around t = 20, the PID calculation generates a factor F < 1, so that Δt
becomes larger and bounces back to Δt = Δtmax. There is a competing
process so that Δt oscillates just below Δtmax = 1. Consequently, the energy
is trapped in the oscillation, and never converges to the steady state. On the
other hand, we note that in the FastPID cases where an oscillation occurs,
Δt never reaches Δtmin. Then PID1 and FastPID will behave identically in
these cases. This is why we did not report results of the PID1 – they are
also affected by the Δt oscillation issue.
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By reducing the value of Δtmax, it is possible that the simulation will

oscillate around the new Δtmax. It is also possible that the adaptive process

could overcome the barrier and converge to the right place. This is essentially
why the error of the FastPID depends on Δtmax in Fig. 9. However, even

with Δtmax = 0.1, the max relative error is still 0.015 in Table 7. This

means that one cannot count on changing parameter values to suppress the

Δt oscillation issue. A systematic change has to be conducted.

The NonincreasingPID method is designed to overcome the Δt oscilla-

tion issue of the PID1 and FastPID schemes. For the PID scaling factor F
calculated from (19), it will be reset to be one when F < 1. This makes

sure that Δt decreases monotonically in the NonincreasingPID. It can be

seen in Fig. 10 that the NonincreasingPID energy is the same as that of

the FastPID initially, but later converges correctly to the reference solu-

tion. Changing monotonically, Δt reaches Δtmin in the NonincreasingPID.
Shortly after that, the computation is stopped due to En

sol < 10−4 before

Tend = 50.

To optimize the performance of the NonincreasingPID scheme, we ex-

plore different parameter values. The stopping condition of the Nonincreas-

ingPID is still Tend = 50 or (ΔEn
sol < TOL and Δtmin is reached), while

now we take TOL as a parameter. We will also change Δtmax and Δtmin

for Δtmin ≤ Δt ≤ Δtmax. The final Δt = Δtmin controls the accuracy.

The span between Δtmax and Δtmin, as well as TOL, adjusts the length of

time integration. Various combinations of these three parameters are stud-

ied and their average results are reported in Table 8. It can be observed

Table 8: Mean relative error in electrostatic free energy and mean relative
CPU time of the NonincreasingPID using different Δtmax,Δtmin, and TOL.

Δtmax Δtmin TOL Mean relative error Mean relative time

1.000 0.100
0.10 0.02502945 0.1289
0.01 0.00886432 0.1422

1.000 0.010
0.10 0.00515138 0.1307
0.01 0.00060521 0.1618

1.000 0.001
0.10 0.02240487 0.1303
0.01 0.02082860 0.2009

0.100 0.010
0.10 0.00424923 0.1297
0.01 0.00208119 0.1855

0.100 0.001
0.10 0.00592353 0.1194
0.01 0.00404972 0.2194

0.010 0.001
0.10 0.00306056 0.3159
0.01 0.00182219 0.3407
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that setting Δtmax = 1.0,Δtmin = 0.01, and TOL = 0.01 yields an ex-

tremely accurate and efficient solution with a mean relative error of 0.06%

and average relative computation time of 16.18%. Table 8 shows that sub-

stantially changing any of the parameters produces a significant amount of

error. Moreover, those that are more efficient offer only small time savings

in exchange for substantial accuracy losses. The NonincreasingPID scheme

with this set of parameters is our recommendation for future developments

of the pseudo-time GFM approach.

4.4. Initial condition

We finally consider an important issue related to the pseudo-time integra-

tion, i.e., the initial condition. In the pseudo-transient approach to the non-

linear PBE, the initial condition is usually chosen either as a zero solution or

the numerical solution of the linearized PBE (LPB) [15, 40]. Theoretically,

if the steady state solution exists with an appropriate initial condition, it

satisfies the original boundary value problem (BVP) of the PBE. Since the

solution to the original BVP is known to be unique, the steady state solution

is also unique. In the pseudo-time GFM approach, it have been observed [1]

that the electrostatic free energies based on both zero and LPB initial solu-

tions always converge to the same value after a long time integration. It is

interesting to explore this for the NonincreasingPID scheme and study the

related issues.

By considering three proteins, 1ZUU, 2FMA, and 5HB7, the electro-

static free energies calculated based on the zero and LPB initial conditions

are plotted against the time t in Fig. 11 for both constant Δt and Nonin-

creasingPID schemes. For the constant Δt method, the uniqueness is obvi-

ous. Two energy curves of a protein always approaches to the same limit,

with one from above and one from below. On the other hand, the figure for

the NonincreasingPID scheme looks different. Two curves attains the same

intermediate energy for certain time period, but each curve makes a drop

later. This is because in the NonincreasingPID scheme, a larger Δt > Δtmin

is operated in the middle course of the process. Once Δt = Δtmin, the en-

ergy quickly converges to the true answer, which is below the intermediate

value. So the drops in the Fig. 11 (b) represent the final convergence stage.

The converged values of the zero and LPB initial conditions are illus-

trated in Table 9. For the constant Δt method, the relative energy difference

between the zero and LPB initial conditions is as small as 10−10. For the

NonincreasingPID scheme, both energies agree with that of the constant Δt
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Figure 11: Electrostatic free energy vs time for proteins 1ZUU, 2FMA, and
5HB7 solved with the zero and LPB initial conditions. The method for
calculating Δt is constant in (a) and NonincreasingPID in (b).

Table 9: Relative errors in electrostatic free energies and relative compu-
tation times for proteins 1ZUU, 2FMA, and 5HB7. For each protein, the
reference solution is generated by the constant Δt method with the LPB
initial condition. Note that the NonincreasingPID calculation with the zero
initial condition for protein 5HB7 used a larger Tend = 75 because the value
of Δt did not reach Δtmin before t = 50.

protein method initial condition relative error relative time

1ZUU
constant Δt = 0.01

LPB N/A N/A
Zero 7.97844E-11 1.343608410

NonincreasingPID
LPB 0.000689049 0.146170049
Zero 0.000685721 0.092432609

2FMA
constant Δt = 0.01

LPB N/A N/A
Zero 1.88456E-10 1.229137136

NonincreasingPID
LPB 0.000445416 0.088169886
Zero 0.000442035 0.157473301

5HB7
constant Δt = 0.01

LPB N/A N/A
Zero 2.15751E-10 0.832033498

NonincreasingPID
LPB 0.000378474 0.137279424
Zero 0.000404068 0.142998219

very well, and the relative energy difference between the zero and LPB ini-

tial conditions is about 10−5. This quantitatively verified that even though

they appear different in the Fig. 11 (b), the zero and LPB initial conditions

actually produce the same steady state solution for the NonincreasingPID

scheme.

In Fig. 12, the energy difference ΔEn
sol is plotted against the time t for the

constant Δt and NonincreasingPID schemes in part (a) and (b), respectively.
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Figure 12: ΔEn
sol vs time for proteins 1ZUU, 2FMA, and 5HB7 solved with

the zero and LPB initial conditions. The method for calculating Δt is con-
stant in (a) and NonincreasingPID in (b).

When using the LPB initial solution and holding Δt as a constant, ΔEn
sol

for some proteins has an early, rapid dip that can be seen in Fig. 12 (a).
The three proteins, 1ZUU, 2FMA, and 5HB7, are selected because they
all exhibited this early dip behavior. Since we use a tolerance condition on
the energy difference, i.e., ΔEn

sol < 10−4, as a stop condition, this would
prematurely end the computation, resulting in a large error. To prevent
this, we have added a condition to stop computation until after t = 5, which
passes this dip for the majority of proteins. However, this does not catch all
of them before the dip. Moreover, the choice of t = 5 is entirely arbitrary,
and there could be cases where this dip does not occur until much later.
Therefore, in the present study when we generated the reference solution
by using Δt = 0.01 for 74 proteins, we always watch out the stopping time
and cross-validate the energies with those of the NoncreasingPID scheme.
In case of a large disagreement, we re-generated the reference solution with
t = 10 or larger for preventing the early stop.

As shown in Fig. 12 (a), the free energies calculated based on zero initial
condition is free of the early dip issue, and ΔEn

sol decays monotonically as
t increases. So reference solution could also be generated by the constant
Δt method with zero initial condition. This is not adopted in the present
study. First, the energies calculated in this way are essentially the same, as
illustrated in Table 9. Second, as can be seen in both Fig. 11 and Fig. 12,
with the zero initial condition, the constant Δt computation will last longer.
Consequently, it is more expensive to generate the reference solution by the
zero initial condition than that by the LPB initial condition.

The energy difference of the NonincreasingPID scheme shows some com-
plicated patterns in Fig. 12 (b). Recall that the stopping condition for the
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NonincreasingPID scheme is ΔEn
sol < 10−2. This figure shows that the con-

dition ΔEn
sol < 10−1 may suffer an early stop problem, while TOL = 10−2

is completely safe. For both zero and LPB initial conditions, as t starts from

zero, ΔEn
sol becomes smaller. Later, ΔEn

sol rises up and involves some oscilla-

tions. During this period, Δt is actually changed from Δtmax to Δtmin. Once

Δt = Δtmin, ΔEn
sol shows an exponential decay and reaches the stopping

condition ΔEn
sol < 10−2 quickly. This study demonstrates that the Nonin-

creasingPID scheme is a robust adaptive Δt method. Moreover, the use of

the zero initial condition in the NonincreasingPID scheme also needs a longer

CPU time, such that Tend = 50 is not enough for the protein 5HB7. In gen-

eral, the NonincreasingPID scheme together with the LPB initial condition

is what we recommended for future studies.

5. Conclusion

In this paper, the pseudo-time GFM approach has been improved in two as-

pects. First, an Eulerian Solvent Excluded Surface (ESES) is implemented in

our package to replace the MSMS for the molecular surface definition, which

completely avoids the troublesome procedure of the Lagrangian-to-Eulerian

conversion. The electrostatic analysis shows that the ESES free energy is

more accurate than that of the MSMS, while being free of instabilities is-

sues. The MSMS energy will converge to that of the ESES, as the MSMS

density increases. However, for real proteins, the use of a high density usu-

ally induces instability in the PBE simulation. Second, various adaptive time

integrations have been examined for the pseudo-time GFM approach. The

usual hypothesis for steady state convergence assumes that one could use

a longer Δt as t increases to save the CPU time. However, this hypothesis

is found to be invalid for the pseudo-time GFM approach, perhaps because

of the PBE nonlinearity and its time splitting treatment. A robust Nonin-

creasingPID scheme is designed by tracking the temporal changes by a PID

procedure, while maintaining the monotonic decay of Δt with respect to t.

In a large scale study with 74 proteins, the NonincreasingPID scheme yields

an extremely accurate and efficient solution with a mean relative error of

0.06% and an average saving of 83.82% CPU time.

The adaptive time integration techniques developed in this work could

be applied to other ADI algorithms [41, 23] for solving parabolic interface

problems. In the future, we plan to explore more advanced adaptive time

stepping methods for the pseudo-time PBE simulations. A space dependent

Δt will be experimented to see if the steady state could be reached sooner.
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