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Abstract—In this paper, we provide a formulation for enhanc-
ing the spatio-temporal resolution of a remote sensing sequence
of images. Such an image sequence could be captured by a
sensor that convolves a physical scene with a spatio-temporal
point spread function whose two-dimensional spatial component
is the microwave instrument’s point spread function and whose
one-dimensional temporal component is the rectangular kernel
with sensor exposure time as its support. We perform resolution
enhancement in the space-time domain, as opposed to solving the
deconvolution problem for each observation. Simultaneous space-
time optimization achieves a more efficient and more accurate
reconstruction. The proposed deconvolution method employs
total variation regularization and solves the formulation via
the Split-Bregman optimization algorithm. In our experiments,
we use a simulated microwave image sequence of a hurricane
and demonstrate that the proposed methodology improves the
accuracy when compared to the observed sequence.

Index Terms—Geostationary satellite, microwave imaging, re-
mote sensing, spatio-temporal resolution, super-resolution

I. INTRODUCTION

Resolution of a microwave sensor is limited in space and in
time. In particular, a microwave aperture synthesis system is
known to have spatial blurring and distortion. This results in
ringing near features in the observations. On the other hand,
exposure time and frame-rate limit the temporal resolution of
the sensor. Temporal blur can be considered as a convolution
of the ground truth with a rectangular function in time.
Resolution enhancement could be performed in the space-time
domain, as opposed to solving the deconvolution problem for
each observation. Simultaneous space-time optimization will
achieve a more efficient and more accurate reconstruction.

A variety of independent spatial and temporal super-
resolution methods have been proposed. Spatial resolution
enhancement techniques were introduced in [1]-[9], and tem-
poral resolution enhancement techniques were introduced in
[10]-[13]. We have previously proposed methodologies to
enhance spatial resolution and temporal resolution separately,
but not both at the same time [14]—[16]. Specifically, we solved
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Fig. 1. Spatio-temporal sequence of P images. Each image has M x N
pixels.

the super-resolution problems using total variation (TV) reg-
ularization, efficient Split-Bregman, and alternating direction
method of multipliers (ADMM) techniques. In these previous
works, we reconstructed images that were convolved with
spatial PSF [14] or image sequences convolved by temporal
averaging [16]. The deconvolution problem in the presence of
noise is ill-posed. Therefore, we needed to apply regularization
to guarantee the existence and uniqueness of the solution while
preserving its geometric characteristics. We used the total
variation (TV) regularization [17] to solve the reconstruction
problem within the energy minimization formulation for each
spatial and temporal resolution enhancement. TV minimiza-
tionn preserves the features in an image. We used the Split
Bregman method [18] to solve the TV deconvolution problem.
The Split Bregman method allows achieving fast and robust
computation of the reconstruction.

There has been ongoing research in mixed spatio-temporal
resolution enhancement methods. In [19], multiple low resolu-
tion video sequences were used to reconstruct a high resolution
space-time video sequence. In [20], the authors proposed a fast
space-time algorithm involving TV regularization and ADMM
for restoring video sequences. In this work, which is based on
our aforementioned previous works on spatial and temporal
deconvolution, we construct a spatio-temporal resolution en-
hancement formulation using a variational approach. We use
the Split-Bregman method and total variation minimization to
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Fig. 2. Point spread function (PSF) of the GeoSTAR instrument. An aperture
synthesis system is characterized by the PSF that is a 2-D sinc-like function
with positive and negative sidelobes, which blurs the resulting images and
creates artifacts.

exposure time

—

Fig. 3. Temporal rectangular kernel with sensor exposure time as its support.

reconstruct fast progressing phenomena that were corrupted
spatially by the microwave aperture synthesis system’s point
spread function (PSF) and temporally by averaging.

II. THE GEOSTATIONARY SYNTHETIC THINNED
APERTURE RADIOMETER (GEOSTAR)

Observations of atmospheric wind, storm processes, and
boundary layer processes are essential for assessing weather
and climate. Critical regions within dynamic weather systems
are commonly either (1) obscured by clouds and rain, where
microwave sounders have a large advantage over other sensors,
or (2) rapidly evolving, where geostationary sensors have
a large advantage over low-orbiting satellites. GeoSTAR is
a geostationary microwave spectrometer aperture synthesis
sounder concept that has been developed at the Jet Propul-
sion Laboratory (JPL) that can provide such observations.
It measures 3-D fields of temperature, water vapor, clouds,
precipitation and wind in a large area below the host satellite.
Its spatial kernel is a 2-D sinc-like function with positive and
negative sidelobes (cf. Fig. 2), which blurs the resulting images
and creates artifacts. Also, temporal blurring (cf. Fig. 3) occurs
when the scene evolves faster than the sensor refresh cycle,
such as with intense convective precipitation [21]. While the
spatial and temporal resolutions that can be achieved with
GeoSTAR are on the order of 25 km and 15 minutes, more
measurement objectives can be met with 10-15 km and 5-
10 minutes. GeoSTAR produces spatio-temporal oversampling
that lends itself to digital resolution enhancement techniques.
We have previously developed and published methodologies
[14]-[16] to enhance spatial resolution and temporal resolution
separately, but not both at the same time. That is the focus
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Fig. 4. One of 36 original 402x402 pixel frames of (a) 50.3 GHz and (b) 150
GHz microwave image sequences of the simulated hurricane Rita and their
zoomed in regions are shown. The size of the pixel is 1.3 km.

of this paper. With such a methodology, the value of the
GeoSTAR observations would be greatly enhanced.

III. SPATIO-TEMPORAL RESOLUTION RECONSTRUCTION

An image sequence could be captured by a sensor that
convolves an observed scene with a spatio-temporal point
spread function whose two-dimensional spatial component is
the microwave instrument’s point spread function and whose
one-dimensional temporal component is the rectangular kernel
with sensor exposure time as its support. The spatial blurring
and distortion are induced by microwave aperture synthesis
system. The temporal blurring occurs when multiple frames
are averaged. To visualize space-time blurring, we can con-
sider the spatio-temporal volume (cf. Fig. 1) being smoothed in
spatial domain using microwave PSF and in temporal direction
using averaging.

We consider a multi-frame sequence of P images. Each
image has M x N pixels. Such a sequence is denoted as gy €
RM*NXP (cf Fig. 1). The spatio-temporal convolution and
additive noise model for a corrupted sequence f is given as

f=Kx*go+r, )

where K is a spatio-temporal convolution kernel and x is
additive noise.
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(b) Initial Error.
SNR = 4.49, RMSE = 597K

(a) Blurry and noisy
50.3GHz frame

(d) Final Error.
SNR = 6.49, RMSE = 4.74K

(c) Reconstructed frame

Fig. 5. Spatio-temporal resolution enhancement of an image sequence in Figure 4(a). (a) Original sequence, a single frame of which is shown in Figure 4(a), is
convolved with spatio-temporal convolution kernel whose two-dimensional spatial component is the GeoSTAR kernel from Figure 2 and whose one-dimensional
temporal component is the temporal rectangular function from Figure 3. The sequence is subject to Gaussian noise of variance 02 = 2K?2. (b) Corresponding
error in (a). (c) Spatio-temporal enhancement reconstruction result. (d) Corresponding error in (c).

In oder to reconstruct the sequence, we use the TV norm

laliry = [ 19l

TV minimization preserves the features in an image. The TV-
Ly deconvolution minimization problem is given as

: H
min|lgllpy + SlIK *g = fIE, @)

where ;1 > 0 is a weighting parameter, and g is a space-time
reconstruction. The problem in (2) is solved using the Split
Bregman method.

IV. RESULTS

In our experiments, we used a simulated microwave 50.3
and 150 GHz channel image sequences of a hurricane Rita
from 2005 (cf. Fig. 4). The Advanced Microwave Sounding
Unit - A (AMSU-A) temperature sounder and AMSU-B water
vapor sounder have some of the same frequencies of GeoSTAR
near 55 GHz and 180 GHz, respectively. The simulations
were generated at the Jet Propulsion Laboratory (JPL) using
the Weather Research and Forecast (WRF) model [22]. Each
sequence contains 36 images which are 10 minutes apart. Each
image is 402 x 402 pixels. The size of the pixel is 1.3 km. The
spatio-temporal convolution kernel, whose two-dimensional
spatial component is the GeoSTAR kernel and whose one-
dimensional temporal component is the temporal rectangular
function, was used to blur the image sequences. The GeoSTAR
point spread function is 101 x 101, with 27.6 km of full

width at half maximum, and is displayed in Figure 2. The
temporal rectangular kernel is 5 frames wide and is shown in
Figure 3. We note that the GeoSTAR kernel is more difficult to
deconvolve than Gaussian kernel. Also, a wide temporal kernel
amounts to a considerable averaging. Such degradations result
in corrupted image sequences (cf. Fig. 5(a) and 6(a)) that do
not resemble original image sequences in Figure 4.

Figure 5(a) displays the 50.3 GHz sequence of images of
Figure 4(a) subject to the spatio-temporal blur and Gaus-
sian noise of variance o? = 2K?2. Figure 5(b) shows the
corresponding error of the sequence in Figure 5(a) relative
to the original sequence of images in Figure 4(a) as well
as gives signal-to-noise ratio (SNR) and root mean square
(RMS) error values. The spatio-temporal reconstruction result
is displayed in Figure 5(c), and the corresponding error is
displayed in Figure 5(d). In Figures 5(a) and 5(b) we notice the
artificial ringing due to GeoSTAR PSF. Figure 5(c) displays
an image sequence that resembles the sequence in Figure 4(a)
while improving the accuracy when compared to the observed
sequence.

Figures 4(b) and 6 show similar results but for the 150 GHz
image sequence.
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