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Abstract—In this paper, we provide a formulation for enhanc-
ing the spatio-temporal resolution of a remote sensing sequence
of images. Such an image sequence could be captured by a

sensor that convolves a physical scene with a spatio-temporal
point spread function whose two-dimensional spatial component
is the microwave instrument’s point spread function and whose
one-dimensional temporal component is the rectangular kernel
with sensor exposure time as its support. We perform resolution
enhancement in the space-time domain, as opposed to solving the
deconvolution problem for each observation. Simultaneous space-
time optimization achieves a more efficient and more accurate
reconstruction. The proposed deconvolution method employs
total variation regularization and solves the formulation via
the Split-Bregman optimization algorithm. In our experiments,
we use a simulated microwave image sequence of a hurricane
and demonstrate that the proposed methodology improves the
accuracy when compared to the observed sequence.

Index Terms—Geostationary satellite, microwave imaging, re-
mote sensing, spatio-temporal resolution, super-resolution

I. INTRODUCTION

Resolution of a microwave sensor is limited in space and in

time. In particular, a microwave aperture synthesis system is

known to have spatial blurring and distortion. This results in

ringing near features in the observations. On the other hand,

exposure time and frame-rate limit the temporal resolution of

the sensor. Temporal blur can be considered as a convolution

of the ground truth with a rectangular function in time.

Resolution enhancement could be performed in the space-time

domain, as opposed to solving the deconvolution problem for

each observation. Simultaneous space-time optimization will

achieve a more efficient and more accurate reconstruction.

A variety of independent spatial and temporal super-

resolution methods have been proposed. Spatial resolution

enhancement techniques were introduced in [1]–[9], and tem-

poral resolution enhancement techniques were introduced in

[10]–[13]. We have previously proposed methodologies to

enhance spatial resolution and temporal resolution separately,

but not both at the same time [14]–[16]. Specifically, we solved
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Fig. 1. Spatio-temporal sequence of P images. Each image has M × N

pixels.

the super-resolution problems using total variation (TV) reg-

ularization, efficient Split-Bregman, and alternating direction

method of multipliers (ADMM) techniques. In these previous

works, we reconstructed images that were convolved with

spatial PSF [14] or image sequences convolved by temporal

averaging [16]. The deconvolution problem in the presence of

noise is ill-posed. Therefore, we needed to apply regularization

to guarantee the existence and uniqueness of the solution while

preserving its geometric characteristics. We used the total

variation (TV) regularization [17] to solve the reconstruction

problem within the energy minimization formulation for each

spatial and temporal resolution enhancement. TV minimiza-

tionn preserves the features in an image. We used the Split

Bregman method [18] to solve the TV deconvolution problem.

The Split Bregman method allows achieving fast and robust

computation of the reconstruction.

There has been ongoing research in mixed spatio-temporal

resolution enhancement methods. In [19], multiple low resolu-

tion video sequences were used to reconstruct a high resolution

space-time video sequence. In [20], the authors proposed a fast

space-time algorithm involving TV regularization and ADMM

for restoring video sequences. In this work, which is based on

our aforementioned previous works on spatial and temporal

deconvolution, we construct a spatio-temporal resolution en-

hancement formulation using a variational approach. We use

the Split-Bregman method and total variation minimization to978-1-7281-7093-0/20/$31.00 ©2020 IEEE
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Fig. 2. Point spread function (PSF) of the GeoSTAR instrument. An aperture
synthesis system is characterized by the PSF that is a 2-D sinc-like function
with positive and negative sidelobes, which blurs the resulting images and
creates artifacts.

Fig. 3. Temporal rectangular kernel with sensor exposure time as its support.

reconstruct fast progressing phenomena that were corrupted

spatially by the microwave aperture synthesis system’s point

spread function (PSF) and temporally by averaging.

II. THE GEOSTATIONARY SYNTHETIC THINNED

APERTURE RADIOMETER (GEOSTAR)

Observations of atmospheric wind, storm processes, and

boundary layer processes are essential for assessing weather

and climate. Critical regions within dynamic weather systems

are commonly either (1) obscured by clouds and rain, where

microwave sounders have a large advantage over other sensors,

or (2) rapidly evolving, where geostationary sensors have

a large advantage over low-orbiting satellites. GeoSTAR is

a geostationary microwave spectrometer aperture synthesis

sounder concept that has been developed at the Jet Propul-

sion Laboratory (JPL) that can provide such observations.

It measures 3-D fields of temperature, water vapor, clouds,

precipitation and wind in a large area below the host satellite.

Its spatial kernel is a 2-D sinc-like function with positive and

negative sidelobes (cf. Fig. 2), which blurs the resulting images

and creates artifacts. Also, temporal blurring (cf. Fig. 3) occurs

when the scene evolves faster than the sensor refresh cycle,

such as with intense convective precipitation [21]. While the

spatial and temporal resolutions that can be achieved with

GeoSTAR are on the order of 25 km and 15 minutes, more

measurement objectives can be met with 10-15 km and 5-

10 minutes. GeoSTAR produces spatio-temporal oversampling

that lends itself to digital resolution enhancement techniques.

We have previously developed and published methodologies

[14]–[16] to enhance spatial resolution and temporal resolution

separately, but not both at the same time. That is the focus

(a) 50.3 GHz

(b) 150 GHz

Fig. 4. One of 36 original 402x402 pixel frames of (a) 50.3 GHz and (b) 150
GHz microwave image sequences of the simulated hurricane Rita and their
zoomed in regions are shown. The size of the pixel is 1.3 km.

of this paper. With such a methodology, the value of the

GeoSTAR observations would be greatly enhanced.

III. SPATIO-TEMPORAL RESOLUTION RECONSTRUCTION

An image sequence could be captured by a sensor that

convolves an observed scene with a spatio-temporal point

spread function whose two-dimensional spatial component is

the microwave instrument’s point spread function and whose

one-dimensional temporal component is the rectangular kernel

with sensor exposure time as its support. The spatial blurring

and distortion are induced by microwave aperture synthesis

system. The temporal blurring occurs when multiple frames

are averaged. To visualize space-time blurring, we can con-

sider the spatio-temporal volume (cf. Fig. 1) being smoothed in

spatial domain using microwave PSF and in temporal direction

using averaging.

We consider a multi-frame sequence of P images. Each

image has M ×N pixels. Such a sequence is denoted as g0 ∈
R

M×N×P (cf. Fig. 1). The spatio-temporal convolution and

additive noise model for a corrupted sequence f is given as

f = K ∗ g0 + κ, (1)

where K is a spatio-temporal convolution kernel and κ is

additive noise.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 10,2021 at 20:26:09 UTC from IEEE Xplore.  Restrictions apply. 



(a) Blurry and noisy (b) Initial Error. (c) Reconstructed frame (d) Final Error.
50.3GHz frame SNR = 4.49, RMSE = 5.97K SNR = 6.49, RMSE = 4.74K

Fig. 5. Spatio-temporal resolution enhancement of an image sequence in Figure 4(a). (a) Original sequence, a single frame of which is shown in Figure 4(a), is
convolved with spatio-temporal convolution kernel whose two-dimensional spatial component is the GeoSTAR kernel from Figure 2 and whose one-dimensional
temporal component is the temporal rectangular function from Figure 3. The sequence is subject to Gaussian noise of variance σ2

= 2K2. (b) Corresponding
error in (a). (c) Spatio-temporal enhancement reconstruction result. (d) Corresponding error in (c).

In oder to reconstruct the sequence, we use the TV norm

||g||TV =

∫
|∇g|.

TV minimization preserves the features in an image. The TV-

L2 deconvolution minimization problem is given as

min
g

||g||TV +
µ

2
||K ∗ g − f ||2

2
, (2)

where µ > 0 is a weighting parameter, and g is a space-time

reconstruction. The problem in (2) is solved using the Split

Bregman method.

IV. RESULTS

In our experiments, we used a simulated microwave 50.3

and 150 GHz channel image sequences of a hurricane Rita

from 2005 (cf. Fig. 4). The Advanced Microwave Sounding

Unit - A (AMSU-A) temperature sounder and AMSU-B water

vapor sounder have some of the same frequencies of GeoSTAR

near 55 GHz and 180 GHz, respectively. The simulations

were generated at the Jet Propulsion Laboratory (JPL) using

the Weather Research and Forecast (WRF) model [22]. Each

sequence contains 36 images which are 10 minutes apart. Each

image is 402 × 402 pixels. The size of the pixel is 1.3 km. The

spatio-temporal convolution kernel, whose two-dimensional

spatial component is the GeoSTAR kernel and whose one-

dimensional temporal component is the temporal rectangular

function, was used to blur the image sequences. The GeoSTAR

point spread function is 101 × 101, with 27.6 km of full

width at half maximum, and is displayed in Figure 2. The

temporal rectangular kernel is 5 frames wide and is shown in

Figure 3. We note that the GeoSTAR kernel is more difficult to

deconvolve than Gaussian kernel. Also, a wide temporal kernel

amounts to a considerable averaging. Such degradations result

in corrupted image sequences (cf. Fig. 5(a) and 6(a)) that do

not resemble original image sequences in Figure 4.

Figure 5(a) displays the 50.3 GHz sequence of images of

Figure 4(a) subject to the spatio-temporal blur and Gaus-

sian noise of variance σ2 = 2K2. Figure 5(b) shows the

corresponding error of the sequence in Figure 5(a) relative

to the original sequence of images in Figure 4(a) as well

as gives signal-to-noise ratio (SNR) and root mean square

(RMS) error values. The spatio-temporal reconstruction result

is displayed in Figure 5(c), and the corresponding error is

displayed in Figure 5(d). In Figures 5(a) and 5(b) we notice the

artificial ringing due to GeoSTAR PSF. Figure 5(c) displays

an image sequence that resembles the sequence in Figure 4(a)

while improving the accuracy when compared to the observed

sequence.

Figures 4(b) and 6 show similar results but for the 150 GHz

image sequence.
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(a) Blurry and noisy (b) Initial Error. (c) Reconstructed frame (d) Final Error.
150GHz frame SNR = 4.00, RMSE = 25.59K SNR = 6.21, RMSE = 19.84K

Fig. 6. Spatio-temporal resolution enhancement of an image sequence in Figure 4(b). (a) Original sequence, a single frame of which is shown in Figure 4(b), is
convolved with spatio-temporal convolution kernel whose two-dimensional spatial component is the GeoSTAR kernel from Figure 2 and whose one-dimensional
temporal component is the temporal rectangular function from Figure 3. The sequence is subject to Gaussian noise of variance σ2

= 2K2. (b) Corresponding
error in (a). (c) Spatio-temporal enhancement reconstruction result. (d) Corresponding error in (c).
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