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1 Introduction

The von Neumann entropy provides a quantitative measure of entanglement in a quan-
tum system. In the special case of a thermal ensemble specified by a Hamiltonian, the
von Neumann entropy reduces to the standard statistical mechanics entropy. In quantum
field theory, the thermal entropy may be obtained directly from the partition function
computed by standard functional integral methods, whereas the methods for calculating
the entanglement entropy of a general subsystem are much less systematic, even in free
field theories.

Quantum field theory does provide, however, a reasonably systematic method for eval-
uating the Rényi entropy [1]

Sν(ρ) = 1
1− ν ln Tr(ρν) (1.1)

when ν is an integer n greater than 1, by replicating the functional integral representation
for ρ, the density matrix, n times. The von Neumann entropy

S(ρ) = −Tr(ρ ln ρ) (1.2)
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is then obtained by taking the ν → 1 limit of the Rényi entropy:

S(ρ) = lim
ν→1

Sν(ρ). (1.3)

Before taking such a limit, note that even though the Rényi entropy Sν is well-defined
for both integer and non-integer ν, it is directly computed by replicating the functional
integrals only when ν is an integer n > 1. Therefore, one needs to determine the full
function Sν from the set of its integer values {Sn, n = 2, 3, · · · }, via some kind of analytic
continuation. In practice, one achieves this analytic continuation by finding a locally
holomorphic function Sν of ν ∈ C that takes the values Sn = Sn(ρ) for all integers n > 1
and has suitable asymptotic behaviors as ν →∞ as required by Carlson’s theorem.1 If such
a function Sν is found, Carlson’s theorem guarantees its uniqueness and thus we obtain
Sν(ρ) = Sν .

This replica method has been applied extensively to the calculation of the entangle-
ment entropy in many quantum systems, including quantum field theories and conformal
field theories (CFTs). For example, the entanglement entropy of a single interval of length
L in the vacuum state of a two-dimensional CFT on an infinite line is given by the univer-
sal formula

S(ρ) = c

3 ln
(
L

ε

)
, (1.4)

where c is the central charge and ε is a UV cutoff with dimension of length.
In this paper, we present an alternative method for extracting the von Neumann en-

tropy from the Rényi entropies Sn(ρ) for integer n > 1. Our method does not rely on a
direct analytic continuation in the variable n. Instead, the starting point is that once we
know the traces of powers of the density matrix

Rn(ρ) ≡ Tr(ρn), (1.5)

we are allowed to define a generating function of an auxiliary variable z for these Rn(ρ):

G(z; ρ) ≡ −Tr
(
ρ ln 1− zρ

1− z

)
=
∞∑
n=1

zn

n

(
Tr(ρn+1)− 1

)
. (1.6)

For a density matrix ρ, the series is absolutely convergent in the unit disc |z| < 1. Choosing
the branch cut of the logarithm to lie along the positive real axis, the function G(z; ρ) may
be analytically continued from the unit disc to a holomorphic function in the cut plane
C \ [1,∞). The limit of this analytically continued function as z → −∞, which is well
within the domain of holomorphicity, gives the von Neumann entropy:

S(ρ) = lim
z→−∞

G(z; ρ), (1.7)

as may be verified directly from the definition (1.6). The existence of the analytically
continued function in z beyond the unit disc may be seen from (1.6) as well. It may also be

1Carlson’s theorem states that a function f(ν) that is holomorphic in ν for Re(ν) ≥ 1, vanishes for
positive integer ν, is bounded by |f(ν)| < C eλ|ν| for Re(ν) ≥ 1 with constant C, λ, and satisfies this bound
with some λ < π on Re(ν) = 1, must vanish identically for all ν. See [2, 3].
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verified by rewriting the generating function in terms of a Möbius transformed variable w:

G(z; ρ) = −Tr
(
ρ ln

{
1− w(1− ρ)

})
, w = z

z − 1 . (1.8)

Its Taylor series in powers of w is

G(z; ρ) =
∞∑
k=1

f̃(k)
k

wk (1.9)

where

f̃(k) = Tr[ρ(1− ρ)k] =
k∑

m=0

(−1)mk!
m!(k −m)! Tr(ρm+1). (1.10)

The first few terms of the series written in terms of Rn = Tr(ρn) are

G(z; ρ) = (1−R2)w + 1
2(1− 2R2 +R3)w2 + 1

3(1− 3R2 + 3R3 −R4)w3 + · · · . (1.11)

For a density matrix ρ, the Taylor series is absolutely convergent in the unit disc |w| < 1.
Transforming back to the z variable, this provides explicitly the analytic continued function
in Re(z) ≤ 1/2. An advantage of working with the w variable is that we may obtain the
von Neumann entropy directly by taking the w → 1 limit:

S(ρ) = lim
w→1

G(z; ρ). (1.12)

This may be written explicitly as a series:

S(ρ) =
∞∑
k=1

f̃(k)
k

= (1−R2) + 1
2(1− 2R2 +R3) + 1

3(1− 3R2 + 3R3 −R4) + · · · (1.13)

which provides an exact expression for evaluating the von Neumann entropy from Rn =
Tr(ρn) with integer n > 1.

In addition to extracting the von Neumann entropy, it is worth noting that Rν(ρ) =
Tr(ρν) for arbitrary powers ν ∈ R+ may be evaluated by using similar generating functions
as well, whenever the corresponding trace is convergent.

Our method is related to the resolvent method used in e.g. [4, 5]. One advantage of our
method is that it can be applied directly to numerical calculations as we will demonstrate
using eq. (1.13) shortly.

It is worth noting that numerical calculations of the von Neumann entropy from Rényi
entropies have previously been carried out, for example by applying the rational interpo-
lation method used in [6, 7]. Such rational interpolations rely on making choices for the
degrees of the constituent polynomials of the rational interpolating function; in particular,
it has been noted in [6, 7] that rational interpolations can unpredictably fail when the
interpolating function happens to have a pole near n = 1. In comparison, our method
(when applied numerically) has the advantage of being completely systematic and reliable,
leading to computations that converge to the value of the von Neumann entropy without
needing to arbitrarily choose parameters.2

2The disadvantage is that our method is often numerically slower than the rational interpolation method
(when the latter works) in reaching the same accuracy.
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The remainder of this paper is organized as follows. In section 2 we follow the procedure
described above to recover the von Neumann entropy in the simple case of a single interval,
whose solution by analytic continuation in n is immediate. In section 3, we use our method
to evaluate the von Neumann entropy of two intervals in the small cross ratio limit in 2d
CFT starting from Rn(ρ) = Tr(ρn), and reproduce the results of [8] for this system in
the same limit. In section 4, we set up the basis for numerical calculations of the von
Neumann entropy using the generating function. In section 5, we present numerical results
for the entanglement entropy in the two-interval example but now for finite values of the
cross ratio. In section 6, we present numerical results for the entanglement entropy of
one interval in a two-dimensional CFT at finite temperature. In section 7, we analyze in
detail the rate of convergence of the Taylor series for the generating function in the Möbius
transformed variable w at w = 1. We conclude and comment on a few open questions in
section 8.

2 Analytical calculation for one interval

We now apply the method to our first example: to extract the von Neumann entropy of
one interval of length L in the vacuum state of a two-dimensional CFT on an infinite line,
from its Rényi entropies

Sn(ρ) = c

6

(
1 + 1

n

)
ln
(
L

ε

)
(2.1)

for integer n > 1. Here c is the central charge and ε is a UV cutoff. This is an example where
direct analytic continuation in n is obvious, but it is nonetheless interesting to see how our
method works here. This example also serves as a starting point for more complicated
examples such as the one to be analyzed in the following section.

To apply our method, we start by rewriting eq. (2.1) as

Rn(ρ) = Tr(ρn) =
(
L

ε

) c
6 ( 1

n
−n)

= e(
1
n
−n)y, (2.2)

where for convenience we have defined

y = c

6 ln L
ε
. (2.3)

We use these Rn(ρ) values for integer n to form the generating function

G(z; ρ) =
∞∑
n=1

zn

n

[
e(

1
n+1−n−1)y − 1

]
. (2.4)

Combining e−ny with zn and expanding the remaining exponential in powers of y, we obtain

G(z; ρ) = ln(1− z) + e−y
∞∑
n=1

(ze−y)n

n

∞∑
j=0

yj

j!
1

(n+ 1)j (2.5)

= ln(1− z) + e−y
∞∑
j=0

yj

j! Fj(ze
−y), (2.6)
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where we have defined the sum

Fj(z) ≡
∞∑
n=1

zn

n(n+ 1)j (2.7)

for nonnegative integer j. We will eventually take z → −∞, so we need to find the behavior
of the sum (2.7) in this limit. To do this, we use the partial fraction decomposition

1
n(n+ 1)k = 1

n
−

k∑
s=1

1
(n+ 1)s (2.8)

and perform the sum (2.7) in terms of the polylogarithm function defined by

Lis(z) =
∞∑
n=1

zn

ns
, (2.9)

obtaining

Fj(z) = j + Li1(z)− 1
z

j∑
s=1

Lis(z). (2.10)

To find the behavior of Fj(z) as z → −∞, we need the behavior of the polylogarithm
as z → −∞, which is given by the Sommerfeld expansion

Lis(z) = −2
∞∑
m=0

(
1− 21−2m) ζ(2m)

Γ(s− 2m+ 1) [ln(−z)]s−2m +O(z−1). (2.11)

From this we find
Fj(z) = j − ln(−z) +O(z−1) (2.12)

as z → −∞. Substituting this into eq. (2.6), we obtain as z → −∞

G(z; ρ) = ln(1− z) + e−y
∞∑
j=0

yj

j!
[
j − ln(−ze−y) +O(z−1)

]
(2.13)

= ln(−z) + y − ln(−ze−y) +O(z−1) (2.14)
= 2y +O(z−1). (2.15)

Taking the z → −∞ limit, we obtain the von Neumann entropy

S(ρ) = lim
z→−∞

G(z; ρ) = 2y = c

3 ln L
ε

(2.16)

as expected.

3 Analytical calculation for two intervals

We now apply our method to calculate the entanglement entropy of two disjoint intervals in
the vacuum state of a two-dimensional CFT on an infinite line. Let us call the two-interval
subsystem A ∪B, where A = [x1, x2] and B = [x3, x4]. The cross ratio is then defined as

x = x12x34
x13x24

, (3.1)

– 5 –
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with xij = xi−xj . We will focus on the small x limit, where Rn(ρ) = Tr(ρn) was calculated
in [8, 9] and given by

Tr(ρn) =
(
x12x34
ε2

) c
6 ( 1

n
−n)

1 +N
(
x

4n2

)α n
2

n−1∑
`=1

1(
sin π`

n

)2α + · · ·

 , (3.2)

where ε is a UV cutoff, α/2 is the lowest dimension in the operator spectrum of the CFT,
N is the multiplicity of the lowest-dimensional operators, and · · · denotes higher order
corrections. For examples, we have N = 2 for a free boson and N = 1 for the Ising model.
For notational simplicity, let us define

y = c

6 ln x12x34
ε2

(3.3)

and write the sum in eq. (3.2) in a different but equivalent way, leading to

Tr(ρn) = e(
1
n
−n)y

1 +N
(
x

4n2

)α n−1∑
`=1

`(
sin π`

n

)2α + · · ·

 . (3.4)

At the leading order O(x0), the form of Tr(ρn) is similar to that of a single interval
studied in section 2, and therefore the von Neumann entropy may be extracted by the same
steps, resulting in

SAB = 2y +O(xα) = c

3 ln x12x34
ε2

+O(xα). (3.5)

We now work at the subleading order O(xα). As our method deals with Tr(ρn) in a
completely linear way, we may focus on the O(xα) term in eq. (3.4). To extract the von
Neumann entropy at this order, we define the generating function at order xα

G̃(z; ρ) =
∞∑
n=1

zn

n
e(

1
n+1−n−1)y 1

(n+ 1)2α

n∑
`=1

`(
sin π`

n+1

)2α , (3.6)

where we have removed a multiplicative factor N
(
x
4
)α for notational simplicity.3

Our aim is to evaluate this function and analytically continue it to z = −∞. To this
end we begin by deriving an integral representation.

3.1 Integral representation for G̃

We first combine e−ny with zn in eq. (3.6) and expand the remaining exponential in powers
of y as in section 2, obtaining

G̃(z; ρ) = e−y
∞∑
n=1

(ze−y)n

n

∞∑
j=0

yj

j!
1

(n+ 1)2α+j

n∑
`=1

`(
sin π`

n+1

)2α . (3.7)

3We may also strip off the “easy factor” e(
1

n+1−n−1)y from the generating function (3.6). This factor is
easy to analytically continue in n and was separately treated in section 2. It is not completely obvious that
stripping it off would lead to the correct final answer for the von Neumann entropy, but it actually does
(as one may check as in footnote 4), suggesting that our method has a broader regime of applicability than
what might be expected from its derivation in section 1.
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We now use the expansion proposed in [9] for the functions(
u

sin u

)2α
=
∞∑
k=0

pk(α)u2k (3.8)

where pk(α) is a polynomial in α of degree k. The radius of convergence of this Taylor
expansion in u is π, where the first singularity away from u = 0 is located. Substituting
u = π`/(n+ 1), we obtain the following sum

G̃(z; ρ) = e−y

π

∞∑
k=0

pk(α)
∞∑
j=0

yj

j!

∞∑
n=1

(ze−y)n

n(n+ 1)j+2k

n∑
`=1

1
(π`)2α−2k−1 . (3.9)

Using a representation for the factor (π`)−2α+1 in terms of an integral over an auxiliary
variable t, which is convergent for all values Re(α) > 1

2 , and obtaining the factor (π`)2k by
applying a derivative in t of order 2k, we have

n∑
`=1

1
(π`)2α−2k−1 = 1

Γ(2α− 1)

∫ ∞
0

dt

t
t2α−1

(
∂

∂t

)2k n∑
`=1

e−πt`. (3.10)

Carrying out the finite geometric sum over `, and substituting the result into the expres-
sion (3.9), we get the following integral representation for G̃(z; ρ):

G̃(z; ρ) = 1
π

∞∑
k=0

pk(α)
Γ(2α− 1)

∫ ∞
0

dt

t
t2α−1

(
∂

∂t

)2k (Hk(z, t)
eπt − 1

)
, (3.11)

Hk(z, t) = e−y
∞∑
j=0

yj

j!

∞∑
n=1

(ze−y)n

n(n+ 1)j+2k (1− e−πtn). (3.12)

One verifies that the above integral representation converges absolutely for Re(α) > 1
2 .

Indeed, for fixed |z| < 1 and large t, the function Hk(z, t) and all its derivatives tend to
a finite limit, so that exponential convergence of the integral in eq. (3.11) is assured as
t → ∞. Furthermore, the functions Hk(z, t) vanish linearly at t = 0, so that the ratio
Hk(z, t)/(eπt−1) and derivatives of the ratio inside the integral in eq. (3.11) are integrable
at t = 0.

We may rewrite eq. (3.12) conveniently using Fj(z) defined by eq. (2.7):

Hk(z, t) = e−y
∞∑
j=0

yj

j!
[
Fj+2k(ze−y)− Fj+2k

(
ze−y−πt

)]
. (3.13)

Again Fj+2k(z) may be expressed in terms of the polylogarithm according to eq. (2.10).

3.2 Analytic continuation to z → −∞

To compute the limit of G̃(z; ρ) as z → −∞, we need the behavior of Fj+2k(z) as z → −∞,
which is given by eq. (2.12):

Fj+2k(z) = j + 2k − ln(−z) +O(z−1). (3.14)

– 7 –
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In this limit, eq. (3.13) becomes4

Hk(z, t) = e−y
∞∑
j=0

yj

j!
[
− ln(ze−y) + ln(ze−y−πt) +O(z−1)

]
(3.15)

= −πt+O(z−1). (3.16)

As a result, the evaluation of G̃(z; ρ) in this limit reduces to

lim
z→−∞

G̃(z; ρ) = −
∞∑
k=0

pk(α)gk(α) (3.17)

where the coefficients gk(α) are given by the following integral representation

gk(α) = 1
Γ(2α− 1)

∫ ∞
0

dt

t
t2α−1

(
∂

∂t

)2k ( t

eπt − 1

)
. (3.18)

The integral is absolutely convergent for all Re(α) > 1
2 . To evaluate it, we shall use analytic

continuation in α to complex values Re(α) > k + 1
2 such that we may integrate by parts

2k times (with vanishing boundary terms), and obtain the following expression

gk(α) = π2k−2α(2α− 2k − 1)ζ(2α− 2k). (3.19)

For fixed α and k + 1
2 > Re(α), the sign of gk(α) alternates as a function of k and its

magnitude grows with k. Thus the sum (3.17) is an asymptotic expansion with alternating
coefficients, which we will evaluate in the next subsection using a procedure similar to
Borel resummation.

3.3 Matching with previous results

To make contact with the results of Calabrese, Cardy, and Tonni in [8], we begin by using
the functional relation of the Riemann ζ-function

ζ(1− s) = 2Γ(s)
(2π)s cos πs2 ζ(s) (3.20)

to express ζ(2α − 2k) in terms of ζ(2k − 2α + 1), and then use the standard integral
representation

Γ(s)ζ(s) =
∫ ∞

0

dt

t

ts

et − 1 (3.21)

for ζ(2k − 2α+ 1), to recast gk(α) as follows:

gk(α) = 2
π

(−)k+1 sin(πα)
∫ ∞

0

dt

e2t − 1
∂

∂t
t2k−2α+1. (3.22)

Substituting this representation into (3.17), we find

lim
z→−∞

G̃(z; ρ) = 2 sin(πα)
π

∫ ∞
0

dt

e2t − 1
∂

∂t

∞∑
k=0

pk(α)(−)kt2k−2α+1. (3.23)

4The dependence on y drops out in eq. (3.16), leaving us with what we would have obtained if we had
stripped off the “easy factor” e(

1
n+1−n−1)y from the generating function (3.6), thus confirming our claim in

footnote 3.
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The sum over k is easily recognized in terms of the defining relation (3.8) of pk(α):

∞∑
k=0

pk(α)(−)kt2k−2α = 1
(sinh t)2α . (3.24)

Substituting this into (3.23), we find a much simplified integral representation:

lim
z→−∞

G̃(z; ρ) = 2 sin(πα)
π

∫ ∞
0

dt

e2t − 1
∂

∂t

t

(sinh t)2α . (3.25)

The integral may be simplified upon integrating by parts, and we obtain

lim
z→−∞

G̃(z; ρ) = sin(πα)
π

∫ ∞
0

dt
t

(sinh t)2α+2 . (3.26)

The integral is absolutely convergent for −1 < Re(α) < 0 and may be evaluated exactly
for this range of parameters:∫ ∞

0
dt

t

(sinh t)2α+2 =
√
π

4 cot (πα)Γ
(
−α− 1

2

)
Γ(α+ 1). (3.27)

Applying the reflection formula for the Γ-function

Γ
(
−α− 1

2

)
= − π

Γ(α+ 3
2) cos(πα)

, (3.28)

we see that the pre-factor cot(πα) cancels both the pre-factor sin(πα) in (3.26) and the
factor cos(πα) from the reflection formula, and we find

lim
z→−∞

G̃(z; ρ) = −
√
πΓ(α+ 1)

4Γ(α+ 3
2)

. (3.29)

Restoring the multiplicative factor N
(
x
4
)α that we ignored near the beginning of the cal-

culation, and combining this with the leading order result (3.5), we find the von Neumann
entropy of two intervals

SAB = c

3 ln x12x34
ε2

−N
√
πΓ(α+ 1)

4Γ(α+ 3
2)

(
x

4

)α
+ · · · (3.30)

where · · · denotes higher order corrections. Note that the first term is simply SA + SB,
so the remaining terms give −IAB where IAB is the mutual information. This coincides
exactly with the result of [8] obtained by direct analytic continuation in n.

4 Setup of the numerical method

While the application of our method in various examples of conformal field theory is highly
nontrivial, it turns out that the numerical application of our method provides promising
approximations in a variety of complicated models. In the present section, we shall establish
the numerical procedure for the next two sections.
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Given our generating function

G(z; ρ) =
∞∑
k=1

zk

k

(
Tr(ρk+1)− 1

)
≡
∞∑
k=1

f(k)
k

zk, (4.1)

where we have defined
f(k) = Tr

(
ρk+1

)
− 1, (4.2)

the goal is to find the von Neumann entropy via the limit

S = lim
z→−∞

G(z; ρ) . (4.3)

Similarly, for two disjoint regions A and B, we are often given

f(k) ≡ Tr ρk+1
A Tr ρk+1

B

Tr ρk+1
AB

− 1 (4.4)

but are interested in the mutual information

IAB = −f ′(0) = SA + SB − SA∪B . (4.5)

We conjecture5 that our method applies to the mutual information as well. In other words,
we expect to be able to use the same generating function (4.1) with f(k) given by eq. (4.4)
and obtain the mutual information

IAB = lim
z→−∞

G(z; ρ) , (4.6)

where ρ can be thought of as the density matrix on A ∪B.
The Möbius transformation

w = z

z − 1 , z = w

w − 1 (4.7)

maps z = 1 to w = ∞ and z = ±∞ to w = 1, allowing us to rewrite the generating
function as

h(w) ≡ G(z(w); ρ) =
∞∑
k=1

f(k)
k

(
w

w − 1

)k
. (4.8)

Supposing that G(z; ρ) has singularities within [z1, z2] with 1 ≤ z1 ≤ z2 ≤ ∞, h(w) would
have singularities within [w(z2), w(z1)] with 1 ≤ w(z2) ≤ w(z1) ≤ ∞. Therefore we have
mapped a difficult problem of evaluating G(z; ρ) well outside its radius of convergence
(which is z1) to an easy one of evaluating h(1).

The radius of convergence for h(w) is w(z2), so in the worst scenario of z2 = ∞ we
would evaluate h(1) at the edge of the radius of convergence. If z2 is finite, we would
evaluate h(1) as an absolutely convergent series. The value of z2 is equal to the inverse of

5We have not yet found a general proof of this conjecture, but it is certainly plausible given the broader
regime of applicability noted in footnote 3. Furthermore, this conjecture will be numerically verified in
section 5.2.
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the smallest eigenvalue ρmin of the density matrix ρ. Therefore we reorganize the terms
in (4.8) as a manifest Taylor series in w:

h(w) =
∞∑
k=1

f̃(k)
k

wk , (4.9)

where

f̃(k) = Tr[ρ(1− ρ)k] =
k∑

m=0

(−1)mk!
m!(k −m)! Tr(ρm+1) (4.10)

may be determined as a linear combination of f(1), f(2), · · · , f(k).
Numerically it is straightforward to evaluate (4.9) by truncating the Taylor series at

some large order kmax. Therefore by knowing the Rényi entropies up to order kmax + 1, we
can numerically estimate the von Neumann entropy with good precision.

In all the field theory examples that we will consider below, the sum (4.9) exhibits stable
power-law behaviors at large k. In other words, f̃(k)/k ≈ Ck−p with some power p > 1
at large k. Intuitively, this is because in a quantum field theory, the smallest eigenvalue
ρmin → 0 in the continuum limit and we are therefore evaluating the sum (4.9) at the
edge of its radius of convergence, leading to power-law convergence. We will determine the
power p numerically in each example below, and give an interpretation of this power in
section 7.

5 Numerical studies of two intervals

Many two-dimensional CFTs may be constructed in terms of the free field theory of scalar
bosons using the Coulomb gas representation and bosonization. For those theories the
basic building blocks are the CFTs of a free boson with central charge c = 1, which
are further distinguished by the compactification radius. In this case, the von Neumann
entropies for the union of two intervals on an infinite line are characterized by the cross
ratio x, as well as a universal critical exponent η, which is proportional to the square of
the compactification radius.

For finite x and η in a free boson CFT, the general form of Tr(ρn) was derived in [9]:

Tr(ρn) = cn

(
ε2x13x24

x12x34x14x23

) 1
6 (n− 1

n
)
Fn(x, η), (5.1)

where ε is a UV cutoff and cn is a non-universal, model-dependent coefficient with c1 =
1 [10]. In our numerical calculations below, we will choose cn = 1 for simplicity and choose
a reasonable value of ε.6 Note Fn(x, η) is defined as

Fn(x, η) = Θ(0|ηΓ)Θ(0|Γ/η)
[Θ(0|Γ)]2 , (5.2)

6We need to implement the cutoff and non-universal coefficient in a physical way; in particular, bounds
on Rényi entropies such as Tr(ρn) ≤ 1 should not be violated.
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for generic integers n ≥ 1. The Riemann-Siegel theta function Θ(z|Γ) is defined as

Θ(z|Γ) ≡
∑

m∈Zn−1

exp[iπmt · Γ ·m+ 2πimt · z], (5.3)

where Γ is an (n− 1)× (n− 1) matrix with elements

Γrs = 2i
n

n−1∑
k=1

sin
(
πk

n

)
βk/n cos

[2πk
n

(r − s)
]
, (5.4)

and
βy = Fy(1− x)

Fy(x) , Fy(x) ≡ 2F1(y, 1− y; 1;x), (5.5)

with 2F1 being the hypergeometric function. Note that (5.2) is manifestly invariant under
η ↔ 1/η. Currently, the analytic continuation of the von Neumann entropy for general
finite x and η is not analytically known. But given our method, one can calculate the von
Neumann entropy with high accuracy numerically.

In the following two subsections, we will present the numerical studies of two intervals
in the small x or the decompactification η →∞ limit, where analytic perturbative expan-
sions are available for comparison with our method. We will look at the general case of
finite x, η in the third subsection.

Numerical calculations of the von Neumann entropy in this example were previously
carried out in [7] using the rational interpolation method. Our results below agree with
those obtained from rational interpolations. As we mentioned in the Introduction, our
numerical method has the advantage of being more systematic and reliable, although at
the cost of being often slower.

5.1 Two intervals at small cross ratio

For general η 6= 1,7 Fn(x) has the following small x expansion [8, 9]:

Fn(x) = 1 +
(
x

4n2

)α
s2(n) + · · · , s2(n) ≡ N n

2

n−1∑
j=1

1
[sin(πj/n)]2α

, (5.6)

where α is twice the lowest operator dimension in the CFT, N denotes its multiplicity, and
· · · denotes higher-order terms. For a free boson, we have α = min[η, 1/η] and N = 2. We
will numerically calculate the von Neumann entropy and confirm its small x expansion

SA∪B = c′1 + 1
3 ln

(
x12x34x14x23
ε2x13x24

)
−N

(
x

4

)α√πΓ(α+ 1)
4Γ
(
α+ 3

2

) − · · · , (5.7)

where c′1 is minus the n-derivative of cn at n = 1, which is determined by matching SA∪B
to SA +SB in the limit of x21, x43 � x31, x42. This small x expansion of the von Neumann
entropy agrees with our analytical calculation in section 3.

7For the special case of η = 1, we have Fn(x) = 1 instead of the small x expansion (5.6).
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Figure 1. Numerical studies of the von Neumann entropy SAB for two intervals to first order in the
small cross ratio expansion. The solid continuous curves are plotted by the analytical result (5.7).
The points are plotted by our numerical procedure, each of which is calculated up to kmax = 400.
Left: we fix the values of α and plot SAB as function of x (up to x = 0.5). Right: we fix the values
of x and plot SAB as function of α. We have chosen the cutoff to be ε2 = 0.3 in all cases, and one
can always choose a smaller ε which has the effect of raising the curves.

To set up the numerics, we model the system of two disjoint intervals A = [x1, x2] and
B = [x3, x4] on an infinite line8 with |x12| = r = |x34|, and set the distance between the
centers of A and B to be L = 14. In this case, the cross-ratio is

x = x12x34
x13x24

= r2

L2 . (5.8)

Note also that |x14| = L + r = L(1 +
√
x) and |x23| = L − r = L(1 −

√
x). Thus we may

rewrite the “easy factor” in front of Fn(x, η) in eq. (5.1) in terms of x, L.
We have performed the numerical calculation with many choices of numerical constants.

For example, with x = 0.25, α = η = 0.295, and ε2 = 0.3, the result is SA∪B ≈ 1.216
by summing up to kmax = 800, within 10−2 of the answer SA∪B ≈ 1.224 approximated
by (5.7). The sum (4.9) exhibits a stable power p ≈ 1.744, with around 10−3 relative
error. We have probed more regimes in the parameter space; see figure 1, where we have
plotted the entanglement entropies calculated by our numerical procedure compared with
the analytical result given by (5.7).

Furthermore, the second order contribution in x given in [8] can be numerically evalu-
ated, even though we are not aware of an explicit analytic continuation9 to n ≈ 1. In this
case, we use

Fn(x) = 1 +
(
x

4n2

)α
s2(n) +

(
x

4n2

)2α
s4(n) + · · · , (5.9)

where

s4(n) = n

2

n−1∑
j4=j3+1

n−1∑
j3=j2+1

n−1∑
j2=1

{[ sin π(j4−j2)
n sin πj3

n

sin πj2
n sin π(j4−j3)

n sin πj4
n sin π(j3−j2)

n

]2α

+ 2
[ sin πj4

n sin π(j3−j2)
n

sin πj2
n sin π(j4−j3)

n sin π(j4−j2)
n sin πj3

n

]2α}
. (5.10)

8A similar calculation can be carried out on a circle as in the XXZ spin-chain model reported in [11].
9However, the holographic case was studied in [12–14].
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Note that the second order terms only start contributing at n ≥ 4. Now again with x =
0.25, α = 0.295, and ε2 = 0.3, the result is SA∪B = 1.105 by summing up to kmax = 70. In
particular, the second order correction to the entanglement entropy is negative as suggested
by the last minus sign in (5.7). Since we are currently unaware of an analytical calculation
at second order in x for the free boson, we do not have a way to analytically confirm our
numerical results in general, but our numerical study is consistent with the holographic
case [12].

5.2 Two intervals in the decompactification limit

We now consider a different limit [9] than the small x case. In the decompactification limit
η →∞, we have for each fixed value of x

Fn(x, η) =
[

ηn−1∏n−1
k=1 Fk/n(x)Fk/n(1− x)

] 1
2
, (5.11)

where Fk/n is defined as in eq. (5.5). To see Fn(0, η) = 1 in the η →∞ limit, we note that
both the numerator and the denominator go to infinity.

We will use the symmetry η ↔ 1/η to study the result for η � 1 instead:

Fn(x, η) =
[

η−(n−1)∏n−1
k=1 Fk/n(x)Fk/n(1− x)

] 1
2
. (5.12)

For the decompactification regime, our numerical result will be tested against the von
Neumann entropy approximated by the following expansion [9]

SA∪B(η � 1) ' SWAB + 1
2 ln η − D′1(x) +D′1(1− x)

2 + · · · , (5.13)

where SWAB is the von Neumann entropy computed from (5.1) without Fn(x, η), and

D′1(x) = −
∫ i∞

−i∞

dz

i

πz

sin2(πz)
lnFz(x). (5.14)

We have studied various cases; see figure 2. For example, with x = 0.25, η = 0.295, and
ε2 = 0.1 (where it is best approximated [9, 11]), we get SA∪B ≈ 1.584 by summing up
to kmax = 400, which is very close to the analytical answer SA∪B ≈ 1.608 approximated
by (5.13). The sum has a stable power p ≈ 1.695, with around 10−3 relative error.

Note that even with the same choices of numerical constants, the small x expansion
would not in general agree with the decompactification limit, which was already indicated
in [8]. This is expected as we are not in the exact limit of either x→ 0 or η → 0.

Finally, we may also study the mutual information in the decompactification limit,
where we consider the following generating function

f(n− 1) =
(

ε2

x12x34

) 1
6 (n− 1

n
)(

ε2x13x24
x12x34x14x23

)− 1
6 (n− 1

n
) 1
Fn(x, η) − 1 (5.15)
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Figure 2. Numerical studies of the von Neumann entropy SAB for two intervals in the decompact-
ification limit. Solid continuous curves are plotted according to (5.13). Each point is calculated by
our numerical method up to kmax = 250. Left: We fix the values of η and plot SAB as function of
x. Right: We fix the values of x and plot SAB as function of η. We have chosen the cutoff to be
ε2 = 0.1 in all cases.
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Figure 3. Numerical studies of the mutual information IAB for two intervals in the decompactifi-
cation limit. Solid continuous curves are plotted according to (5.17). Each point is calculated by
our numerical method up to kmax = 200, with the cutoff set as ε2 = 1. Left: We fix the values of η
and plot IAB as function of x. Right: We fix the values of x and plot IAB as function of η.

that according to (4.5) should give the mutual information

IAB = SA + SB − SAB. (5.16)

The mutual information is approximated in [9] by

IAB(η � 1) ' IWAB −
1
2 ln η + D′1(x) +D′1(1− x)

2 , (5.17)

where again IWAB is the mutual information computed from (5.15) without Fn(x, η). See
figure 3 for our numerical results. As an example, if we take x = 0.25, η = 0.295, and
ε2 = 1, we find numerically IAB ≈ 0.456 by summing up to kmax = 400, within 10−5

of (5.16) as well as the answer approximated by (5.17). The sum exhibits a stable power
p ≈ 2.457, within 1% relative error.

5.3 Two intervals at finite cross ratio and compactification radius

For the most general case of finite x and η, one need to evaluate directly the Riemann-Siegel
theta function in (5.1) and (5.2) numerically. In this case, an analytical expression for the
von Neumann entropy is not yet known.
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We start with (5.2) which we reproduce here for convenience

Fn(x, η) = Θ(0|ηΓ)Θ(0|Γ/η)
[Θ(0|Γ)]2 . (5.18)

The expression has a symmetry under η ↔ 1/η.
To obtain more accurate results in our numerical procedure, one would need to evaluate

higher dimensional matrices within the Riemann-Siegel theta function for specific choices
of x and η. This is difficult10 to deal with numerically for kmax � 1. Our approach is to
use the identity

Θ(0|ηΓ̃) = η−
n−1

2

( n−1∏
k=0

βk/n

) 1
2
Θ(0|Γ/η), (5.19)

to rewrite (5.18) in the following way [9]:

Fn(x, η) = η
n−1

2
Θ(0|ηΓ)Θ(0|ηΓ̃)∏n−1

k=1 Fk/n(x)Fk/n(1− x)
. (5.20)

We use this formula to perform the numerical calculation. For example, with x = 0.25,
η = 0.295, and ε2 = 1, summing up to kmax = 15 we get SA∪B ≈ 0.747.

6 Numerical studies of one interval at finite temperature and length

Our next nontrivial example is a single interval at finite temperature and finite length.
This example was studied for a 2D free Dirac fermion on a circle using bosonization in [17].
For such a finite system we would need to consider periodic boundary conditions for both
space and imaginary time, corresponding to finite size and finite temperature, respectively.
Setting the spatial size to 1, the two dimensional Euclidean theory thus lives on a torus
defined by z ∼ z + 1 and z ∼ z + τ , with τ = iβ for temperature β−1. We use ` to denote
the length of the interval. Using Tr(ρn) calculated in [17], we find that the generating
function is given by

f(n− 1) =
n−1

2∏
k=−n−1

2

∣∣∣∣2πεη(τ)3

θ1(`|τ)

∣∣∣∣
2k2
n2 |θν(k`n |τ)|2

|θν(0|τ)|2 − 1, (6.1)

where ε is the UV cutoff11 and ν is determined by the boundary condition for the fermion.
In particular, we will study the case of ν = 3 that corresponds to the Neveu-Schwarz
(NS-NS) sector. Note that η(τ) is the Dedekind eta function defined as

η(τ) ≡ q
1

24

∞∏
n=1

(1− qn), (6.2)

10For efforts on computing efficiently the higher dimensional Riemann-Siegel theta function, see [15, 16].
11Note that one should keep at least ε ≤ β for the procedure to be physical. Otherwise, we would be

probing states beyond the UV cutoff.
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where q = e2πiτ . The Jacobi theta functions θ1 and θ3 are defined as

θ1(z|τ) ≡
n=∞∑
n=−∞

(−1)n−
1
2 e(n+ 1

2 )2iπτe(2n+1)πiz , θ3(z|τ) ≡
n=∞∑
n=−∞

en
2iπτe2nπiz . (6.3)

An exact analytic expression for the von Neumann entropy in this case was derived
in [18] (see also [19]); it is12

SA = 1
3 log σ(`)

ε
+ 4i`

∫ ∞
0

dq
ζ(iq`+ 1/2 + iβ/2)− ζ(1/2)− ζ(iβ/2)

e2πq − 1 , (6.4)

where σ and ζ are the Weierstrass sigma function and zeta function with periods 1 and
iβ. Numerically, we take β = 2, ` = 0.5, and ε = 0.1. By summing up to kmax = 700
for (6.1), we get SA ≈ 0.3926, which is within 2×10−3 of the analytical answer SA ≈ 0.3933
from (6.4), with a power p ≈ 1.856, within 10−2 relative error.

This von Neumann entropy is also known in high-temperature and low-temperature
expansions [17]. For the high-temperature expansion, the von Neumann entropy is

SHA = 1
3 ln

(
β

πε
sinh π`

β

)
+ 1

3

∞∑
m=1

ln (1− e2π `
β e
−2πm

β )(1− e−2π `
β e
−2πm

β )
(1− e−2πm

β )2

+ 2
∞∑
l=1

(−1)l

l

( π`l
β coth π`l

β − 1
sinh πl

β

)
. (6.5)

Note that the first term reproduces the infinite length, finite temperature von Neumann
entropy [10, 20, 21]

SHA = 1
3 ln

(
β

πε
sinh π`

β

)
, (6.6)

which is universal. Numerically, we take the choices of β = 0.9, ` = 0.5, and ε = 0.1.
By summing up to kmax = 700 for (6.1), we get SA ≈ 0.580, which is within 10−3 of
the analytical answer SA ≈ 0.582 from (6.5), with a stable power p ≈ 1.873, within 10−2

relative error.
For the low-temperature expansion, the von Neumann entropy is

SLA = 1
3 ln

( 1
πε

sin π`
)

+ 1
3

∞∑
m=1

ln (1− e2πi`e−2πβm)(1− e−2πi`e−2πβm)
(1− e−2πβm)2

+ 2
∞∑
l=1

(−1)l−1

l

(1− πl` cotπ`l
sinh πlβ

)
. (6.7)

Similarly, we see that the first term reproduces the finite size, zero temperature von Neu-
mann entropy [10, 20, 21]

SLA = 1
3 ln

( 1
πε

sin π`
)
, (6.8)

which again is universal. Numerically, we take the choices of β = 10, ` = 0.5, and ε = 0.1.
By summing up to kmax = 700 for (6.1), we get SA ≈ 0.385, which is within 10−3 of

12The expression here is for a 2D Dirac fermion and is twice the result derived in [18] for a chiral fermion.
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Figure 4. Numerical studies of a single interval A at finite temperature and length. We fix the
interval length ` = 0.5 and the cutoff ε = 0.1, and plot SA as a function of β. Each point is
calculated by our numerical procedure up to kmax = 200. Left: the dark blue curve is plotted by
the exact analytic expression (6.4) derived in [18], and it fits our numerical points well. Right:
the same numerical points are shown with the high-temperature and low-temperature expansions.
The blue curve is plotted by the high-temperature expansion (6.5). The green curve is plotted by
the low-temperature expansion (6.7). One can see that the high-temperature expansion fits our
numerical points well in the plot, but their deviation increases slowly for larger β not shown here.

the analytic result SA ≈ 0.386 from (6.7), with a stable power p ≈ 1.922, within 10−3

relative error.
We have numerically interpolated between the two regimes using the generating func-

tion, and compared the result with the exact analytic expression (6.4); see figure 4.

7 Power-law convergence of the generating function

The various field theory examples that we have considered so far all exhibit power-law
convergence at w = 1 of the series (4.9). In other words, we have

f̃(k)
k
∼ k−p (7.1)

at large k with a power p that depends on each specific example. This leads to a natural
question: what type of eigenvalue distributions for a density matrix ρ would exhibit such
power-law behaviors?

To answer this question, we define the eigenvalue distribution P (x) so that the number
of eigenvalues within a small range [x, x+ dx] is P (x)dx. We may rewrite Tr(ρn) in terms
of P (x):

Tr(ρn) =
∫ 1

0
dxP (x)xn. (7.2)

In particular, Tr ρ = 1 means ∫ 1

0
dxP (x)x = 1. (7.3)

In the case of a finite-dimensional density matrix with eigenvalues {ρi}, we have P (x) =∑
i δ(x− ρi).
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Using eq. (7.2), we may write eq. (4.10) as

f̃(k) =
∫ 1

0
dxP (x)x(1− x)k. (7.4)

We would like to find the behavior of this integral for large k. We expect the integral to
be dominated by small x when k is large, due to the presence of (1− x)k.

Let us therefore consider a power-law ansatz for the behavior of the eigenvalue distri-
bution P (x) near zero eigenvalue:

P (x) ∼ xγ , as x→ 0. (7.5)

Convergence of the integral in eq. (7.3) then requires γ > −2. Substituting this into
eq. (7.4), we find at large k

f̃(k) ∼
∫ 1

0
dxxγ+1(1− x)k = Γ(k + 1)Γ(γ + 2)

Γ(k + γ + 3) = 1
kγ+2

[
Γ(γ + 2) +O(k−1)

]
. (7.6)

This is indeed a power law for large k. Comparing it with our definition of the power p in
eq. (7.1), we find

p = γ + 3. (7.7)

As we mentioned previously, eq. (7.3) requires γ > −2, giving p > 1, which is precisely the
necessary and sufficient condition for the sum (4.9) to converge at w = 1.

Eq. (7.7) describes how the power-law behavior of the sum (4.9) is related to the small
eigenvalue behavior of the eigenvalue distribution P (x). Therefore, using the power p that
we have determined numerically in the field theory examples studied in previous sections,
we may now predict that their eigenvalue distribution P (x) must scale like xp−3 for small
eigenvalue x.

As we alluded to briefly in section 4, this power-law convergence is closely related to
the infinite-dimensional Hilbert space of quantum field theories. Let us use {ρi} to denote
the eigenvalues of the density matrix. The generating function (1.6) becomes

G(z; ρ) = −
∑
i

[
ρi ln 1− ρiz

1− z

]
. (7.8)

It has branch cuts along z ∈ [1, 1/ρmin] where ρmin is the smallest eigenvalue of the density
matrix ρ. After the Möbius transformation to w, the branch cuts are along w ∈ [ 1

1−ρmin
,∞).

A necessary condition for the series (4.9) to be power-law convergent at w = 1 is that
its radius of convergence must be 1. This means 1

1−ρmin
= 1, or ρmin = 0.13 This is

true for density matrices in continuous quantum field theories with infinite-dimensional
Hilbert spaces.

13It is manifest from eq. (7.8) that in order to have power-law convergence, it does not help for some of
the eigenvalues to be precisely zero; instead, there must be an accumulation of eigenvalues near zero.
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8 Discussion

In this paper we have shown that the von Neumann entropy may be obtained by assembling
the traces Tr(ρn) for all positive integers n into a generating function of an auxiliary
complex parameter z, analytically continuing in z, and then taking the limit as z → −∞.
Our construction demonstrates that the analytic continuation in z exists when ρ is a density
matrix. We showed how the procedure may be carried out analytically for the cases of one
interval and of two colinear intervals in certain limits, and we demonstrated that a simple
variant of the method also leads to numerical evaluations of the von Neumann entropy in
a practical, reliable way.

Many open questions and future directions for investigation remain. Most of the cases
that we studied were selected because they are simple enough to exhibit the method clearly,
but complicated enough so that the standard replica “analytic continuation” in n is not
automatic. Firstly, it is urgent to see whether our method can analytically produce the
von Neumann entropy in cases that have eluded direct analytic continuation in n. One
such case is the example of two intervals at finite cross ratio for a free boson with a general
compactification radius. Another interesting example involves the contributions of replica
non-symmetric saddle point solutions in holography, which are difficult to analytically
continue in n but have been shown in [22] to give important enhanced corrections to the
Ryu-Takayanagi formula [23, 24] at holographic entanglement phase transitions.

Secondly, our method appears to have a broader regime of applicability than what
might be expected from our derivation — in particular, the method often applies to parts
of Tr(ρn) with “easy factors” stripped off (as in footnote 3) and we also conjecture that
it applies to the mutual information (as in section 4). It would be very interesting to
understand precisely how broadly our method applies and why.

Finally, an alternative starting point for the replica method, which recently appeared
in [3], is from the functions Tr(ρ1/n) instead of Tr(ρn). It will be interesting to see whether
our method can be adapted to handle such cases as well.
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