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Abstract. Sparse representation of a single measurement vector (SMV) has

been explored in a variety of compressive sensing applications. Recently, SMV
models have been extended to solve multiple measurement vectors (MMV)

problems, where the underlying signal is assumed to have joint sparse struc-
tures. To circumvent the NP-hardness of the `0 minimization problem, many

deterministic MMV algorithms solve the convex relaxed models with limited ef-
ficiency. In this paper, we develop stochastic greedy algorithms for solving the
joint sparse MMV reconstruction problem. In particular, we propose the MMV
Stochastic Iterative Hard Thresholding (MStoIHT) and MMV Stochastic Gra-

dient Matching Pursuit (MStoGradMP) algorithms, and we also utilize the
mini-batching technique to further improve their performance. Convergence

analysis indicates that the proposed algorithms are able to converge faster
than their SMV counterparts, i.e., concatenated StoIHT and StoGradMP, un-
der certain conditions. Numerical experiments have illustrated the superior
effectiveness of the proposed algorithms over their SMV counterparts.
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1. Introduction. Reconstruction of sparse signals from limited measurements has
been studied extensively with a variety of applications in various imaging sciences,
machine learning, computer vision and so on. The major problem is to recon-
struct a signal which is sparse by itself or in some transformed domain from a small
number of measurements (or observations). Let x ∈ Rn be the signal to be recon-
structed. Then the sparse signal reconstruction problem can be formulated as an
`0 constrained minimization problem

(1) min
x∈Rn

F (x), s.t. ‖x‖0 ≤ k,

where the sparsity ‖x‖0 counts the number of nonzero elements in x. Here F (x)
is a loss function measuring the discrepancy between the acquired measurements
y ∈ Rm (m � n) and the measurements predicted by the estimated solution. In
particular, if the measurements are linearly related to the underlying signal, i.e.,
there exists a sensing matrix A ∈ Rm×n such that y = Ax+n where n is the Gauss-
ian noise, then the least squares loss function is widely used: F (x) = 1

2 ‖y −Ax‖22.
Then (1) becomes a single measurement vector (SMV) sparse signal reconstruction
problem [11]. The choice of F depends on the generation mechanism of the measure-
ments. Since the measurements are often generated in real time in many imaging
techniques, it becomes significantly important in practice to reconstruct a collection
of sparse signals, expressed as a signal matrix, from multiple measurement vectors
(MMV). More precisely, the signal matrix X ∈ Rn×L with k (k ≤ n) nonzero rows
can be obtained by solving the following MMV model

(2) min
X∈Rn×L

F (X), s.t. ‖X‖r,0 ≤ k,

where ‖X‖r,0 stands for the row-sparsity of X which counts nonzero rows in X.
In the MMV literature, the column size L of X typically represents the number of
snapshots of a signal. Note that it is possible that certain columns of X have more
zero components than zero rows of X. The MMV sparse reconstruction problem
was first introduced in magnetoencephalography (MEG) imaging [11], and has been
extended to other applications [21, 4, 29, 30, 28, 13, 25].

Many SMV algorithms can be applied to solve MMV problems. The most
straightforward way is to use SMV algorithms to reconstruct each signal vector
sequentially or simultaneously via parallel computing, and then concatenate all
resultant signals to form the estimated signal matrix. We call these types of algo-
rithms, concatenated SMV algorithms. On the other hand, the MMV problem can
be converted to an SMV one by column-wise stacking the unknown signal matrix
X as a vector and introducing a block diagonal matrix as the new sensing matrix
A. However, neither approach fully takes advantage of the joint sparse structure
of the underlying signal matrix, and lack computational efficiency as well. In this
paper, we develop MMV algorithms without concatenation of the SMV results or
vectorization of the unknown signal matrix.

Since the `0 term in (1) and (2) is non-convex and non-differentiable, many classi-
cal convex optimization algorithms fail to produce a satisfactory solution. To handle
the NP-hardness of the problem, many convex relaxation methods and their MMV
extensions have been developed, e.g., the `2-regularized M-FOCUSS [11] and the
`1-regularized MMV extensions of the alternating direction method of multipliers
[26, 22]. By exploiting the relationship between the measurements and the correct
atoms, multiple signal classification (MUSIC) [38, 17] and its improved variants
[23, 24] have been developed. However, in the rank defective cases when the rank
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of the measurement matrix is much smaller than the desired row-sparsity level, the
MUSIC type of methods will mostly fail to identify the correct atoms. The third
category of algorithms for solving the `0 constrained problem is the class of greedy
algorithms that seek the sparsest solution by updating the support iteratively. SMV
greedy algorithms include Orthogonal Matching Pursuit (OMP) [37, 39] and its RIP
condition discussion [42], simultaneous OMP (S-OMP) [10, 40], Compressive Sam-
pling Matching Pursuit (CoSaMP) [32], Regularized OMP (ROMP) [33], Subspace-
Pursuit (SP) [12], Iterative Hard-Thresholding (IHT) [7], Normalized IHT [8], Hard
Thresholding Pursuit (HTP) [18], gradient hard thresholding [41], and conjugate
gradient IHT (CGIHT) [6]. It has been shown that CoSaMP and IHT are more
efficient than the convex relaxation methods with strong recovery guarantees [32].
Greedy algorithms have also been extended to cosparse analysis to find the nearest
cosparse subspace to a vector [20]. However, most of these algorithms work for com-
pressive sensing applications where F is a least squares loss function. Recently, the
Gradient Matching Pursuit (GradMP) [36] has been proposed to extend CoSaMP
to handle more general loss functions. To further improve efficiency and consider
the non-convex objective function case, Stochastic IHT (StoIHT) and Stochastic
GradMP (StoGradMP) have been proposed [35]. Nevertheless, concatenated ex-
tension of the aforementioned SMV greedy algorithms to the MMV versions will
result in limited performance especially for large data sets. Using the row sparsity,
MMV extensions of SMV greedy algorithms have been developed, e.g., M-OMP, M-
SP, M-CoSaMP and M-HTP in [5] and references therein. Based on countable and
uncountable set of measurements, a class of models consider infinite measurements
vectors (IMV) broader than MMV which have been proposed in [31].

In this paper, we propose the MMV Stochastic IHT (MStoIHT) and the MMV
Stochastic GradMP (MStoGradMP) algorithms for solving the general MMV joint
sparse recovery problem (2). To accelerate convergence, the mini-batching tech-
nique is applied to the proposed algorithms. We also theoretically show that under
certain conditions the proposed algorithms converge faster than their SMV con-
catenated counterparts, i.e., CStoIHT and CStoGradMP. Note that CStoIHT and
CStoGradMP may fail to converge to a joint sparse solution without the colum-
nwise separability of the objective function. The naming rule for the algorithms
follows: initial C - concatenated, initial M - MMV, initial B - batched. A large va-
riety of numerical experiments on joint sparse matrix recovery and video sequence
recovery have demonstrated the superior performance of the proposed algorithms
over their SMV counterparts in terms of running time and accuracy. Please refer to
[15] for our more recent work on MStoGradMP applied to solve the hyperspectral
diffuse optical tomography imaging problem, which has shown the great potential
of stochastic greedy algorithms on recovering large-scale data with joint sparsity.

Organization. The rest of the paper is organized as follows. Preliminary knowl-
edge and notation clarifications are provided in Section 2. Section 3 presents the
concatenated SMV algorithms, and the proposed stochastic greedy algorithms, i.e.,
MStoIHT and MStoGradMP, in detail. Section 4 discusses how to apply the mini-
batching technique to accelerate the proposed algorithms. Convergence analysis
is provided in Section 5. By choosing the widely used least squares loss function
as F , joint sparse signal recovery in distributed compressive sensing is discussed
in Section 6. Extensive numerical results are shown in Section 7. Finally, some
concluding remarks are made in Section 8.
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2. Preliminaries. To make the paper self-contained, we first introduce some use-
ful notation and definitions, and then briefly describe the related algorithms, i.e.,
StoIHT and StoGradMP. Let [m] = {1, 2, . . . ,m} and |Ω| be the number of elements
in the set Ω. Consider a finite atom set D = {d1, . . . ,dN} (a.k.a. the dictionary)
with each atom di ∈ Rn.

2.1. Vector and matrix sparsity. Assume that a vector x ∈ Rn can be written

as a linear combination of di’s, i.e., x =
∑N
i=1 αidi = Dα with D = [d1, . . . ,dN ]

and α = (α1, . . . , αN )T . Then the support of x with respect to α and D is defined
by

suppα,D(x) = {i ∈ [N ] : αi 6= 0} := supp(α).

The `0-norm of x with respect to D is defined as the minimal support size

‖x‖0,D = min
α
{|T | : x =

∑
i∈T

αidi, T ⊆ [N ]}.

Since absolute homogeneity does not hold in general, i.e., ‖γx‖0,D = |γ| ‖x‖0,D
holds if and only if |γ| = 1, this `0-norm is not a norm. Here the smallest support
suppα,D(x) is called the support of x with respect to D, denoted by suppD(x). Thus

| suppD(x)| = ‖x‖0,D .

Note that the support may not be unique if D is over-complete in that there could
be multiple representations of x with respect to the atom set D due to the linear
dependence of the atoms in D. In this paper, we assume that D is chosen so that the
support of any arbitrary vector is unique, e.g., D is chosen as the standard basis in
a Euclidean space or a learned basis. Furthermore, Donoho defines a general class
of unconditional basis in [14], e.g., the wavelet basis, which requires the unique
representation and thereby is also applicable to our MMV algorithms. Without
this uniqueness representation guarantee, we could either restrict the solution set
or take a transformation of the unknown variable.

The vector x is called k-sparse with respect to D if ‖x‖0,D ≤ k. For a subset

Γ ⊆ [N ], we denote the set of atoms from D with indices restricted to Γ by DΓ, and
denote the subspace of Rn spanned by the atoms in DΓ by RDΓ . Given a vector
w ∈ Rn, we use PΓw to denote the orthogonal projection of w onto the subspace
R(DΓ).

We extend vector sparsity and define the row sparsity for a matrix X ∈ Rn×L as
follows

‖X‖r,0,D = min
Ω
{|Ω| : Ω =

L⋃
j=1

suppD(X·,j)},

where X·,j is the j-th column of X. Here the minimal common support Ω is called
the (row-wise) joint support of X with respect to D, denoted by supprD(X), which
satisfies | supprD(X)| = ‖X‖r,0,D. The matrix X is called k-row sparse with respect
to D if all columns of X share a joint support of size at most k with respect to D,
i.e., ‖X‖r,0,D ≤ k.

2.2. Functions defined on a matrix space. Given a function f : Rn×L → R,
the matrix derivative is defined by concatenating gradients [27]

(3)
∂f

∂X
=

[
∂f

∂Xi,j

]
n×L

=
[
∇X·,1f · · · ∇X·,Lf

]
,
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where Xi,j is the (i, j)-th entry of X. Notice that

‖X‖2F =
n∑
i=1

‖Xi,·‖22 =
L∑
j=1

‖X·,j‖22 = Tr(XTX),

where Xi,· is the i-th row vector of X, and Tr(·) is the trace operator to add
up all the diagonal entries of a matrix. The inner product for any two matrices
U, V ∈ Rn×L is defined as 〈U, V 〉 = Tr(UTV ). Note that the equality

‖U + V ‖2F = ‖U‖2F + ‖V ‖2F + 2〈U, V 〉

and the Cauchy-Schwartz inequality

〈U, V 〉 ≤ ‖U‖F ‖V ‖F
still hold. By generalizing the concepts in [35], we define the D-restricted strong
convexity property and the strong smoothness property (a.k.a. the Lipschitz condi-
tion on the gradient) for the functions defined on a matrix space. It is worth noting
the variants of these two concepts have been used to study the convergence of the
projected gradient descent algorithm [1].

Definition 2.1. The function f : Rn×L → R satisfies the D-restricted strong
convexity (D-RSC) if there exists ρ−k > 0 such that

(4) f(X ′)− f(X)−
〈 ∂f
∂X

(X), X ′ −X
〉
≥
ρ−k
2
‖X ′ −X‖2F

for X ′, X ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k.

Definition 2.2. The function f : Rn×L → R satisfies the D-restricted strong
smoothness (D-RSS) if there exists ρ+

k > 0 such that

(5)

∥∥∥∥ ∂f∂X (X)− ∂f

∂X
(X ′)

∥∥∥∥
F

≤ ρ+
k ‖X −X

′‖F

for X ′, X ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k.

2.3. Related work. Many stochastic greedy algorithms based on matching pursuit
and hard thresholding have been proposed to solve the SMV problem. In partic-
ular, GradMP generalizes CoSaMP to handle general convex objective functions
[36]. Motivated by the success of stochastic convex optimization, StoIHT (see Al-
gorithm 1) and StoGradMP (see Algorithm 2) have been later proposed to solve
the `0 constrained SMV problem [35]

(6) min
x∈Rn

1

M

M∑
i=1

f̃i(x), subject to ‖x‖0,D ≤ k,

At each iteration of StoIHT, one component function f̃i : Rn → R is first randomly
selected with probability p(i). Here the input discrete probability distribution p(i)’s

satisfy
∑M
i=1 p(i) = 1, and p(i) ≥ 0, i = 1, . . . ,M . Next, in the “Proxy” step,

gradient descent along the selected component is performed. Then the last two
steps, i.e., “Identify” and “Estimate”, essentially project the gradient descent result
to its best k-sparse approximation. Given w = (w1, . . . , wn)T and η ≥ 1, the best
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k-sparse approximation operator acted on w and η, denoted by approxk(w, η),
constructs an index set Γ with |Γ| = k such that

(7) ‖PΓw −w‖2 ≤ η
∥∥w −w(k)

∥∥
2
, w(k) = argmin

y∈R(DΓ)
|Γ|≤k

‖w − y‖2 .

Thus, if Γ∗ = argminΓ:|Γ|≤k ‖w − PΓw‖2, we have ‖w − PΓw‖2 ≤ η ‖w − PΓ∗w‖2,

and w(k) defined in (7) becomes the best k-sparse approximation of w in the
subspace R(DΓ∗). In particular, if η ≥ 1 and D = {ei : i = 1, 2, . . . , n} with
ei = [0, . . . , 1

(i)
, . . . , 0]T , then approxk(w, η) returns the index set of the first k

largest entries of w in absolute value, i.e.,

approxk(w, 1) = {i1, . . . , ik : |wi1 | ≥ . . . ≥ |wik | ≥ . . . ≥ |win |} := Γ̂.

Then the projection PΓw reads as in componentwise form(
PΓ̂(w)

)
j

=

{
wj if j ∈ Γ̂,

0 if j /∈ Γ̂.

There are two widely used stopping criteria:

∥∥xt+1−xt
∥∥

2

‖xt‖2
< ε, and 1

M

∑M
i=1 f̃i(x

t) <

ε, where ε > 0 is a small tolerance. It is well known that the first stopping criteria
is more robust in practice [9].

Algorithm 1 Stochastic Iterative Hard Thresholding (StoIHT)

Input: k, γ, η, p(i), ε.
Output: x̂ = xt.
Initialize: x0 = 0.
for t = 0, 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Proxy: bt = xt − γ
Mp(it)

∇f̃it(xt)
Identify: Γt = approxk(bt, η).
Estimate: xt+1 = PΓt(b

t).
If the stopping criteria are met, exit.

end for

Different from StoIHT, StoGradMP involves gradient matching, i.e., seeking the
best k-sparse approximation of the gradient rather than the solution. At the so-
lution estimation step, the original problem is restricted to the components from
the estimated support. It has been empirically shown that StoGradMP converges
faster than StoIHT due to the more accurate estimation of the support [35]. But
StoGradMP requires that the sparsity level k is no more than n/2.

3. Proposed stochastic greedy algorithms. In this section, we present con-
catenated SMV algorithms, and develop stochastic greedy algorithms for MMV
problems based on StoIHT and StoGradMP. Suppose that there are M differen-
tiable and convex functions fi : Rn×L → R that satisfy the D-restricted strong
smoothness property (see Definition 2.2), and their mean

(8) F (X) =
1

M

M∑
i=1

fi(X)
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Algorithm 2 Stochastic Gradient Matching Pursuit (StoGradMP)

Input: k, η1, η2, p(i), ε.
Output: x̂ = xt.
Initialize: x0 = 0, Λ = ∅.
for t = 0, 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Calculate the gradient rt = ∇f̃it(xt)
Γ = approx2k(rt, η1)

Γ̂ = Γ ∪ Λ
bt = argminx

1
M

∑M
i=1 f̃i(x), x ∈ R(DΓ̂)

Λ = approxk(bt, η2)
xt+1 = PΛ(bt)
If the stopping criteria are met, exit.

end for

satisfies the D-restricted strong convexity property (see Definition 2.1). These as-
sumptions will be used extensively throughout the entire paper. Consider the row-
sparsity constrained MMV problem

(9) min
X∈Rn×L

1

M

M∑
i=1

fi(X), subject to ‖X‖r,0,D ≤ k.

By vectorizing X, i.e., rewriting X as a vector x ∈ RnL by columnwise stacking,
we can relax (9) to a sparsity constrained SMV problem of the form (6) where
the sparsity level k is replaced by kL. Since ‖x‖0,D ≤ kL does not necessarily

guarantee ‖X‖r,0,D ≤ k, the solution to the relaxed problem may not be the same

as the vectorization of the solution to (9). On the other hand, the iterative stochastic
algorithms such as StoIHT and StoGradMP, can be developed to the concatenated
versions for solving (9) under the following assumption on the objective function
fi’s.

Definition 3.1. Each component fi of the objective function F in (9) is columnwise
separable, in the sense that a collection of functions gi,j : Rn → R exist with

(10) fi(X) =
L∑
j=1

gi,j(X·,j), i = 1, . . . ,M.

In this case, the objective function can be rewritten as

(11) F (X) =
L∑
j=1

(
1

M

M∑
i=1

gi,j(X·,j)

)
:=

L∑
j=1

F̂j(X·,j),

which implies that minimizing F with respect to X can be reduced to minimizing

F̂j for j = 1, . . . , L individually.

Under this assumption, the concatenated algorithms, i.e., CStoIHT in Algo-
rithm 3 and CStoGradMP in Algorithm 4, can be applied to solve (9), which es-
sentially reconstruct each column of X by solving the SMV problem (6). Notice
that the outer loops of CStoIHT and CStoGradMP can be executed in a parallel
manner on a multi-core computer, when the order of the inner loop and the outer
loop in Algorithm 3 can be swapped. Note that although a joint support is not
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enforced at each iteration, the paralleled version of CStoIHT and CStoGradMP can
still yield joint sparse results with guaranteed convergence (see Theorem 5.5 and
Theorem 5.9). However, if the sparsity level k is very large, then the support sets
of X·,j ’s are prone to overlap less initially which results in the less accurate esti-
mation of the joint support and larger errors in the initial iterates. In addition, for
some nonlinear function fi(X) which can not be separated as a sum of functions
for columns of X, it will be challenging to find an appropriate objective function
for the corresponding SMV problem.

Algorithm 3 Concatenated Stochastic Iterative Hard Thresholding (CStoIHT)

Input: k, γ, η, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0 ∈ Rn×L.
for j = 1, . . . , L do

for t = 0, 1, 2, . . . , T do
Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Proxy: bt = Xt

·,j −
γ

Mp(it)
∇git,j(Xt

·,j)

Identify: Γt = approxk(bt, η).
Estimate: Xt+1

·,j = PΓt(b
t).

If the stopping criteria are met, exit.
end for

end for

Algorithm 4 Concatenated Stochastic Gradient Matching Pursuit (CStoGradMP)

Input: k, η1, η2, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0 ∈ Rn×L, Λ = ∅.
for j = 1, . . . , L do

for t = 0, 1, 2, . . . , T do
Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Calculate the gradient rt = ∇git,j(Xt

·,j)

Γ = approx2k(rt, η1)

Γ̂ = Γ ∪ Λ
bt = argminx

1
M

∑M
i=1 gi,j(x), x ∈ R(DΓ̂)

Λ = approxk(bt, η2)
Xt+1
·,j = PΛ(bt)

If the stopping criteria are met, exit.
end for

end for

To circumvent the aforementioned issues, we first propose the MMV Stochastic
Iterative Hard Thresholding algorithm (MStoIHT) detailed in Algorithm 5. Com-
pared to StoIHT, MStoIHT replaces the gradient by the matrix derivative (3). The
second significant difference lies in the “Identify” and “Estimate” steps, especially
the operator approxk(·, ·). Now we extend the operator approxk(·, ·) from sparse
vectors to row-sparse matrices. Given X ∈ Rn×L and η ≥ 1, the best k-row sparse
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approximation operator acted on X and η, denoted by approxrk(X, η), constructs a
row index set Γ such that

‖PΓX·,j −X·,j‖2 ≤ η ‖X·,j − (X·,j)k‖2 , j = 1, . . . , L,

where (X·,j)k is the best k-sparse approximation of the column vector X·,j with
respect to D. Note that we can choose Γ as the union of all Γj ’s if Γj is the index
set satisfying the inequality with a specified index j. In particular, if D = {ei : i =
1, . . . , n} and η = 1, approxrk(X, 1) returns the row index set of the first k largest
`2 row norms in X, i.e.,

approxrk(X, 1) = {i1, . . . , ik : ‖Xi1,·‖2 ≥ . . . ≥ ‖Xin,·‖2} := Γ̃.

By abusing the notation, we define PΓ̃(X) to be the projection of X onto the

subspace of all row-sparse matrices with row indices restricted to Γ̃. Therefore, we

have PΓ̃X =
[
PΓ̃X·,1 . . . PΓ̃X·,L

]
. Due to the common support Γ̃, the projection

PΓ̃(X) can also be written as in row-wise form

(12)
(
PΓ̃(X)

)
j,· =

{
Xj,· if j ∈ Γ̃,

0 if j /∈ Γ̃.

Here PΓ̃(X) returns a k-row sparse matrix, whose nonzero rows correspond to the
k rows of X with largest `2 row norms.

Algorithm 5 MMV Stochastic Iterative Hard Thresholding (MStoIHT)

Input: k, γ, η, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0.
for t = 0, 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Proxy: Bt = Xt − γ
Mp(it)

∂fit (X
t)

∂X

Identify: Γt = approxrk(Bt, η).
Estimate: Xt+1 = PΓt(B

t).
If the stopping criteria are met, exit.

end for

Next, we propose the MMV Stochastic Gradient Matching Pursuit (MStoGrad
MP) detailed in Algorithm 6, where the two gradient matching steps involve the
operator approxrk(·, ·). The stopping criteria in all proposed algorithms can be set
as the same as those in Algorithm 1 and Algorithm 2. Here we choose the stopping
criterion:

∥∥Xt+1 −Xt
∥∥
F
/‖Xt‖F < ε, where ε > 0 is a small tolerance.

4. Batched acceleration. To accelerate computations and improve performance,
we apply the mini-batching technique to obtain batched variants of Algorithms 5
and 6. We first partition the index set {1, 2, . . . ,M} into a collection of equal-sized
batches τ1, . . . , τd where the batch size |τi| = b for all i = 1, 2, . . . , dM/be := d. For
simplicity, we assume that M/b is an integer. Similar to the approach in [34], we
reformulate (8) as

(13) F (X) =
1

d

d∑
i=1

1

b

∑
j∈τi

fj(X)

 :=
1

d

d∑
i=1

f̂i(X).
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Algorithm 6 MMV Stochastic Gradient Matching Pursuit (MStoGradMP)

Input: k, η1, η2, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0, Λ = ∅.
for t = 0, 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Calculate the generalized gradient Rt =
∂fit (X

t)

∂X

Γ = approxr2k(Rt, η1)

Γ̂ = Γ ∪ Λ
Bt = argminX F (X), X ∈ R(DΓ̂)
Λ = approxrk(Bt, η2)
Xt+1 = PΛ(Bt)
If the stopping criteria are met, exit.

end for

That is, f̂i is the average of the i-th batch of component functions {fj}j∈τi . Based
on this new formulation, we get the batched version of Algorithm 5, which is termed
as BMStoIHT, described in Algorithm 7. Here the input probability p(i) satisfies

1

d

d∑
i=1

p(i) = 1 and p(i) ≥ 0, i = 1, . . . , d.

Likewise, we get a batched version of MStoGradMP, termed as BMStoGradMP,

which is detailed in Algorithm 8. Note that f̂τt in Algorithms 7 and 8 is the τt-th

component function defined in (13), and
∂f̂τt (X

t)

∂X is the derivative of f̂τt defined in
(3). It is empirically shown in Section 7 that the increase of the batch size greatly
speeds up the convergence of both algorithms, which is more obvious in BMStoIHT.
As a by-product, mini-batching can also improve the recovery accuracy based on
our experiments. However, there is a trade-off between the batch size and the
performance improvement as mentioned in [34].

Algorithm 7 Batched MMV Stochastic Iterative Hard Thresholding (BMStoIHT)

Input: k, γ, η, b and p(i).

Output: X̂ = Xt.
Initialize: X0 = 0.
for t = 0, 1, 2, . . . , T do

Randomly select a batch index τt ⊆ {1, 2, . . . , d} of size b with probability
p(τt)

Proxy: Bt = Xt − γ
dp(τt)

∂f̂τt (X
t)

∂X

Identify Γt = approxrk(Bt, η).
Estimate Xt+1 = PΓt(B

t).
If the stopping criteria are met, exit.

end for

5. Convergence analysis. In this section, we provide the convergence guarantees
for the proposed MStoIHT and MStoGradMP, together with their SMV counter-
parts, i.e., CStoIHT and CStoGradMP. To simplify the discussion, the result at the
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Algorithm 8 Batched MMV Stochastic Gradient Matching Pursuit (BM-
StoGradMP)

Input: k, η1, η2, b and p(i).

Output: X̂ = Xt.
Initialize: X0 = 0, Λ = ∅.
for t = 0, 1, 2, . . . , T do

Randomly select a batch index τt ⊆ {1, 2, . . . , d} of size b with probability
p(τt)

Calculate the generalized gradient Rt =
∂f̂τt (X

t)

∂X

Γ = approxr2k(Rt, η1)

Γ̂ = Γ ∪ Λ
Bt = argminX F (X), X ∈ span(DΓ̂)
Λ = approxrk(Bt, η2)
Xt+1 = PΛ(Bt)
If the stopping criteria are met, exit.

end for

t-th iteration of CStoIHT/CStoGradMP refers to the result obtained after t inner
iterations and L outer iterations of Algorithm 3/Algorithm 4, or equivalently the
maximum number of inner iterations is set as t. Furthermore, all convergence re-
sults can be extended to their batched versions, i.e., BStoIHT and BMStoGradMP.
Comparison of contraction coefficients shows that the proposed algorithms have
faster convergence under the D-RSC, D-RSS and columnwise separability of the
objective function (see Definition 3.1). Similar to Section 3, we consider the model
(9) under the following assumptions.

Assumption 1. The objective function F (X) = 1
M

∑M
i=1 fi(X) : Rn×L → R satis-

fies

(a) fi is columnwise separable with differentiable and convex functions gi,j that
satisfy (10) and D-RSS in vector form, i.e., there exists ρ+

k (i, j) > 0 such that

(14) ‖∇gi,j(w)−∇gi,j(ŵ)‖2 ≤ ρ
+
k (i, j) ‖w − ŵ‖2

for all vectors w, ŵ ∈ Rn with | suppD(w) ∪ suppD(ŵ)| ≤ k.

(b) F̂j =
∑
i gi,j satisfies D-RSC in vector form, i.e., there exists ρ−k,j > 0 such

that

(15) F̂j(ŵ)− F̂j(w)− 〈∇Fj(w), ŵ −w〉 ≥
ρ−k,j

2
‖ŵ −w‖22

for all vectors w, ŵ ∈ Rn with | suppD(w) ∪ suppD(ŵ)| ≤ k.

Similar to [35], the D-RSS property (a) and D-RSC property (b) in this assump-
tion can guarantee the uniqueness of the solution to (9).

Lemma 5.1. If Assumption (a) is satisfied, then fi satisfies D-RSS with constant
µ+
k (i) = max

1≤j≤L
ρ+
k (i, j) for i = 1, . . . ,M .

Lemma 5.2. If Assumption (b) is satisfied, then F (X) satisfies D-RSC with con-
stant µ−k = min

1≤j≤L
ρ−k,j.
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The proofs of Lemma 5.1 and Lemma 5.2 are straightforward, which can be found
in the Appendix. Throughout the paper, we denote

(16)

αk,j = max
1≤i≤M

ρ+
k (i,j)

Mp(i) ,

ρ+
k,j = max

1≤i≤M
ρ+
k (i, j),

ρ̄+
k,j = 1

M

M∑
i=1

ρ+
k (i, j),

where ρ+
k (i, j) is the D-RSS constant for gi,j defined in Assumption (a).

5.1. MStoIHT. By replacing the `2-norm and vector inner product with the Frobe-
nius norm and the matrix inner product respectively and using the properties of
inner product in Section 2, we get similar convergence results for MStoIHT in [35]
in the following theorem. Here we skip the proof which is a straightforward matrix
extension of [35, Appendix B].

Theorem 5.3 (MStoIHT). Let X∗ be a feasible solution of (9) and X0 be the initial

solution. Assume that F (X) = 1
M

∑M
i=1 fi(X) satisfies the D-RSC with constant

ρ−k in (4) and fi satisfies D-RSS with constant ρ+
k (i) in (5). Then at the (t+ 1)-th

iteration, the expectation of the recovery error of Algorithm 5 is bounded by

(17) E
∥∥Xt+1 −X∗

∥∥
F
≤ κt+1

∥∥X0 −X∗
∥∥
F

+
σX∗

1− κ
,

where the contraction coefficient κ and the tolerance parameter σX∗ are
(18)

κ = 2
√

1− γ (2− γα3k) ρ−3k +

√√√√(η2 − 1)

(
1 + γ2α3k

M∑
i=1

ρ+
3k(i)− 2γρ−3k

)
,

σX∗ =
γ

min
1≤i≤M

Mp(i)

(
2Ei max

|Ω|≤3k

∥∥∥∥PΩ
∂fi
∂X

(X∗)

∥∥∥∥
F

+
√
η2 − 1Ei

∥∥∥∥ ∂fi∂X
(X∗)

∥∥∥∥
F

)
.

Here PΩ is defined in (12) and

(19) αk = max
1≤i≤M

ρ+
k (i)

Mp(i)
, ρ+

k = max
1≤i≤M

ρ+
k (i), ρ̄+

k =
1

M

M∑
i=1

ρ+
k (i).

Thus Algorithm 7 converges linearly if κ < 1. In particular, if η = γ = 1, then

(20) κ = 2
√

1− 2ρ−3k + α3kρ
−
3k.

Remark. From (18), one can see that the tolerance parameter σX∗ increases as
the step size γ grows which implies that the step size cannot be too large. The
contraction coefficient κ which controls the convergence speed depends on the D-
RSC and D-RSS constants. In addition, in the simplest case when η = γ = 1 and
p(i) is a uniform distribution, one can see that κ decreases if either the D-RSC
constant ρ−3k increases or the maximum of all D-RSS constants ρ+

3k(i) decreases
according to (20). That implies that the proposed algorithms will converge fast
when each component function of the objective has either a small D-RSS constant
or a large D-RSC constant in this case.
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5.2. CStoIHT. To solve the problem (9), CStoIHT uses StoIHT to reconstruct
each column of X separately and then concatenate all column vectors to form a
matrix. To analyze the convergence of CStoIHT, we first derive an upper bound

for E
∥∥X·,j −X∗·,j∥∥2

2
following the proof outline in [35, Appendix B]. Note that in

our proof we look for the contraction coefficient of E
∥∥X·,j −X∗·,j∥∥2

2
rather than

E
∥∥X·,j −X∗·,j∥∥2

as in [35].

Lemma 5.4. Let X∗ be a feasible solution of (9) and X0 be the initial solution.
Under the Assumptions, there exist κj , σj > 0 such that the expectation of the
recovery error squared at the t-th iteration of Algorithm 3 for estimating the j-th
column of X∗ is bounded by

(21) EIt
∥∥Xt+1
·,j −X

∗
·,j
∥∥2

2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2

2
+

σj
1− κj

,

where Xt
·,j is the approximation of X∗·,j at the t-th iteration of StoIHT with the

initial guess X0
·,j, i.e., the result at the t-th inner iteration and j-th outer iteration

of Algorithm 3 with the initial guess X0. Here It is the set of all indices i1, . . . , it
randomly selected at or before the t-th step of the algorithm.

Proof. Due to the separable form of fi in (10), we consider L problems of the form

(22) min
w

1

M

M∑
i=1

gi,j(w), ‖w‖0,D ≤ k, j = 1, . . . , L,

where gi,j are given in (10). This relaxation is valid since X∗·,j is also a feasible

solution of (22) if X∗ is a feasible solution of (9). Let wt = Xt
·,j , w∗ = X∗·,j ,

x =
∥∥wt+1 −w∗

∥∥
2
,

u =

∥∥∥∥wt −w∗ − γ

Mp(it)
PΩ(∇git,j(wt)−∇git,j(w∗))

∥∥∥∥
2

+

∥∥∥∥ γ

Mp(it)
PΩ∇git,j(w∗)

∥∥∥∥
2

:= u1 + u2,

and

v = (η2 − 1)

∥∥∥∥wt −w∗ − γ

Mp(it)
∇git,j(wt)

∥∥∥∥2

2

.

Let

v1 = (η2 − 1)

∥∥∥∥wt −w∗ − γ

Mp(it)
(∇git,j(wt)−∇git,j(w∗))

∥∥∥∥2

2

,

v2 = (η2 − 1)

∥∥∥∥ γ

Mp(it)
∇git,j(w∗)

∥∥∥∥2

2

.

The inequality (a + b)2 ≤ 2a2 + 2b2 yields that v ≤ 2v1 + 2v2. Similar to [35,

Appendix B], we can show that solving x2− 2ux− v ≤ 0 leads to x ≤ u+
√
u2 + v.

Thus the inequality a+ b ≤
√

2a2 + 2b2 yields

x2 ≤ 2u2 + 2(u2 + v) = 4u2 + 2v ≤ 8(u2
1 + u2

2) + 4v1 + 4v2.

By taking the conditional expectation Eit|It−1
on both sides, we obtain

Eit|It−1
x2 ≤ 8Eit|It−1

u2
1 + 8Eit|It−1

u2
2 + 4Eit|It−1

(v1 + v2)

≤ 8(1− (2γ − γ2α3k,j)ρ
−
3k,j)

∥∥wt −w∗
∥∥2

2
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+
8γ2

minitM
2(p(it))2

Eit|It−1
‖PΩ∇git,j(w∗)‖

2
2

+ 4(η2 − 1)(1 + γ2α3k,j ρ̄
+
3k,j − 2γρ−3k,j)

∥∥wt −w∗
∥∥2

2

+
4γ2(η2 − 1)

minitM
2(p(it))2

Eit ‖∇git,j(w∗)‖
2
2

=
(

8(1− (2γ − γ2α3k,j)ρ
−
3k,j) + 4(η2 − 1)(1 + γ2α3k,j ρ̄

+
3k,j − 2γρ−3k,j)

)∥∥wt −w∗
∥∥2

2

+
4γ2

minitM
2(p(it))2

(
2Eit ‖PΩ∇git,j(w∗)‖

2
2 + (η2 − 1)Eit ‖∇git,j(w∗)‖

2
2

)
:= κj

∥∥wt −w∗
∥∥2

2
+ σj .

In the second inequality, the respective upper bounds for Eit|It−1
u2

1 and Eit|It−1
u2

2

are obtained by using the Corollary 8 of [35]. Here ρ−k,j is defined in (15), αk,j and

ρ̄+
k,j are defined in (16). Therefore

EIt
∥∥wt+1 −w∗

∥∥2

2
≤ κjEIt−1

∥∥wt −w∗
∥∥2

2
+ σj .

which implies that

EIt
∥∥Xt+1
·,j −X

∗
·,j
∥∥2

2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2

2
+

σj
1− κj

,

for j = 1, . . . , L. Here the contraction coefficient is

(23) κj = 8(1− (2γ − γ2α3k,j)ρ
−
3k,j) + 4(η2 − 1)(1 + γ2α3k,j ρ̄

+
3k,j − 2γρ−3k,j),

and the tolerance parameter is
(24)

σj =
4γ2

min
1≤i≤M

M2(p(it))2

(
2Eit ‖PΩ∇git,j(w∗)‖

2
2 + (η2 − 1)Eit ‖∇git,j(w∗)‖

2
2

)
.

In particular, if γ = η = 1 and p(i) = 1/M , then

κj = 8(1− 2ρ−3k,j + α3k,jρ
−
3k,j),

σj =
8

M

M∑
i=1

∥∥PΩ∇gi,j(X∗·,j)
∥∥2

2
.

Theorem 5.5 (CStoIHT). Let X∗ be a feasible solution of (9) and X0 be the initial
solution. Under Assumptions, the expectation of the recovery error at the (t+ 1)-th
iteration of Algorithm 3 is bounded by

(25) E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̂t+1

∥∥X0 −X∗
∥∥
F

+ σ̂,

where Xt is the approximation of X∗ at the t-th iteration of Algorithm 3 with the
initial guess X0

·,j. Here the contraction coefficient κ̂ and the tolerance parameter σ̂
are defined as

κ̂ =
√

max
1≤j≤L

κj , σ̂ =

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj
,

where κj is the contraction coefficient for each StoIHT defined in (23).
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Proof. For each j = 1, 2, . . . , L, StoIHT with the initial guess X0
·,j generates Xt+1

·,j
after t iterations, i.e., the result at the (t + 1)-th inner iteration and j-th outer
iteration of Algorithm 3. Then the expectation of the recovery error squared is
bounded by

E
∥∥Xt+1
·,j −X

∗
·,j
∥∥2

2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2

2
+

σj
1− κj

,

where κj and σj are defined in Lemma 5.4. Note that κj depends only on the
constants in the D-RSC and D-RSS properties of the objective function or its com-
ponent function gi,j while σj depends on the feasible solution X∗·,j . By combining

all L components of Xt+1, we get

E
∥∥Xt+1 −X∗

∥∥
F
≤
√
E ‖Xt+1 −X∗‖2F

=

√√√√ L∑
j=1

E
∥∥Xt+1
·,j −X∗·,j

∥∥2

2

≤

√√√√ L∑
j=1

(
κt+1
j

∥∥X0
·,j −X∗·,j

∥∥2

2
+

σj
1− κj

)

≤

√
( max
1≤j≤L

κj)t+1 ‖X0 −X∗‖2F +

∑L
j=1 σj

1−max1≤j≤L κj

≤
(√

max
1≤j≤L

κj

)t+1 ∥∥X0 −X∗
∥∥
F

+

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj

:= κ̂t+1
∥∥X0 −X∗

∥∥
F

+ σ̂.

In particular, if γ = η = 1, then

κ̂ =
√

max
1≤j≤L

κj =
√

max
1≤j≤L

8(1− 2ρ−3k,j + α3k,jρ
−
3k,j)

= 2
√

2
√

max
1≤j≤L

(1− 2ρ−3k,j + α3k,jρ
−
3k,j).

Remark. Firstly, MStoIHT can converge without the Assumptions while CStoIHT
may not converge to a joint sparse solution without Assumptions, since the joint
sparsity is not enforced at each iteration of CStoIHT. Secondly, under Assumptions,
if ρ−3k,1 = . . . = ρ−3k,L and ρ+

3k,1 = . . . = ρ+
3k,L, Lemmas 5.1 and 5.2 yield κ̂ =

√
2κ,

where κ is defined Theorem 5.3.

5.3. MStoGradMP. By using the same proof techniques as in Theorem 5.3, we
can get the following convergence result for MStoGradMP.

Theorem 5.6 (MStoGradMP). Let X∗ be a feasible solution of (9) and X0 be

the initial solution. Assume that F (X) = 1
M

∑M
i=1 fi(X) satisfies the D-RSC with

constant ρ−k in (4) and fi satisfies D-RSS with constant ρ+
k (i) in (5). At the (t+1)-

th iteration of Algorithm 6, the expectation of the recovery error is bounded by

(26) E
∥∥Xt+1 −X∗

∥∥
F
≤ κt+1

∥∥X0 −X∗
∥∥
F

+
σX∗

1− κ
,

Inverse Problems and Imaging Volume 15, No. 1 (2021), 79–107



94 J. Qin, S. Li, D. Needell, A. Ma, R. Grotheer, C. Huang and N. Durgin

where

κ = (1 + η2)

√
α4k

ρ−4k

(√
p̂

√
ρ+

4k(2η2
1 − 1)

ρ−4kη
2
2

− 1 +

√
η2

1 − 1

η1

)
,

σX∗ =
(1 + η2)

ρ−4kp̃

(
2p̂

√
α4k

ρ−4k
+ 3

)
max
|Ω|≤4k
1≤i≤M

∥∥∥∥PΩ
∂fi
∂X

(X∗)

∥∥∥∥
F

.

Here p̂ = max
1≤i≤M

Mp(i), p̃ = min
1≤i≤M

Mp(i) and αk, ρ
+
k , ρ̄

+
k are defined in (19). Thus

Algorithm 6 converges linearly if κ < 1. In particular, if η1 = η2 = 1 and p(i) =
1/M , then

(27) κ =
2
√
α4k(ρ+

4k − ρ
−
4k)

ρ−4k
.

5.4. CStoGradMP. Similar to CStoIHT, we start the convergence analysis for
CStoGradMP by finding the contraction coefficient for the expectation of recovery
error squared at each iteration of CStoGradMP.

Lemma 5.7. Let X∗ be a feasible solution of (13) and X0 be the initial solu-
tion. Under Assumptions, the expectation of the recovery error squared at the t-th
iteration of Algorithm 4 for estimating the j-th column of X∗ is bounded by

(28) EIt
∥∥bt −X∗·,j∥∥2

2
≤ β1EIt

∥∥PΓ̂(bt −X∗·,j)
∥∥2

2
+ ξ1,

where

(29)

β1 =
α4k,j

2ρ−4k,j − α4k,j

,

ξ1 =
2EItEi

∥∥PΓ̂∇gi,j(X·,j)
∥∥2

2

α4k,j(2ρ
−
4k,j − α4k,j) min

1≤i≤M
M2(p(i))2

.

Here αk,j and ρ−k,j are defined in (16), and It is the set of all indices i1, . . . , it
randomly selected at or before the t-th step of the algorithm.

Proof. Consider the problem (22). Following the proof in [35, Appendix C], we can
get ∥∥PΓ̂(bt −X∗·,j)

∥∥2

2
≤ 2(1− (2γ − γ2α4k,j)ρ

−
4k,j)

∥∥bt −X∗·,j∥∥2

2

+
2γ2

min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X·,j)

∥∥2

2
.

Here we use the inequality (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R and the expectation
inequality (EX)2 ≤ E(X2). Then we have∥∥bt −X∗·,j∥∥2

2
=
∥∥PΓ̂(bt −X∗·,j)

∥∥2

2
+
∥∥PΓ̂c(b

t −X∗·,j)
∥∥2

2

≤ 2(1− (2γ − γ2α4k,j)ρ
−
4k,j)

∥∥bt −X∗·,j∥∥2

2

+
2γ2

min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X

∗
·,j)
∥∥2

2
+
∥∥PΓ̂c(b

t −X∗·,j)
∥∥2

2
.

Moving the first term on the right hand side to the left hand side leads to∥∥bt −X∗·,j∥∥2

2
≤ 2γ2

φ min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X·,j)

∥∥2

2
+

1

φ

∥∥PΓ̂c(b
t −X∗·,j)

∥∥2

2
,
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where φ = 2ρ−4k,j(2γ − γ2α4k,j) − 1. Maximizing φ with respect to γ yields γ =

1/α4k,j and φmax = (2ρ−4k,j − α4k,j)/α4k,j . By choosing the optimal value of γ and
taking the expectation with respect to It on the both sides of the above inequality,
we get (28).

Similarly, using the inequality EX ≤
√
E(X2) and the fact that a ≤ b+ c yields

a2 ≤ 2b2+2c2, we are able to get the following result, which is different from Lemma
3 in [35] in that we consider the expectation for the `2-norm squared here rather
than that for the `2-norm.

Lemma 5.8. Let X∗ be a feasible solution of (13) and X0 be the initial solu-
tion. Under Assumptions, the expectation of the recovery error squared at the t-th
iteration of Algorithm 4 for estimating the j-th column of X∗ is bounded by

(30) Eit
∥∥PΓ̂c(b

t −X∗·,j)
∥∥2

2
≤ β2

∥∥Xt
·,j −X∗·,j

∥∥2

2
+ ξ2,

where it is the index randomly selected at the t-th iteration of the CStoGradMP and

(31)

β2 = 4 max
1≤i≤M

Mp(i)
(2η2

1 − 1)ρ+
4k,j − η2

1ρ
−
4k,j

η2
1ρ
−
4k,j

+
2(η2

1 − 1)

η2
1

,

ξ2 = 8

 max
1≤i≤M

p(i)

ρ−4k,j min
1≤i≤M

p(i)

2

max
|Ω|≤4k
1≤i≤M

∥∥PΩ∇gi,j(X∗·,j)
∥∥2

2
.

Theorem 5.9 (CStoGradMP). Let X∗ be a feasible solution of (13) and X0 be
the initial solution. Under Assumptions, at the (t+ 1)-th iteration of Algorithm 4,
there exist κ̃, σ̃ > 0 such that the expectation of the recovery error is bounded by

(32) E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̃t+1

∥∥X0 −X∗
∥∥
F

+ σ̃,

where Xt
·,j is the approximation of X∗·,j at the t-th iteration of CStoGradMP with

the initial guess X0
·,j.

Proof. At the t-th iteration of Algorithm 4, we have∥∥Xt+1
·,j − bt

∥∥2

2
≤ η2

2

∥∥∥bt(k) − bt
∥∥∥2

2
≤ η2

2

∥∥X∗·,j − bt
∥∥2

2
,

where bt(k) is the best k-sparse approximation of bt with respect to the atom set D.

Therefore, we get∥∥Xt+1
·,j −X

∗
·,j
∥∥2

2
≤
∥∥Xt+1
·,j − bt + bt −X∗·,j

∥∥2

2

≤ 2
∥∥Xt+1
·,j − bt

∥∥2

2
+ 2

∥∥bt −X∗·,j∥∥2

2

≤ (2 + 2η2
2)
∥∥bt −X∗·,j∥∥2

2
.

Next we establish the relationships among various expectations

EIt
∥∥Xt+1
·,j −X·,j

∥∥2

2
≤ (2 + 2η2

2)EIt
∥∥bt −X∗·,j∥∥2

2

≤ (2 + 2η2
2)
(
β1EIt

∥∥PΓ̂(bt −X∗·,j)
∥∥2

2
+ ξ1

)
≤ (2 + 2η2

2)β1

(
β2EIt

∥∥Xt
·,j −X∗·,j

∥∥2

2
+ ξ2

)
+ (2 + 2η2

2)ξ1

:= κj
∥∥Xt
·,j −X∗·,j

∥∥2

2
+ σj ,

Inverse Problems and Imaging Volume 15, No. 1 (2021), 79–107



96 J. Qin, S. Li, D. Needell, A. Ma, R. Grotheer, C. Huang and N. Durgin

where the first inequality is guaranteed by Lemma 5.7 and the second inequality
is guaranteed by Lemma 5.8. Here the contraction coefficient κj and the tolerance
parameter σj are defined by

κj = (2 + 2η2
2)β1β2, σj = (2 + 2η2

2)β1ξ2 + (2 + 2η2
2)ξ1,

where β1, ξ1 are defined in (29) and β2, ξ2 are defined in (31). Then similar to the
proof of Theorem 5.5, we can derive that

E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̃t+1

∥∥X0 −X∗
∥∥
F

+ σ̃

where

κ̃ =
√

max
1≤j≤L

κj , and σ̃ =

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj
.

In particular, if η1 = η2 = 1, p(i) = 1/M , α4k,j = α4k, ρ+
4k,j = ρ+

4k and ρ−4k,j = ρ−4k
for j = 1, . . . , L, then we have

κ̃ = 4

√
α4k(ρ+

4k − ρ
−
4k)

ρ−4k(2ρ−4k − α4k)
.

If, in addition, α4k = ρ−4k, then we have κ̃ = 2κ, where the contraction coefficient
κ for MStoGradMP is given in (27), which implies that MStoGradMP converges
faster than CStoGradMP in this case due to the smaller contraction coefficient.
Compared with MStoIHT, MStoGradMP has even larger convergence improvement
in terms of recovery accuracy and running time.

Remark. Convergence analysis in this section provides useful theoretical tools to
compare the proposed MMV stochastic greedy algorithms and their SMV coun-
terparts. First, we provide general guarantees via contraction coefficients for all
proposed algorithms in Theorems 5.3, 5.5, 5.6 and 5.9. Since the contraction coef-
ficient controls the convergence speed of each algorithm, it can provide theoretical
guidance on parameter selection in such type of stochastic greedy algorithms. Sec-
ond, the complicated form of κ and κ̂ can be simplified in some special cases,
e.g., the case when η = 1. Lastly, the relationship κ = κ̂/

√
2 indicates why

MStoIHT/MStoGradMP performs better than CStoIHT/CStoGradMP in expec-
tation.

6. Distributed compressive sensing application. In this section, we show that
the objective function commonly used in the distributed compressive sensing prob-
lem satisfies the D-RSC and D-RSS properties, which paves the theoretical foun-
dation for using the proposed algorithms in this application. Suppose that there
are L underlying signals xj ∈ Rn for j = 1, 2, . . . , L, and their measurements are
generated by

yj = A(j)xj , j = 1, 2, . . . , L

where A(j) ∈ Rm×n (m � n) is the measurement matrix (a.k.a. the sensing ma-
trix). For discussion simplicity, we assume all measurement matrices are the same,
i.e., A(j) = A = [A·,1, . . . , A·,n]. By concatenating all vectors as a matrix, we
rewrite the above equation as Y = AX where Y = [y1, . . . ,yL] ∈ Rm×L, and
X = [x1, . . . ,xL] ∈ Rn×L.
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Now assume that the atom set is finite and denote D = {d1, . . . ,dN} with
the corresponding dictionary D = [d1, . . . ,dN ]. Consider the following distributed
compressive sensing model with common sparse supports [3]

(33)
min
X

1

2m

L∑
j=1

‖yj −Axj‖22

s.t. xj = Dθj supp(θj) = Ω ⊆ {1, 2, . . . , N}.

Here the objective function has the form

(34) F (X) =
1

2m
‖Y −AX‖2F .

Then F (X) can be written as F (X) = 1
M

∑M
i=1 fi(X), where M = m/b and

(35) fi(X) =
1

2b

L∑
j=1

(Yi,j −
n∑
k=1

Ai,kXk,j)
2 =

1

2b
‖Yi,· −Ai,·X‖22 .

The above expression shows that fi’s satisfy the Assumption (a) and thereby the
concatenated algorithms in Section 3 can be applied. We first compute the partial
derivative. For s = 1, 2, . . . , n and t = 1, 2, . . . , L, we have

∂fi(X)

∂Xs,t
=

1

2b

L∑
j=1

2

(
n∑
k=1

Ai,kXk,j − Yi,j

)
n∑
k=1

Ai,k
∂Xk,j

∂Xs,t

=
1

b

L∑
j=1

(
n∑
k=1

Ai,kXk,j − Yi,j

)
n∑
k=1

Ai,kδk,sδj,t

=
1

b

(
n∑
k=1

Ai,kXk,t − Yi,t

)
Ai,s.

Here δi,j = 1 if i = j and zero otherwise. Thus the generalized gradient of fi(X)
with respect to X has the form

∂fi(X)

∂X
=

1

b

[
∂fi(X)

∂Xs,t

]
st

=
1

b
ATi,·(Ai,·X − Yi,·).

Lemma 6.1. If the sensing matrix A ∈ Rm×n satisfies the Restricted Isometry
Property (RIP), i.e., there exists δk > 0 such that

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22
for any k-sparse vector x ∈ Rn, then the function F (X) defined in (34) satisfies the
D-restricted strong convexity property.

Proof. Let X ∈ Rn×L with k nonzero rows, which implies that each column of X
has at most k nonzero components. By the RIP of A, we have

(1− δk) ‖X·,j‖22 ≤ ‖AX·,j‖
2
2 ≤ (1 + δk) ‖X·,j‖22 ,

for j = 1, . . . , L. Note that ‖X‖2F =
∑L
j=1 ‖X·,j‖

2
2. Thus we get

(1− δk) ‖X‖2F ≤ ‖AX‖
2
F ≤ (1 + δk) ‖X‖2F .
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For any two X,X ′ ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k, we have

F (X ′)− F (X)−
〈∂F (X)

∂X
,X ′ −X

〉
=

1

2m

(
‖Y −AX ′‖2F − ‖Y −AX‖

2
F

)
−
〈 1

m
AT (AX − Y ), X ′ −X

〉
=

1

2m
‖A(X ′ −X)‖2F ≥

1− δk
2m

‖X ′ −X‖2F .

Thus F (X) satisfies the D-restricted strong convexity property with ρ−k = 1−δk
2m .

Lemma 6.2. If the sensing matrix A ∈ Rm×n satisfies the following property: for
any k-sparse vector x ∈ Rn, there exists δk > 0 such that

1

b

∥∥ATτi,·Aτi,·x∥∥2
≤ (1 + δk) ‖x‖2

where Aτi,· is formed by extracting rows of A with row indices in the i-th batch
index set τi. Then the function fi(X) defined in (35) satisfies the D-restricted
strong smoothness property.

Proof. Let X ∈ Rn×L have k nonzero rows. Then for j = 1, . . . , L, we have

1

b

∥∥ATτi,·Aτi,·X·,j∥∥2
≤ (1 + δk) ‖X·,j‖2 ,

which implies that
1

b

∥∥ATτi,·Aτi,·X∥∥F ≤ (1 + δk) ‖X‖F .

For any two X,X ′ ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k, we have∥∥∥∥∂fi(X)

∂X
− ∂fi(X

′)

∂X

∥∥∥∥
F

=
1

b

∥∥ATi,·(Ai,·X − Yi,·)−ATi,·(Ai,·X ′ − Yi,·)∥∥F
=

1

b

∥∥ATi,·Ai,·(X −X ′)∥∥F ≤ (1 + δk) ‖X −X ′‖F .

Therefore fi(X) satisfies the D-restricted strong convexity with ρ+
k (i) = 1 + δk.

By Lemma 6.1, Lemma 6.2 and the convergence analysis in Section 5, the con-
traction coefficient in the proposed algorithms depends on the coefficient in the RIP
condition, whose infimum for some special type of matrices are available [19]. In
addition, the convergence guarantees of all proposed algorithms in terms of the RIP
constant for the distributed compressive sensing can be obtained by plugging the
expression of ρ+

k and ρ−k in the proofs of Lemmas 6.1 and 6.2 into κ, κ̂ and κ̃ in
Theorems 5.3, 5.5, 5.6, and 5.9.

7. Numerical experiments. In this section, we conduct a variety of numerical
experiments to validate the effectiveness of the proposed algorithms. More specif-
ically, our tests include reconstruction of row sparse signals from a linear system
and joint sparse video sequence recovery. To compare different results quantita-
tively, we use the relative error defined as ReErr = ‖Xt −X∗‖F /‖X∗‖F , where X∗

is the ground truth and Xt is the estimation of X∗ at the t-th iteration. Regard-
ing the computational efficiency, we also record the running time which counts all
the computation time over a specified number of iterations excluding data load-
ing or generation. Here we record the running time by using the commands tic
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and toc in Matlab. To assess the concatenated SMV algorithms, i.e., CStoIHT and
CStoGradMP, we apply the SMV algorithm sequentially to the same sensing matrix
and all columns of the measurement matrix Y , and save all intermediate approxi-
mations of each column of X for further computation of the relative error. In all
tests, we use the discrete uniform distribution, i.e., p(i) = 1/M for i = 1, 2, . . . ,M
in the non-batched versions and p(i) = 1/d for i = 1, 2, . . . , d in the batched ver-
sions. The parameter η is fixed as 1. By default, each algorithm is stopped when
either the relative error between two subsequent approximations of X∗ reaches the
tolerance or the maximum number of iterations is achieved. All our experiments
are performed in a desktop with an Intel R© Xeon R© CPU E5-2650 v4 @ 2.2GHz and
64GB RAM in double precision. The algorithms are implemented in Matlab 2016a
running on Windows 10.

7.1. Joint sparse matrix recovery. In the first set of experiments, we compare
the proposed algorithms and their concatenated SMV counterparts in terms of re-
construction error and running time. In particular, we investigate the impact of
the sparsity level k, and the number of underlying signals L to be reconstructed on
the performance of BCStoIHT, BMStoIHT, BCStoGradMP and BMStoGradMP, in
terms of relative error and the running time. To reduce randomness in the results,
we run 50 trials for each test with fixed parameters and then take the average over
the number of trials. Note that since different trials may take different number of
iterations to reach the desired accuracy, we only count the common iterations when
comparing the reconstruction error and the runtime.

First, we compare CStoIHT and MStoIHT in both non-batched and batched
versions, and fix the maximum number of iterations as 1000, the stopping criteria
tolerance ε = 10−6 and γ = 1 in both algorithms. To start with, we create a
sensing matrix A ∈ R100×200 where each entry follows the normal distribution with
zero mean and variance of 1/100 and each column of A is normalized by dividing its
`2-norm. In this way, it can be shown that the spark of A, i.e., the smallest number
of linearly dependent columns of A, is 100 with probability one [16]. To create
a signal matrix X∗ ∈ R200×40, we first generate a Gaussian distributed random
matrix of size 200× 40, and then randomly zero out (200 − k) rows where k is the
row sparsity of X∗. The measurement matrix Y is created by AX for the noise-free
cases. By choosing the sparsity level k ∈ {10, 20} and the batch size b ∈ {1, 10}, we
obtain the results shown in Figure 1. Since the initial guess for the signal matrix is
set a zero matrix, all the error curves start with the point (0, 1). Notice that to show
the computational efficiency, we use the running time in seconds as the horizonal
axis rather than the number of iterations. It can be seen that as the sparsity level
grows, i.e., the signal matrix is less joint sparse, more running time (or iterations)
is required to achieve the provided tolerance in terms of the relative reconstruction
error. Meanwhile, as the batch size increases, BMStoIHT performs better than
the sequential BCStoIHT. With large sparsity levels, the inaccurate joint support
obtained in the concatenated SMV algorithms cause large relative errors in the first
few iterations (see Figure 1).

Next, we fix the sparsity level k as 5 and choose the number of signals as L ∈
{40, 80}. Figure 2 compares the results obtained by BCStoIHT and BMStoIHT
when the batch size is 1 and 10. In general, BMStoIHT takes less running time
than its sequential concatenated SMV counterpart. We can see that mini-batching
significantly improves the reconstruction accuracy and reduces the running time
of BMStoIHT. After a large number of tests, we also find that the computational
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Figure 1. Comparison of BCStoIHT and BMStoIHT for various
sparsity levels of the signal matrix. From left to right: batch sizes
are 1 and 10.
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Figure 2. Comparison of BCStoIHT and BMStoIHT for various
numbers of signals to be reconstructed. From left to right: batch
sizes are 1 and 10.

time of BMStoIHT is almost linear with respect to the number of signals to be
reconstructed. More numerical experiments can be found in our more recent work
on the hyperspectral diffuse optical imaging [15]. Lastly, to test the robustness to
noise, we add the Gaussian noise with zero mean and standard deviation (a.k.a.
noise level) σ ∈ {0.04, 0.08} to the measurement matrix Y . The relative errors for
all BCStoIHT and BMStoIHT results versus running time are shown in Figure 3.
It is worth noting that the change of sparsity and noise levels have insignificant
impact on the running time, which explains that the curve corresponding to the
same algorithm stops almost at the same horizontal coordinate in Figure 1 and
Figure 3. By contrast, the running time grows as the number of signals to be
recovered increases which suggests that the endpoint of each curve has different
horizontal coordinates in Figure 2.

In the second set of tests, we compare CStoGradMP and MStoGradMP in non-
batched and batched versions. It is known that StoGradMP usually converges much
faster than StoIHT, which is also true for the developed MMV versions. We fix the
maximum number of iterations as 30, the stopping criteria tolerance ε = 10−5,
γ = 1, and the batch size as 1 (non-batched version). Similar to the previous tests,
we create a 100 × 200 random matrix whose columns are normalized, and fix the
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Figure 3. Comparison of BCStoIHT and BMStoIHT for various
noise levels to the measurement matrix. From left to right: batch
sizes are 1 and 10.

number of signals L = 40. Figure 4 shows the results obtained by CStoGradMP
and MStoGradMP with sparsity level k ∈ {70, 90}. Note that for better visualiza-
tion, we skip the starting point (0,1) for all relative error plots, and use the base
10 logarithmic scale for the horizontal axis of running time since the MStoGradMP
takes much less running time than CStoGradMP after the same number of itera-
tions. Unlike StoIHT and MStoIHT, both CStoGradMP and MStoGradMP require
that the sparsity level is no more than n/2, i.e., 100 in our case. As the sparsity
k increases, the operator pinv for computing the pseudo-inverse matrix becomes
more computationally expensive for matrices with more columns than their rank,
which results in the significant growth of running time. For sparse signal matri-
ces, StoGradMP performs better than StoIHT in terms of convergence. Next, we
set the number of signals as 20, 80, and get the results shown in Figure 5. It
can be seen that MStoGradMP always takes less running time with even higher
accuracy than the sequential CStoGradMP. We also discovered that the computa-
tion speedup of MStoIHT is almost constant with respect to the number of signals
to be reconstructed. The robustness comparison is shown in Figure 6, where the
noise level ranges in {0.04, 0.08}. Furthermore, it is empirically shown that the
BMStoGradMP performs much better than BMStoIHT considering their respective
convergence behavior and robustness.

Lastly, we compare our proposed BMStoIHT and BMStoGradMP with the M-
FOCUSS [11], and state-of-the-art MMV greedy algorithms [5] including M-OMP,
M-SP, M-CoSaMP and M-HTP, using the previous noise-free data set with k = 10,
L = 40, the maximum number of iterations as 100 and the stopping criteria tolerance
ε = 10−5. The batch size for both BMStoIHT and BMStoGradMP is fixed as 20.
The reconstruction errors and running times for all methods are listed in Table 1,
which shows that BMStoGradMP can achieve comparable reconstruction accuracy
as M-OMP, M-SP, M-CoSaMP and M-HTP but with the least running time.

7.2. Joint Sparse Video Sequence Recovery. In this set of experiments, we
compare the proposed Algorithm 8, the split Bregman algorithm for constrained
MMV problem (SBC) [22, Algorithm 2], M-FOCUSS, M-OMP, M-SP, M-CoSaMP
and M-HTP, on joint sparse video sequence reconstruction. Note that SBC is based
on `1-minimization rather than `0-norm constrained least-squares. We first down-
load a candle video consisting of 75 frames from the Dynamic Texture Toolbox
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Figure 4. Comparison of BCStoGradMP and BMStoGradMP
with various sparsity levels. From left to right: batch sizes are
1 and 10.
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Figure 5. Comparison of BCStoGradMP and BMStoGradMP
with various numbers of signals. From left to right: batch sizes
are 1 and 10.
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Figure 6. Comparison of BCStoGradMP and BMStoGradMP
with various noise levels. From left to right: batch sizes are 1
and 10.

in http://www.vision.jhu.edu/code/. In order to make the test video sequence
possess a joint sparse structure, we extract 11 frames of the original data, i.e.,
frames 1 to 7, 29, 37, 69 and 70, each of which is of size 80× 30. Then we create a
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Method Error Runtime (sec.)
BMStoIHT 5.64× 10−7 0.0184
BMStoGradMP 1.05× 10−15 0.0023
M-FOCUSS 3.80× 10−3 0.0190
M-OMP 7.45× 10−16 0.0492
M-SP 6.17× 10−16 0.0217
M-CoSaMP 8.22× 10−16 0.0218
M-HTP 5.33× 10−16 0.0912

Table 1. Comparison of the proposed algorithms and other MMV algorithms.

Method Error Runtime (sec.)
BMStoGradMP 3.09× 10−15 2.56× 10−4

M-FOCUSS 3.21× 10−3 0.2452
M-OMP 2.51× 10−16 0.0743
M-SP 2.06× 10−16 0.1297
M-CoSaMP 4.07× 10−16 0.0115
M-HTP 5.72× 10−2 0.0134
SBC 1.19× 10−8 6.28× 10−4

Table 2. Performance comparison on joint sparse video recovery.

data matrix X ∈ R2400×11, whose columns are a vectorization of all video frames.
To further obtain a sparse representation of X, K-SVD [2] is applied to obtain a
dictionary Ψ ∈ R2400×50 for X. The K-SVD dictionary Ψ and the support of the
corresponding coefficient matrix Θ for the extracted 11 frames are shown in Fig-
ure 7 (a) and (b). Some selected columns of the dictionary Ψ, namely atoms, are
reshaped as an image of size 80 × 30 illustrated in Figure 7 (c) and (d). It can
be seen that these 11 frames are nearly joint sparse under the learned dictionary.
The relative error of using this K-SVD dictionary Ψ to represent the data matrix

X is ‖X−ΨΘ‖F
‖X‖F = 0.0870. A Gaussian random matrix Φ ∈ R60×2400 with zero mean

and unit variance is set as a sensing matrix, which is used to measure this data
matrix. That is, the measurements Y ∈ R60×11 are generated via Y = ΦX. Given
the measurements Y and the new sparse representation dictionary A = ΦΨ, we
then apply Algorithm 8 and SBC to recover the joint sparse coefficient matrix Θ̂.
In Algorithm 8, the sparsity level k is set as 10, and the block size b is set as 3,
which implies that there are d = 20 blocks. In addition, we set η1 = η2 = 1. Both
StoGradMP and SBC stop when the residual error reaches a tolerance threshold
τ = 10−6, i.e., ‖Y − AΘ̂‖F ≤ τ . In Table 2, we compare the reconstruction error,

i.e., ‖Y − AΘ̂‖F / ‖Y ‖F , and running time for all methods being compared. One
can see that the proposed Algorithm 8 is faster than all other comparing methods
with relatively high accuracy.

8. Conclusions. In this paper, we study the MMV joint sparse signal reconstruc-
tion problem, which is of great importance in a large amount of signal processing
applications. One straightforward way is to columnwise concatenate results ob-
tained by solving the SMV sparse signal recovery problem. However, concatenated
SMV algorithms may not enforce joint sparsity of the approximated solutions. To
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Figure 7. (a) K-SVD dictionary learned from the total 75 frames
from the candle video. (b) Support of sparse coefficient matrix for
extracted 11 frames. The sparse coefficient matrix has non-zero
entries on white area. (c-d) Some columns of the learned K-SVD
dictionary.

address this issue, we propose two stochastic greedy algorithms, MStoIHT and
MStoGradMP, together with their respective accelerated versions by applying the
mini-batching technique. Our convergence analysis has shown that the proposed al-
gorithms converge faster than their concatenated SMV counterparts. Moreover, we
theoretically justify the applicability of the proposed algorithms to the distributed
compressive sensing problem. To the best of our knowledge, this is the first work to
use the term “concatenated SMV algorithms” with theoretical discussions on their
convergence. A variety of numerical experiments on linear systems and video recov-
ery have demonstrated that the proposed algorithms outperform the concatenated
SMV algorithms in terms of efficiency, accuracy and robustness to the noise.

Appendix.

A. Proof of lemma 5.1.

Proof. For any X ′, X ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k, all columns of
X ′ and X are k-sparse and | suppD(X·,j)∪ supprD(X ′·,j)| ≤ k. By (3) and D-RSS of

Inverse Problems and Imaging Volume 15, No. 1 (2021), 79–107



Stochastic greedy algorithms for MMV 105

each gi,j , we have for i = 1, . . . ,M∥∥∥∥ ∂

∂X
fi(X)− ∂

∂X
fi(X

′)

∥∥∥∥
F

=

√√√√ L∑
j=1

∥∥∇gi,j(X·,j)−∇gi,j(X ′·,j)∥∥2

2

≤ max
1≤j≤L

ρ+
k (j) ‖X −X ′‖F := µ+

k (i) ‖X −X ′‖F .

B. Proof of lemma 5.2.

Proof. Similar to the previous lemma, for any X ′, X ∈ Rn×L with | supprD(X) ∪
supprD(X ′)| ≤ k, we have

F (X ′)− F (X)− 〈 ∂
∂X

F (X), X ′ −X〉

=
1

L

L∑
j=1

F̂j(X
′
·,j)− F̂j(X·,j)−

1

L

L∑
j=1

〈∇F̂j(X·,j), X ′·,j −X·,j〉

≥ 1

L

L∑
j=1

ρ−k,j
2

∥∥X·,j −X ′·,j∥∥2

2

≥
µ−k
2
‖X −X ′‖2F ,

where µ−k = min
1≤j≤L

ρ−k,j .
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Birkhäuser/Springer, New York, , 2013.

[20] R. Giryes, S. Nam, M. Elad, R. Gribonval and M. E. Davies, Greedy-like algorithms for the

cosparse analysis model, Linear Algebra and its Applications , 441 (2014), 22–60.
[21] Z. He, A. Cichocki, R. Zdunek and J. Cao, CG-M-FOCUSS and its application to distributed

compressed sensing, in International Symposium on Neural Networks , Springer, 2008, 237–

245.
[22] Z. Jian, F. Yuli, Z. Qiheng and L. Haifeng, Split bregman algorithms for multiple measurement

vector problem, Multidim Syst Sign Process.

[23] J. M. Kim, O. K. Lee and J. C. Ye, Compressive MUSIC: Revisiting the link between com-
pressive sensing and array signal processing, IEEE Transactions on Information Theory , 58

(2012), 278–301.
[24] K. Lee, Y. Bresler and M. Junge, Subspace methods for joint sparse recovery, IEEE Trans-

actions on Information Theory , 58 (2012), 3613–3641.

[25] S. Li, D. Yang, G. Tang and M. B. Wakin, Atomic norm minimization for modal analysis
from random and compressed samples, IEEE Transactions on Signal Processing , 66 (2018),

1817–1831.
[26] H. Lu, X. Long and J. Lv, A fast algorithm for recovery of jointly sparse vectors based on the

alternating direction methods, in Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, 2011, 461–469.

[27] J. R. Magnus, On the concept of matrix derivative, Journal of Multivariate Analysis , 101
(2010), 2200–2206.

[28] A. Majumdar and R. Ward, Rank awareness in group-sparse recovery of multi-echo MR
images, Sensors, 13 (2013), 3902–3921.

[29] A. Majumdar and R. K. Ward, Joint reconstruction of multiecho mr images using correlated

sparsity, Magnetic Resonance Imaging , 29 (2011), 899–906.

[30] A. Majumdar and R. K. Ward, Face recognition from video: An MMV recovery approach,
in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference

on, IEEE, 2012, 2221–2224.
[31] M. Mishali and Y. C. Eldar, Reduce and boost: Recovering arbitrary sets of jointly sparse

vectors, IEEE Transactions on Signal Processing , 56 (2008), 4692–4702.

[32] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples, Applied and Computational Harmonic Analysis , 26 (2009), 301–321.

[33] D. Needell and R. Vershynin, Signal recovery from incomplete and inaccurate measurements

via regularized orthogonal matching pursuit, IEEE Journal of Selected Topics in Signal Pro-
cessing , 4 (2010), 310–316.

Inverse Problems and Imaging Volume 15, No. 1 (2021), 79–107

http://dx.doi.org/10.1109/TSP.2006.881263
http://dx.doi.org/10.1109/TSP.2006.881263
http://www.ams.org/mathscinet-getitem?mr=MR2168962&return=pdf
http://dx.doi.org/10.1109/TSP.2005.849172
http://dx.doi.org/10.1109/TSP.2005.849172
http://www.ams.org/mathscinet-getitem?mr=MR2729876&return=pdf
http://dx.doi.org/10.1109/TIT.2009.2016006
http://www.ams.org/mathscinet-getitem?mr=MR2918014&return=pdf
http://dx.doi.org/10.1109/TIT.2011.2173722
http://www.ams.org/mathscinet-getitem?mr=MR1256530&return=pdf
http://dx.doi.org/10.1006/acha.1993.1008
http://dx.doi.org/10.1006/acha.1993.1008
http://dx.doi.org/10.1109/EMBC.2019.8857069
http://dx.doi.org/10.1109/EMBC.2019.8857069
http://www.ams.org/mathscinet-getitem?mr=MR2677506&return=pdf
http://dx.doi.org/10.1007/978-1-4419-7011-4
http://dx.doi.org/10.1007/978-1-4419-7011-4
http://dx.doi.org/10.1109/ICASSP.1996.544131
http://dx.doi.org/10.1109/ICASSP.1996.544131
http://www.ams.org/mathscinet-getitem?mr=MR2873246&return=pdf
http://dx.doi.org/10.1137/100806278
http://www.ams.org/mathscinet-getitem?mr=MR3100033&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://www.ams.org/mathscinet-getitem?mr=MR3134336&return=pdf
http://dx.doi.org/10.1016/j.laa.2013.03.004
http://dx.doi.org/10.1016/j.laa.2013.03.004
http://dx.doi.org/10.1007/978-3-540-87732-5_27
http://dx.doi.org/10.1007/978-3-540-87732-5_27
http://www.ams.org/mathscinet-getitem?mr=MR2907718&return=pdf
http://dx.doi.org/10.1109/TIT.2011.2171529
http://dx.doi.org/10.1109/TIT.2011.2171529
http://www.ams.org/mathscinet-getitem?mr=MR2924389&return=pdf
http://dx.doi.org/10.1109/TIT.2012.2189196
http://www.ams.org/mathscinet-getitem?mr=MR3797837&return=pdf
http://dx.doi.org/10.1109/TSP.2018.2793907
http://dx.doi.org/10.1109/TSP.2018.2793907
http://www.ams.org/mathscinet-getitem?mr=MR2671210&return=pdf
http://dx.doi.org/10.1016/j.jmva.2010.05.005
http://dx.doi.org/10.3390/s130303902
http://dx.doi.org/10.3390/s130303902
http://dx.doi.org/10.1016/j.mri.2011.03.008
http://dx.doi.org/10.1016/j.mri.2011.03.008
http://dx.doi.org/10.1109/ICASSP.2012.6288355
http://www.ams.org/mathscinet-getitem?mr=MR2517125&return=pdf
http://dx.doi.org/10.1109/TSP.2008.927802
http://dx.doi.org/10.1109/TSP.2008.927802
http://www.ams.org/mathscinet-getitem?mr=MR2502366&return=pdf
http://dx.doi.org/10.1016/j.acha.2008.07.002
http://dx.doi.org/10.1016/j.acha.2008.07.002
http://dx.doi.org/10.1109/JSTSP.2010.2042412
http://dx.doi.org/10.1109/JSTSP.2010.2042412


Stochastic greedy algorithms for MMV 107

[34] D. Needell and R. Ward, Batched stochastic gradient descent with weighted sampling, in
International Conference Approximation Theory , Springer, 2016, 279–306.

[35] N. Nguyen, D. Needell and T. Woolf, Linear convergence of stochastic iterative greedy al-

gorithms with sparse constraints, IEEE Transactions on Information Theory , 63 (2017),
6869–6895.

[36] N. Nguyen, S. Chin and T. Tran, A Unified Iterative Greedy Algorithm for Sparsity-
Constrained Optimization, 2012.

[37] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive

function approximation with applications to wavelet decomposition, in Proceedings of 27th
Asilomar Conference on Signals, Systems and Computers , IEEE, 1993, 40–44.

[38] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions

on Antennas and Propagation , 34 (1986), 276–280.
[39] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions

on Information theory , 50 (2004), 2231–2242.

[40] J. A. Tropp, A. C. Gilbert and M. J. Strauss, Algorithms for simultaneous sparse approxima-
tion. Part I: Greedy pursuit, Signal Processing , 86 (2006), 572–588.

[41] X.-T. Yuan, P. Li and T. Zhang, Gradient hard thresholding pursuit for sparsity-constrained

optimization, in International Conference on Machine Learning, 2014, 127–135.
[42] T. Zhang, Sparse recovery with orthogonal matching pursuit under RIP, IEEE Transactions

on Information Theory , 57 (2011), 6215–6221.

Received December 2019; 1st revision May 2020; 2nd revision July 2020.

E-mail address: jing.qin@uky.edu
E-mail address: shuangli@mymail.mines.edu
E-mail address: deanna@math.ucla.edu
E-mail address: anna.ma@uci.edu
E-mail address: grotheerre@wofford.edu
E-mail address: chenxi.huang@yale.edu
E-mail address: njdurgin@gmail.com

Inverse Problems and Imaging Volume 15, No. 1 (2021), 79–107

http://www.ams.org/mathscinet-getitem?mr=MR3691061&return=pdf
http://dx.doi.org/10.1007/978-3-319-59912-0_14
http://www.ams.org/mathscinet-getitem?mr=MR3724406&return=pdf
http://dx.doi.org/10.1109/TIT.2017.2749330
http://dx.doi.org/10.1109/TIT.2017.2749330
http://dx.doi.org/10.1109/ACSSC.1993.342465
http://dx.doi.org/10.1109/ACSSC.1993.342465
http://dx.doi.org/10.1109/TAP.1986.1143830
http://www.ams.org/mathscinet-getitem?mr=MR2097044&return=pdf
http://dx.doi.org/10.1109/TIT.2004.834793
http://dx.doi.org/10.1016/j.sigpro.2005.05.030
http://dx.doi.org/10.1016/j.sigpro.2005.05.030
http://www.ams.org/mathscinet-getitem?mr=MR3813815&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2857968&return=pdf
http://dx.doi.org/10.1109/TIT.2011.2162263

	1. Introduction
	2. Preliminaries
	2.1. Vector and matrix sparsity
	2.2. Functions defined on a matrix space
	2.3. Related work

	3. Proposed stochastic greedy algorithms
	4. Batched acceleration
	5. Convergence analysis
	5.1. MStoIHT
	5.2. CStoIHT
	5.3. MStoGradMP
	5.4. CStoGradMP

	6. Distributed compressive sensing application
	7. Numerical experiments
	7.1. Joint sparse matrix recovery
	7.2. Joint Sparse Video Sequence Recovery

	8. Conclusions
	Appendix
	A. Proof of lemma 5.1
	B. Proof of lemma 5.2

	Acknowledgments
	REFERENCES

